WO2015146385A1 - Flywheel regeneration system - Google Patents

Flywheel regeneration system Download PDF

Info

Publication number
WO2015146385A1
WO2015146385A1 PCT/JP2015/054513 JP2015054513W WO2015146385A1 WO 2015146385 A1 WO2015146385 A1 WO 2015146385A1 JP 2015054513 W JP2015054513 W JP 2015054513W WO 2015146385 A1 WO2015146385 A1 WO 2015146385A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
motor generator
rotational speed
transmission
engagement element
Prior art date
Application number
PCT/JP2015/054513
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 芳章
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2015146385A1 publication Critical patent/WO2015146385A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • B60K6/105Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel the accumulator being a flywheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/30Electric propulsion with power supplied within the vehicle using propulsion power stored mechanically, e.g. in fly-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • F16H33/02Rotary transmissions with mechanical accumulators, e.g. weights, springs, intermittently-connected flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a flywheel type regeneration system capable of executing mechanical regeneration in which kinetic energy at the time of deceleration of a vehicle is converted into rotational energy of a flywheel for regeneration.
  • Regenerative technology that regenerates and stores rotational energy of the drive shaft during braking of the vehicle and then reuses the stored energy as rotational energy of the drive shaft, that is, kinetic energy for running the vehicle, to increase energy efficiency.
  • the energy regeneration in this case includes electrical regeneration that converts the rotational energy of the drive shaft into electrical energy and regenerates the battery, and mechanical regeneration that converts the rotational energy of the drive shaft into rotational energy of the flywheel and regenerates it. There is.
  • Patent Document 1 predicts whether or not the energy attenuation loss due to the attenuation of the rotational energy of the flywheel exceeds the allowable range, and when the energy attenuation loss is predicted to exceed the allowable range, the flywheel A technology has been proposed in which the rotational energy of the flywheel is transmitted to the motor generator, whereby the rotational energy of the flywheel is converted into electric energy by the motor generator and regenerated to the battery.
  • the traveling state regenerative energy traveling state
  • the rotational energy regenerated on the flywheel is used for traveling driving of the vehicle
  • the first frictional engagement element between the flywheel and the power transmission system of the vehicle is fastened.
  • the transmission state is set, and the second frictional engagement element between the drive source such as the engine and the motor and the power transmission system of the vehicle is released to set the power cutoff state.
  • the first frictional engagement element is released and the power is cut off, and the second frictional engagement element is engaged. Then, the power transmission state is set, and the driving state is switched to the normal traveling state in which the vehicle is driven.
  • the frictional engagement elements are switched, if there is a difference in rotational speed between the frictional engagement elements to be engaged, an engagement shock may be caused, which may cause the driver to feel uncomfortable.
  • the frictional engagement element is tightened slowly in order to suppress the engagement shock, the increase of the driving force transmitted to the drive wheels becomes slow, and the driver's request cannot be satisfied, which may also give a sense of incongruity. .
  • the present invention has been devised in view of such problems, so that the traveling of the vehicle can be smoothly and quickly switched from the regenerative energy traveling state using the rotational energy of the flywheel to the normal traveling state by the drive source.
  • the purpose is to provide a flywheel regenerative system.
  • a flywheel regeneration system is provided in a vehicle, and regenerates with a transmission having an input unit connected to a drive source and an output unit connected to a drive wheel, and the traveling energy of the vehicle as rotational energy.
  • a motor generator connected to the flywheel so as to be able to transmit power, and the regenerative energy travel using the rotational energy of the flywheel, the first friction engagement element is engaged and the second friction engagement element is released.
  • control means When the travel mode is switched, the control means is configured so that the rotational speed of the fastening element on the drive source side of the second frictional engagement element is the rotation of the fastening element on the input side of the second frictional engagement element. If it is lower than the speed, it is preferable to regenerate the motor generator.
  • control means downshifts the transmission when the motor generator is regeneratively operated.
  • the amount of downshift of the transmission corresponds to the amount of driving force reduced by regeneration of the motor generator.
  • control means is configured such that the rotational speed of the fastening element on the driving source side of the second frictional engagement element is the rotation of the fastening element on the input side of the second frictional engagement element. If it is higher than the speed, it is preferable to power-operate the motor generator.
  • control means upshifts the transmission when the motor generator is powered.
  • the amount of upshift of the transmission corresponds to the amount of driving force that increases due to the power running of the motor generator.
  • control means puts the transmission in a slip state when the motor generator is powered.
  • the motor generator is directly connected to the flywheel, and a speed increasing mechanism that increases the speed of rotation of the transmission and transmits the speed to the flywheel between the flywheel and the input section of the transmission. Is preferably interposed.
  • the fact that the motor generator is directly connected to the flywheel means that the motor generator is connected to the flywheel without interposing a frictional engagement element.
  • the motor generator is directly connected to the input unit of the transmission, and is connected to the flywheel via the first frictional engagement element.
  • the first frictional engagement element is fastened and the second frictional engagement element is released to drive the flywheel while traveling with regenerative energy using the rotational energy of the flywheel.
  • the rotational energy of the flywheel cannot satisfy the driver's required driving force due to a decrease in rotational energy
  • the first frictional engagement element is released and the second frictional engagement element is engaged to utilize the driving force of the drive source. Switching to normal driving satisfies the driver's required driving force.
  • the motor generator is controlled so that the rotational speed difference of the second frictional engagement element to be engaged is reduced before the second frictional engagement element is engaged.
  • a vehicle 100 includes an engine 1 as a power source, a flywheel 2 that regenerates energy, and a continuously variable transmission mechanism (hereinafter referred to as a CVT variator or 3) and a continuously variable transmission (CVT) 3A having a sub-transmission mechanism 4 for shifting the output rotation of the CVT variator 3, and a final reduction device 5 for decelerating the output rotation of the sub-transmission mechanism 4 of the CVT 3A; It includes left and right drive wheels 6, a hydraulic circuit 7, and a controller (control means) 8.
  • a differential device (not shown) is interposed between the final reduction gear 5 and the left and right drive wheels 6.
  • An engine clutch (second frictional engagement element) 91 is provided between the engine 1 and the input shaft (transmission input shaft) 21A of the CVT 3A.
  • the engine clutch 91 is a hydraulic clutch whose fastening capacity can be controlled by the supplied hydraulic pressure. When the engine clutch 91 is in a fastening state, the driving force of the engine 1 is transmitted to the CVT 3A.
  • the transmission input shaft 21A is connected to an oil pump 10 that is driven by the rotation of the transmission input shaft 21A and generates hydraulic pressure.
  • the oil pump 10 is constituted by, for example, a gear pump or a vane pump.
  • the hydraulic pressure generated by the oil pump 10 is supplied to the CVT variator 3, the engine clutch 91, the auxiliary transmission mechanism 4 and the like via a hydraulic circuit 7 described later.
  • the input side of the torque converter 25 is connected to the engine 1 via the transmission input shaft 21 ⁇ / b> A and the engine clutch 91, and is connected to the flywheel 2 via the reduction gear train 23, the flywheel clutch 92 and the reduction gear train 24. Has been.
  • the output side of the torque converter 25 is connected to the variator input shaft 31 via the intermediate shaft 21 ⁇ / b> B and the gear pair 22.
  • the torque converter 25 provides a torque amplifying action for amplifying the input torque of the engine 1 and the flywheel 2 and a creep action allowing a difference in input / output rotational speed.
  • any frictional engagement element in the auxiliary transmission mechanism 4 is not fastened, the CVT 3A, the final reduction gear 5 and the drive wheels 6 are powered off, and the low brake or high clutch used at the start also functions as a start clutch. To do.
  • the hydraulic circuit 7 is constituted by a solenoid valve or the like that operates in response to a signal from a controller 8 described later, and is connected to the oil pump 10, the CVT variator 3, the engine clutch 91, and the auxiliary transmission mechanism 4 through an oil passage.
  • the hydraulic circuit 7 generates the hydraulic pressure required by each pulley of the variator 3, the engine clutch 91 and the auxiliary transmission mechanism 4 using the hydraulic pressure generated by the oil pump 10 as a source pressure, and the generated hydraulic pressure is used for each pulley of the variator 3. , And supplied to the engine clutch 91 and the auxiliary transmission mechanism 4.
  • the output shaft 11 of the engine 1 is connected with an alternator 12 and an air conditioner compressor 13 as auxiliary machines via a power transmission member (belt / pulley mechanism) 14.
  • the alternator 12 is electrically connected to the battery 15, and the battery 15 is charged by the electric power generated by the alternator 12.
  • a starter motor 18 is connected to the output shaft 11 of the engine 1 via a gear pair 17, and the engine 1 is started by the output rotation of the starter motor 18 when the engine is started.
  • the flywheel 2 is directly connected to a motor generator (motor generator) 20.
  • the fact that the motor generator 20 is directly connected to the flywheel 2 means that the motor generator 20 is directly connected to the flywheel 2 without interposing a frictional engagement element.
  • the motor generator 20 is connected to the battery 15 via the inverter 16.
  • the controller 8 includes a CPU, a RAM, an input / output interface, and the like.
  • the controller 8 includes a rotational speed sensor 81 for detecting the rotational speed of the engine 1 (engine rotational speed) Ne, a rotational speed sensor 82 for detecting the rotational speed of the variator input shaft 31 (CVT input shaft rotational speed) Nin, and the flywheel 2.
  • a signal from a brake sensor 87 or the like that detects the stepping force is input.
  • the controller 8 performs various calculations based on the input signal, and controls the CVT variator 3, the shift of the subtransmission mechanism 4, the engagement / release of the clutches 91 and 92, and the brake actuator 63, respectively.
  • the controller 8 engages the flywheel clutch 92 and accelerates the rotation input from the drive wheels 6 by the reduction gear trains 23 and 24.
  • the flywheel 2 By rotating the flywheel 2 and converting the kinetic energy of the vehicle 100 into the kinetic energy of the flywheel 2, the kinetic energy of the vehicle 100 is regenerated by the flywheel 2 and regenerative braking is performed.
  • the vehicle 200 includes an engine 1 as a power source, a flywheel 2 that regenerates energy, and a continuously variable transmission mechanism (hereinafter referred to as a CVT variator or 3) and a continuously variable transmission (CVT) 3B having a forward / reverse switching mechanism 104 that outputs the output rotation of the CVT variator 3 forward or reverse, and the output rotation of the forward / reverse switching mechanism 104.
  • a CVT variator or 3 continuously variable transmission mechanism
  • CVT continuously variable transmission mechanism 3B having a forward / reverse switching mechanism 104 that outputs the output rotation of the CVT variator 3 forward or reverse, and the output rotation of the forward / reverse switching mechanism 104.
  • a final reduction gear 5 that decelerates, left and right drive wheels 6, a hydraulic circuit 7, and a controller (control means) 8 are provided.
  • a differential device (not shown) is interposed between the final reduction gear 5 and the left and right drive wheels 6.
  • the auxiliary transmission mechanism 190 includes a planetary gear type auxiliary transmission mechanism 191, a one-way clutch 192, and a direct clutch (second frictional engagement element) 193.
  • the CVT 3B of the second configuration example includes the sub-transmission 190, the WSC 27, the CVT variator 3, and the forward / reverse switching mechanism 104, and a transmission input shaft 121 described later corresponds to an input portion of the CVT (transmission) 3B.
  • the output shaft 5a of the forward / reverse switching mechanism 104 corresponds to the output portion of the CVT (transmission) 3B.
  • the planetary gear type auxiliary transmission mechanism 191 includes a ring gear 191a, a planetary pinion 191c supported by the planetary carrier 191b, and a sun gear 191d.
  • the output shaft 11 of the engine 1 is connected to the ring gear 191a.
  • a transmission input shaft 121 is connected to the planetary carrier 191b.
  • a gear 26a that meshes with the gear 26 connected to the flywheel 2 side is coupled to the planetary carrier 191b.
  • the direct clutch 193 is interposed between the ring gear 191a and the planetary carrier 191b. Further, a one-way clutch 192 is connected to the sun gear 191d.
  • the one-way clutch 192 regulates the rotation of the sun gear 191d.
  • the direct clutch 193 is not engaged, the rotation of the ring gear 191a to which the driving force is transmitted from the engine 1 is decelerated through the planetary pinion 191c and transmitted to the planetary carrier 191b to set the first speed (low speed) stage.
  • the direct clutch 193 is engaged, the rotation of the ring gear 191a to which the driving force is transmitted from the engine 1 is transmitted directly to the planetary carrier 191b without being decelerated, and the second speed (high speed) stage is set.
  • the sub-transmission mechanism 191 since the sub-transmission mechanism 191 is provided with the first speed stage on the lower speed side than the second speed stage, the first speed stage can output a larger torque than the second speed stage. As a result, the auxiliary transmission mechanism 191 has a torque amplification function in the torque converter.
  • the direct clutch 193 is released, and the driving force input from the flywheel 2 is output to the transmission input shaft 121 via the planetary carrier 191b.
  • the oil pump 110 and the motor generator 120 are connected to the transmission input shaft 121 of the auxiliary transmission mechanism 191 via speed increasing mechanisms 121a and 121b.
  • the oil pump 110 is constituted by, for example, a gear pump or a vane pump.
  • the hydraulic pressure generated by the oil pump 110 is supplied to the CVT variator 3, the direct clutch (engine clutch) 193 of the auxiliary transmission 190, the WSC 27, the forward / reverse switching mechanism 104, and the like via a hydraulic circuit 7 described later.
  • the flywheel clutch 92 is a hydraulic clutch whose fastening capacity can be controlled by the supplied hydraulic pressure, as in the first configuration example.
  • the engagement capacity of the flywheel clutch 92 is controlled by a hydraulic source capable of supplying hydraulic pressure. Specifically, unlike the oil pump 110, the hydraulic pressure generated by the electric oil pump 10E driven by the electric motor is supplied to the flywheel clutch 92.
  • the motor generator 120 in the rotation control of the flywheel 2, when the rotation of the flywheel 2 is increased, the motor generator 120 is operated by powering, and when it is decelerated, the motor generator 120 is regenerated (power generation operation).
  • the battery 15 can be charged by the generated power when the motor generator 120 is regeneratively operated.
  • the cost can be reduced.
  • the motor generator 120 and the oil pump 110 are cut off from the driving wheel 6 and power transmission by the WSC 27, the power transmission from the engine 1 is cut off by the direct clutch, and the power transmission from the flywheel 2 is cut off by the flywheel clutch 92. Therefore, if the WSC 27, the direct clutch 193, and the flywheel clutch 92 are released, even if the oil pump 110 is driven by the motor generator 120, the power of the motor generator 120 is transmitted to the drive wheels 6, the engine 1, and the flywheel 2. It will never be done.
  • the controller 8 controls the engagement capacity of the flywheel clutch 92 so as to obtain a braking force (regenerative braking) according to the driver's deceleration request.
  • a braking force regenerative braking
  • the controller 8 operates the brake actuator 63 to apply the braking force of the brake 60. To increase the braking force according to the driver's deceleration request.
  • the rotational energy of the flywheel 2 is not satisfied with the rotational energy of the flywheel 2 due to a decrease in the rotational energy of the flywheel 2.
  • the regenerative energy travel is switched to the normal travel in which the vehicle is travel-driven using the driving force of the engine 1 that is a drive source.
  • the start of the engine 1 is performed by driving the starter motor 18 and fuel injection, there is a time lag from the start of the engine 1 to the completion of the start. Even during this time lag, the flywheel input shaft equivalent rotational speed Nfwin and the input shaft rotational speed Nin decrease. Accordingly, the engine 1 is started at the timing when the minute amount ⁇ corresponding to the decreasing rotational speed is added to the engine start index rotational speed Nengin0 and the rotational speed (Nengin0 + ⁇ ) obtained by adding the small amount ⁇ to the engine start index rotational speed Nengin0. When the command is issued, the engine 1 is completely started when the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin are reduced to the engine start index rotational speed Nengin0. Can be adapted to
  • the CVT gear ratio is subsequently shifted from the low side to the high side.
  • the shift speed from the Low side to the High side in the CVT variator 3 is controlled based on the driver's required driving force, and the higher the required driving force, the faster the gear shifting speed, so that the rotational energy is quickly released from the flywheel 2.
  • the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin become the rotational speed (Nengin0 + ⁇ ) obtained by adding a small amount ⁇ to the engine start index rotational speed Nengin0. Command to start.
  • step S90 it is determined whether or not the flywheel input shaft equivalent rotational speed Nfwin matches the engine input shaft equivalent rotational speed Nengin (step S90), and the flywheel input shaft equivalent rotational speed Nfwin is equal to the engine input shaft equivalent rotational speed Nengin. If not, the processes in steps S50 to S90 are repeated for each control cycle. If the flywheel input shaft equivalent rotational speed Nfwin matches the engine input shaft equivalent rotational speed Nengin, the engine clutches 91 and 193 are turned from off to on. The flywheel clutch 92 is switched from on to off (step S100).

Abstract

A vehicle (100) is provided with: a continuously variable transmission mechanism (3); a flywheel (2) that recaptures the travelling energy of the vehicle as rotational energy; a flywheel clutch (92); an engine clutch (91); and a motor generator (20) that is connected to the flywheel (2). At the time of switching from regenerative energy travelling, in which the flywheel clutch (92) is engaged and the engine clutch (91) is disengaged in order to use the rotational energy of the flywheel (2), to normal travelling, in which the engine clutch (91) is engaged and the flywheel clutch (92) is disengaged in order to use the driving force of the engine (1), a controller (8) controls the motor generator (20) and reduces a difference in the rotational speed of the engine clutch (91) before engagement of the engine clutch (91).

Description

フライホイール式回生システムFlywheel regeneration system
 本発明は、車両の減速時の運動エネルギをフライホイールの回転エネルギに変換して回生する機械的回生を実行可能なフライホイール式回生システムに関するものである。 The present invention relates to a flywheel type regeneration system capable of executing mechanical regeneration in which kinetic energy at the time of deceleration of a vehicle is converted into rotational energy of a flywheel for regeneration.
 車両の制動時に駆動軸の回転エネルギを回生して貯留し、その後、この貯留したエネルギを駆動軸の回転エネルギ、即ち車両の走行のための運動エネルギに再利用し、エネルギ効率を高める回生技術が開発されている。この場合のエネルギの回生には、駆動軸の回転エネルギを電気エネルギに変換してバッテリに回生する電気的回生と、駆動軸の回転エネルギをフライホイールの回転エネルギに変換して回生する機械的回生とがある。 Regenerative technology that regenerates and stores rotational energy of the drive shaft during braking of the vehicle and then reuses the stored energy as rotational energy of the drive shaft, that is, kinetic energy for running the vehicle, to increase energy efficiency. Has been developed. The energy regeneration in this case includes electrical regeneration that converts the rotational energy of the drive shaft into electrical energy and regenerates the battery, and mechanical regeneration that converts the rotational energy of the drive shaft into rotational energy of the flywheel and regenerates it. There is.
 電気的回生の場合も機械的回生の場合も、駆動軸の回転エネルギを各エネルギに変換する際にエネルギ損失が生じ、駆動軸の回転エネルギを電気エネルギに変換する際のエネルギ損失よりも、駆動軸の回転エネルギをフライホイールの回転エネルギに変換する際のエネルギ損失の方が小さくなる。また、フライホイールの回転エネルギは、摩擦損失等により時間経過に伴って徐々に減衰するという特性がある。 In both cases of electrical regeneration and mechanical regeneration, energy loss occurs when converting the rotational energy of the drive shaft into each energy, and the drive loss is greater than energy loss when converting the rotational energy of the drive shaft into electrical energy. The energy loss when converting the rotational energy of the shaft into the rotational energy of the flywheel is smaller. Further, the rotational energy of the flywheel has a characteristic that it gradually attenuates with time due to friction loss and the like.
 したがって、駆動軸の回転エネルギをフライホイールの回転エネルギに変換する場合、その後速やかにフライホイールの回転エネルギを車両の運動エネルギに変換すればトータルのエネルギ損失は電気エネルギに変換する場合よりも少ない。しかし、フライホイールの回転エネルギに変換後これを車両の運動エネルギに変換するまでの時間が長くなると、トータルのエネルギ損失は電気エネルギに変換する場合よりも多くなる。 Therefore, when converting the rotational energy of the drive shaft into the rotational energy of the flywheel, if the rotational energy of the flywheel is immediately converted into the kinetic energy of the vehicle, the total energy loss is less than when converting into electrical energy. However, if it takes longer time to convert the rotational energy of the flywheel to the kinetic energy of the vehicle, the total energy loss becomes larger than that of the electrical energy.
 そこで、例えば、特許文献1には、フライホイールの回転エネルギの減衰によるエネルギ減衰損失が許容範囲を越えるか否かを予測し、このエネルギ減衰損失が許容範囲を越えると予測されたときにフライホイールの回転力をモータジェネレータに伝達することでフライホイールの回転エネルギをモータジェネレータで電気エネルギに変換してバッテリに回生するようにした技術が提案されている。 Therefore, for example, Patent Document 1 predicts whether or not the energy attenuation loss due to the attenuation of the rotational energy of the flywheel exceeds the allowable range, and when the energy attenuation loss is predicted to exceed the allowable range, the flywheel A technology has been proposed in which the rotational energy of the flywheel is transmitted to the motor generator, whereby the rotational energy of the flywheel is converted into electric energy by the motor generator and regenerated to the battery.
 ところで、フライホイールに回生した回転エネルギを車両の走行駆動に利用する走行状態(回生エネルギ走行状態)では、フライホイールと車両の動力伝達系との間の第1の摩擦締結要素を締結して動力伝達状態にし、エンジンやモータ等の駆動源と車両の動力伝達系との間の第2の摩擦締結要素を解放して動力遮断状態にする。これにより、エンジン等を停止したままで発進や加速を行なうことができ、燃費や電費を節約できる。 By the way, in the traveling state (regenerative energy traveling state) in which the rotational energy regenerated on the flywheel is used for traveling driving of the vehicle, the first frictional engagement element between the flywheel and the power transmission system of the vehicle is fastened. The transmission state is set, and the second frictional engagement element between the drive source such as the engine and the motor and the power transmission system of the vehicle is released to set the power cutoff state. As a result, it is possible to start and accelerate while the engine and the like are stopped, and it is possible to save fuel consumption and power consumption.
 一方、回生エネルギ走行状態によりフライホイールの回転エネルギが減少すると、運転者の要求駆動力を満たせなくなるため、第1の摩擦締結要素を解放して動力遮断状態にし、第2の摩擦締結要素を締結して動力伝達状態にして、駆動源によって車両を駆動する通常走行状態に切り替える。しかし、こうした摩擦締結要素の掛け替え時に、締結する摩擦締結要素に回転速度差があると締結ショックを招き、この締結ショックが運転者に違和感を与えることがある。一方、締結ショックを抑えるために、摩擦締結要素をゆっくりと締結すれば、駆動輪に伝達される駆動力の増大が緩慢になり、運転者の要求を満足できず、やはり違和感を与えることがある。 On the other hand, if the rotational energy of the flywheel decreases due to the regenerative energy running state, the driver's required driving force cannot be satisfied. Therefore, the first frictional engagement element is released and the power is cut off, and the second frictional engagement element is engaged. Then, the power transmission state is set, and the driving state is switched to the normal traveling state in which the vehicle is driven. However, when the frictional engagement elements are switched, if there is a difference in rotational speed between the frictional engagement elements to be engaged, an engagement shock may be caused, which may cause the driver to feel uncomfortable. On the other hand, if the frictional engagement element is tightened slowly in order to suppress the engagement shock, the increase of the driving force transmitted to the drive wheels becomes slow, and the driver's request cannot be satisfied, which may also give a sense of incongruity. .
特開2011-038621号公報JP 2011-038621 A
 本発明は、このような課題に鑑み創案されたもので、車両の走行を、フライホイールの回転エネルギを利用した回生エネルギ走行状態から駆動源による通常走行状態に円滑且つ速やかに切り替えることができるようにした、フライホイール式回生システムを提供することを目的としている。 The present invention has been devised in view of such problems, so that the traveling of the vehicle can be smoothly and quickly switched from the regenerative energy traveling state using the rotational energy of the flywheel to the normal traveling state by the drive source. The purpose is to provide a flywheel regenerative system.
 (1)本発明のフライホイール式回生システムは、車両に装備され、入力部が駆動源に接続され出力部が駆動輪に接続された変速機と、前記車両の走行エネルギを回転エネルギとして回生するフライホイールと、前記フライホイールと前記入力部との間に介装された第1の摩擦締結要素と、前記駆動源と前記入力部との間に介装された第2の摩擦締結要素と、前記フライホイールに動力伝達可能に接続されたモータジェネレータと、前記フライホイールの回転エネルギを利用した回生エネルギ走行の際には前記第1の摩擦締結要素を締結し前記第2の摩擦締結要素を解放し、前記駆動源の駆動力を利用した通常走行の際には前記第2の摩擦締結要素を締結し前記第1の摩擦締結要素を解放する制御手段と、を備え、前記制御手段は、前記回生エネルギ走行から前記通常走行へ切り替える走行モード切替時には、前記モータジェネレータを制御して、前記第2の摩擦締結要素を締結する前に前記第2の摩擦締結要素の回転速度差を低減させる。 (1) A flywheel regeneration system according to the present invention is provided in a vehicle, and regenerates with a transmission having an input unit connected to a drive source and an output unit connected to a drive wheel, and the traveling energy of the vehicle as rotational energy. A flywheel, a first frictional engagement element interposed between the flywheel and the input unit, and a second frictional engagement element interposed between the drive source and the input unit, A motor generator connected to the flywheel so as to be able to transmit power, and the regenerative energy travel using the rotational energy of the flywheel, the first friction engagement element is engaged and the second friction engagement element is released. And control means for fastening the second frictional engagement element and releasing the first frictional engagement element during normal traveling using the driving force of the drive source, Times When running mode switching for switching from the energy traveling to the normal traveling, the controls of the motor generator, thereby reducing the rotational speed difference of the second friction engagement element before fastening the second friction engagement element.
 (2)前記制御手段は、前記走行モード切替時に、前記第2の摩擦締結要素の前記駆動源側の締結要素の回転速度が前記第2の摩擦締結要素の前記入力部側の締結要素の回転速度よりも低ければ、前記モータジェネレータを回生作動させることが好ましい。 (2) When the travel mode is switched, the control means is configured so that the rotational speed of the fastening element on the drive source side of the second frictional engagement element is the rotation of the fastening element on the input side of the second frictional engagement element. If it is lower than the speed, it is preferable to regenerate the motor generator.
 (3)前記制御手段は、前記モータジェネレータを回生作動させるに際して、前記変速機をダウンシフトさせることが好ましい。 (3) Preferably, the control means downshifts the transmission when the motor generator is regeneratively operated.
 (4)前記変速機のダウンシフト量は、前記モータジェネレータの回生により低減する駆動力分に対応することが好ましい。 (4) It is preferable that the amount of downshift of the transmission corresponds to the amount of driving force reduced by regeneration of the motor generator.
 (5)前記制御手段は、前記走行モード切替時に、前記第2の摩擦締結要素の前記駆動源側の締結要素の回転速度が前記第2の摩擦締結要素の前記入力部側の締結要素の回転速度よりも高ければ、前記モータジェネレータを力行作動させることが好ましい。 (5) When the travel mode is switched, the control means is configured such that the rotational speed of the fastening element on the driving source side of the second frictional engagement element is the rotation of the fastening element on the input side of the second frictional engagement element. If it is higher than the speed, it is preferable to power-operate the motor generator.
 (6)前記制御手段は、前記モータジェネレータを力行作動させるに際して、前記変速機をアップシフトさせることが好ましい。 (6) Preferably, the control means upshifts the transmission when the motor generator is powered.
 (7)前記変速機のアップシフト量は、前記モータジェネレータの力行により増大する駆動力分に対応することが好ましい。 (7) It is preferable that the amount of upshift of the transmission corresponds to the amount of driving force that increases due to the power running of the motor generator.
 (8)前記制御手段は、前記モータジェネレータの力行に際して、前記変速機をスリップ状態とすることが好ましい。 (8) It is preferable that the control means puts the transmission in a slip state when the motor generator is powered.
 (9)前記モータジェネレータは、前記フライホイールに直結され、前記フライホイールと前記変速機の前記入力部との間に、前記変速機の回転を増速して前記フライホイールへ伝達する増速機構が介装されることが好ましい。ここで、モータジェネレータがフライホイールに直結されるとは、モータジェネレータが摩擦締結要素を介在しないでフライホイールに接続されることを意味する。 (9) The motor generator is directly connected to the flywheel, and a speed increasing mechanism that increases the speed of rotation of the transmission and transmits the speed to the flywheel between the flywheel and the input section of the transmission. Is preferably interposed. Here, the fact that the motor generator is directly connected to the flywheel means that the motor generator is connected to the flywheel without interposing a frictional engagement element.
 (10)前記モータジェネレータは、前記変速機の前記入力部に直結されて、前記フライホイールとは前記第1の摩擦締結要素を介して接続され、前記変速機の前記入力部と前記モータジェネレータとの間に前記変速機の回転を増速して前記モータジェネレータへ伝達する増速機構が介装されることが好ましい。 (10) The motor generator is directly connected to the input unit of the transmission, and is connected to the flywheel via the first frictional engagement element. The input unit of the transmission, the motor generator, It is preferable that a speed increasing mechanism for increasing the speed of rotation of the transmission and transmitting it to the motor generator is interposed.
 本発明のフライホイール式回生システムによれば、第1の摩擦締結要素を締結し第2の摩擦締結要素を解放してフライホイールの回転エネルギを利用した回生エネルギ走行で走行中に、フライホイールの回転エネルギの低下により運転者の要求駆動力をフライホイールの回転エネルギでは満足できなくなると、第1の摩擦締結要素を解放し第2の摩擦締結要素を締結して駆動源の駆動力を利用した通常走行に切り替えて、運転者の要求駆動力を満足させる。 According to the flywheel type regenerative system of the present invention, the first frictional engagement element is fastened and the second frictional engagement element is released to drive the flywheel while traveling with regenerative energy using the rotational energy of the flywheel. When the rotational energy of the flywheel cannot satisfy the driver's required driving force due to a decrease in rotational energy, the first frictional engagement element is released and the second frictional engagement element is engaged to utilize the driving force of the drive source. Switching to normal driving satisfies the driver's required driving force.
 この回生エネルギ走行から通常走行への切替時には、第2の摩擦締結要素を締結する前にこの締結される第2の摩擦締結要素の回転速度差が低減するようモータジェネレータを制御する。このように第2の摩擦締結要素の回転速度差が低減された状態で第2の摩擦締結要素の締結を行なうので、速やかに締結しても締結ショックが抑制され、運転者に違和感を与えることがない。また、速やかに締結できるので、運転者の駆動力要求を満足させることができる。 At the time of switching from the regenerative energy traveling to the normal traveling, the motor generator is controlled so that the rotational speed difference of the second frictional engagement element to be engaged is reduced before the second frictional engagement element is engaged. Thus, since the second frictional engagement element is engaged in a state where the rotational speed difference of the second frictional engagement element is reduced, the engagement shock is suppressed even if the second friction engagement element is quickly engaged, and the driver feels uncomfortable. There is no. Moreover, since it can fasten rapidly, a driver | operator's driving force request | requirement can be satisfied.
本発明の一実施形態にかかるフライホイール回生システムを備える車両の駆動系の第1構成例を示す構成図である。It is a block diagram which shows the 1st structural example of the drive system of a vehicle provided with the flywheel regeneration system concerning one Embodiment of this invention. 本発明の一実施形態にかかるフライホイール回生システムを備える車両の駆動系の第2構成例を示す構成図である。It is a block diagram which shows the 2nd structural example of the drive system of a vehicle provided with the flywheel regeneration system concerning one Embodiment of this invention. 本発明の一実施形態にかかるフライホイール回生システムによる制御を説明する変速線図である。It is a shift diagram explaining the control by the flywheel regeneration system concerning one Embodiment of this invention. 本発明の一実施形態にかかるフライホイール回生システムによる制御を説明するタイムチャートの第1例である。It is a 1st example of the time chart explaining control by the flywheel regeneration system concerning one embodiment of the present invention. 本発明の一実施形態にかかるフライホイール回生システムによる制御を説明するタイムチャートの第2例である。It is a 2nd example of the time chart explaining control by the flywheel regeneration system concerning one Embodiment of this invention. 本発明の一実施形態にかかるフライホイール回生システムによる制御を説明するフローチャートである。It is a flowchart explaining control by the flywheel regeneration system concerning one Embodiment of this invention.
 以下、図面を参照して本発明の実施の形態について説明する。
 本発明にかかるフライホイール回生システムでは、摩擦締結要素を締結する際に、予め摩擦締結要素の二つの要素間の回転速度差が低減するようモータジェネレータを制御するが、この制御に適用できる車両の駆動系の構成には種々のものがある。本実施形態では、本発明に適用できる車両の駆動系の構成として二つの例を説明し、その後、これらの車両に装備されるフライホイール回生システムを説明する。
Embodiments of the present invention will be described below with reference to the drawings.
In the flywheel regeneration system according to the present invention, when the frictional engagement element is engaged, the motor generator is controlled in advance so as to reduce the difference in rotational speed between the two elements of the frictional engagement element. There are various drive system configurations. In the present embodiment, two examples will be described as the configuration of a drive system of a vehicle applicable to the present invention, and then a flywheel regeneration system equipped in these vehicles will be described.
 [1.フライホイール回生システムを装備する車両の第1構成例]
 図1を参照して第1構成例にかかる車両100を説明する。図1に示すように、車両100は、動力源としてのエンジン1と、エネルギを回生するフライホイール2と、エンジン1の出力回転を無段階に変速する無段変速機構(以下、CVTバリエータ、又は単にバリエータとも言う)3及びCVTバリエータ3の出力回転を変速する副変速機構4を有する無段変速機(CVT)3Aと、CVT3Aの副変速機構4の出力回転を減速する終減速装置5と、左右の駆動輪6と、油圧回路7と、コントローラ(制御手段)8とを備える。なお、終減速装置5と左右の駆動輪6との間には図示しない差動装置が介装される。
[1. First configuration example of vehicle equipped with flywheel regeneration system]
A vehicle 100 according to a first configuration example will be described with reference to FIG. As shown in FIG. 1, a vehicle 100 includes an engine 1 as a power source, a flywheel 2 that regenerates energy, and a continuously variable transmission mechanism (hereinafter referred to as a CVT variator or 3) and a continuously variable transmission (CVT) 3A having a sub-transmission mechanism 4 for shifting the output rotation of the CVT variator 3, and a final reduction device 5 for decelerating the output rotation of the sub-transmission mechanism 4 of the CVT 3A; It includes left and right drive wheels 6, a hydraulic circuit 7, and a controller (control means) 8. A differential device (not shown) is interposed between the final reduction gear 5 and the left and right drive wheels 6.
 エンジン1とCVT3Aの入力軸(変速機入力軸)21Aとの間には、エンジンクラッチ(第2の摩擦締結要素)91が設けられる。このエンジンクラッチ91は、供給される油圧によって締結容量を制御可能な油圧式クラッチであり、エンジンクラッチ91を締結状態としたときに、エンジン1の駆動力がCVT3Aへと伝達される。 An engine clutch (second frictional engagement element) 91 is provided between the engine 1 and the input shaft (transmission input shaft) 21A of the CVT 3A. The engine clutch 91 is a hydraulic clutch whose fastening capacity can be controlled by the supplied hydraulic pressure. When the engine clutch 91 is in a fastening state, the driving force of the engine 1 is transmitted to the CVT 3A.
 CVT3Aの入力側には、変速機入力軸(変速機の入力部)21A,ロックアップクラッチ付きトルクコンバータ25,中間軸21B,ギヤ対22,バリエータ入力軸31が、入力経路順に設けられている。したがって、トルクコンバータ25の入力側(ポンプインペラ側)は変速機入力軸21Aに、出力側(タービンランナ側)は中間軸21Bに、それぞれ接続される。また、ギヤ対22はエンジン回転を逆回転してCVTバリエータ3に伝達しており、互いに同歯数のギヤからなり、ロックアップクラッチ締結時には、バリエータ入力軸31は変速機入力軸21Aと等速回転する。 On the input side of the CVT 3A, a transmission input shaft (transmission input portion) 21A, a torque converter 25 with a lockup clutch, an intermediate shaft 21B, a gear pair 22, and a variator input shaft 31 are provided in the order of the input path. Therefore, the input side (pump impeller side) of the torque converter 25 is connected to the transmission input shaft 21A, and the output side (turbine runner side) is connected to the intermediate shaft 21B. The gear pair 22 reversely rotates the engine rotation and transmits it to the CVT variator 3, and is composed of gears having the same number of teeth. When the lockup clutch is engaged, the variator input shaft 31 is at the same speed as the transmission input shaft 21A. Rotate.
 第1構成例のCVT3Aは、トルクコンバータ25,CVTバリエータ3及び副変速機構4から構成され、変速機入力軸21AがCVT(変速機)3Aの入力部に相当し、副変速機構4の出力軸がCVT(変速機)3Aの出力部に相当する。 The CVT 3A of the first configuration example includes a torque converter 25, a CVT variator 3, and a subtransmission mechanism 4. The transmission input shaft 21A corresponds to the input portion of the CVT (transmission) 3A, and the output shaft of the subtransmission mechanism 4 Corresponds to the output part of the CVT (transmission) 3A.
 また、変速機入力軸21Aには、変速機入力軸21Aの回転により駆動され油圧を発生するオイルポンプ10が接続される。オイルポンプ10は、例えばギヤポンプやベーンポンプにより構成される。オイルポンプ10により発生した油圧は後述する油圧回路7を介して、CVTバリエータ3,エンジンクラッチ91,副変速機構4等に供給される。 Also, the transmission input shaft 21A is connected to an oil pump 10 that is driven by the rotation of the transmission input shaft 21A and generates hydraulic pressure. The oil pump 10 is constituted by, for example, a gear pump or a vane pump. The hydraulic pressure generated by the oil pump 10 is supplied to the CVT variator 3, the engine clutch 91, the auxiliary transmission mechanism 4 and the like via a hydraulic circuit 7 described later.
 変速機入力軸21Aには、さらに、減速ギヤ列23,24を介してフライホイール2が接続される。フライホイール2は、回転可能な円筒体又は円盤形状の金属体が容器内に収装されて構成される。容器内は、金属体が回転するときの空気抵抗等の影響により回転が低下すること(風損とも呼ぶ)を低減するために、真空状態又は減圧状態とされている。 The flywheel 2 is further connected to the transmission input shaft 21 </ b> A via reduction gear trains 23 and 24. The flywheel 2 is configured by accommodating a rotatable cylindrical body or a disk-shaped metal body in a container. The inside of the container is in a vacuum state or a reduced pressure state in order to reduce a decrease in rotation (also referred to as windage loss) due to air resistance or the like when the metal body rotates.
 減速ギヤ列23と減速ギヤ列24との間には、後述のフライホイール式回生システムで用いる摩擦締結要素であるフライホイールクラッチ(第1の摩擦締結要素)92が設けられる。フライホイールクラッチ92は、供給される油圧によって締結容量を制御可能な油圧式クラッチである。 Between the reduction gear train 23 and the reduction gear train 24, a flywheel clutch (first friction engagement element) 92, which is a friction engagement element used in a flywheel type regeneration system described later, is provided. The flywheel clutch 92 is a hydraulic clutch whose fastening capacity can be controlled by supplied hydraulic pressure.
 フライホイールクラッチ92は、変速機入力軸21Aの回転にかかわらず油圧を供給可能な油圧源によって締結容量が制御される。具体的には、オイルポンプ10とは異なり、電動モータにより駆動される電動オイルポンプ10Eにより発生された油圧がフライホイールクラッチ92に供給される。なお、フライホイールクラッチ92は、電動オイルポンプ10Eではなく、電動のアクチュエータによって締結容量が制御されてもよい。 The fastening capacity of the flywheel clutch 92 is controlled by a hydraulic source capable of supplying hydraulic pressure regardless of the rotation of the transmission input shaft 21A. Specifically, unlike the oil pump 10, the hydraulic pressure generated by the electric oil pump 10 </ b> E driven by the electric motor is supplied to the flywheel clutch 92. Note that the fastening capacity of the flywheel clutch 92 may be controlled not by the electric oil pump 10E but by an electric actuator.
 トルクコンバータ25の入力側は、変速機入力軸21A及びエンジンクラッチ91を介してエンジン1と接続されると共に、減速ギヤ列23,フライホイールクラッチ92及び減速ギヤ列24を介してフライホイール2と接続されている。また、トルクコンバータ25の出力側は、中間軸21B及びギヤ対22を介してバリエータ入力軸31と接続されている。このトルクコンバータ25により、エンジン1やフライホイール2の入力トルクを増幅させるトルク増幅作用や、入出力回転速度差を許容するクリープ作用が得られる。 The input side of the torque converter 25 is connected to the engine 1 via the transmission input shaft 21 </ b> A and the engine clutch 91, and is connected to the flywheel 2 via the reduction gear train 23, the flywheel clutch 92 and the reduction gear train 24. Has been. The output side of the torque converter 25 is connected to the variator input shaft 31 via the intermediate shaft 21 </ b> B and the gear pair 22. The torque converter 25 provides a torque amplifying action for amplifying the input torque of the engine 1 and the flywheel 2 and a creep action allowing a difference in input / output rotational speed.
 副変速機構4は、バリエータ3の出力軸(バリエータ出力軸)32に接続された前進2段・後進1段の変速機構である。この副変速機構4については、詳細は図示しないが、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構と、ラビニョウ型遊星歯車機構を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦締結要素(ローブレーキ,ハイクラッチ,リバースブレーキ)とを備える。各摩擦締結要素への供給油圧を調整し、各摩擦締結要素の締結・解放状態を変更すると、副変速機構4の変速段が変更される。 The sub-transmission mechanism 4 is a transmission mechanism of two forward speeds and one reverse speed connected to the output shaft (variator output shaft) 32 of the variator 3. The auxiliary transmission mechanism 4 is not shown in detail, but is connected to a Ravigneaux type planetary gear mechanism in which two planetary gear carriers are coupled, and a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism, and their linked state. And a plurality of frictional engagement elements (low brake, high clutch, reverse brake) for changing. When the hydraulic pressure supplied to each friction engagement element is adjusted and the engagement / release state of each friction engagement element is changed, the gear position of the subtransmission mechanism 4 is changed.
 また、副変速機構4内の何れの摩擦締結要素も締結しなければCVT3Aと終減速装置5及び駆動輪6とは動力遮断され、発進時に使用するローブレーキ又はハイクラッチは、発進クラッチとしても機能する。 If any frictional engagement element in the auxiliary transmission mechanism 4 is not fastened, the CVT 3A, the final reduction gear 5 and the drive wheels 6 are powered off, and the low brake or high clutch used at the start also functions as a start clutch. To do.
 油圧回路7は、後述するコントローラ8からの信号を受けて動作するソレノイド弁等で構成され、オイルポンプ10,CVTバリエータ3,エンジンクラッチ91及び副変速機構4と油路を介して接続される。油圧回路7は、オイルポンプ10で発生した油圧を元圧として、バリエータ3の各プーリ、エンジンクラッチ91及び副変速機構4で必要とされる油圧を生成し、生成した油圧をバリエータ3の各プーリ,エンジンクラッチ91及び副変速機構4に供給する。 The hydraulic circuit 7 is constituted by a solenoid valve or the like that operates in response to a signal from a controller 8 described later, and is connected to the oil pump 10, the CVT variator 3, the engine clutch 91, and the auxiliary transmission mechanism 4 through an oil passage. The hydraulic circuit 7 generates the hydraulic pressure required by each pulley of the variator 3, the engine clutch 91 and the auxiliary transmission mechanism 4 using the hydraulic pressure generated by the oil pump 10 as a source pressure, and the generated hydraulic pressure is used for each pulley of the variator 3. , And supplied to the engine clutch 91 and the auxiliary transmission mechanism 4.
 エンジン1の出力軸11には、補機としてオルタネータ12及びエアコンのコンプレッサ13が、動力伝達部材(ベルト・プーリ機構)14を介して接続されている。オルタネータ12はバッテリ15に電気的に接続され、オルタネータ12による発電電力によりバッテリ15が充電される。また、エンジン1の出力軸11には、ギヤ対17を介してスタータモータ18が接続され、エンジン始動時にはスタータモータ18の出力回転でエンジン1が始動する。 The output shaft 11 of the engine 1 is connected with an alternator 12 and an air conditioner compressor 13 as auxiliary machines via a power transmission member (belt / pulley mechanism) 14. The alternator 12 is electrically connected to the battery 15, and the battery 15 is charged by the electric power generated by the alternator 12. A starter motor 18 is connected to the output shaft 11 of the engine 1 via a gear pair 17, and the engine 1 is started by the output rotation of the starter motor 18 when the engine is started.
 そして、フライホイール2にはモータジェネレータ(電動発電機)20が直結されている。ここで、モータジェネレータ20がフライホイール2に直結されるとは、モータジェネレータ20が摩擦締結要素を介在しないでフライホイール2に直接接続されることを意味する。また、このモータジェネレータ20は、インバータ16を介してバッテリ15と接続される。 The flywheel 2 is directly connected to a motor generator (motor generator) 20. Here, the fact that the motor generator 20 is directly connected to the flywheel 2 means that the motor generator 20 is directly connected to the flywheel 2 without interposing a frictional engagement element. The motor generator 20 is connected to the battery 15 via the inverter 16.
 インバータ16は、フライホイール2が設定された回転速度で回転するようにモータジェネレータ20の作動を制御する。この場合のフライホイール2の回転制御では、フライホイール2の回転を増速させる場合にはモータジェネレータ20を力行作動させ、減速させる場合にはモータジェネレータ20を回生作動(発電作動)させる。モータジェネレータ20が回生作動したときの発電電力によりバッテリ15を充電できる。なお、各回転速度については、単位時間当たりの回転数であることから回転数とも呼ばれる。 The inverter 16 controls the operation of the motor generator 20 so that the flywheel 2 rotates at the set rotation speed. In the rotation control of the flywheel 2 in this case, the motor generator 20 is operated by powering when the rotation of the flywheel 2 is increased, and the motor generator 20 is regenerated (power generation operation) when decelerated. The battery 15 can be charged by the generated power when the motor generator 20 is regeneratively operated. Each rotation speed is also called a rotation speed because it is a rotation speed per unit time.
 車両100には、駆動輪6及び図示しない従動輪の各車輪を制動するブレーキ装置60が装備されている。ブレーキ装置60は、ブレーキペダル61とマスターシリンダ62とが機構的に独立している電子制御式ブレーキである。運転者がブレーキペダル61を踏み込むと、後述のコントローラ8の制御により作動するブレーキアクチュエータ63がマスターシリンダ62のピストンを変位させ、運転者がブレーキペダル61を踏み込む力、すなわち要求減速度に応じた油圧が各車輪のホイールシリンダ64に供給され、ブレーキキャリパ65がブレーキディスク66を挟圧して制動力が発生する。なお、ブレーキ装置60には、エンジン1の負圧を、また、エンジン1停止時は電動真空ポンプの負圧を利用したサーボシステムが利用されている。 The vehicle 100 is equipped with a brake device 60 that brakes the driving wheels 6 and driven wheels (not shown). The brake device 60 is an electronically controlled brake in which a brake pedal 61 and a master cylinder 62 are mechanically independent. When the driver depresses the brake pedal 61, a brake actuator 63 operated by control of the controller 8 described later displaces the piston of the master cylinder 62, and the driver depresses the brake pedal 61, that is, a hydraulic pressure corresponding to the required deceleration. Is supplied to the wheel cylinder 64 of each wheel, and the brake caliper 65 pinches the brake disc 66 to generate a braking force. The brake device 60 uses a servo system that uses the negative pressure of the engine 1 and uses the negative pressure of the electric vacuum pump when the engine 1 is stopped.
 コントローラ8は、CPU,RAM,入出力インターフェース等で構成される。コントローラ8には、エンジン1の回転速度(エンジン回転速度)Neを検出する回転速度センサ81、バリエータ入力軸31の回転速度(CVT入力軸回転速度)Ninを検出する回転速度センサ82、フライホイール2の回転速度(フライホイール回転速度)Nfwを検出する回転速度センサ83、車速VSPを検出する車速センサ84、アクセルペダル85の開度APOを検出するアクセル開度センサ86、運転者がブレーキペダル61の踏む力を検出するブレーキセンサ87等からの信号が入力される。 The controller 8 includes a CPU, a RAM, an input / output interface, and the like. The controller 8 includes a rotational speed sensor 81 for detecting the rotational speed of the engine 1 (engine rotational speed) Ne, a rotational speed sensor 82 for detecting the rotational speed of the variator input shaft 31 (CVT input shaft rotational speed) Nin, and the flywheel 2. A rotation speed sensor 83 for detecting the rotation speed (flywheel rotation speed) Nfw, a vehicle speed sensor 84 for detecting the vehicle speed VSP, an accelerator opening sensor 86 for detecting the opening APO of the accelerator pedal 85, and the driver of the brake pedal 61 A signal from a brake sensor 87 or the like that detects the stepping force is input.
 コントローラ8は、入力される信号に基づき各種演算を行ない、CVTバリエータ3,副変速機構4の変速、各クラッチ91,92の締結・解放、ブレーキアクチュエータ63をそれぞれ制御する。特に、運転者がブレーキペダル61を踏み込み、車両100が減速するときは、コントローラ8は、フライホイールクラッチ92を締結し、駆動輪6から入力される回転を減速ギヤ列23,24により増速してフライホイール2を回転させ、車両100が持つ運動エネルギをフライホイール2の運動エネルギに変換することで、車両100の運動エネルギをフライホイール2で回生し、回生制動を実施する。 The controller 8 performs various calculations based on the input signal, and controls the CVT variator 3, the shift of the subtransmission mechanism 4, the engagement / release of the clutches 91 and 92, and the brake actuator 63, respectively. In particular, when the driver depresses the brake pedal 61 and the vehicle 100 decelerates, the controller 8 engages the flywheel clutch 92 and accelerates the rotation input from the drive wheels 6 by the reduction gear trains 23 and 24. By rotating the flywheel 2 and converting the kinetic energy of the vehicle 100 into the kinetic energy of the flywheel 2, the kinetic energy of the vehicle 100 is regenerated by the flywheel 2 and regenerative braking is performed.
 [2.フライホイール回生システムを装備する車両の第2構成例]
 図2を参照して第2構成例にかかる車両200を説明する。図2において図1と同符号は同様の構成要素を示し、一部説明を簡略化する。図2に示すように、車両200は、動力源としてのエンジン1と、エネルギを回生するフライホイール2と、エンジン1の出力回転を無段階に変速する無段変速機構(以下、CVTバリエータ、又は、単にバリエータとも言う)3及びCVTバリエータ3の出力回転を正回転または逆回転して出力する前後進切替機構104を有する無段変速機(CVT)3Bと、前後進切替機構104の出力回転を減速する終減速装置5と、左右の駆動輪6と、油圧回路7と、コントローラ(制御手段)8とを備える。なお、終減速装置5と左右の駆動輪6との間には図示しない差動装置が介装される。
[2. Second configuration example of a vehicle equipped with a flywheel regeneration system]
A vehicle 200 according to the second configuration example will be described with reference to FIG. 2, the same reference numerals as those in FIG. 1 denote the same components, and a part of the description is simplified. As shown in FIG. 2, the vehicle 200 includes an engine 1 as a power source, a flywheel 2 that regenerates energy, and a continuously variable transmission mechanism (hereinafter referred to as a CVT variator or 3) and a continuously variable transmission (CVT) 3B having a forward / reverse switching mechanism 104 that outputs the output rotation of the CVT variator 3 forward or reverse, and the output rotation of the forward / reverse switching mechanism 104. A final reduction gear 5 that decelerates, left and right drive wheels 6, a hydraulic circuit 7, and a controller (control means) 8 are provided. A differential device (not shown) is interposed between the final reduction gear 5 and the left and right drive wheels 6.
 エンジン1とCVTバリエータ3との間には、第1構成例のトルクコンバータ25及びエンジンクラッチ91に替えて、副変速機構190と湿式発進クラッチ(WSC:Wet Starting Clutch)27とが介装されている。副変速機構190は、遊星ギヤ式副変速機構191とワンウェイクラッチ192とダイレクトクラッチ(第2の摩擦締結要素)193とを有している。 Between the engine 1 and the CVT variator 3, an auxiliary transmission mechanism 190 and a wet starting clutch (WSC) 27 are provided instead of the torque converter 25 and the engine clutch 91 of the first configuration example. Yes. The auxiliary transmission mechanism 190 includes a planetary gear type auxiliary transmission mechanism 191, a one-way clutch 192, and a direct clutch (second frictional engagement element) 193.
 第2構成例のCVT3Bは、副変速機190,WSC27,CVTバリエータ3及び前後進切替機構104から構成され、後述の変速機入力軸121がCVT(変速機)3Bの入力部に相当し、前後進切替機構104の出力軸5aがCVT(変速機)3Bの出力部に相当する。 The CVT 3B of the second configuration example includes the sub-transmission 190, the WSC 27, the CVT variator 3, and the forward / reverse switching mechanism 104, and a transmission input shaft 121 described later corresponds to an input portion of the CVT (transmission) 3B. The output shaft 5a of the forward / reverse switching mechanism 104 corresponds to the output portion of the CVT (transmission) 3B.
 遊星ギヤ式副変速機構191は、リングギヤ191aと、プラネタリキャリア191bに支持されたプラネタリピニオン191cと、サンギヤ191dと、を備えている。リングギヤ191aにはエンジン1の出力軸11が連結されている。プラネタリキャリア191bには、変速機入力軸121が連結されている。プラネタリキャリア191bには、フライホイール2側に接続されたギヤ26と噛合するギヤ26aが結合されている。また、ダイレクトクラッチ193はリングギヤ191aとプラネタリキャリア191bとの間に介装されている。さらに、サンギヤ191dにワンウェイクラッチ192が接続されている。 The planetary gear type auxiliary transmission mechanism 191 includes a ring gear 191a, a planetary pinion 191c supported by the planetary carrier 191b, and a sun gear 191d. The output shaft 11 of the engine 1 is connected to the ring gear 191a. A transmission input shaft 121 is connected to the planetary carrier 191b. A gear 26a that meshes with the gear 26 connected to the flywheel 2 side is coupled to the planetary carrier 191b. The direct clutch 193 is interposed between the ring gear 191a and the planetary carrier 191b. Further, a one-way clutch 192 is connected to the sun gear 191d.
 フライホイール2からの駆動力が入力されずエンジン1からの駆動力が入力されれば、ワンウェイクラッチ192はサンギヤ191dの回転を規制する。このとき、ダイレクトクラッチ193が締結されていなければ、エンジン1から駆動力が伝達されるリングギヤ191aの回転はプラネタリピニオン191cを通じて減速されてプラネタリキャリア191bに伝達され1速(低速)段が設定される。また、ダイレクトクラッチ193が締結されていれば、エンジン1から駆動力が伝達されるリングギヤ191aの回転は減速されることなく直接プラネタリキャリア191bに伝達され2速(高速)段が設定される。ここで、副変速機構191は2速段より低速側の1速段を設けているため、1速段により2速段よりも大きなトルクを出力することが可能になっている。これにより、副変速機構191がトルクコンバータにおけるトルク増幅作用を担っている。 If the driving force from the flywheel 2 is not input and the driving force from the engine 1 is input, the one-way clutch 192 regulates the rotation of the sun gear 191d. At this time, if the direct clutch 193 is not engaged, the rotation of the ring gear 191a to which the driving force is transmitted from the engine 1 is decelerated through the planetary pinion 191c and transmitted to the planetary carrier 191b to set the first speed (low speed) stage. . Further, if the direct clutch 193 is engaged, the rotation of the ring gear 191a to which the driving force is transmitted from the engine 1 is transmitted directly to the planetary carrier 191b without being decelerated, and the second speed (high speed) stage is set. Here, since the sub-transmission mechanism 191 is provided with the first speed stage on the lower speed side than the second speed stage, the first speed stage can output a larger torque than the second speed stage. As a result, the auxiliary transmission mechanism 191 has a torque amplification function in the torque converter.
 また、フライホイール2から駆動力が入力される力行時には、ダイレクトクラッチ193を解放状態とし、フライホイール2から入力される駆動力は、プラネタリキャリア191bを介して変速機入力軸121に出力される。 Further, when the driving force is input from the flywheel 2, the direct clutch 193 is released, and the driving force input from the flywheel 2 is output to the transmission input shaft 121 via the planetary carrier 191b.
 逆に、駆動輪6からエンジン1又はフライホイール2の側に逆駆動力が入力される回生時(又は制動時))には、ワンウェイクラッチ192はサンギヤ191dの回転をフリーにする。このとき、湿式発進クラッチ27が締結されて、ダイレクトクラッチ193が締結されていなければ、プラネタリキャリア191bの回転はギヤ26に伝達される。また、ダイレクトクラッチ193が締結されていれば、プラネタリキャリア191bの回転は直接にリングギヤ191aに伝達されるがリングギヤ191aには回転が伝達されない。したがって、ダイレクトクラッチ193は、第1構成例のエンジンクラッチ91と同等の機能を有している。 Conversely, the one-way clutch 192 frees the rotation of the sun gear 191d during regenerative (or during braking) when reverse driving force is input from the drive wheels 6 to the engine 1 or flywheel 2 side. At this time, if the wet start clutch 27 is engaged and the direct clutch 193 is not engaged, the rotation of the planetary carrier 191 b is transmitted to the gear 26. If the direct clutch 193 is engaged, the rotation of the planetary carrier 191b is directly transmitted to the ring gear 191a, but the rotation is not transmitted to the ring gear 191a. Therefore, the direct clutch 193 has a function equivalent to that of the engine clutch 91 of the first configuration example.
 WSC27は、副変速機構191のプラネタリキャリア191bに連結された変速機入力軸121と、CVTバリエータ3の入力軸(バリエータ入力軸)31に連結された中間軸122との間に介装される。WSC27は、油圧供給に応じて伝達トルクを調整可能なスリップ係合状態から、完全締結状態まで制御される。WSC27をスリップ係合状態とすると、入出力回転速度差を許容するクリープ作用が得られ、発進時等に有効になる。 The WSC 27 is interposed between the transmission input shaft 121 connected to the planetary carrier 191b of the auxiliary transmission mechanism 191 and the intermediate shaft 122 connected to the input shaft (variator input shaft) 31 of the CVT variator 3. The WSC 27 is controlled from the slip engagement state in which the transmission torque can be adjusted according to the hydraulic pressure supply to the complete engagement state. When the WSC 27 is in the slip engagement state, a creep action that allows a difference in input / output rotational speed is obtained, which is effective when starting.
 副変速機構191の変速機入力軸121には、増速機構121a,121bを介してオイルポンプ110,モータジェネレータ120が接続されている。オイルポンプ110は、例えばギヤポンプやベーンポンプにより構成される。オイルポンプ110により発生した油圧は後述する油圧回路7を介して、CVTバリエータ3、副変速機190のダイレクトクラッチ(エンジンクラッチ)193、WSC27や前後進切替機構104等に供給される。 The oil pump 110 and the motor generator 120 are connected to the transmission input shaft 121 of the auxiliary transmission mechanism 191 via speed increasing mechanisms 121a and 121b. The oil pump 110 is constituted by, for example, a gear pump or a vane pump. The hydraulic pressure generated by the oil pump 110 is supplied to the CVT variator 3, the direct clutch (engine clutch) 193 of the auxiliary transmission 190, the WSC 27, the forward / reverse switching mechanism 104, and the like via a hydraulic circuit 7 described later.
 また、WSC27に接続された中間軸122とバリエータ入力軸31との間には、ギヤ対(カウンタギヤ対)22が介装され、WSC27とCVTバリエータ3との間を連結している。なお、ギヤ対22はエンジン回転を逆回転してバリエータ入力軸31に伝達しており、互いに同歯数のギヤからなり、WSC27が完全締結されるとバリエータ入力軸31は中間軸122と等速回転する。 In addition, a gear pair (counter gear pair) 22 is interposed between the intermediate shaft 122 connected to the WSC 27 and the variator input shaft 31, and connects the WSC 27 and the CVT variator 3. The gear pair 22 reversely rotates the engine rotation and transmits it to the variator input shaft 31. The gear pair 22 is composed of gears having the same number of teeth. When the WSC 27 is completely fastened, the variator input shaft 31 is at the same speed as the intermediate shaft 122. Rotate.
 上記のプラネタリキャリア191bと噛合するギヤ26は、間にフライホイールクラッチ(第1の摩擦締結要素)92が設けられた減速ギヤ列23,24を介してフライホイール2と接続される。つまり、ギヤ26の回転軸に減速ギヤ列23の歯車の一つが結合され、ギヤ26とフライホイール2とは、減速ギヤ列23,フライホイールクラッチ92,減速ギヤ列24を介して動力連結されている。 The gear 26 that meshes with the planetary carrier 191b is connected to the flywheel 2 via reduction gear trains 23 and 24 in which a flywheel clutch (first frictional engagement element) 92 is provided. That is, one of the gears of the reduction gear train 23 is coupled to the rotation shaft of the gear 26, and the gear 26 and the flywheel 2 are power-coupled via the reduction gear train 23, the flywheel clutch 92, and the reduction gear train 24. Yes.
 フライホイールクラッチ92は、第1構成例と同様に、供給される油圧によって締結容量を制御可能な油圧式クラッチである。フライホイールクラッチ92は、油圧を供給可能な油圧源によって締結容量が制御される。具体的には、オイルポンプ110とは異なり、電動モータにより駆動される電動オイルポンプ10Eにより発生された油圧がフライホイールクラッチ92に供給される。 The flywheel clutch 92 is a hydraulic clutch whose fastening capacity can be controlled by the supplied hydraulic pressure, as in the first configuration example. The engagement capacity of the flywheel clutch 92 is controlled by a hydraulic source capable of supplying hydraulic pressure. Specifically, unlike the oil pump 110, the hydraulic pressure generated by the electric oil pump 10E driven by the electric motor is supplied to the flywheel clutch 92.
 CVTバリエータ3の出力軸(バリエータ出力軸)32に接続された前後進切替機構104は、遊星歯車が用いられており、バリエータ出力軸32がリングギヤに接続され、終減速装置5への入力軸5aがサンギヤに接続され、詳細は図示しないが、プラネタリキャリアとサンギヤとの間にフォワードクラッチ104aが接続され,プラネタリキャリアにリバースブレーキ104bが接続される。これらの摩擦締結要素(フォワードクラッチ104a,リバースブレーキ104b)への供給油圧を調整し、各摩擦締結要素の締結・解放状態を変更すると、前後進が変更される。また、前後進切替機構104内の何れの摩擦締結要素も締結しなければCVTバリエータ3と終減速装置5及び駆動輪6とは動力遮断され発進クラッチとしても機能する。 The forward / reverse switching mechanism 104 connected to the output shaft (variator output shaft) 32 of the CVT variator 3 uses a planetary gear, the variator output shaft 32 is connected to the ring gear, and the input shaft 5a to the final reduction gear 5 is used. Is connected to the sun gear, and although not shown in detail, the forward clutch 104a is connected between the planetary carrier and the sun gear, and the reverse brake 104b is connected to the planetary carrier. When the hydraulic pressure supplied to these frictional engagement elements (forward clutch 104a, reverse brake 104b) is adjusted and the engagement / release state of each frictional engagement element is changed, forward / reverse travel is changed. If any of the frictional engagement elements in the forward / reverse switching mechanism 104 is not fastened, the CVT variator 3, the final reduction gear 5 and the drive wheels 6 are powered off and function as a starting clutch.
 油圧回路7は、第1構成例と同様に、コントローラ8からの信号を受けて動作するソレノイド弁等で構成され、オイルポンプ110,CVTバリエータ3,ダイレクトクラッチ(エンジンクラッチ)193,WSC27,前後進切替機構104と油路を介して接続される。油圧回路7は、オイルポンプ110で発生した油圧を元圧として、CVTバリエータ3の各プーリ、ダイレクトクラッチ193,WSC27及び前後進切替機構104で必要とされる油圧を生成し、生成した油圧をCVTバリエータ3の各プーリ、ダイレクトクラッチ193,WSC27及び前後進切替機構104に供給する。 Similar to the first configuration example, the hydraulic circuit 7 includes a solenoid valve that operates in response to a signal from the controller 8, and includes an oil pump 110, a CVT variator 3, a direct clutch (engine clutch) 193, a WSC 27, It is connected to the switching mechanism 104 via an oil passage. The hydraulic circuit 7 generates the hydraulic pressure required by each pulley of the CVT variator 3, the direct clutch 193, the WSC 27, and the forward / reverse switching mechanism 104 using the hydraulic pressure generated by the oil pump 110 as a source pressure. Supplied to each pulley of the variator 3, the direct clutch 193, the WSC 27, and the forward / reverse switching mechanism 104.
 なお、図2には示さないが、第1構成例と同様に、エンジン1の出力軸11には、補機としてオルタネータ等が接続され、オルタネータはバッテリ15に接続されバッテリ15が充電される。また、エンジン1の出力軸11にはスタータモータが接続され、エンジン始動時にはスタータモータの出力回転でエンジン1が始動する。 Although not shown in FIG. 2, as in the first configuration example, an alternator or the like is connected to the output shaft 11 of the engine 1 as an auxiliary machine, and the alternator is connected to the battery 15 and the battery 15 is charged. Further, a starter motor is connected to the output shaft 11 of the engine 1, and the engine 1 is started by the output rotation of the starter motor when the engine is started.
 ところで、本構成例でも、モータジェネレータ120は、インバータ16を介してバッテリ15と接続される。インバータ16は、フライホイール2が設定された回転速度で回転するようにモータジェネレータ120の作動を制御できる。第2構成例では、モータジェネレータ120がフライホイール2と直結されていないが、フライホイールクラッチ92が接続され、ダイレクトクラッチ193が動力遮断されていれば、モータジェネレータ120とフライホイール2とを駆動連結でき、フライホイール2の回転を制御できる。 Incidentally, also in this configuration example, the motor generator 120 is connected to the battery 15 via the inverter 16. The inverter 16 can control the operation of the motor generator 120 so that the flywheel 2 rotates at the set rotation speed. In the second configuration example, the motor generator 120 is not directly connected to the flywheel 2, but if the flywheel clutch 92 is connected and the direct clutch 193 is powered off, the motor generator 120 and the flywheel 2 are driven and connected. And the rotation of the flywheel 2 can be controlled.
 この場合も、フライホイール2の回転制御では、フライホイール2の回転を増速させる場合にはモータジェネレータ120を力行作動させ、減速させる場合にはモータジェネレータ120を回生作動(発電作動)させる。モータジェネレータ120が回生作動したときの発電電力によりバッテリ15を充電できる。 Also in this case, in the rotation control of the flywheel 2, when the rotation of the flywheel 2 is increased, the motor generator 120 is operated by powering, and when it is decelerated, the motor generator 120 is regenerated (power generation operation). The battery 15 can be charged by the generated power when the motor generator 120 is regeneratively operated.
 また、図2には示さないが、第1構成例と同様に、車両200には、駆動輪6及び図示しない従動輪の各車輪を制動するブレーキ装置60が装備されている。ブレーキ装置60は、ブレーキペダル61とマスターシリンダとが機構的に独立している電子制御式ブレーキである。運転者がブレーキペダル61を踏み込むと、後述のコントローラ8の制御により作動するブレーキアクチュエータ63がマスターシリンダのピストンを変位させ、運転者がブレーキペダル61を踏み込む力、すなわち要求減速度に応じた油圧が各車輪のホイールシリンダに供給され、ブレーキキャリパがブレーキディスクを挟圧して制動力が発生する。 Although not shown in FIG. 2, as in the first configuration example, the vehicle 200 is equipped with a brake device 60 that brakes the driving wheels 6 and the driven wheels (not shown). The brake device 60 is an electronically controlled brake in which the brake pedal 61 and the master cylinder are mechanically independent. When the driver depresses the brake pedal 61, a brake actuator 63 operated by the control of the controller 8 described later displaces the piston of the master cylinder, and the driver depresses the brake pedal 61, that is, the hydraulic pressure corresponding to the required deceleration. It is supplied to the wheel cylinder of each wheel, and the brake caliper pinches the brake disc to generate a braking force.
 コントローラ8は、第1構成例と同様に、CPU、RAM、入出力インターフェース等で構成される。コントローラ8には、エンジン回転速度Neを検出する回転速度センサ81、変速機入力軸121の回転速度(入力軸回転速度)Ninを検出する回転速度センサ82、フライホイール回転速度Nfwを検出する回転速度センサ83、車速VSPを検出する車速センサ84、アクセルペダル85の開度APOを検出するアクセル開度センサ86、運転者がブレーキペダル61の踏む力を検出するブレーキセンサ87等からの信号が入力される。 The controller 8 includes a CPU, a RAM, an input / output interface, and the like as in the first configuration example. The controller 8 includes a rotation speed sensor 81 for detecting the engine rotation speed Ne, a rotation speed sensor 82 for detecting the rotation speed (input shaft rotation speed) Nin of the transmission input shaft 121, and a rotation speed for detecting the flywheel rotation speed Nfw. Signals from a sensor 83, a vehicle speed sensor 84 that detects the vehicle speed VSP, an accelerator opening sensor 86 that detects the opening APO of the accelerator pedal 85, a brake sensor 87 that detects the force that the driver steps on the brake pedal 61, and the like are input. The
 このコントローラ8は、入力される信号に基づき各種演算を行ない、CVTバリエータ3,ダイレクトクラッチ(エンジンクラッチ)193,フライホイールクラッチ92,前後進切替機構104の締結・解放や、WSC27の締結・解放・スリップ制御、ブレーキアクチュエータ63の作動を制御する。特に、運転者がブレーキペダル61を踏み込み、車両200が減速するときは、コントローラ8は、フライホイールクラッチ92を締結し、駆動輪6から入力される回転を減速ギヤ列23,24により増速してフライホイール2を回転させ、車両100が持つ運動エネルギをフライホイール2の運動エネルギに変換することで、車両100の運動エネルギをフライホイール2で回生し、回生制動を実施する。 The controller 8 performs various calculations based on the input signal, and engages / releases the CVT variator 3, the direct clutch (engine clutch) 193, the flywheel clutch 92, the forward / reverse switching mechanism 104, and the WSC 27. Slip control and operation of the brake actuator 63 are controlled. In particular, when the driver depresses the brake pedal 61 and the vehicle 200 decelerates, the controller 8 fastens the flywheel clutch 92 and accelerates the rotation input from the drive wheels 6 by the reduction gear trains 23 and 24. By rotating the flywheel 2 and converting the kinetic energy of the vehicle 100 into the kinetic energy of the flywheel 2, the kinetic energy of the vehicle 100 is regenerated by the flywheel 2 and regenerative braking is performed.
 なお、第1構成例と同様に、この第2構成例においても、フライホイールクラッチ92は、電動オイルポンプ10Eではなく、電動のアクチュエータによって締結容量が制御されてもよい。また、この第2構成例においては、電動オイルポンプ等を備えず、モータジェネレータ120によりオイルポンプ110を駆動し、オイルポンプ110により供給される油圧により制御されてもよい。 As in the first configuration example, in this second configuration example, the flywheel clutch 92 may have its fastening capacity controlled by an electric actuator instead of the electric oil pump 10E. Further, in the second configuration example, the electric oil pump or the like may not be provided, and the oil pump 110 may be driven by the motor generator 120 and controlled by the hydraulic pressure supplied by the oil pump 110.
 この場合、新規に電動オイルポンプ等を設ける必要がないため、コストを低減させることができる。これは、モータジェネレータ120及びオイルポンプ110はWSC27により駆動輪6と動力伝達が遮断され、ダイレクトクラッチによりエンジン1と動力伝達が遮断され、フライホイールクラッチ92によりフライホイール2と動力伝達が遮断されるため、WSC27,ダイレクトクラッチ193,フライホイールクラッチ92を解放状態とすれば、モータジェネレータ120によりオイルポンプ110を駆動しても、駆動輪6,エンジン1,フライホイール2にモータジェネレータ120の動力が伝達されることはない。 In this case, since it is not necessary to newly provide an electric oil pump or the like, the cost can be reduced. The motor generator 120 and the oil pump 110 are cut off from the driving wheel 6 and power transmission by the WSC 27, the power transmission from the engine 1 is cut off by the direct clutch, and the power transmission from the flywheel 2 is cut off by the flywheel clutch 92. Therefore, if the WSC 27, the direct clutch 193, and the flywheel clutch 92 are released, even if the oil pump 110 is driven by the motor generator 120, the power of the motor generator 120 is transmitted to the drive wheels 6, the engine 1, and the flywheel 2. It will never be done.
 [3.フライホイール回生システムの制御の概要]
 上記の第1構成例及び第2構成例において、回生制動を実施する場合、フライホイールクラッチ92を締結状態とし、CVTバリエータ3の変速比(以下、CVT変速比と言う)をLow側にダウンシフトすることにより、駆動輪6の回転速度を増速してフライホイール2に入力することができ、フライホイール2の回転速度、すなわち、保存される運動エネルギの大きさを高めることができる。
[3. Overview of control of flywheel regeneration system]
In the first configuration example and the second configuration example, when regenerative braking is performed, the flywheel clutch 92 is engaged and the gear ratio of the CVT variator 3 (hereinafter referred to as the CVT gear ratio) is downshifted to the low side. By doing so, the rotational speed of the drive wheel 6 can be increased and input to the flywheel 2, and the rotational speed of the flywheel 2, that is, the magnitude of the stored kinetic energy can be increased.
 フライホイール2による回生中には、コントローラ8は、運転者の減速度要求に応じた制動力(回生制動)が得られるようフライホイールクラッチ92の締結容量を制御する。フライホイールクラッチ92を締結する前で回生制動を発生させられない場合や回生制動のみでは運転者の減速度要求を満たせない場合は、コントローラ8は、ブレーキアクチュエータ63を動作させてブレーキ60の制動力を増大させ、運転者の減速度要求に応じた制動力が得られるようにする。 During regeneration by the flywheel 2, the controller 8 controls the engagement capacity of the flywheel clutch 92 so as to obtain a braking force (regenerative braking) according to the driver's deceleration request. When regenerative braking cannot be generated before the flywheel clutch 92 is engaged, or when the driver's deceleration request cannot be satisfied by regenerative braking alone, the controller 8 operates the brake actuator 63 to apply the braking force of the brake 60. To increase the braking force according to the driver's deceleration request.
 フライホイール2で回生した運動エネルギは、フライホイールクラッチ92を解放することによってフライホイール2の回転として保存できる。フライホイール2に運動エネルギが保存されている状態でフライホイールクラッチ92を締結することで、フライホイール2に保存されている運動エネルギが変速機入力軸21からバリエータ入力軸31に伝達され、車両200の発進又は加速のエネルギに利用することができる。 The kinetic energy regenerated by the flywheel 2 can be stored as the rotation of the flywheel 2 by releasing the flywheel clutch 92. By engaging the flywheel clutch 92 while the kinetic energy is stored in the flywheel 2, the kinetic energy stored in the flywheel 2 is transmitted from the transmission input shaft 21 to the variator input shaft 31, and the vehicle 200 It can be used for starting or accelerating energy.
 特に、フライホイール2の質量や減速ギヤ列23,24の減速比を適切に選定することにより、フライホイール2が十分に回転している状態で、重量物である車両100,200を発進させるのに十分なエネルギを保存することができる。
 このように、車両100,200が減速する時に、コントローラ8がフライホイールクラッチ92を締結し、車両100,200の運動エネルギがフライホイール2の運動エネルギに回生される。
In particular, by properly selecting the mass of the flywheel 2 and the reduction gear ratios of the reduction gear trains 23 and 24, the heavy vehicles 100 and 200 are started in a state where the flywheel 2 is sufficiently rotated. Sufficient energy can be stored.
Thus, when the vehicles 100 and 200 are decelerated, the controller 8 engages the flywheel clutch 92 and the kinetic energy of the vehicles 100 and 200 is regenerated to the kinetic energy of the flywheel 2.
 一方、フライホイール2に回生した回転による運動エネルギ(回生エネルギ)は、その後の車両100,200の発進時や加速時に利用される。この回生エネルギを車両100,200の駆動に利用して走行する回生エネルギ走行を行なう場合、エンジンクラッチ91,193をオフ(遮断)し、フライホイールクラッチ92をオン(締結)する。これにより、フライホイール2は回生したエネルギを放出しながら車両100,200の力行を行なうことができる。 On the other hand, the kinetic energy (regenerative energy) generated by the rotation regenerated on the flywheel 2 is used when the vehicle 100 or 200 is subsequently started or accelerated. When performing regenerative energy traveling using the regenerative energy for driving the vehicles 100 and 200, the engine clutches 91 and 193 are turned off (disconnected), and the flywheel clutch 92 is turned on (engaged). As a result, the flywheel 2 can power the vehicles 100 and 200 while releasing the regenerated energy.
 回生エネルギ走行では、車両100,200の速度VSPを上昇させる一方で、フライホイール2の回転速度Nfwは次第に低下していくことになる。このときには、コントローラ8を通じてCVT変速比をLow側からHigh側にアップシフトさせていく変速制御をすることにより、フライホイール2の運動エネルギを円滑に車両100,200の運動エネルギに変換することができる。 In regenerative energy travel, while the speed VSP of the vehicles 100 and 200 is increased, the rotational speed Nfw of the flywheel 2 is gradually decreased. At this time, the kinetic energy of the flywheel 2 can be smoothly converted into the kinetic energy of the vehicles 100 and 200 by performing shift control for upshifting the CVT gear ratio from the Low side to the High side through the controller 8. .
 ただし、発進時、或いは極低車速からの加速時には、フライホイール2の回転速度が車速VSPに対して高過ぎて、CVT変速比を最Lowにしても成立しない回転速度状態が発生する。このときには、第1構成例ではトルクコンバータ25によって、第2構成例ではコントローラ8によるWSC27のスリップ制御によって、いずれも差回転を吸収することができる。 However, when starting or accelerating from an extremely low vehicle speed, the rotational speed of the flywheel 2 is too high for the vehicle speed VSP, and a rotational speed state that does not hold even when the CVT gear ratio is at the lowest level occurs. At this time, the differential rotation can be absorbed by the torque converter 25 in the first configuration example and the slip control of the WSC 27 by the controller 8 in the second configuration example.
 こうして、回生エネルギ走行を行なっていると、フライホイール2の回転エネルギの低下により運転者の要求駆動力をフライホイール2の回転エネルギでは満足できなくなる状態になる。この場合には、回生エネルギ走行から駆動源であるエンジン1の駆動力を利用して車両を走行駆動する通常走行に切り替えることになる。 Thus, when the regenerative energy traveling is performed, the rotational energy of the flywheel 2 is not satisfied with the rotational energy of the flywheel 2 due to a decrease in the rotational energy of the flywheel 2. In this case, the regenerative energy travel is switched to the normal travel in which the vehicle is travel-driven using the driving force of the engine 1 that is a drive source.
 回生エネルギ走行の際には、エンジンクラッチ91,193をオフにし、フライホイールクラッチ92をオンにしているが、通常走行の際には、エンジンクラッチ91,193をオンにし、フライホイールクラッチ92をオフにする必要がある。つまり、クラッチ91,193とクラッチ92との掛け替えが必要になる。このクラッチ掛け替え時におけるクラッチ91,193の締結を、ショックを招きにくく且つ速やかに行なうために、本システムに特有の制御を用いている。 During regenerative energy traveling, the engine clutches 91 and 193 are turned off and the flywheel clutch 92 is turned on. However, during normal traveling, the engine clutches 91 and 193 are turned on and the flywheel clutch 92 is turned off. It is necessary to. That is, the clutches 91 and 193 and the clutch 92 need to be replaced. In order to quickly engage the clutches 91 and 193 when the clutch is switched, a control peculiar to the present system is used.
 [4.フライホイール回生システムの走行モード切替時の制御]
 コントローラ8は、回生エネルギ走行から通常走行に走行モードを切り替える際に、エンジンクラッチ91,193を締結する直前に、このエンジンクラッチ91,193において締結される要素間の回転速度差が低減するようモータジェネレータ20,120を制御する。この点が、本システムに特有の制御である。
[4. Control when switching the travel mode of the flywheel regeneration system]
When the controller 8 switches the traveling mode from the regenerative energy traveling to the normal traveling, the motor 8 reduces the rotational speed difference between the elements engaged in the engine clutches 91 and 193 immediately before the engine clutches 91 and 193 are engaged. The generators 20 and 120 are controlled. This is the control unique to this system.
 コントローラ8は、回生エネルギ走行から通常走行への切り替えを、回転速度センサ83により検出されたフライホイール回転速度Nfwを変速機入力軸21,121の回転速度(入力軸回転速度)Ninに換算した値(フライホイール入力軸換算回転速度)Nfwinを入力軸回転速度Ninと比較して、フライホイール入力軸換算回転速度Nfwinが入力軸回転速度Ninまで低下したら上記の走行モードの切り替えを実施する。 The controller 8 converts the regenerative energy travel to the normal travel by converting the flywheel rotational speed Nfw detected by the rotational speed sensor 83 into the rotational speed (input shaft rotational speed) Nin of the transmission input shafts 21 and 121. (Flywheel input shaft equivalent rotational speed) Nfwin is compared with the input shaft rotational speed Nin, and when the flywheel input shaft equivalent rotational speed Nfwin decreases to the input shaft rotational speed Nin, the above-described travel mode switching is performed.
 ここで、フライホイール入力軸換算回転速度Nfwinを用いるのは、以下の理由による。つまり、フライホイール2と変速機入力軸21,121との間には、減速ギヤ列23,24等が介在し、フライホイールクラッチ92が締結されると、フライホイール2の回転は減速ギヤ列23,24等で減速されて変速機入力軸21,121に伝達される。したがって、フライホイールクラッチ92の回転速度を変速機入力軸21,121と比較するには、フライホイールクラッチ回転速度Nfwを変速機入力軸21,121の回転速度Ninに換算する必要がある。特に、車両100,200の駆動系では、入力軸回転速度Ninが各制御の中心になるため、フライホイール入力軸換算回転速度Nfwinを用いている。 Here, the flywheel input shaft equivalent rotational speed Nfwin is used for the following reason. That is, the reduction gear trains 23, 24 and the like are interposed between the flywheel 2 and the transmission input shafts 21, 121, and when the flywheel clutch 92 is engaged, the rotation of the flywheel 2 is reduced. , 24, etc., and transmitted to the transmission input shafts 21, 121. Therefore, in order to compare the rotational speed of the flywheel clutch 92 with the transmission input shafts 21 and 121, it is necessary to convert the flywheel clutch rotational speed Nfw to the rotational speed Nin of the transmission input shafts 21 and 121. In particular, in the drive systems of the vehicles 100 and 200, since the input shaft rotational speed Nin is the center of each control, the flywheel input shaft equivalent rotational speed Nfwin is used.
 コントローラ8は、CVT変速比を、図3に示すような変速線図の変速線に従って車速に対応した入力軸回転速度Ninになるように制御する。変速線は図3に二点鎖線で示すように、アクセル開度に応じて決まる。例えばその時点のアクセル開度に応じた変速線が図3に破線で示すものであり、フライホイール入力軸換算回転速度Nfwinが図3に一点鎖線で示すように車速の増加とともに減少する場合、破線で示す変速線と、一点鎖線で示すフライホイール入力軸換算回転速度Nfwinの変化特性の線とが交差する点で、フライホイール入力軸換算回転速度Nfwinが変速線図上の入力軸回転速度Ninまで低下することになる。 The controller 8 controls the CVT gear ratio so that the input shaft rotation speed Nin corresponds to the vehicle speed according to the shift line of the shift diagram as shown in FIG. The shift line is determined according to the accelerator opening as shown by a two-dot chain line in FIG. For example, the shift line corresponding to the accelerator opening at that time is shown by a broken line in FIG. 3, and when the flywheel input shaft conversion rotational speed Nfwin decreases as the vehicle speed increases as shown by a one-dot chain line in FIG. And the change line of the flywheel input shaft equivalent rotational speed Nfwin indicated by the alternate long and short dash line intersect the flywheel input shaft equivalent rotational speed Nfwin up to the input shaft rotational speed Nin on the gear shift diagram. Will be reduced.
 コントローラ8は、上記の交差する点の回転速度Nengin0を、エンジン1を始動させる指標となる回転速度(エンジン始動指標回転速度)とし、フライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninがこのエンジン始動指標回転速度Nengin0に微小量αを加えた回転速度(Nengin0+α)まで減少したタイミングで実施する。なお、エンジン始動指標回転速度Nengin0及び後述のエンジン入力軸換算回転速度Nenginもエンジン回転速度Neを入力軸21,121の回転速度に換算した値である。 The controller 8 sets the rotation speed Nengin0 at the intersecting point as a rotation speed (engine start index rotation speed) as an index for starting the engine 1, and the flywheel input shaft conversion rotation speed Nfwin and the input shaft rotation speed Nin This is performed at a timing when the engine start index rotational speed Nengin0 is reduced to a rotational speed (Nengin0 + α) obtained by adding a minute amount α. The engine start index rotational speed Nengin0 and the engine input shaft conversion rotational speed Nengin described later are also values obtained by converting the engine rotational speed Ne into the rotational speeds of the input shafts 21 and 121.
 エンジン1の始動は、スタータモータ18の駆動および燃料噴射により行なわれるため、エンジン1の始動開始から始動完了までにはタイムラグがある。このタイムラグの間もフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninは低下する。従って、この低下する回転速度に相当する微小量αをエンジン始動指標回転速度Nengin0に加え、このエンジン始動指標回転速度Nengin0に微小量αを加えた回転速度(Nengin0+α)となるタイミングでエンジン1を始動指令することで、フライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninがこのエンジン始動指標回転速度Nengin0まで低下したタイミングでエンジン1が始動完了となり、エンジン1の始動完了を運転モードの切り替えタイミングに合わせることができる。 Since the start of the engine 1 is performed by driving the starter motor 18 and fuel injection, there is a time lag from the start of the engine 1 to the completion of the start. Even during this time lag, the flywheel input shaft equivalent rotational speed Nfwin and the input shaft rotational speed Nin decrease. Accordingly, the engine 1 is started at the timing when the minute amount α corresponding to the decreasing rotational speed is added to the engine start index rotational speed Nengin0 and the rotational speed (Nengin0 + α) obtained by adding the small amount α to the engine start index rotational speed Nengin0. When the command is issued, the engine 1 is completely started when the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin are reduced to the engine start index rotational speed Nengin0. Can be adapted to
 そして、フライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninがエンジン始動指標回転速度Nengin0まで低下したら、クラッチ掛け替えの前に、まず、エンジンクラッチ91,193において締結される要素間の回転速度差が低減するよう制御する。この点が、本システムに特有の制御である。つまり、第1構成例にあっては、エンジンクラッチ91の二つの締結要素91a,91bの間の回転速度差を、第2構成例にあっては、エンジンクラッチ(ダイレクトクラッチ)193の二つの締結要素193a,193bの間の回転速度差を低減させる。 When the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin decrease to the engine start index rotational speed Nengin0, first, the rotational speed difference between the elements engaged in the engine clutches 91 and 193 is changed before the clutch changeover. Is controlled to reduce. This is the control unique to this system. That is, in the first configuration example, the rotational speed difference between the two engagement elements 91a and 91b of the engine clutch 91 is determined. In the second configuration example, the two engagements of the engine clutch (direct clutch) 193 are determined. The rotational speed difference between the elements 193a and 193b is reduced.
 ここで、この回転速度差を低減させる制御を、図4,図5のタイムチャートを参照して説明する。なお、ここでは、第2構成例を用いた場合を例示する。図4,図5に示すように、時点t11,t21で、ブレーキペダルはオンからオフに、アクセルペダルはオフからオンに、それぞれ切り替えられることによって車両が発進又は加速を開始する。この際、エンジン1は停止、フライホイールクラッチ92はオフからオンに、エンジンクラッチ193はオフ状態のままにされ、回生エネルギ走行が実施される。 Here, the control for reducing the rotational speed difference will be described with reference to the time charts of FIGS. Here, a case where the second configuration example is used is illustrated. As shown in FIGS. 4 and 5, at time points t 11 and t 21 , the vehicle starts to start or accelerate when the brake pedal is switched from on to off and the accelerator pedal is switched from off to on. At this time, the engine 1 is stopped, the flywheel clutch 92 is turned from off to on, the engine clutch 193 is kept off, and regenerative energy traveling is performed.
 フライホイールクラッチ92の締結により、変速機入力軸121が一気に回転速度を上昇させていき、時点t12,t22で、入力軸回転速度Ninがフライホイール入力軸換算回転速度Nfwinと一致する。この時点t12,t22で、WSC27をスリップ係合させることにより、CVT3等を介してフライホイール2の回転が駆動輪6まで伝達され、車速が上昇していく。WSC27のスリップ係合は、運転者の要求駆動力に基づいて制御され、要求駆動力が高いほど、WSC27の締結開始から締結完了までの時間が短くなるように制御され、これにより要求駆動力を満足させる。 By engagement of the flywheel clutch 92, transmission input shaft 121 is gradually increased at once rotational speed at the time t 12, t 22, the input shaft rotation speed Nin matches the flywheel input shaft conversion speed Nfwin. By slip-engaging the WSC 27 at these times t 12 and t 22 , the rotation of the flywheel 2 is transmitted to the drive wheels 6 via the CVT 3 and the like, and the vehicle speed increases. The slip engagement of the WSC 27 is controlled based on the driver's required driving force. The higher the required driving force is, the shorter the time from the start of the WSC 27 engagement to the completion of the engagement is controlled, thereby reducing the required driving force. Satisfy.
 時点t13,t23で、WSC27が完全締結されると、この後は、CVT変速比をLow側からHigh側にシフトさせていく。CVTバリエータ3におけるLow側からHigh側への変速速度は、運転者の要求駆動力に基づいて制御され、要求駆動力が高いほど変速速度を速くすることで、フライホイール2から早く回転エネルギを放出させ、要求駆動力を満足させる。やがて時点t14,t24で、フライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninが、エンジン始動指標回転速度Nengin0に微小量αを加えた回転速度(Nengin0+α)となり、このタイミングでエンジン1に始動指令する。 When the WSC 27 is completely fastened at time points t 13 and t 23 , the CVT gear ratio is subsequently shifted from the low side to the high side. The shift speed from the Low side to the High side in the CVT variator 3 is controlled based on the driver's required driving force, and the higher the required driving force, the faster the gear shifting speed, so that the rotational energy is quickly released from the flywheel 2. To satisfy the required driving force. Eventually, at time points t 14 and t 24 , the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin become the rotational speed (Nengin0 + α) obtained by adding a small amount α to the engine start index rotational speed Nengin0. Command to start.
 エンジン1は、スタータモータによってやがてクランキングされ、これと並行にフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninが低下し、時点t15,t25で、エンジン始動指標回転速度Nengin0まで低下する。 The engine 1 is eventually cranked by the starter motor, and in parallel with this, the flywheel input shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin decrease, and the engine start index rotational speed Nengin0 decreases at time points t 15 and t 25. To do.
 図4に示すように、この時点t15で、エンジン入力軸換算回転速度Nenginがフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninを上回れば、モータジェネレータ120を力行作動させてフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninを上昇させ入力軸換算回転速度Nenginに近づける。このとき、モータジェネレータ12の力行により駆動輪6に伝達される駆動力が増大するため、ドライバに違和感を与える。 As shown in FIG. 4, this point t 15, if the engine input shaft converted rotational speed Nengin is exceeds the flywheel input shaft conversion speed Nfwin and the input shaft rotation speed Nin, the flywheel input motor generator 120 is power running operation The shaft conversion rotational speed Nfwin and the input shaft rotational speed Nin are increased to approach the input shaft conversion rotational speed Nengin. At this time, the driving force transmitted to the driving wheel 6 is increased by the power running of the motor generator 12, which gives the driver a sense of incongruity.
 しかしながら、モータジェネレータ12を力行している間、CVT変速比をアップシフト制御することで、CVT3から出力される駆動力を低減させ、上記違和感を抑制することができる。このCVT3のアップシフト量は、モータジェネレータ120の力行により増大する駆動力分とする。従って、図4の時点t15から時点t16までの間において、時点t15までの変速比の変化と異なり、よりHigh側への変速が行なわれている。さらに、時点t15から時点t16の間において、2点鎖線で示すようにCVT3のアップシフトに代わって、または加えてWSC27をスリップ状態としてもよい。これにより、CVT3をアップシフトさせた場合と同様に駆動輪6へ伝達される駆動力を低減させ、上記違和感を抑制することができる。 However, by performing upshift control of the CVT gear ratio while powering the motor generator 12, the driving force output from the CVT 3 can be reduced, and the above-mentioned uncomfortable feeling can be suppressed. The amount of upshift of this CVT 3 is assumed to be the amount of driving force that increases due to the power running of the motor generator 120. Accordingly, during a period from the time t 15 of FIG. 4 to the time t 16, unlike the change in the speed ratio up to the point t 15, more shifting to the High side is performed. Further, between the time t 15 the time t 16, as shown by two-dot chain line in place of the upshift CVT 3, or WSC27 may be used as a slip state in addition. Thereby, the driving force transmitted to the driving wheel 6 can be reduced similarly to the case where the CVT 3 is upshifted, and the above-mentioned uncomfortable feeling can be suppressed.
 一方、図5に示すように、時点t25で、エンジン入力軸換算回転速度Nenginがフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninを下上回れば、モータジェネレータ120を回生作動させてフライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninを下降させエンジン入力軸換算回転速度Nenginに近づける。このとき、モータジェネレータ120の発電(回生)により駆動輪6に伝達される駆動力が低下するため、ドライバに違和感を与える。しかしながら、モータジェネレータ12が発電している間、CVT変速比をダウンシフト制御する。CVTバリエータ3のダウンシフト量は、モータジェネレータ120の発電により低下する駆動力分とする。従って、図5の時点t25から時点t26までの間において、時点t25までの変速比の変化と異なり、Low側への変速が行なわれている。 On the other hand, as shown in FIG. 5, when the engine input shaft equivalent rotational speed Nengin falls below the flywheel input shaft equivalent rotational speed Nfwin and the input shaft rotational speed Nin at time t 25 , the motor generator 120 is regenerated to fly. The wheel input shaft equivalent rotational speed Nfwin and the input shaft rotational speed Nin are lowered to approach the engine input shaft equivalent rotational speed Nengin. At this time, since the driving force transmitted to the driving wheel 6 is reduced by the power generation (regeneration) of the motor generator 120, the driver feels uncomfortable. However, the CVT gear ratio is downshift controlled while the motor generator 12 is generating power. The amount of downshift of the CVT variator 3 is the amount of driving force that is reduced by the power generation of the motor generator 120. Accordingly, during a period from the time t 25 of FIG. 5 to time t 26, unlike the change in the speed ratio up to the point t 25, the shift to the Low side it is performed.
 そして、その後に、時点t16,t26で、フライホイール入力軸換算回転速度Nfwin及び入力軸回転速度Ninがエンジン入力軸換算回転速度Nenginに接近すると、エンジンクラッチ193はオフからオンに、そして、エンジンクラッチ193がオンになった時点t17,t27でフライホイールクラッチ92をオンからオフに切り替える。この間、駆動輪6側と入力軸121側との回転速度を整合させるようにCVT変速比を制御するが、時点t18,t28ではCVT変速比を図3の変速線に沿った制御に復帰させる。 After that, when the flywheel input shaft equivalent rotational speed Nfwin and the input shaft rotational speed Nin approach the engine input shaft equivalent rotational speed Nengin at time points t 16 and t 26 , the engine clutch 193 is turned on from off, At time t 17 and t 27 when the engine clutch 193 is turned on, the flywheel clutch 92 is switched from on to off. During this time, although controlling the CVT speed ratio to match the rotational speed of the input shaft 121 side and the driving wheels 6, return the CVT speed ratio at the time point t 18, t 28 to the control along the shift line in FIG. 3 Let
 [5.作用及び効果]
 [5-1.フローチャート]
 次に、本フライホイール回生システムの走行モード切替時の制御について、図6のフローチャートを用いて説明する。
[5. Action and Effect]
[5-1. flowchart]
Next, the control at the time of driving mode switching of this flywheel regeneration system will be described using the flowchart of FIG.
 図6に示すように、コントローラ8は、はじめに、フライホイール2の運動エネルギ放出による力行(回生エネルギ走行)であるか否かを判定する(ステップS10)。ここで、回生エネルギ走行でなければ、この制御周期の処理を終え、次の制御周期でステップS10の処理から開始する。一方、回生エネルギ走行であれば、フライホイール入力軸換算回転速度Nfwinがエンジン1を始動する回転速度(エンジン始動指標回転速度Nengin0+α)まで低下したか否かを判定する(ステップS20)。 As shown in FIG. 6, the controller 8 first determines whether or not it is power running (regenerative energy travel) due to kinetic energy release of the flywheel 2 (step S10). Here, if it is not regenerative energy driving | running, the process of this control period will be complete | finished and it will start from the process of step S10 with the next control period. On the other hand, in the case of regenerative energy travel, it is determined whether or not the flywheel input shaft equivalent rotational speed Nfwin has decreased to the rotational speed at which the engine 1 is started (engine start index rotational speed Nengin0 + α) (step S20).
 ここで、フライホイール入力軸換算回転速度Nfwinがエンジンの始動タイミングの回転速度(Nengin0+α)まで低下していなければ、制御周期単位でステップS20の判定処理を実施する。フライホイール入力軸換算回転速度Nfwinがエンジンを始動する回転速度(Nengin0+α)まで低下したら、エンジン1を始動させる(ステップS30)。 Here, if the flywheel input shaft conversion rotational speed Nfwin is not reduced to the rotational speed (Nengin0 + α) at the start timing of the engine, the determination process of step S20 is performed in units of control cycles. When the flywheel input shaft conversion rotational speed Nfwin decreases to the rotational speed (Nengin0 + α) for starting the engine, the engine 1 is started (step S30).
 そして、フライホイール入力軸換算回転速度Nfwinがエンジン始動指標回転速度Nengin0まで低下したか否かを判定する(ステップS40)。フライホイール入力軸換算回転速度Nfwinがエンジン始動指標回転速度Nengin0まで低下していなければ、制御周期単位でステップS40の判定処理を実施する。そして、フライホイール入力軸換算回転速度Nfwinがエンジン始動指標回転速度Nengin0まで低下したら、この時点で、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginよりも大きいか否かを判定する(ステップS50)。 Then, it is determined whether or not the flywheel input shaft conversion rotational speed Nfwin has decreased to the engine start index rotational speed Nengin0 (step S40). If the flywheel input shaft conversion rotational speed Nfwin has not decreased to the engine start index rotational speed Nengin0, the determination process of step S40 is performed in units of control cycles. When the flywheel input shaft equivalent rotational speed Nfwin decreases to the engine start index rotational speed Nengin0, it is determined at this point whether or not the flywheel input shaft equivalent rotational speed Nfwin is larger than the engine input shaft equivalent rotational speed Nengin. (Step S50).
 フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginよりも大きければ、モータジェネレータ20,120を回生作動させてフライホイール入力軸換算回転速度Nfwinを入力軸回転速度Ninと共にエンジン入力軸換算回転速度Nenginまで低下させる(ステップS60)。 If the flywheel input shaft conversion rotational speed Nfwin is larger than the engine input shaft conversion rotational speed Nengin, the motor generators 20 and 120 are regenerated to convert the flywheel input shaft conversion rotational speed Nfwin together with the input shaft rotational speed Nin to the engine input shaft conversion. The rotational speed is reduced to Nengin (step S60).
 フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nengin以下ならば、モータジェネレータ20,120を力行作動させてフライホイール入力軸換算回転速度Nfwinを入力軸回転速度Ninと共にエンジン入力軸換算回転速度Nenginまで引き上げる(ステップS70)。 If the flywheel input shaft equivalent rotational speed Nfwin is equal to or lower than the engine input shaft equivalent rotational speed Nengin, the motor generators 20 and 120 are powered to operate the flywheel input shaft equivalent rotational speed Nfwin together with the input shaft rotational speed Nin and the engine input shaft equivalent rotational speed. The speed is increased to Nengin (step S70).
 このステップS60又はステップS70の処理の際、これと並行して、モータジェネレータ20,120の回生,力行により変化する駆動力(駆動力変化分)に応じてCVT変速比を修正する。また、モータジェネレータ20,120の力行時にはWSC27をスリップ制御する(ステップS80)。 In the process of step S60 or step S70, in parallel with this, the CVT gear ratio is corrected according to the driving force (the amount of change in driving force) that changes due to regeneration and power running of the motor generators 20, 120. Further, when the motor generators 20 and 120 are powered, the WSC 27 is slip-controlled (step S80).
 そして、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginと一致したか否かを判定し(ステップS90)、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginと一致していなければ、制御周期単位でステップS50~S90の処理を繰り返し、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginと一致すれば、エンジンクラッチ91,193をオフからオンに、フライホイールクラッチ92をオンからオフに切り替える(ステップS100)。 Then, it is determined whether or not the flywheel input shaft equivalent rotational speed Nfwin matches the engine input shaft equivalent rotational speed Nengin (step S90), and the flywheel input shaft equivalent rotational speed Nfwin is equal to the engine input shaft equivalent rotational speed Nengin. If not, the processes in steps S50 to S90 are repeated for each control cycle. If the flywheel input shaft equivalent rotational speed Nfwin matches the engine input shaft equivalent rotational speed Nengin, the engine clutches 91 and 193 are turned from off to on. The flywheel clutch 92 is switched from on to off (step S100).
 この間、駆動輪6側と入力軸121側との回転速度を整合させるようにCVT変速比を制御しその後は、CVT変速比を図3の変速線に沿った制御に復帰させる(ステップS110)。 During this time, the CVT gear ratio is controlled so that the rotational speeds on the drive wheel 6 side and the input shaft 121 side are matched, and thereafter, the CVT gear ratio is returned to the control along the gear line in FIG. 3 (step S110).
 なお、ステップS40の判定は、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginを含む一定範囲の領域よりも大きいか否かを判定し、ステップS90の判定は、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginを含む一定範囲の領域内にあるか否かを判定するようにして、フライホイール入力軸換算回転速度Nfwinをエンジン入力軸換算回転速度Nenginに近い一定領域内に近づけるように制御しても良い。 The determination in step S40 determines whether or not the flywheel input shaft equivalent rotational speed Nfwin is larger than a certain range including the engine input shaft equivalent rotational speed Nengin. It is determined whether or not the converted rotational speed Nfwin is within a certain range including the engine input shaft converted rotational speed Nengin, and the flywheel input shaft converted rotational speed Nfwin is constant close to the engine input shaft converted rotational speed Nengin. You may control so that it may approach in the area | region.
 このように、本システムの制御によれば、回生エネルギ走行で走行中に、フライホイール2の回転エネルギの低下により運転者の要求駆動力をフライホイール2の回転エネルギでは満足できなくなると、通常走行に切り替えて、要求駆動力を満足させるが、この回生エネルギ走行から通常走行への切替時のエンジンクラッチ91,193の締結時には、締結要素間の回転速度差が解消又は低減されるので、速やかに締結しても締結ショックが抑制され、運転者に違和感を与えることがない。また、速やかに締結できるので、運転者の駆動力要求を満足させることができる。 As described above, according to the control of the present system, if the driver's required driving force cannot be satisfied with the rotational energy of the flywheel 2 due to a decrease in rotational energy of the flywheel 2 during traveling with regenerative energy traveling, However, when the engine clutch 91, 193 is engaged when switching from regenerative energy traveling to normal traveling, the rotational speed difference between the engaging elements is eliminated or reduced, so that the required driving force is satisfied. Even if it is fastened, the fastening shock is suppressed and the driver does not feel uncomfortable. Moreover, since it can fasten rapidly, a driver | operator's driving force request | requirement can be satisfied.
 また、回生エネルギ走行から通常走行への移行に際して、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginよりも大きい場合も小さい場合も対応でき、フライホイール入力軸換算回転速度Nfwinがエンジン入力軸換算回転速度Nenginよりも大きければ、モータジェネレータ20,120を回生作動させて発電した電気エネルギをバッテリ15に蓄えることができ、エネルギ効率が向上する。 In addition, when shifting from regenerative energy traveling to normal traveling, the flywheel input shaft equivalent rotational speed Nfwin can be larger or smaller than the engine input shaft equivalent rotational speed Nengin. If the rotational speed is larger than the input shaft conversion speed Nengin, the electric energy generated by the regenerative operation of the motor generators 20 and 120 can be stored in the battery 15, and the energy efficiency is improved.
 また、回転速度差を低減制御する際に、CVT変速比の制御やWSC27のスリップ制御によって駆動輪6に伝達される駆動力の変化を抑制するので、運転者への違和感を抑制することができる。 Further, when the rotational speed difference is controlled to be reduced, a change in the driving force transmitted to the drive wheels 6 by the control of the CVT gear ratio and the slip control of the WSC 27 is suppressed, so that the driver can be prevented from feeling uncomfortable. .
 また、フライホイール2を小さく構成した場合、大きな運動エネルギを蓄積するには、高回転とする必要があるが、第1構成例のようにCVT3Aとフライホイール2との間にCVTA3側の回転を増速してフライホイール2へ伝達する増速機構(減速ギヤ列23,24)を備え、フライホイール2を高回転させることができるので、フライホイール2の小型化が可能となり、フライホイール2の搭載性向上や低コスト化を実現できる。 Further, when the flywheel 2 is configured to be small, it is necessary to perform high rotation in order to accumulate large kinetic energy. However, the rotation on the CVTA3 side is performed between the CVT 3A and the flywheel 2 as in the first configuration example. A speed-up mechanism (deceleration gear trains 23 and 24) that speeds up and transmits the speed to the flywheel 2 is provided, and the flywheel 2 can be rotated at a high speed, so that the flywheel 2 can be downsized. Improves mountability and lowers costs.
 このような増速機構を設けていることにより、モータジェネレータ20によりエンジンクラッチ91の回転速度差を解消又は低減させる際、高精度の回転コントロールが可能となり、締結ショックを低減する上で有利である。即ち、減速ギヤ列23、24を備えていない場合、締結要素91bの回転速度を微小変化させるためにはモータジェネレータ20の回転速度を微小に制御する必要があり、制御ロジックが複雑となる。しかし、第1構成例のようにモータジェネレータ20の回転速度が減速ギヤ列23、24により減速されて締結要素91bに伝達されることにより、締結要素91bの回転速度を微小変化させる際、モータジェネレータ20の回転速度を微小制御する必要がなく、制御ロジックが複雑となることがなく、容易に締結要素91bを意図した回転速度に制御することができる。 By providing such a speed increasing mechanism, when the motor generator 20 eliminates or reduces the difference in rotational speed of the engine clutch 91, high-precision rotation control is possible, which is advantageous in reducing the fastening shock. . That is, when the reduction gear trains 23 and 24 are not provided, in order to slightly change the rotation speed of the fastening element 91b, it is necessary to finely control the rotation speed of the motor generator 20, and the control logic becomes complicated. However, when the rotational speed of the fastening element 91b is slightly changed by the rotational speed of the motor generator 20 being reduced by the reduction gear trains 23 and 24 and transmitted to the fastening element 91b as in the first configuration example, the motor generator It is not necessary to finely control the rotational speed of 20, and the control logic is not complicated, and the fastening element 91b can be easily controlled to the intended rotational speed.
 また、モータジェネレータ120は駆動輪6や駆動源のエンジン1から回転させられることで回生するが、第2構成例のように増速機構121bが設けられるので、低車速領域であっても増速機構121bにより増速された回転にてモータジェネレータ120を回転させることができ、広い運転シーンで発電を行なうことができる。 The motor generator 120 is regenerated by being rotated from the drive wheels 6 or the engine 1 of the drive source. However, since the speed increasing mechanism 121b is provided as in the second configuration example, the speed is increased even in the low vehicle speed region. The motor generator 120 can be rotated by the rotation increased by the mechanism 121b, and power generation can be performed in a wide driving scene.
 また、このような増速機構121bを設けていることにより、モータジェネレータ120によりエンジンクラッチ91,193を同期させる際、高精度の回転コントロールが可能となり、締結ショックを低減する上で有利である。即ち、増速機構121bを備えていない場合、締結要素193bの回転速度を微小変化させるためにはモータジェネレータ120の回転速度を微小に制御する必要があり、制御ロジックが複雑となる。しかし、第2構成例のようにモータジェネレータ120の回転速度が増速機構121bにより減速されて締結要素193bに伝達されることにより、締結要素193bの回転速度を微小変化させる際、モータジェネレータ120の回転速度を微小制御する必要がなく、制御ロジックが複雑となることがなく、容易に締結要素193bを意図した回転速度に制御することができる。 Also, by providing such a speed increasing mechanism 121b, when the engine clutches 91 and 193 are synchronized by the motor generator 120, high-precision rotation control is possible, which is advantageous in reducing the fastening shock. That is, when the speed increasing mechanism 121b is not provided, in order to slightly change the rotation speed of the fastening element 193b, it is necessary to finely control the rotation speed of the motor generator 120, and the control logic becomes complicated. However, as in the second configuration example, when the rotational speed of the motor generator 120 is decelerated by the speed increasing mechanism 121b and transmitted to the fastening element 193b, when the rotational speed of the fastening element 193b is slightly changed, It is not necessary to finely control the rotation speed, the control logic is not complicated, and the fastening element 193b can be easily controlled to the intended rotation speed.
 [5.その他]
 以上、本発明の実施の形態を説明したが、本発明はその趣旨を逸脱しない範囲で、各実施の形態を適宜変更したり、一部を採用したりして実施することができる。
[5. Others]
As mentioned above, although embodiment of this invention was described, this invention can be implemented by changing each embodiment suitably or employ | adopting a part in the range which does not deviate from the meaning.
 また、本発明が適用できる車両は、少なくとも、CVTに限らない変速機と、フライホイールと、フライホイールと変速機の入力部との間に介装された第1の摩擦締結要素と、駆動源と入力部との間に介装された第2の摩擦締結要素と、フライホイールに動力伝達可能に直接または間接的に接続されたモータジェネレータと、各摩擦締結要素制御する制御手段と、を備えるものであればよく、上記実施形態で説明した構成に限定されない。 A vehicle to which the present invention can be applied includes at least a transmission not limited to a CVT, a flywheel, a first frictional engagement element interposed between the flywheel and an input portion of the transmission, and a drive source. And a second frictional engagement element interposed between the motor and the input unit, a motor generator connected directly or indirectly to the flywheel so that power can be transmitted, and control means for controlling each frictional engagement element. Any configuration may be used, and the configuration is not limited to that described in the above embodiment.
 また、変速機はCVT(無段変速機)のみならず有段変速機に適用することも可能である。 Further, the transmission can be applied not only to CVT (continuously variable transmission) but also to a stepped transmission.

Claims (10)

  1.  車両に装備され、入力部が駆動源に接続され出力部が駆動輪に接続された変速機と、
     前記車両の走行エネルギを回転エネルギとして回生するフライホイールと、
     前記フライホイールと前記入力部との間に介装された第1の摩擦締結要素と、
     前記駆動源と前記入力部との間に介装された第2の摩擦締結要素と、
     前記フライホイールに動力伝達可能に接続されたモータジェネレータと、
     前記フライホイールの回転エネルギを利用した回生エネルギ走行の際には前記第1の摩擦締結要素を締結し前記第2の摩擦締結要素を解放し、前記駆動源の駆動力を利用した通常走行の際には前記第2の摩擦締結要素を締結し前記第1の摩擦締結要素を解放する制御手段と、を備え、
     前記制御手段は、前記回生エネルギ走行から前記通常走行へ切り替える走行モード切替時には、前記モータジェネレータを制御して、前記第2の摩擦締結要素を締結する前に該第2の摩擦締結要素の回転速度差を低減させる、
     フライホイール式回生システム。
    A transmission mounted on a vehicle, having an input connected to a drive source and an output connected to drive wheels;
    A flywheel for regenerating the running energy of the vehicle as rotational energy;
    A first frictional engagement element interposed between the flywheel and the input unit;
    A second frictional engagement element interposed between the drive source and the input unit;
    A motor generator connected to the flywheel to transmit power;
    During regenerative energy travel using the rotational energy of the flywheel, the first friction engagement element is fastened and the second friction engagement element is released, and during normal travel using the driving force of the drive source Comprises a control means for fastening the second frictional engagement element and releasing the first frictional engagement element,
    The control means controls the motor generator to switch the rotational speed of the second frictional engagement element before engaging the second frictional engagement element when switching the travel mode from the regenerative energy travel to the normal travel. Reduce the difference,
    Flywheel regenerative system.
  2.  前記制御手段は、前記走行モード切替時に、前記第2の摩擦締結要素の前記駆動源側の締結要素の回転速度が前記第2の摩擦締結要素の前記入力部側の締結要素の回転速度よりも低ければ、前記モータジェネレータを回生作動させる、請求項1記載のフライホイール式回生システム。 The control means is configured such that when the travel mode is switched, the rotational speed of the fastening element on the drive source side of the second frictional engagement element is higher than the rotational speed of the fastening element on the input portion side of the second frictional engagement element. The flywheel regeneration system according to claim 1, wherein if it is low, the motor generator is regeneratively operated.
  3.  前記制御手段は、前記モータジェネレータを回生作動させるに際して、前記変速機をダウンシフトさせる、請求項2記載のフライホイール式回生システム。 3. The flywheel regeneration system according to claim 2, wherein the control means downshifts the transmission when the motor generator is regenerated.
  4.  前記変速機のダウンシフト量は、前記モータジェネレータの回生により低減する駆動力分に対応する、請求項3記載のフライホイール式回生システム。 The flywheel type regeneration system according to claim 3, wherein the downshift amount of the transmission corresponds to a driving force reduced by regeneration of the motor generator.
  5.  前記制御手段は、前記走行モード切替時に、前記第2の摩擦締結要素の前記駆動源側の締結要素の回転速度が前記第2の摩擦締結要素の前記入力部側の締結要素の回転速度よりも高ければ、前記モータジェネレータを力行作動させる、請求項1~4の何れか1項に記載のフライホイール式回生システム。 The control means is configured such that when the travel mode is switched, the rotational speed of the fastening element on the drive source side of the second frictional engagement element is higher than the rotational speed of the fastening element on the input portion side of the second frictional engagement element. The flywheel regeneration system according to any one of claims 1 to 4, wherein if the height is high, the motor generator is operated by powering.
  6.  前記制御手段は、前記モータジェネレータを力行作動させるに際して、前記変速機をアップシフトさせる、請求項5記載のフライホイール式回生システム。 The flywheel regeneration system according to claim 5, wherein the control means upshifts the transmission when the motor generator is operated in a powering operation.
  7.  前記変速機のアップシフト量は、前記モータジェネレータの力行により増大する駆動力分に対応する、請求項6記載のフライホイール式回生システム。 The flywheel regeneration system according to claim 6, wherein the upshift amount of the transmission corresponds to a driving force increased by powering of the motor generator.
  8.  前記制御手段は、前記モータジェネレータの力行に際して、前記変速機をスリップ状態とする、請求項5~7の何れか1項に記載のフライホイール式回生システム。 The flywheel regeneration system according to any one of claims 5 to 7, wherein the control means puts the transmission into a slip state when the motor generator is powered.
  9.  前記モータジェネレータは、前記フライホイールに直結され、
     前記フライホイールと前記変速機の前記入力部との間に、前記変速機の回転を増速して前記フライホイールへ伝達する増速機構が介装される、請求項1~8の何れか1項に記載のフライホイール式回生システム。
    The motor generator is directly connected to the flywheel,
    The speed increasing mechanism for increasing the speed of rotation of the transmission and transmitting it to the fly wheel is interposed between the flywheel and the input section of the transmission. The flywheel type regeneration system according to item.
  10.  前記モータジェネレータは、前記変速機の前記入力部に直結されて、前記フライホイールとは前記第1の摩擦締結要素を介して接続され、
     前記変速機の前記入力部と前記モータジェネレータとの間に前記変速機の回転を増速して前記モータジェネレータへ伝達する増速機構が介装される、請求項1~8の何れか1項に記載のフライホイール式回生システム。
    The motor generator is directly connected to the input portion of the transmission, and is connected to the flywheel via the first frictional engagement element.
    9. The speed increasing mechanism for increasing the speed of rotation of the transmission and transmitting the speed to the motor generator is interposed between the input section of the transmission and the motor generator. The flywheel regenerative system described in 1.
PCT/JP2015/054513 2014-03-27 2015-02-19 Flywheel regeneration system WO2015146385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014066453A JP2015190503A (en) 2014-03-27 2014-03-27 Flywheel type regeneration system
JP2014-066453 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146385A1 true WO2015146385A1 (en) 2015-10-01

Family

ID=54194921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054513 WO2015146385A1 (en) 2014-03-27 2015-02-19 Flywheel regeneration system

Country Status (2)

Country Link
JP (1) JP2015190503A (en)
WO (1) WO2015146385A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109823196A (en) * 2019-03-26 2019-05-31 山东理工大学 A kind of bi-motor single flywheel hybrid power system
GB2583721A (en) * 2019-05-02 2020-11-11 Ricardo Uk Ltd Electric machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211751A1 (en) * 2016-06-07 2017-12-14 Dana Belgium N.V. Transmission arrangement for a parallel hybrid vehicle
JP7372764B2 (en) * 2019-06-21 2023-11-01 ジヤトコ株式会社 Hybrid vehicle and hybrid vehicle control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165361A (en) * 2001-11-29 2003-06-10 Toyota Motor Corp Vehicle control device
JP2007050866A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Controller for hybrid vehicle
JP2010070050A (en) * 2008-09-18 2010-04-02 Aisin Seiki Co Ltd Driving device for vehicle
JP2010270796A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Power transmission device with flywheel
JP2011038621A (en) * 2009-08-18 2011-02-24 Denso Corp Energy recovery device for veicle
JP2012126361A (en) * 2010-12-17 2012-07-05 Denso Corp On-vehicle power split device
WO2012143689A1 (en) * 2011-04-20 2012-10-26 Ricardo Uk Limited An energy storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165361A (en) * 2001-11-29 2003-06-10 Toyota Motor Corp Vehicle control device
JP2007050866A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Controller for hybrid vehicle
JP2010070050A (en) * 2008-09-18 2010-04-02 Aisin Seiki Co Ltd Driving device for vehicle
JP2010270796A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Power transmission device with flywheel
JP2011038621A (en) * 2009-08-18 2011-02-24 Denso Corp Energy recovery device for veicle
JP2012126361A (en) * 2010-12-17 2012-07-05 Denso Corp On-vehicle power split device
WO2012143689A1 (en) * 2011-04-20 2012-10-26 Ricardo Uk Limited An energy storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109823196A (en) * 2019-03-26 2019-05-31 山东理工大学 A kind of bi-motor single flywheel hybrid power system
GB2583721A (en) * 2019-05-02 2020-11-11 Ricardo Uk Ltd Electric machine
GB2583721B (en) * 2019-05-02 2021-11-03 Ricardo Uk Ltd Electric machine
US11827109B2 (en) 2019-05-02 2023-11-28 Ricardo Uk Limited System for delivering and storing energy

Also Published As

Publication number Publication date
JP2015190503A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP5488711B2 (en) Control device for vehicle power transmission device
US8002059B2 (en) Controlling device and method for hybrid vehicle
US8812208B2 (en) Control apparatus for hybrid vehicle
US10569640B2 (en) Vehicle control apparatus
CN108202737B (en) Control device for hybrid vehicle
US20140148986A1 (en) Control system and control method for hybrid vehicle
JP7040363B2 (en) Vehicle control device
JP2002213266A (en) Vehicular driving force control device
US10858008B2 (en) Control apparatus for hybrid vehicle
US20140148985A1 (en) Control system and control method for hybrid vehicle
CN108146429B (en) Vehicle control device
US8900093B2 (en) Control device of vehicle drive device
US10894537B2 (en) Speed change control system for vehicle
WO2015146385A1 (en) Flywheel regeneration system
WO2015146384A1 (en) Flywheel regeneration system
JP5977212B2 (en) Flywheel regeneration system and control method thereof
US20170166184A1 (en) Control system for power transmission system
JP2012086763A (en) Control device of power transmission device for vehicle
JP2016088379A (en) Flywheel regeneration system and control method therefor
JP2017035962A (en) Flywheel system and method for controlling the same
JP2016056818A (en) Flywheel system and control method thereof
JP2019093811A (en) Hybrid-vehicular control apparatus
JP2016141388A (en) Flywheel regeneration system and its control method
JP6459720B2 (en) Vehicle drive device
WO2015019788A1 (en) Flywheel regeneration system, and method of controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769811

Country of ref document: EP

Kind code of ref document: A1