US20150279482A1 - Data transfer circuit - Google Patents

Data transfer circuit Download PDF

Info

Publication number
US20150279482A1
US20150279482A1 US14/606,606 US201514606606A US2015279482A1 US 20150279482 A1 US20150279482 A1 US 20150279482A1 US 201514606606 A US201514606606 A US 201514606606A US 2015279482 A1 US2015279482 A1 US 2015279482A1
Authority
US
United States
Prior art keywords
data
flip flop
shift register
flop circuits
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/606,606
Other versions
US9536624B2 (en
Inventor
Tatsuru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATSUO, TATSURU
Publication of US20150279482A1 publication Critical patent/US20150279482A1/en
Application granted granted Critical
Publication of US9536624B2 publication Critical patent/US9536624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • G11C19/287Organisation of a multiplicity of shift registers

Definitions

  • the embodiments discussed herein relate to a data transfer circuit.
  • a first switching means in the first device converts parallel data with a predetermined bit length which are transmitted from the first device to the second device into serial data by every m-bit unit where m ⁇ n.
  • a serial data interface line for every m-bit unit transmits the serial data converted by the first switching means to the second device.
  • a second switching means in the second device receives at a timing of the second clock the serial data transmitted by the serial data interface line and converts the data into parallel data with a predetermined bit length.
  • a data conversion control means in the second device executes a data switching instruction for the first switching means and a data switching instruction for the second switching means at a timing of the second clock.
  • a data switching instruction line transmits the data switching instruction for the first switching means by the data conversion control means to the first device.
  • parallel data with a predetermined bit length are divided into serial data in m-bit units, and are transmitted from the first device to the second device at a timing of the second clock.
  • a memory device which has a plurality of redundancy memories each having pluralities of ordinary memory cell blocks and spare memory cell blocks and a plurality of flip flops each connected in series, each storing a numeric value, and respectively outputting numeric values to the plurality of redundancy memories (see, for example, Patent Document 2).
  • a non-volatile memory stores a seed value.
  • a pseudo-random number generating circuit generates reproducible pseudo-random numbers based on the seed value stored in the non-volatile memory, and serially outputs pseudo-random numbers to the plurality of flip flops.
  • the plurality of flip flops serially transfer, in synchronization with a clock signal, the pseudo-random numbers outputted by the pseudo-random number generating circuit.
  • Each of the plurality of redundancy memories switch one of the plurality of ordinary memory cell blocks to a spare memory cell block according to numeric values stored in the plurality of flip flops.
  • serial interface circuit which has a shift register generating an address signal and a second data signal based on a first data signal and a clock signal, and a register generating unit writing the second data signal in a register specified by an address decoder (see, for example, Patent Document 3).
  • An address control circuit outputs a first address value specifying a register to the address decoder based on the address signal.
  • a control circuit outputs to the address control circuit a control signal allowing outputting the first address value and writing the second data signal in the register or not allowing outputting the first address value based on the clock signal and a standby signal.
  • Patent Document 1 Japanese Laid-open Patent Publication No. 5-250316
  • Patent Document 2 Japanese Laid-open Patent Publication No. 2013-122800
  • Patent Document 3 Japanese Laid-open Patent Publication No. 2005-266856
  • the data transmission unit transmitting data to the shift registers have a different configuration in every type of semiconductor chip and is difficult to be commonized.
  • a data transfer circuit has a first data transmission unit and two or more second shift registers.
  • the first data transmission unit has a first shift register which has a plurality of first flip flop circuits which store data, shifts the data of the plurality of first flip flop circuits, and transmits data of two or more output terminals out of output terminals of the plurality of first flip flop circuits to the two or more second shift registers.
  • the two or more second shift registers each shift data inputted from the two or more output terminals out of the output terminals of the plurality of first flip flop circuits.
  • FIGS. 1A and 1B are diagrams illustrating a structural example of a semiconductor chip of a data transfer circuit according to a first embodiment
  • FIGS. 2A and 2B are diagrams illustrating a structural example of a semiconductor chip of another data transfer circuit
  • FIGS. 3A and 3B are diagrams for explaining a shift operation of the data transfer circuit of FIG. 1A ;
  • FIGS. 4A and 4B are diagrams for explaining a shift operation of the data transfer circuit of FIG. 1B ;
  • FIG. 5 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a second embodiment
  • FIG. 6 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a third embodiment
  • FIG. 7 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fourth embodiment
  • FIG. 8 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fifth embodiment.
  • FIG. 9 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a sixth embodiment.
  • FIG. 1A is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a first embodiment.
  • the data transfer circuit has a first data transmission unit 101 , a plurality of redundancy memories 111 a to 111 c , and a plurality of reception shift registers (second shift registers) 112 a to 112 c .
  • the data transmission unit 101 has a non-volatile memory 102 , a transmission shift register (first shift register) 103 , a read control unit 104 , and a transfer control unit 105 .
  • the redundancy memories 111 a to 111 c each have a plurality of ordinary memory cells and a plurality of spare memory cells. By inspection, the ordinary memory cells are separated into normal ordinary memory cells and defective ordinary memory cells, and addresses of the defective ordinary memory cells are written in the non-volatile memory 102 .
  • the non-volatile memory 102 is a fuse memory for example, and stores information (data) of the addresses of the defective ordinary memory cells of the redundancy memories 111 a to 111 c.
  • the fuse memory 102 is a non-volatile memory which can retain data after power is turned off.
  • the fuse memory 102 has fuses for storing data and stores, for example, “0” if a fuse is in an uncut state or “1” if a fuse is in a cut state. By cutting the fuses, data can be written only once. The cutting of the fuses is done after the semiconductor chip is manufactured.
  • the reception shift register 112 a has, for example, four flip flop circuits 113 a , and can shift data of the four flip flop circuits 113 a in a direction from left to right.
  • 4-bit data can be inputted from the four flip flop circuits 113 a in the reception shift register 112 a.
  • the reception shift register 112 b has, for example, four flip flop circuits 113 b , and can shift data of the four flip flop circuits 113 b in the direction from left to right.
  • 4-bit data can be inputted from the four flip flop circuits 113 b in the reception shift register 112 b.
  • the reception shift register 112 c has, for example, four flip flop circuits 113 c , and can shift data of the four flip flop circuits 113 c in the direction from left to right.
  • 4-bit data can be inputted from the four flip flop circuits 113 c in the reception shift register 112 c.
  • the transmission shift register 103 has a plurality of first flip flop circuits F 1 to F 12 which store data, and can shift data of the plurality of first flip flop circuits F 1 to F 12 in a direction from the flip flop circuit F 12 to F 1 .
  • the flip flop circuit F 1 is a flip flop circuit at the head of the transmission shift register 103
  • the flip flop circuit F 12 is a flip flop circuit at the end of the transmission shift register 103 .
  • Output terminals of the twelve flip flop circuits F 1 to F 12 are connectable to an outside of the data transmission unit 101 .
  • the transmission shift register 103 and the reception shift registers 112 a to 112 c are volatile memories.
  • An input terminal of the reception shift register 112 a is connected to the output terminal of the flip flop circuit F 1 in the transmission shift register 103 .
  • An input terminal of the reception shift register 112 b is connected to the output terminal of the flip flop circuit F 5 in the transmission shift register 103 .
  • An input terminal of the reception shift register 112 c is connected to the output terminal of the flip flop circuit F 9 in the transmission shift register 103 .
  • the non-volatile memory 102 stores information (data) of addresses of defective ordinary memory cells of the redundancy memories 111 a to 111 c .
  • the read control unit 104 reads data of the non-volatile memory 102 into the flip flop circuits F 1 to F 12 in the transmission shift register 103 .
  • address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 b is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • the transfer control unit 105 instructs the transmission shift register 103 and the reception shift registers 112 a to 112 c to perform a data shift with a data shift amount of “4”.
  • the shift amount “4” is the same as the respective quantities of four flip flop circuits 113 a to 113 c in the reception shift registers 112 a to 112 c .
  • FIG. 3A is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 a to 112 c before the data shift
  • FIG. 3B is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 a to 112 c after the data shift.
  • the transmission shift register 103 shifts data of the flip flop circuits F 12 to F 1 in the direction from the flip flop circuit F 12 to F 1 by “4”.
  • data shifted by “4” in the shift direction relative to the data of the flip flop circuits F 1 to F 12 before the shift in FIG. 3A are stored.
  • reception shift register 112 a To the reception shift register 112 a , data outputted from the output terminal of the flip flop circuit F 1 in the transmission shift register 103 are inputted, and data of the four flip flop circuits 113 a are shifted by “4” in the direction from left to right. As a result, in the four flip flop circuits 113 a in the reception shift register 112 a after the shift in FIG. 3B , the data stored in the flip flop circuits F 1 to F 4 in the transmission shift register 103 before the shift in FIG. 3A , that is, the address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • redundancy memory 111 a To the redundancy memory 111 a , four-bit address information stored in the four flip flop circuits 113 a in the reception shift register 112 a are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • redundancy memory 111 c four-bit address information stored in the four flip flop circuits 113 c in the reception shift register 112 c are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • FIG. 1B is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit according to a first embodiment.
  • the semiconductor chip of FIG. 1B has the same data transmission unit 101 as the semiconductor chip of FIG. 1A .
  • redundancy memories 111 d to 111 g and reception shift registers 112 d to 112 g of FIG. 1B are different from the redundancy memories 111 a to 111 c and the reception shift registers 112 a to 112 c of FIG. 1A .
  • the four redundancy memories 111 d to 111 g of FIG. 1B differ in quantity from the three redundancy memories 111 a to 111 c of FIG. 1A .
  • 3-bit data and 2-bit data inputted to the four redundancy memories 111 d to 111 g of FIG. 1B from the reception shift registers 112 d to 112 g differ in bit length from 4-bit data inputted to the three redundancy memories 111 a to 111 c of FIG. 1A from the reception shift registers 112 a to 112 c .
  • three flip flop circuits 113 d to 113 f and two flip flop circuits 113 g in the reception shift registers 112 d to 112 g of FIG. 1B differ in quantity from the four flip flop circuits 113 a to 113 c in the reception shift registers 112 a to 112 c of FIG. 1A .
  • the quantity of reception shift registers 112 d to 112 g and the respective quantities of flip flop circuits 113 d to 113 g change.
  • the reception shift register 112 d has three flip flop circuits 113 d for example, and can shift data of the three flip flop circuits 113 d in the direction from left to right. To the redundancy memory 111 d, 3-bit data can be inputted from the three flip flop circuits 113 d in the reception shift register 112 d.
  • the reception shift register 112 e has three flip flop circuits 113 e for example, and can shift data of the three flip flop circuits 113 e in the direction from left to right. To the redundancy memory 111 e, 3-bit data can be inputted from the three flip flop circuits 113 e in the reception shift register 112 e.
  • the reception shift register 112 f has three flip flop circuits 113 f for example, and can shift data of the three flip flop circuits 113 f in the direction from left to right. To the redundancy memory 111 f, 3-bit data can be inputted from the three flip flop circuits 113 f in the reception shift register 112 f.
  • the reception shift register 112 g has two flip flop circuits 113 g for example, and can shift data of the two flip flop circuits 113 g in the direction from left to right.
  • 2-bit data can be inputted from the two flip flop circuits 113 g in the reception shift register 112 g.
  • An input terminal of the reception shift register 112 d is connected to the output terminal of the flip flop circuit F 1 in the transmission shift register 103 .
  • An input terminal of the reception shift register 112 e is connected to the output terminal of the flip flop circuit F 4 in the transmission shift register 103 .
  • An input terminal of the reception shift register 112 f is connected to the output terminal of the flip flop circuit F 7 in the transmission shift register 103 .
  • An input terminal of the reception shift register 112 g is connected to the output terminal of the flip flop circuit F 9 in the transmission shift register 103 .
  • the non-volatile memory 102 stores information of addresses of defective ordinary memory cells of the redundancy memories 111 d to 111 g .
  • the read control unit 104 reads data of the non-volatile memory 102 into flip flop circuits F 1 to F 12 in the transmission shift register 103 .
  • address information of defective ordinary memory cells of the redundancy memory 111 d is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 f is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • the transfer control unit 105 instructs the transmission shift register 103 and the reception shift registers 112 d to 112 g to perform a data shift with a data shift amount of “4”.
  • the shift amount “4” is larger than the respective quantities of three flip flop circuits 113 d to 113 f and two flip flop circuits 113 g in the reception shift registers 112 d to 112 g .
  • FIG. 4A is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 d to 112 g before the data shift
  • FIG. 4B is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 d to 112 g after the data shift.
  • the transmission shift register 103 shifts data of the flip flop circuits F 1 to F 12 by “4” in the direction from the flip flop circuit F 12 to F 1 .
  • data shifted by “4” in the shift direction relative to the data of the flip flop circuits F 1 to F 12 before the shift in FIG. 4A are stored.
  • reception shift register 112 g To the reception shift register 112 g , data outputted from the output terminal of the flip flop circuit F 9 in the transmission shift register 103 are inputted, and data of the two flip flop circuits 113 g are shifted by “4” in the direction from left to right.
  • the data stored in the flip flop circuits F 11 and F 12 in the transmission shift register 103 before the shift in FIG. 4A that is, the address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • the input terminals of the reception shift registers 112 a to 112 c are connected to the output terminals of the flip flop circuits F 1 , F 5 , and F 9 , respectively, according to the number of reception shift registers 112 a to 112 c and the number of flip flop circuits 113 a to 113 c inside each of the reception shift registers 112 a to 112 c.
  • the input terminals of the reception shift registers 112 d to 112 g are connected to the output terminals of the flip flop circuits F 1 , F 4 , F 7 , and F 9 , respectively, according to the number of reception shift registers 112 d to 112 g and the number of flip flop circuits 113 d to 113 g inside each of the reception shift registers 112 d to 112 g.
  • the same data transmission unit 101 can be commonized for plural types of semiconductor chips such as the semiconductor chip of FIG. 1A and the semiconductor chip of FIG. 1B , or the like.
  • reception shift registers may be two or more.
  • the transmission shift register 103 shifts data of the flip flop circuits F 1 to F 12 , and transmits data of two or more output terminals among the output terminals of the flip flop circuits F 1 to F 12 to two or more reception shift registers, respectively.
  • the two or more reception shift registers shift data inputted respectively from the two or more output terminals among the output terminals of the flip flop circuits F 1 to F 12 .
  • FIG. 2A corresponds to FIG. 1A and is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit.
  • the semiconductor chip of FIG. 2A is the same as the semiconductor chip of FIG. 1A in redundancy memories 111 a to 111 c and reception shift registers 112 a to 112 c .
  • a data transmission unit 101 a of FIG. 2A is different from the data transmission unit 101 of FIG. 1A .
  • the data transmission unit 101 a of FIG. 2A has a non-volatile memory 102 , transmission shift registers 103 a to 103 c , a read control unit 104 a , and a transfer control unit 105 a.
  • the transmission shift register 103 a has four flip flop circuits similarly to the reception shift register 112 a and is connected to the reception shift register 112 a .
  • the transmission shift register 103 b has four flip flop circuits similarly to the reception shift register 112 b and is connected to the reception shift register 112 b .
  • the transmission shift register 103 c has four flip flop circuits similarly to the reception shift register 112 c and is connected to the reception shift register 112 c.
  • the read control unit 104 a reads data of the non-volatile memory 102 into the transmission shift registers 103 a to 103 c .
  • the transmission shift register 103 a address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • the transmission shift register 103 b address information of defective ordinary memory cells of the redundancy memory 111 b is stored.
  • the transmission shift register 103 c address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • the transmission shift register 103 a and the reception shift register 112 a perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a .
  • the data stored in the four flip flop circuits in the transmission shift register 103 a that is, the address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • the transmission shift register 103 b and the reception shift register 112 b perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a .
  • the data stored in the four flip flop circuits in the transmission shift register 103 b that is, the address information of defective ordinary memory cells of the redundancy memory 111 b is stored.
  • the transmission shift register 103 c and the reception shift register 112 c perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a .
  • the data stored in the four flip flop circuits in the transmission shift register 103 c that is, the address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • FIG. 2B corresponds to FIG. 1B and is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit.
  • the semiconductor chip of FIG. 2B is the same as the semiconductor chip of FIG. 1B in redundancy memories 111 d to 111 g and reception shift registers 112 d to 112 g .
  • a data transmission unit 101 b of FIG. 2B is different from the data transmission unit 101 of FIG. 1B .
  • the data transmission unit 101 b of FIG. 2B has a non-volatile memory 102 , transmission shift registers 103 d to 103 g , a read control unit 104 b , and a transfer control unit 105 b.
  • the transmission shift register 103 d has three flip flop circuits similarly to the reception shift register 112 d and is connected to the reception shift register 112 d .
  • the transmission shift register 103 e has three flip flop circuits similarly to the reception shift register 112 e and is connected to the reception shift register 112 e .
  • the transmission shift register 103 f has three flip flop circuits similarly to the reception shift register 112 f and is connected to the reception shift register 112 f .
  • the transmission shift register 103 g has two flip flop circuits similarly to the reception shift register 112 g and is connected to the reception shift register 112 g.
  • the read control unit 104 b reads data of the non-volatile memory 102 into the transmission shift registers 103 d to 103 g .
  • the transmission shift register 103 d address information of defective ordinary memory cells of the redundancy memory 111 d is stored.
  • the transmission shift register 103 e address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • the transmission shift register 103 f address information of defective ordinary memory cells of the redundancy memory 111 f is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • the transmission shift register 103 d and the reception shift register 112 d perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b .
  • the transfer control unit 105 b controls the transfer control unit 105 b .
  • the data stored in the three flip flop circuits in the transmission shift register 103 d that is, the address information of defective ordinary memory cells of the redundancy memory 111 d is stored.
  • the transmission shift register 103 e and the reception shift register 112 e perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b .
  • the transfer control unit 105 b controls the transfer control unit 105 b .
  • the data stored in the three flip flop circuits in the transmission shift register 103 e that is, the address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • the transmission shift register 103 f and the reception shift register 112 f perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b .
  • the transfer control unit 105 b controls the transfer control unit 105 b .
  • the data stored in the three flip flop circuits in the transmission shift register 103 f that is, the address information of defective ordinary memory cells of the redundancy memory 111 f is stored.
  • the transmission shift register 103 g and the reception shift register 112 g perform a data shift with a data shift amount of “2” by control of the transfer control unit 105 b .
  • the transfer control unit 105 b controls the transfer control unit 105 b .
  • the data stored in the two flip flop circuits in the transmission shift register 103 g that is, the address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • the data transmission unit 101 a has the three transmission shift registers 103 a to 103 c each having four flip flop circuits.
  • the data transmission unit 101 b has the transmission shift registers 103 d to 103 f each having three flip flop circuits and the transmission shift register 103 g having two flip flop circuits.
  • the read control unit 104 b and the transfer control unit 105 b of FIG. 2B are different from the read control unit 104 a and the transfer control unit 105 a , respectively, of FIG. 2A . Therefore, between the semiconductor chip of FIG. 2A and the semiconductor chip of FIG. 2B , only the non-volatile memory 102 can be commonized, and the other circuits in the data transmission units cannot be commonized.
  • the data transmission unit 101 can be commonized for plural types of semiconductor chips.
  • the data transmission unit 101 can be designed in advance as a common circuit, and it is only necessary to (1) design reception shift registers and (2) design connections of the reception shift registers and the data transmission unit 101 for each type of semiconductor chip. Accordingly, the number of designing steps of a semiconductor chip can be reduced.
  • FIG. 5 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a second embodiment, and illustrates an example of implementing the data transfer circuit of FIG. 1 . Differences of this embodiment ( FIG. 5 ) from the first embodiment ( FIGS. 1A and 1B ) will be described below.
  • a reception shift register 112 h has six flip flop circuits 113 h for example, and can shift data of the six flip flop circuits 113 h in the direction from left to right in synchronization with a clock signal CLK.
  • 6-bit data can be inputted from the six flip flop circuits 113 h in the reception shift register 112 h.
  • a reception shift register 112 i has three flip flop circuits 113 i for example, and can shift data of the three flip flop circuits 113 i in the direction from left to right in synchronization with the clock signal CLK.
  • 3-bit data can be inputted from the three flip flop circuits 113 i in the reception shift register 112 i.
  • a reception shift register 112 j has eight flip flop circuits 113 j for example, and can shift data of the eight flip flop circuits 113 j in the direction from left to right in synchronization with the clock signal CLK.
  • 8-bit data can be inputted from the eight flip flop circuits 113 j in the reception shift register 112 j.
  • a transmission shift register 103 has 20 flip flop circuits F 1 to F 20 which store data, and can shift data of the 20 flip flop circuits F 1 to F 20 in a direction from the flip flop circuit F 20 to F 1 .
  • the number of flip flop circuits F 1 to F 20 in the transmission shift register 103 is the same as the bit number of all data stored in a non-volatile memory 102 .
  • An input terminal of the first flip flop circuit in the reception shift register 112 h is connected to an output terminal of the flip flop circuit F 2 in the transmission shift register 103 .
  • An input terminal of the first flip flop circuit in the reception shift register 112 i is connected to an output terminal of the flip flop circuit F 5 in the transmission shift register 103 .
  • An input terminal of the first flip flop circuit in the reception shift register 112 j is connected to an output terminal of the flip flop circuit F 13 in the transmission shift register 103 .
  • non-volatile memory 102 information of addresses of defective ordinary memory cells of the redundancy memories 111 h to 111 j is written in order from the head without any space.
  • an activated reset signal RS is inputted to a read control unit 104 and a transfer control unit 105 .
  • a read counter 501 in the read control unit 104 resets a read address RA counted by the read counter 501 to “0”, and outputs the read address RA of “0” to the non-volatile memory 102 .
  • the transfer control unit 105 resets the count value counted by a shift counter 502 to 0 , and outputs a disabled shift enable signal SE to the transmission shift register 103 and the reception shift registers 112 h to 112 j.
  • the reset signal RS is deactivated.
  • the read counter 501 in the read control unit 104 counts up the read address RA in synchronization with the clock signal CLK, outputs the read address RA to the non-volatile memory 102 , and outputs an enabled read enable signal RE to the transfer control unit 105 and the transmission shift register 103 .
  • the read control unit 104 sequentially reads data stored at the address RA of the non-volatile memory 102 and sequentially writes the data in the flip flop circuits F 1 to F 20 in the transmission shift register 103 .
  • the non-volatile memory 102 outputs 4-bit data FD to the transmission shift register 103 in parallel.
  • the read address RA is “0”
  • the 4-bit data stored at the address RA of “0” of the non-volatile memory 102 are written in the flip flop circuits F 1 to F 4 .
  • the read address RA is “1”
  • the 4-bit data stored at the address RA of “1” of the non-volatile memory 102 are written in the flip flop circuits F 5 to F 8 .
  • the read address RA is “2”
  • the 4-bit data stored at the address RA of “2” of the non-volatile memory 102 are written in the flip flop circuits F 9 to F 12 .
  • the read control unit 104 When the read address RA counted by the read counter 501 is different from an end address MAX 1 (for example, “5”), the read control unit 104 enables the read enable signal RE, and performs writing in the transmission shift register 103 . Further, when the read address RA counted by the read counter 501 is the same as the end address MAX 1 (for example, “5”), the read control unit 104 ends the counting up of the read address RA and disables the read enable signal RE. When the read enable signal RE is disabled, writing to the transmission shift register 103 is finished.
  • an end address MAX 1 for example, “5”
  • address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • the shift counter 502 When the read enable signal RE is disabled and the count value counted by the shift counter 502 is different from a data shift amount MAX 2 (for example, “8”), the shift counter 502 counts up the count value in synchronization with the clock signal CLK, and the transfer control unit 105 enables the shift enable signal SE. In other cases, the shift counter 502 maintains the count value, and the transfer control unit 105 disables the shift enable signal SE.
  • a data shift amount MAX 2 for example, “8”
  • the read enable signal RE is disabled, the shift counter 502 starts counting up the count value, and the shift enable signal SE is enabled.
  • the shift enable signal SE is enabled, the transmission shift register 103 and the reception shift registers 112 h to 112 j shift data in synchronization with the clock signal CLK.
  • the count value counted by the shift counter 502 becomes the same as the data shift amount MAX 2 (for example, “8”), the shift enable signal SE is disabled, the transmission shift register 103 and the reception shift registers 112 h to 112 j finish the data shift and retain the data.
  • the transmission shift register 103 and the reception shift registers 112 h to 112 j consequently perform eight shift operations.
  • the transmission shift register 103 and the reception shift registers 112 h to 112 j have a data shift amount of “8” which is the same as each other.
  • the data stored in the flip flop circuits F 4 to F 9 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • the data stored in the flip flop circuits F 10 to F 12 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • the data stored in the flip flop circuits F 13 to F 20 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • the number of flip flop circuits 113 h to 113 j in the reception shift registers 112 h to 112 j is less than or equal to the maximum countable value of the shift counter 502 .
  • FIG. 6 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a third embodiment.
  • This embodiment ( FIG. 6 ) is such that an auxiliary shift register 601 is added to the second embodiment ( FIG. 5 ). Differences of this embodiment from the second embodiment will be described below.
  • the auxiliary shift register 601 is a third shift register, has two flip flop circuits for example, and can shift data of the two flip flop circuits in the direction from left to right.
  • the auxiliary shift register 601 is connected between an output terminal of the flip flop circuit F 1 in the transmission shift register 103 and the input terminal of the reception shift register 112 h , shifts data inputted from the output terminal of the flip flop circuit F 1 , and outputs the data to the reception shift register 112 h .
  • the reception shift register 112 h has six flip flop circuits 113 h , and outputs 6-bit data to the redundancy memory 111 h .
  • the reception shift register 112 i has four flip flop circuits 113 i and outputs 4-bit data to the redundancy memory 111 i .
  • the reception shift register 112 j has nine flip flop circuits 113 j and outputs 9-bit data to the redundancy memory 111 j.
  • An input terminal of the reception shift register 112 h is connected to the output terminal of the flip flop circuit F 1 in the transmission shift register 103 via the auxiliary shift register 601 .
  • the input terminal of the reception shift register 112 i is connected to an output terminal of the flip flop circuit F 3 in the transmission shift register 103 .
  • the input terminal of the reception shift register 112 j is connected to an output terminal of the flip flop circuit F 12 in the transmission shift register 103 .
  • the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F 1 to F 20 in the transmission shift register 103 .
  • address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • the transfer control unit 105 instructs by a shift enable signal SE the transmission shift register 103 and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”. Note that the transfer control unit 105 may output the shift enable signal SE to the auxiliary shift register 601 . Thus, the transmission shift register 103 , the auxiliary shift register 601 , and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • the data stored in the flip flop circuits F 2 to F 7 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • the data stored in the flip flop circuits F 8 to F 11 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • the data stored in the flip flop circuits F 12 to F 20 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • auxiliary shift register 601 is not limited to the connection to the reception shift register 112 h and may be connected between the input terminals of the reception shift register 112 i and/or 112 j and one of the output terminals of the flip flop circuits F 1 to F 20 .
  • FIG. 7 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fourth embodiment.
  • This embodiment ( FIG. 7 ) is such that, with respect to the third embodiment ( FIG. 6 ), the auxiliary shift register 601 is deleted and connection destinations of the input terminals of the reception shift registers 112 h to 112 j are different. Differences of this embodiment from the third embodiment will be described below.
  • An input terminal of the reception shift register 112 h is connected to the output terminal of the flip flop circuit F 8 in the transmission shift register 103 .
  • the input terminal of the reception shift register 112 i is connected to the output terminal of the flip flop circuit F 12 in the transmission shift register 103 .
  • the input terminal of the reception shift register 112 j is connected to the output terminal of the flip flop circuit F 2 in the transmission shift register 103 .
  • the input terminals of the reception shift registers 112 h to 112 j are, in order from one having a larger number of flip flop circuits 113 h to 113 j inside the reception shift registers 112 h to 112 j , connected to the output terminals of the flip flop circuits F 1 to F 20 in order from one closer to the head of the transmission shift register 103 .
  • the reception shift register 112 j has the largest number of flip flop circuits 113 j and hence is connected to the output terminal of the flip flop circuit F 2 .
  • the reception shift register 112 h has the second largest number of flip flop circuits 113 h and hence is connected to the output terminal of the flip flop circuit F 8 .
  • the reception shift register 112 i has the third largest number of flip flop circuits 113 i and hence is connected to the output terminal of the flip flop circuit F 12 .
  • the reception shift registers 112 h to 112 j are connected to the output terminals of the flip flop circuits F 1 to F 20 such that the larger the number of flip flop circuits 113 h to 113 j inside the reception shift registers 112 h to 112 j is, the closer the flip flop circuits F 1 to F 20 are to the head of the transmission shift register 103 .
  • the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F 1 to F 20 in the transmission shift register 103 .
  • address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • the transfer control unit 105 instructs by a shift enable signal SE the transmission shift register 103 and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”.
  • the transmission shift register 103 and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • the data stored in the flip flop circuits F 2 to F 10 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • the data stored in the flip flop circuits F 11 to F 16 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • the data stored in the flip flop circuits F 17 to F 20 in the transmission shift register 103 before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • the auxiliary shift register 601 ( FIG. 6 ) becomes unnecessary.
  • FIG. 8 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fifth embodiment.
  • This embodiment ( FIG. 8 ) is different from the second embodiment ( FIG. 5 ) in that two data transmission units 101 c and 101 d are used. Differences of this embodiment from the second embodiment will be described below.
  • the data transmission units 101 c and 101 d each have a non-volatile memory 102 , a transmission shift register 103 , a read control unit 104 , and a transfer control unit 105 similarly to the data transmission unit 101 of FIG. 5 , and have the same structure as each other.
  • the transmission shift register 103 has twelve shift registers F 1 to F 12 .
  • An input terminal and an output terminal of the transmission shift register 103 are connectable to an outside of the data transmission unit 101 c or 101 d .
  • An input terminal of the flip flop circuit F 12 at the end in the transmission shift register 103 of the first data transmission unit 101 c is connected to an output terminal of the flip flop circuit F 1 at the head in the transmission shift register 103 of the second data transmission unit 101 d .
  • the data transmission units 101 c and 101 d are connected in series.
  • the transmission shift register 103 in the data transmission unit 101 c and the transmission shift register 103 in the data transmission unit 101 d are assumed as one shift register and is connected to the reception shift registers 112 h to 112 j.
  • the first data transmission unit 101 c has a transmission shift register (first shift register) 103 and first flip flop circuits F 1 to F 12 .
  • the second data transmission unit 101 d has a transmission shift register (fourth shift register) 103 and fourth flip flop circuits F 1 to F 12 .
  • To the transmission shift register 103 of the data transmission unit 101 c data shifted by the transmission shift register 103 of the data transmission unit 101 d are inputted, and the data inputted from the transmission shift register 103 of the data transmission unit 101 d can be shifted therein.
  • the reception shift register 112 h has six flip flop circuits 113 h , and outputs 6-bit data to the redundancy memory 111 h .
  • the reception shift register 112 i has four flip flop circuits 113 i and outputs 4-bit data to the redundancy memory 111 i .
  • the reception shift register 112 j has nine flip flop circuits 113 j and outputs 9-bit data to the redundancy memory 111 j.
  • An input terminal of the reception shift register 112 h is connected to an output terminal of the flip flop circuit F 3 in the transmission shift register 103 of the data transmission unit 101 c .
  • An input terminal of the reception shift register 112 i is connected to an output terminal of the flip flop circuit F 7 in the transmission shift register 103 of the data transmission unit 101 c .
  • An input terminal of the reception shift register 112 j is connected to an output terminal of the flip flop circuit F 4 in the transmission shift register 103 of the data transmission unit 101 d.
  • the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F 1 to F 12 in the transmission shift register 103 .
  • the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F 1 to F 12 in the transmission shift register 103 .
  • the transfer control unit 105 in the data transmission unit 101 d instructs by a shift enable signal SE the transmission shift register 103 in the data transmission unit 101 d and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”.
  • the transfer control unit 105 in the data transmission unit 101 c instructs by the shift enable signal SE the transmission shift register 103 in the data transmission unit 101 c to perform a data shift with a shift amount “9”.
  • the shift enable signal SE may be inputted from the transfer control unit 105 in the data transmission unit 101 c instead of the transfer control unit 105 in the data transmission unit 101 d .
  • the transmission shift register 103 in the data transmission unit 101 c the transmission shift register 103 in the data transmission unit 101 d , and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • the data stored in the flip flop circuits F 6 to F 11 in the data transmission unit 101 c before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • the data stored in the flip flop circuits F 4 to F 12 in the data transmission unit 101 d before the shift that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • This embodiment is effective when the address information of defective ordinary memory cells of the three redundancy memories 111 h to 111 j is larger than the capacity of the non-volatile memory 102 in one data transmission unit 101 c .
  • the address information of defective ordinary memory cells of the three redundancy memories 111 h to 111 j can be stored in a divided manner in the non-volatile memory 102 in the data transmission unit 101 c and the non-volatile memory 102 in the data transmission unit 101 d .
  • the two transmission shift registers 103 can be assumed as one transmission shift register and connected to the three reception shift registers 112 h to 112 j .
  • shift operations can be started simultaneously.
  • the transmission shift register 103 in the data transmission unit 101 d shifts data of the flip flop circuits F 1 to F 12 inside, and transmits data of the output terminal of one or more flip flop circuits F 4 among the output terminals of the flip flop circuits F 1 to F 12 inside to one or more reception shift registers 112 j .
  • FIG. 9 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a sixth embodiment.
  • This embodiment ( FIG. 9 ) is different from the second embodiment ( FIG. 5 ) in that the data shift amount MAX 2 is changeable. Differences of this embodiment from the second embodiment will be described below.
  • the data shift amount MAX 2 is inputted from the outside of the data transmission unit 101 .
  • the data shift amount MAX 2 is a number less than or equal to the maximum countable value of the shift counter 502 .
  • the transfer control unit 105 compares the count value counted by the shift counter 502 with the data shift amount MAX 2 , and controls the shift enable signal SE.
  • the data shift amount MAX 2 of the transmission shift register 103 and the reception shift registers 112 h to 112 j can be made changeable, enabling to respond to various reception shift registers 112 h to 112 j.
  • the data transfer circuit can transfer information of identifiers of the devices 111 a to 111 j , transfer security codes of the devices 111 a to 111 j , or transfer characteristic adjustment information (trimming information) of the devices 111 a to 111 j.
  • a first data transmission unit can be commonized for plural types of semiconductor chips.

Abstract

A data transfer circuit has a first data transmission unit and two or more second shift registers. The first data transmission unit has a first shift register which has a plurality of first flip flop circuits which store data, shifts the data of the plurality of first flip flop circuits, and transmits data of two or more output terminals out of output terminals of the plurality of first flip flop circuits to the two or more second shift registers. The two or more second shift registers each shift data inputted from the two or more output terminals out of the output terminals of the plurality of first flip flop circuits.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2014-067135, filed on Mar. 27, 2014, the entire contents of which are incorporated herein by reference.
  • FIELD
  • The embodiments discussed herein relate to a data transfer circuit.
  • BACKGROUND
  • There is known an inter-device interface method between a first device operating at timings of a first clock and a second device operating at timings of a second clock which is a cycle of 1/n times the first clock (see, for example, Patent Document 1). A first switching means in the first device converts parallel data with a predetermined bit length which are transmitted from the first device to the second device into serial data by every m-bit unit where m≦n. A serial data interface line for every m-bit unit transmits the serial data converted by the first switching means to the second device. A second switching means in the second device receives at a timing of the second clock the serial data transmitted by the serial data interface line and converts the data into parallel data with a predetermined bit length. A data conversion control means in the second device executes a data switching instruction for the first switching means and a data switching instruction for the second switching means at a timing of the second clock. A data switching instruction line transmits the data switching instruction for the first switching means by the data conversion control means to the first device. In one cycle of the first clock, parallel data with a predetermined bit length are divided into serial data in m-bit units, and are transmitted from the first device to the second device at a timing of the second clock.
  • Further, there is known a memory device which has a plurality of redundancy memories each having pluralities of ordinary memory cell blocks and spare memory cell blocks and a plurality of flip flops each connected in series, each storing a numeric value, and respectively outputting numeric values to the plurality of redundancy memories (see, for example, Patent Document 2). A non-volatile memory stores a seed value. A pseudo-random number generating circuit generates reproducible pseudo-random numbers based on the seed value stored in the non-volatile memory, and serially outputs pseudo-random numbers to the plurality of flip flops. The plurality of flip flops serially transfer, in synchronization with a clock signal, the pseudo-random numbers outputted by the pseudo-random number generating circuit. Each of the plurality of redundancy memories switch one of the plurality of ordinary memory cell blocks to a spare memory cell block according to numeric values stored in the plurality of flip flops.
  • Further, there is known a serial interface circuit which has a shift register generating an address signal and a second data signal based on a first data signal and a clock signal, and a register generating unit writing the second data signal in a register specified by an address decoder (see, for example, Patent Document 3). An address control circuit outputs a first address value specifying a register to the address decoder based on the address signal. A control circuit outputs to the address control circuit a control signal allowing outputting the first address value and writing the second data signal in the register or not allowing outputting the first address value based on the clock signal and a standby signal.
  • [Patent Document 1] Japanese Laid-open Patent Publication No. 5-250316
  • [Patent Document 2] Japanese Laid-open Patent Publication No. 2013-122800
  • [Patent Document 3] Japanese Laid-open Patent Publication No. 2005-266856
  • In every type of semiconductor chip, the number of shift registers and/or the shift register length is different. Therefore, the data transmission unit transmitting data to the shift registers have a different configuration in every type of semiconductor chip and is difficult to be commonized.
  • SUMMARY
  • A data transfer circuit has a first data transmission unit and two or more second shift registers. The first data transmission unit has a first shift register which has a plurality of first flip flop circuits which store data, shifts the data of the plurality of first flip flop circuits, and transmits data of two or more output terminals out of output terminals of the plurality of first flip flop circuits to the two or more second shift registers. The two or more second shift registers each shift data inputted from the two or more output terminals out of the output terminals of the plurality of first flip flop circuits.
  • The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIGS. 1A and 1B are diagrams illustrating a structural example of a semiconductor chip of a data transfer circuit according to a first embodiment;
  • FIGS. 2A and 2B are diagrams illustrating a structural example of a semiconductor chip of another data transfer circuit;
  • FIGS. 3A and 3B are diagrams for explaining a shift operation of the data transfer circuit of FIG. 1A;
  • FIGS. 4A and 4B are diagrams for explaining a shift operation of the data transfer circuit of FIG. 1B;
  • FIG. 5 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a second embodiment;
  • FIG. 6 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a third embodiment;
  • FIG. 7 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fourth embodiment;
  • FIG. 8 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fifth embodiment; and
  • FIG. 9 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a sixth embodiment.
  • DESCRIPTION OF EMBODIMENTS First Embodiment
  • FIG. 1A is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a first embodiment. The data transfer circuit has a first data transmission unit 101, a plurality of redundancy memories 111 a to 111 c, and a plurality of reception shift registers (second shift registers) 112 a to 112 c. The data transmission unit 101 has a non-volatile memory 102, a transmission shift register (first shift register) 103, a read control unit 104, and a transfer control unit 105.
  • The redundancy memories 111 a to 111 c each have a plurality of ordinary memory cells and a plurality of spare memory cells. By inspection, the ordinary memory cells are separated into normal ordinary memory cells and defective ordinary memory cells, and addresses of the defective ordinary memory cells are written in the non-volatile memory 102. The non-volatile memory 102 is a fuse memory for example, and stores information (data) of the addresses of the defective ordinary memory cells of the redundancy memories 111 a to 111 c.
  • The fuse memory 102 is a non-volatile memory which can retain data after power is turned off. The fuse memory 102 has fuses for storing data and stores, for example, “0” if a fuse is in an uncut state or “1” if a fuse is in a cut state. By cutting the fuses, data can be written only once. The cutting of the fuses is done after the semiconductor chip is manufactured.
  • The reception shift register 112 a has, for example, four flip flop circuits 113 a, and can shift data of the four flip flop circuits 113 a in a direction from left to right. To the redundancy memory 111 a, 4-bit data can be inputted from the four flip flop circuits 113 a in the reception shift register 112 a.
  • The reception shift register 112 b has, for example, four flip flop circuits 113 b, and can shift data of the four flip flop circuits 113 b in the direction from left to right. To the redundancy memory 111 b, 4-bit data can be inputted from the four flip flop circuits 113 b in the reception shift register 112 b.
  • The reception shift register 112 c has, for example, four flip flop circuits 113 c, and can shift data of the four flip flop circuits 113 c in the direction from left to right. To the redundancy memory 111 c, 4-bit data can be inputted from the four flip flop circuits 113 c in the reception shift register 112 c.
  • The transmission shift register 103 has a plurality of first flip flop circuits F1 to F12 which store data, and can shift data of the plurality of first flip flop circuits F1 to F12 in a direction from the flip flop circuit F12 to F1. The flip flop circuit F1 is a flip flop circuit at the head of the transmission shift register 103, and the flip flop circuit F12 is a flip flop circuit at the end of the transmission shift register 103. Output terminals of the twelve flip flop circuits F1 to F12 are connectable to an outside of the data transmission unit 101. The transmission shift register 103 and the reception shift registers 112 a to 112 c are volatile memories.
  • An input terminal of the reception shift register 112 a is connected to the output terminal of the flip flop circuit F1 in the transmission shift register 103. An input terminal of the reception shift register 112 b is connected to the output terminal of the flip flop circuit F5 in the transmission shift register 103. An input terminal of the reception shift register 112 c is connected to the output terminal of the flip flop circuit F9 in the transmission shift register 103.
  • The non-volatile memory 102 stores information (data) of addresses of defective ordinary memory cells of the redundancy memories 111 a to 111 c. The read control unit 104 reads data of the non-volatile memory 102 into the flip flop circuits F1 to F12 in the transmission shift register 103. In the flip flop circuits F1 to F4, address information of defective ordinary memory cells of the redundancy memory 111 a is stored. In the flip flop circuits F5 to F8, address information of defective ordinary memory cells of the redundancy memory 111 b is stored. In the flip flop circuits F9 to F12, address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • The transfer control unit 105 instructs the transmission shift register 103 and the reception shift registers 112 a to 112 c to perform a data shift with a data shift amount of “4”. The shift amount “4” is the same as the respective quantities of four flip flop circuits 113 a to 113 c in the reception shift registers 112 a to 112 c. FIG. 3A is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 a to 112 c before the data shift, and FIG. 3B is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 a to 112 c after the data shift.
  • The transmission shift register 103 shifts data of the flip flop circuits F12 to F1 in the direction from the flip flop circuit F12 to F1 by “4”. In the flip flop circuits F1 to F12 after the shift in FIG. 3B, data shifted by “4” in the shift direction relative to the data of the flip flop circuits F1 to F12 before the shift in FIG. 3A are stored.
  • To the reception shift register 112 a, data outputted from the output terminal of the flip flop circuit F1 in the transmission shift register 103 are inputted, and data of the four flip flop circuits 113 a are shifted by “4” in the direction from left to right. As a result, in the four flip flop circuits 113 a in the reception shift register 112 a after the shift in FIG. 3B, the data stored in the flip flop circuits F1 to F4 in the transmission shift register 103 before the shift in FIG. 3A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • To the reception shift register 112 b, data outputted from the output terminal of the flip flop circuit F5 in the transmission shift register 103 are inputted, and data of the four flip flop circuits 113 b are shifted by “4” in the direction from left to right. As a result, in the four flip flop circuits 113 b in the reception shift register 112 b after the shift in FIG. 3B, the data stored in the flip flop circuits F5 to F8 in the transmission shift register 103 before the shift in FIG. 3A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 b is stored.
  • To the reception shift register 112 c, data outputted from the output terminal of the flip flop circuit F9 in the transmission shift register 103 are inputted, and data of the four flip flop circuits 113 c are shifted by “4” in the direction from left to right. As a result, in the four flip flop circuits 113 c in the reception shift register 112 c after the shift in FIG. 3B, the data stored in the flip flop circuits F9 to F12 in the transmission shift register 103 before the shift in FIG. 3A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • To the redundancy memory 111 a, four-bit address information stored in the four flip flop circuits 113 a in the reception shift register 112 a are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • Similarly, to the redundancy memory 111 b, four-bit address information stored in the four flip flop circuits 113 b in the reception shift register 112 b are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • Similarly, to the redundancy memory 111 c, four-bit address information stored in the four flip flop circuits 113 c in the reception shift register 112 c are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • FIG. 1B is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit according to a first embodiment. The semiconductor chip of FIG. 1B has the same data transmission unit 101 as the semiconductor chip of FIG. 1A. However, redundancy memories 111 d to 111 g and reception shift registers 112 d to 112 g of FIG. 1B are different from the redundancy memories 111 a to 111 c and the reception shift registers 112 a to 112 c of FIG. 1A. Specifically, the four redundancy memories 111 d to 111 g of FIG. 1B differ in quantity from the three redundancy memories 111 a to 111 c of FIG. 1A. Further, 3-bit data and 2-bit data inputted to the four redundancy memories 111 d to 111 g of FIG. 1B from the reception shift registers 112 d to 112 g differ in bit length from 4-bit data inputted to the three redundancy memories 111 a to 111 c of FIG. 1A from the reception shift registers 112 a to 112 c. As a result, three flip flop circuits 113 d to 113 f and two flip flop circuits 113 g in the reception shift registers 112 d to 112 g of FIG. 1B differ in quantity from the four flip flop circuits 113 a to 113 c in the reception shift registers 112 a to 112 c of FIG. 1A. As described above, depending on the type of the semiconductor chip, the quantity of reception shift registers 112 d to 112 g and the respective quantities of flip flop circuits 113 d to 113 g change.
  • The reception shift register 112 d has three flip flop circuits 113 d for example, and can shift data of the three flip flop circuits 113 d in the direction from left to right. To the redundancy memory 111 d, 3-bit data can be inputted from the three flip flop circuits 113 d in the reception shift register 112 d.
  • The reception shift register 112 e has three flip flop circuits 113 e for example, and can shift data of the three flip flop circuits 113 e in the direction from left to right. To the redundancy memory 111 e, 3-bit data can be inputted from the three flip flop circuits 113 e in the reception shift register 112 e.
  • The reception shift register 112 f has three flip flop circuits 113 f for example, and can shift data of the three flip flop circuits 113 f in the direction from left to right. To the redundancy memory 111 f, 3-bit data can be inputted from the three flip flop circuits 113 f in the reception shift register 112 f.
  • The reception shift register 112 g has two flip flop circuits 113 g for example, and can shift data of the two flip flop circuits 113 g in the direction from left to right. To the redundancy memory 111 g, 2-bit data can be inputted from the two flip flop circuits 113 g in the reception shift register 112 g.
  • An input terminal of the reception shift register 112 d is connected to the output terminal of the flip flop circuit F1 in the transmission shift register 103. An input terminal of the reception shift register 112 e is connected to the output terminal of the flip flop circuit F4 in the transmission shift register 103. An input terminal of the reception shift register 112 f is connected to the output terminal of the flip flop circuit F7 in the transmission shift register 103. An input terminal of the reception shift register 112 g is connected to the output terminal of the flip flop circuit F9 in the transmission shift register 103.
  • The non-volatile memory 102 stores information of addresses of defective ordinary memory cells of the redundancy memories 111 d to 111 g. The read control unit 104 reads data of the non-volatile memory 102 into flip flop circuits F1 to F12 in the transmission shift register 103. In the flip flop circuits F2 to F4, address information of defective ordinary memory cells of the redundancy memory 111 d is stored. In the flip flop circuits F5 to F7, address information of defective ordinary memory cells of the redundancy memory 111 e is stored. In the flip flop circuits F8 to F10, address information of defective ordinary memory cells of the redundancy memory 111 f is stored. In the flip flop circuits F11 and F12, address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • The transfer control unit 105 instructs the transmission shift register 103 and the reception shift registers 112 d to 112 g to perform a data shift with a data shift amount of “4”. The shift amount “4” is larger than the respective quantities of three flip flop circuits 113 d to 113 f and two flip flop circuits 113 g in the reception shift registers 112 d to 112 g. FIG. 4A is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 d to 112 g before the data shift, and FIG. 4B is a diagram illustrating data stored in the transmission shift register 103 and the reception shift registers 112 d to 112 g after the data shift.
  • The transmission shift register 103 shifts data of the flip flop circuits F1 to F12 by “4” in the direction from the flip flop circuit F12 to F1. In the flip flop circuits F1 to F12 after the shift in FIG. 4B, data shifted by “4” in the shift direction relative to the data of the flip flop circuits F1 to F12 before the shift in FIG. 4A are stored.
  • To the reception shift register 112 d, data outputted from the output terminal of the flip flop circuit F1 in the transmission shift register 103 are inputted, and data of the three flip flop circuits 113 d are shifted by “4” in the direction from left to right. As a result, in the three flip flop circuits 113 d in the reception shift register 112 d after the shift in FIG. 4B, the data stored in the flip flop circuits F2 to F4 in the transmission shift register 103 before the shift in FIG. 4A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 d is stored.
  • To the reception shift register 112 e, data outputted from the output terminal of the flip flop circuit F4 in the transmission shift register 103 are inputted, and data of the three flip flop circuits 113 e are shifted by “4” in the direction from left to right. As a result, in the three flip flop circuits 113 e in the reception shift register 112 e after the shift in FIG. 4B, the data stored in the flip flop circuits F5 to F7 in the transmission shift register 103 before the shift in FIG. 4A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • To the reception shift register 112 f, data outputted from the output terminal of the flip flop circuit F7 in the transmission shift register 103 are inputted, and data of the three flip flop circuits 113 f are shifted by “4” in the direction from left to right. As a result, in the three flip flop circuits 113 f in the reception shift register 112 f after the shift in FIG. 4B, the data stored in the flip flop circuits F8 to F10 in the transmission shift register 103 before the shift in FIG. 4A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 f is stored.
  • To the reception shift register 112 g, data outputted from the output terminal of the flip flop circuit F9 in the transmission shift register 103 are inputted, and data of the two flip flop circuits 113 g are shifted by “4” in the direction from left to right. As a result, in the two flip flop circuits 113 g in the reception shift register 112 g after the shift in FIG. 4B, the data stored in the flip flop circuits F11 and F12 in the transmission shift register 103 before the shift in FIG. 4A, that is, the address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • To the redundancy memory 111 d, three-bit address information stored in the three flip flop circuits 113 d in the reception shift register 112 d are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • Similarly, to the redundancy memory 111 e, three-bit address information stored in the three flip flop circuits 113 e in the reception shift register 112 e are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • Similarly, to the redundancy memory 111 f, three-bit address information stored in the three flip flop circuits 113 f in the reception shift register 112 f are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • Similarly, to the redundancy memory 111 g, two-bit address information stored in the two flip flop circuits 113 g in the reception shift register 112 g are inputted, and based on this address information, the defective ordinary memory cells are replaced with normal spare memory cells and data access is performed. Thus, repair of the defective ordinary memory cells is performed.
  • As above, in FIG. 1A, the input terminals of the reception shift registers 112 a to 112 c are connected to the output terminals of the flip flop circuits F1, F5, and F9, respectively, according to the number of reception shift registers 112 a to 112 c and the number of flip flop circuits 113 a to 113 c inside each of the reception shift registers 112 a to 112 c.
  • On the other hand, in FIG. 1B, the input terminals of the reception shift registers 112 d to 112 g are connected to the output terminals of the flip flop circuits F1, F4, F7, and F9, respectively, according to the number of reception shift registers 112 d to 112 g and the number of flip flop circuits 113 d to 113 g inside each of the reception shift registers 112 d to 112 g.
  • In this embodiment, according to the number of reception shift registers and/or the number of flip flop circuits inside each of the reception shift registers, data are transmitted to the reception shift registers from different output terminals of the flip flop circuits in the transmission shift register 103. Thus, the same data transmission unit 101 can be commonized for plural types of semiconductor chips such as the semiconductor chip of FIG. 1A and the semiconductor chip of FIG. 1B, or the like.
  • Note that although the example of the three reception shift registers 112 a to 112 c is illustrated in FIG. 1A and the example of the four reception shift registers 112 d to 112 g is illustrated in FIG. 1B, the reception shift registers may be two or more. The transmission shift register 103 shifts data of the flip flop circuits F1 to F12, and transmits data of two or more output terminals among the output terminals of the flip flop circuits F1 to F12 to two or more reception shift registers, respectively. The two or more reception shift registers shift data inputted respectively from the two or more output terminals among the output terminals of the flip flop circuits F1 to F12.
  • Next, with reference to FIGS. 2A and 2B, reasons why it is difficult to commonize the data transmission unit 101 in ordinary technologies will be described.
  • FIG. 2A corresponds to FIG. 1A and is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit. The semiconductor chip of FIG. 2A is the same as the semiconductor chip of FIG. 1A in redundancy memories 111 a to 111 c and reception shift registers 112 a to 112 c. However, a data transmission unit 101 a of FIG. 2A is different from the data transmission unit 101 of FIG. 1A. The data transmission unit 101 a of FIG. 2A has a non-volatile memory 102, transmission shift registers 103 a to 103 c, a read control unit 104 a, and a transfer control unit 105 a.
  • The transmission shift register 103 a has four flip flop circuits similarly to the reception shift register 112 a and is connected to the reception shift register 112 a. The transmission shift register 103 b has four flip flop circuits similarly to the reception shift register 112 b and is connected to the reception shift register 112 b. The transmission shift register 103 c has four flip flop circuits similarly to the reception shift register 112 c and is connected to the reception shift register 112 c.
  • The read control unit 104 a reads data of the non-volatile memory 102 into the transmission shift registers 103 a to 103 c. In the transmission shift register 103 a, address information of defective ordinary memory cells of the redundancy memory 111 a is stored. In the transmission shift register 103 b, address information of defective ordinary memory cells of the redundancy memory 111 b is stored. In the transmission shift register 103 c, address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • The transmission shift register 103 a and the reception shift register 112 a perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a. As a result, in the four flip flop circuits 113 a in the reception shift register 112 a, the data stored in the four flip flop circuits in the transmission shift register 103 a, that is, the address information of defective ordinary memory cells of the redundancy memory 111 a is stored.
  • The transmission shift register 103 b and the reception shift register 112 b perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a. As a result, in the four flip flop circuits 113 b in the reception shift register 112 b, the data stored in the four flip flop circuits in the transmission shift register 103 b, that is, the address information of defective ordinary memory cells of the redundancy memory 111 b is stored.
  • The transmission shift register 103 c and the reception shift register 112 c perform a data shift with a data shift amount of “4” by control of the transfer control unit 105 a. As a result, in the four flip flop circuits 113 c in the reception shift register 112 c, the data stored in the four flip flop circuits in the transmission shift register 103 c, that is, the address information of defective ordinary memory cells of the redundancy memory 111 c is stored.
  • FIG. 2B corresponds to FIG. 1B and is a diagram illustrating a structural example of a semiconductor chip of another data transfer circuit. The semiconductor chip of FIG. 2B is the same as the semiconductor chip of FIG. 1B in redundancy memories 111 d to 111 g and reception shift registers 112 d to 112 g. However, a data transmission unit 101 b of FIG. 2B is different from the data transmission unit 101 of FIG. 1B. The data transmission unit 101 b of FIG. 2B has a non-volatile memory 102, transmission shift registers 103 d to 103 g, a read control unit 104 b, and a transfer control unit 105 b.
  • The transmission shift register 103 d has three flip flop circuits similarly to the reception shift register 112 d and is connected to the reception shift register 112 d. The transmission shift register 103 e has three flip flop circuits similarly to the reception shift register 112 e and is connected to the reception shift register 112 e. The transmission shift register 103 f has three flip flop circuits similarly to the reception shift register 112 f and is connected to the reception shift register 112 f. The transmission shift register 103 g has two flip flop circuits similarly to the reception shift register 112 g and is connected to the reception shift register 112 g.
  • The read control unit 104 b reads data of the non-volatile memory 102 into the transmission shift registers 103 d to 103 g. In the transmission shift register 103 d, address information of defective ordinary memory cells of the redundancy memory 111 d is stored. In the transmission shift register 103 e, address information of defective ordinary memory cells of the redundancy memory 111 e is stored. In the transmission shift register 103 f, address information of defective ordinary memory cells of the redundancy memory 111 f is stored. In the transmission shift register 103 g, address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • The transmission shift register 103 d and the reception shift register 112 d perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b. As a result, in the three flip flop circuits 113 d in the reception shift register 112 d, the data stored in the three flip flop circuits in the transmission shift register 103 d, that is, the address information of defective ordinary memory cells of the redundancy memory 111 d is stored.
  • The transmission shift register 103 e and the reception shift register 112 e perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b. As a result, in the three flip flop circuits 113 e in the reception shift register 112 e, the data stored in the three flip flop circuits in the transmission shift register 103 e, that is, the address information of defective ordinary memory cells of the redundancy memory 111 e is stored.
  • The transmission shift register 103 f and the reception shift register 112 f perform a data shift with a data shift amount of “3” by control of the transfer control unit 105 b. As a result, in the three flip flop circuits 113 f in the reception shift register 112 f, the data stored in the three flip flop circuits in the transmission shift register 103 f, that is, the address information of defective ordinary memory cells of the redundancy memory 111 f is stored.
  • The transmission shift register 103 g and the reception shift register 112 g perform a data shift with a data shift amount of “2” by control of the transfer control unit 105 b. As a result, in the two flip flop circuits 113 g in the reception shift register 112 g, the data stored in the two flip flop circuits in the transmission shift register 103 g, that is, the address information of defective ordinary memory cells of the redundancy memory 111 g is stored.
  • As described above, in FIG. 2A, the data transmission unit 101 a has the three transmission shift registers 103 a to 103 c each having four flip flop circuits. On the other hand, in FIG. 2B, the data transmission unit 101 b has the transmission shift registers 103 d to 103 f each having three flip flop circuits and the transmission shift register 103 g having two flip flop circuits. In FIGS. 2A and 2B, since the number of transmission shift registers and the number of flip flop circuits in the transmission shift registers are different, the read control unit 104 b and the transfer control unit 105 b of FIG. 2B are different from the read control unit 104 a and the transfer control unit 105 a, respectively, of FIG. 2A. Therefore, between the semiconductor chip of FIG. 2A and the semiconductor chip of FIG. 2B, only the non-volatile memory 102 can be commonized, and the other circuits in the data transmission units cannot be commonized.
  • On the other hand, as illustrated in FIGS. 1A and 1B, according to this embodiment, the data transmission unit 101 can be commonized for plural types of semiconductor chips. The data transmission unit 101 can be designed in advance as a common circuit, and it is only necessary to (1) design reception shift registers and (2) design connections of the reception shift registers and the data transmission unit 101 for each type of semiconductor chip. Accordingly, the number of designing steps of a semiconductor chip can be reduced.
  • Second Embodiment
  • FIG. 5 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a second embodiment, and illustrates an example of implementing the data transfer circuit of FIG. 1. Differences of this embodiment (FIG. 5) from the first embodiment (FIGS. 1A and 1B) will be described below.
  • A reception shift register 112 h has six flip flop circuits 113 h for example, and can shift data of the six flip flop circuits 113 h in the direction from left to right in synchronization with a clock signal CLK. To a redundancy memory 111 h, 6-bit data can be inputted from the six flip flop circuits 113 h in the reception shift register 112 h.
  • A reception shift register 112 i has three flip flop circuits 113 i for example, and can shift data of the three flip flop circuits 113 i in the direction from left to right in synchronization with the clock signal CLK. To a redundancy memory 111 i, 3-bit data can be inputted from the three flip flop circuits 113 i in the reception shift register 112 i.
  • A reception shift register 112 j has eight flip flop circuits 113 j for example, and can shift data of the eight flip flop circuits 113 j in the direction from left to right in synchronization with the clock signal CLK. To a redundancy memory 111 j, 8-bit data can be inputted from the eight flip flop circuits 113 j in the reception shift register 112 j.
  • A transmission shift register 103 has 20 flip flop circuits F1 to F20 which store data, and can shift data of the 20 flip flop circuits F1 to F20 in a direction from the flip flop circuit F20 to F1. The number of flip flop circuits F1 to F20 in the transmission shift register 103 is the same as the bit number of all data stored in a non-volatile memory 102.
  • An input terminal of the first flip flop circuit in the reception shift register 112 h is connected to an output terminal of the flip flop circuit F2 in the transmission shift register 103. An input terminal of the first flip flop circuit in the reception shift register 112 i is connected to an output terminal of the flip flop circuit F5 in the transmission shift register 103. An input terminal of the first flip flop circuit in the reception shift register 112 j is connected to an output terminal of the flip flop circuit F13 in the transmission shift register 103.
  • Next, operation of the data transfer circuit will be described. In the non-volatile memory 102, information of addresses of defective ordinary memory cells of the redundancy memories 111 h to 111 j is written in order from the head without any space. Next, an activated reset signal RS is inputted to a read control unit 104 and a transfer control unit 105. Once the reset signal RS is activated, a read counter 501 in the read control unit 104 resets a read address RA counted by the read counter 501 to “0”, and outputs the read address RA of “0” to the non-volatile memory 102. Once the reset signal RS is activated, the transfer control unit 105 resets the count value counted by a shift counter 502 to 0, and outputs a disabled shift enable signal SE to the transmission shift register 103 and the reception shift registers 112 h to 112 j.
  • Next, the reset signal RS is deactivated. Once the reset signal RS is deactivated, the read counter 501 in the read control unit 104 counts up the read address RA in synchronization with the clock signal CLK, outputs the read address RA to the non-volatile memory 102, and outputs an enabled read enable signal RE to the transfer control unit 105 and the transmission shift register 103. The read control unit 104 sequentially reads data stored at the address RA of the non-volatile memory 102 and sequentially writes the data in the flip flop circuits F1 to F20 in the transmission shift register 103.
  • For example, the non-volatile memory 102 outputs 4-bit data FD to the transmission shift register 103 in parallel. When the read address RA is “0”, the 4-bit data stored at the address RA of “0” of the non-volatile memory 102 are written in the flip flop circuits F1 to F4. Next, when the read address RA is “1”, the 4-bit data stored at the address RA of “1” of the non-volatile memory 102 are written in the flip flop circuits F5 to F8. Next, when the read address RA is “2”, the 4-bit data stored at the address RA of “2” of the non-volatile memory 102 are written in the flip flop circuits F9 to F12. Next, when the read address RA is “3”, the 4-bit data stored at the address RA of “3” of the non-volatile memory 102 are written in the flip flop circuits F13 to F16. Next, when the read address RA is “4”, the 4-bit data stored at the address RA of “4” of the non-volatile memory 102 are written in the flip flop circuits F17 to F20.
  • When the read address RA counted by the read counter 501 is different from an end address MAX1 (for example, “5”), the read control unit 104 enables the read enable signal RE, and performs writing in the transmission shift register 103. Further, when the read address RA counted by the read counter 501 is the same as the end address MAX1 (for example, “5”), the read control unit 104 ends the counting up of the read address RA and disables the read enable signal RE. When the read enable signal RE is disabled, writing to the transmission shift register 103 is finished.
  • In the flip flop circuits F4 to F9, address information of defective ordinary memory cells of the redundancy memory 111 h is stored. In the flip flop circuits F10 to F12, address information of defective ordinary memory cells of the redundancy memory 111 i is stored. In the flip flop circuits F13 to F20, address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • When the read enable signal RE is disabled and the count value counted by the shift counter 502 is different from a data shift amount MAX2 (for example, “8”), the shift counter 502 counts up the count value in synchronization with the clock signal CLK, and the transfer control unit 105 enables the shift enable signal SE. In other cases, the shift counter 502 maintains the count value, and the transfer control unit 105 disables the shift enable signal SE.
  • When the above-described writing to the transmission shift register 103 is finished, the read enable signal RE is disabled, the shift counter 502 starts counting up the count value, and the shift enable signal SE is enabled. When the shift enable signal SE is enabled, the transmission shift register 103 and the reception shift registers 112 h to 112 j shift data in synchronization with the clock signal CLK. When the count value counted by the shift counter 502 becomes the same as the data shift amount MAX2 (for example, “8”), the shift enable signal SE is disabled, the transmission shift register 103 and the reception shift registers 112 h to 112 j finish the data shift and retain the data. Thus, the transmission shift register 103 and the reception shift registers 112 h to 112 j consequently perform eight shift operations. The transmission shift register 103 and the reception shift registers 112 h to 112 j have a data shift amount of “8” which is the same as each other.
  • In the six flip flop circuits 113 h in the reception shift register 112 h after the shift, the data stored in the flip flop circuits F4 to F9 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • In the three flip flop circuits 113 i in the reception shift register 112 i after the shift, the data stored in the flip flop circuits F10 to F12 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • In the eight flip flop circuits 113 j in the reception shift register 112 j after the shift, the data stored in the flip flop circuits F13 to F20 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • Note that the number of flip flop circuits 113 h to 113 j in the reception shift registers 112 h to 112 j is less than or equal to the maximum countable value of the shift counter 502.
  • Third Embodiment
  • FIG. 6 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a third embodiment. This embodiment (FIG. 6) is such that an auxiliary shift register 601 is added to the second embodiment (FIG. 5). Differences of this embodiment from the second embodiment will be described below.
  • The auxiliary shift register 601 is a third shift register, has two flip flop circuits for example, and can shift data of the two flip flop circuits in the direction from left to right. The auxiliary shift register 601 is connected between an output terminal of the flip flop circuit F1 in the transmission shift register 103 and the input terminal of the reception shift register 112 h, shifts data inputted from the output terminal of the flip flop circuit F1, and outputs the data to the reception shift register 112 h. By providing the auxiliary shift register 601, the same effect as increasing the number of flip flop circuits in the transmission shift register 103 can be obtained.
  • The reception shift register 112 h has six flip flop circuits 113 h, and outputs 6-bit data to the redundancy memory 111 h. The reception shift register 112 i has four flip flop circuits 113 i and outputs 4-bit data to the redundancy memory 111 i. The reception shift register 112 j has nine flip flop circuits 113 j and outputs 9-bit data to the redundancy memory 111 j.
  • An input terminal of the reception shift register 112 h is connected to the output terminal of the flip flop circuit F1 in the transmission shift register 103 via the auxiliary shift register 601. The input terminal of the reception shift register 112 i is connected to an output terminal of the flip flop circuit F3 in the transmission shift register 103. The input terminal of the reception shift register 112 j is connected to an output terminal of the flip flop circuit F12 in the transmission shift register 103.
  • The read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F1 to F20 in the transmission shift register 103. In the flip flop circuits F2 to F7, address information of defective ordinary memory cells of the redundancy memory 111 h is stored. In the flip flop circuits F8 to F11, address information of defective ordinary memory cells of the redundancy memory 111 i is stored. In the flip flop circuits F12 to F20, address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • The transfer control unit 105 instructs by a shift enable signal SE the transmission shift register 103 and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”. Note that the transfer control unit 105 may output the shift enable signal SE to the auxiliary shift register 601. Thus, the transmission shift register 103, the auxiliary shift register 601, and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • In the six flip flop circuits 113 h in the reception shift register 112 h after the shift, the data stored in the flip flop circuits F2 to F7 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • In the four flip flop circuits 113 i in the reception shift register 112 i after the shift, the data stored in the flip flop circuits F8 to F11 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • In the nine flip flop circuits 113 j in the reception shift register 112 j after the shift, the data stored in the flip flop circuits F12 to F20 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • Note that the auxiliary shift register 601 is not limited to the connection to the reception shift register 112 h and may be connected between the input terminals of the reception shift register 112 i and/or 112 j and one of the output terminals of the flip flop circuits F1 to F20.
  • Fourth Embodiment
  • FIG. 7 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fourth embodiment. This embodiment (FIG. 7) is such that, with respect to the third embodiment (FIG. 6), the auxiliary shift register 601 is deleted and connection destinations of the input terminals of the reception shift registers 112 h to 112 j are different. Differences of this embodiment from the third embodiment will be described below.
  • An input terminal of the reception shift register 112 h is connected to the output terminal of the flip flop circuit F8 in the transmission shift register 103. The input terminal of the reception shift register 112 i is connected to the output terminal of the flip flop circuit F12 in the transmission shift register 103. The input terminal of the reception shift register 112 j is connected to the output terminal of the flip flop circuit F2 in the transmission shift register 103.
  • The input terminals of the reception shift registers 112 h to 112 j are, in order from one having a larger number of flip flop circuits 113 h to 113 j inside the reception shift registers 112 h to 112 j, connected to the output terminals of the flip flop circuits F1 to F20 in order from one closer to the head of the transmission shift register 103.
  • The reception shift register 112 j has the largest number of flip flop circuits 113 j and hence is connected to the output terminal of the flip flop circuit F2. The reception shift register 112 h has the second largest number of flip flop circuits 113 h and hence is connected to the output terminal of the flip flop circuit F8. The reception shift register 112 i has the third largest number of flip flop circuits 113 i and hence is connected to the output terminal of the flip flop circuit F12. The reception shift registers 112 h to 112 j are connected to the output terminals of the flip flop circuits F1 to F20 such that the larger the number of flip flop circuits 113 h to 113 j inside the reception shift registers 112 h to 112 j is, the closer the flip flop circuits F1 to F20 are to the head of the transmission shift register 103.
  • The read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F1 to F20 in the transmission shift register 103. In the flip flop circuits F2 to F10, address information of defective ordinary memory cells of the redundancy memory 111 j is stored. In the flip flop circuits F11 to F16, address information of defective ordinary memory cells of the redundancy memory 111 h is stored. In the flip flop circuits F17 to F20, address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • The transfer control unit 105 instructs by a shift enable signal SE the transmission shift register 103 and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”. Thus, the transmission shift register 103 and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • In the nine flip flop circuits 113 j in the reception shift register 112 j after the shift, the data stored in the flip flop circuits F2 to F10 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • In the six flip flop circuits 113 h in the reception shift register 112 h after the shift, the data stored in the flip flop circuits F11 to F16 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • In the four flip flop circuits 113 i in the reception shift register 112 i after the shift, the data stored in the flip flop circuits F17 to F20 in the transmission shift register 103 before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • According to this embodiment, by deciding connection destinations of the input terminals of the reception shift registers 112 h to 112 j in ascending order of the number of flip flop circuits 113 h to 113 j in the reception shift register 112 h to 112 j, the auxiliary shift register 601 (FIG. 6) becomes unnecessary.
  • Fifth Embodiment
  • FIG. 8 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a fifth embodiment. This embodiment (FIG. 8) is different from the second embodiment (FIG. 5) in that two data transmission units 101 c and 101 d are used. Differences of this embodiment from the second embodiment will be described below.
  • The data transmission units 101 c and 101 d each have a non-volatile memory 102, a transmission shift register 103, a read control unit 104, and a transfer control unit 105 similarly to the data transmission unit 101 of FIG. 5, and have the same structure as each other. The transmission shift register 103 has twelve shift registers F1 to F12. An input terminal and an output terminal of the transmission shift register 103 are connectable to an outside of the data transmission unit 101 c or 101 d. An input terminal of the flip flop circuit F12 at the end in the transmission shift register 103 of the first data transmission unit 101 c is connected to an output terminal of the flip flop circuit F1 at the head in the transmission shift register 103 of the second data transmission unit 101 d. That is, the data transmission units 101 c and 101 d are connected in series. Thus, the transmission shift register 103 in the data transmission unit 101 c and the transmission shift register 103 in the data transmission unit 101 d are assumed as one shift register and is connected to the reception shift registers 112 h to 112 j.
  • The first data transmission unit 101 c has a transmission shift register (first shift register) 103 and first flip flop circuits F1 to F12. The second data transmission unit 101 d has a transmission shift register (fourth shift register) 103 and fourth flip flop circuits F1 to F12. To the transmission shift register 103 of the data transmission unit 101 c, data shifted by the transmission shift register 103 of the data transmission unit 101 d are inputted, and the data inputted from the transmission shift register 103 of the data transmission unit 101 d can be shifted therein.
  • The reception shift register 112 h has six flip flop circuits 113 h, and outputs 6-bit data to the redundancy memory 111 h. The reception shift register 112 i has four flip flop circuits 113 i and outputs 4-bit data to the redundancy memory 111 i. The reception shift register 112 j has nine flip flop circuits 113 j and outputs 9-bit data to the redundancy memory 111 j.
  • An input terminal of the reception shift register 112 h is connected to an output terminal of the flip flop circuit F3 in the transmission shift register 103 of the data transmission unit 101 c. An input terminal of the reception shift register 112 i is connected to an output terminal of the flip flop circuit F7 in the transmission shift register 103 of the data transmission unit 101 c. An input terminal of the reception shift register 112 j is connected to an output terminal of the flip flop circuit F4 in the transmission shift register 103 of the data transmission unit 101 d.
  • In the data transmission unit 101 c, the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F1 to F12 in the transmission shift register 103. In the data transmission unit 101 d, the read control unit 104 reads data of the non-volatile memory 102 and writes the data in the flip flop circuits F1 to F12 in the transmission shift register 103.
  • In the flip flop circuits F6 to F11 in the data transmission unit 101 c, address information of defective ordinary memory cells of the redundancy memory 111 h is stored. In the flip flop circuit F12 in the data transmission unit 101 c and the flip flop circuits F1 to F3 in the data transmission unit 101 d, address information of defective ordinary memory cells of the redundancy memory 111 i is stored. In the flip flop circuits F4 to F12 in the data transmission unit 101 d, address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • The transfer control unit 105 in the data transmission unit 101 d instructs by a shift enable signal SE the transmission shift register 103 in the data transmission unit 101 d and the reception shift registers 112 h to 112 j to perform a data shift with a shift amount “9”. The transfer control unit 105 in the data transmission unit 101 c instructs by the shift enable signal SE the transmission shift register 103 in the data transmission unit 101 c to perform a data shift with a shift amount “9”. Note that to the reception shift registers 112 h to 112 j, the shift enable signal SE may be inputted from the transfer control unit 105 in the data transmission unit 101 c instead of the transfer control unit 105 in the data transmission unit 101 d. Thus, the transmission shift register 103 in the data transmission unit 101 c, the transmission shift register 103 in the data transmission unit 101 d, and the reception shift registers 112 h to 112 j perform the data shift with a shift amount “9” in synchronization with the clock signal CLK.
  • In the six flip flop circuits 113 h in the reception shift register 112 h after the shift, the data stored in the flip flop circuits F6 to F11 in the data transmission unit 101 c before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 h is stored.
  • In the four flip flop circuits 113 i in the reception shift register 112 i after the shift, the data stored in the flip flop circuit F12 in the data transmission unit 101 c and the flip flop circuits F1 to F3 in the data transmission unit 101 d before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 i is stored.
  • In the nine flip flop circuits 113 j in the reception shift register 112 j after the shift, the data stored in the flip flop circuits F4 to F12 in the data transmission unit 101 d before the shift, that is, the address information of defective ordinary memory cells of the redundancy memory 111 j is stored.
  • This embodiment is effective when the address information of defective ordinary memory cells of the three redundancy memories 111 h to 111 j is larger than the capacity of the non-volatile memory 102 in one data transmission unit 101 c. By using the plurality of data transmission units 101 c and 101 d, the address information of defective ordinary memory cells of the three redundancy memories 111 h to 111 j can be stored in a divided manner in the non-volatile memory 102 in the data transmission unit 101 c and the non-volatile memory 102 in the data transmission unit 101 d. By connecting the transmission shift register 103 in the data transmission unit 101 c and the transmission shift register 103 in the data transmission unit 101 d in series, the two transmission shift registers 103 can be assumed as one transmission shift register and connected to the three reception shift registers 112 h to 112 j. By simultaneously resetting all the data transmission units 101 c and 101 d by the reset signal RS, shift operations can be started simultaneously.
  • Note that to the output terminals of the flip flop circuits F1 to F12 in the data transmission unit 101 d, a plurality of reception shift registers can be connected. The transmission shift register 103 in the data transmission unit 101 d shifts data of the flip flop circuits F1 to F12 inside, and transmits data of the output terminal of one or more flip flop circuits F4 among the output terminals of the flip flop circuits F1 to F12 inside to one or more reception shift registers 112 j. In the transmission shift register 103 in the data transmission unit 101 c, data shifted by the transmission shift register 103 in the data transmission unit 101 d are inputted, and data inputted from the transmission shift register 103 in the data transmission unit 101 d are shifted and transmitted to the reception shift registers 112 h and 112 i.
  • Sixth Embodiment
  • FIG. 9 is a diagram illustrating a structural example of a semiconductor chip of a data transfer circuit according to a sixth embodiment. This embodiment (FIG. 9) is different from the second embodiment (FIG. 5) in that the data shift amount MAX2 is changeable. Differences of this embodiment from the second embodiment will be described below.
  • To the transfer control unit 105, the data shift amount MAX2 is inputted from the outside of the data transmission unit 101. The data shift amount MAX2 is a number less than or equal to the maximum countable value of the shift counter 502. Similarly to the second embodiment, the transfer control unit 105 compares the count value counted by the shift counter 502 with the data shift amount MAX2, and controls the shift enable signal SE. Thus, the data shift amount MAX2 of the transmission shift register 103 and the reception shift registers 112 h to 112 j can be made changeable, enabling to respond to various reception shift registers 112 h to 112 j.
  • Note that the example in which the data transfer circuit transfers the address information of defective ordinary memory cells of the redundancy memories 111 a to 111 j is explained in the first to sixth embodiments, but the embodiments are not limited to this. For example, the data transfer circuit can transfer information of identifiers of the devices 111 a to 111 j, transfer security codes of the devices 111 a to 111 j, or transfer characteristic adjustment information (trimming information) of the devices 111 a to 111 j.
  • According to the number of second shift registers and/or the number of flip flop circuits inside each of two or more second shift registers, data are transmitted to the second shift registers from different output terminals of the flip flop circuits. Thus, a first data transmission unit can be commonized for plural types of semiconductor chips.
  • It should be noted that all the above embodiments merely illustrate specific examples for carrying out the present invention, and the technical scope of the invention should not be construed as limited by these embodiments. That is, the invention may be embodied in other various forms without departing from the technical ideas or principal features thereof.
  • All examples and conditional language provided herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.

Claims (9)

What is claimed is:
1. A data transfer circuit, comprising:
a first data transmission unit; and
two or more second shift registers, wherein
the first data transmission unit has a first shift register which has a plurality of first flip flop circuits which store data, shifts the data of the plurality of first flip flop circuits, and transmits data of two or more output terminals out of output terminals of the plurality of first flip flop circuits to the two or more second shift registers, and
the two or more second shift registers each shift data inputted from the two or more output terminals out of the output terminals of the plurality of first flip flop circuits.
2. The data transfer circuit according to claim 1, wherein
according to the number of second shift registers and/or the number of flip flop circuits inside each of the two or more second shift registers, data are transmitted to the second shift registers from different output terminals of the first flip flop circuits.
3. The data transfer circuit according to claim 1, wherein
the first data transmission unit has:
a non-volatile memory which stores data; and
a read control unit which reads data of the non-volatile memory into the first shift register.
4. The data transfer circuit according to claim 1, wherein
the first data transmission unit has a transfer control unit which outputs a shift enable signal to the first shift register and the two or more second shift registers, and
the first shift register and the two or more second shift registers shift data when the shift enable signal indicates to enable.
5. The data transfer circuit according to claim 1, wherein
the first shift register and the two or more second shift registers are same as each other in shift amount of data.
6. The data transfer circuit according to claim 1, further comprising
a third shift register connected between input terminals of the second shift registers and the output terminals of the first flip flop circuits.
7. The data transfer circuit according to claim 1, wherein
the two or more second shift registers are connected to the output terminals of the first flip flop circuits such that the larger the number of flip flop circuits inside the two or more second shift registers is, the closer the first flip flop circuits are to a head of the first shift register.
8. The data transfer circuit according to claim 1, further comprising
a second data transmission unit, wherein
the second data transmission unit has a fourth shift register which has a plurality of fourth flip flop circuits which store data, shifts the data of the plurality of fourth flip flop circuits, and transmits data of one or more output terminals out of output terminals of the plurality of fourth flip flop circuits to the one or more second shift registers, and
in the first shift register, data shifted by the fourth shift registers are inputted, and the data inputted from the fourth shift register are shifted.
9. The data transfer circuit according to claim 1, wherein
a shift amount of the data is changeable.
US14/606,606 2014-03-27 2015-01-27 Data transfer circuit Expired - Fee Related US9536624B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014067135A JP6225790B2 (en) 2014-03-27 2014-03-27 Data transfer circuit
JP2014-067135 2014-03-27

Publications (2)

Publication Number Publication Date
US20150279482A1 true US20150279482A1 (en) 2015-10-01
US9536624B2 US9536624B2 (en) 2017-01-03

Family

ID=54191338

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/606,606 Expired - Fee Related US9536624B2 (en) 2014-03-27 2015-01-27 Data transfer circuit

Country Status (2)

Country Link
US (1) US9536624B2 (en)
JP (1) JP6225790B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202276A1 (en) * 2002-12-19 2004-10-14 Mitsuaki Osame Shift register and driving method thereof
US20100034339A1 (en) * 2008-08-08 2010-02-11 Kabushiki Kaisha Toshiba Shift register
US8002370B2 (en) * 2004-04-07 2011-08-23 Canon Kabushiki Kaisha Serial data transfer method, electric device, and printing apparatus
US8018445B2 (en) * 2005-10-06 2011-09-13 Semiconductor Components Industries, Llc Serial data input system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250316A (en) 1992-03-05 1993-09-28 Nec Eng Ltd Inter-device interface system
JP2005266856A (en) 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Serial interface circuit
JP2006228288A (en) * 2005-02-15 2006-08-31 Toshiba Corp Semiconductor memory device
JP4364200B2 (en) * 2006-01-18 2009-11-11 株式会社東芝 Semiconductor integrated circuit device
JP2013122800A (en) 2011-12-09 2013-06-20 Fujitsu Ltd Memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202276A1 (en) * 2002-12-19 2004-10-14 Mitsuaki Osame Shift register and driving method thereof
US8002370B2 (en) * 2004-04-07 2011-08-23 Canon Kabushiki Kaisha Serial data transfer method, electric device, and printing apparatus
US8018445B2 (en) * 2005-10-06 2011-09-13 Semiconductor Components Industries, Llc Serial data input system
US20100034339A1 (en) * 2008-08-08 2010-02-11 Kabushiki Kaisha Toshiba Shift register

Also Published As

Publication number Publication date
US9536624B2 (en) 2017-01-03
JP6225790B2 (en) 2017-11-08
JP2015191674A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
US7259702B2 (en) Memory device
US7650457B2 (en) Memory module comprising a plurality of memory devices
CN107437945B (en) Parallel-serial conversion circuit
US8644097B2 (en) Memory device
JP2007193879A (en) Semiconductor integrated circuit device
KR101034967B1 (en) Data input-output circuit in a semiconductor memory device and method of inputting data using the same and method of outputting data using the same
US8743637B2 (en) Memory device including redundant memory cell block
US20150262635A1 (en) Latch circuit and semiconductor device including the same
US8400210B2 (en) Semiconductor apparatus
US20180107625A1 (en) Data transmission systems having a plurality of transmission lanes and methods of testing transmission data in the data transmission systems
US9153339B2 (en) Semiconductor device and semiconductor memory device
US9461913B2 (en) Method of data transmission in a system on chip
US9536624B2 (en) Data transfer circuit
US9218262B2 (en) Dynamic memory cell replacement using column redundancy
CN110349605B (en) Channel control device
US9071239B2 (en) Method and semiconductor apparatus for reducing power when transmitting data between devices in the semiconductor apparatus
US8897048B2 (en) Semiconductor memory device and programming method thereof
US6516431B1 (en) Semiconductor device
JP2011198394A (en) Semiconductor integrated circuit device
US10621132B1 (en) Auto address generation for switch network
US11532362B2 (en) Semiconductor memory device and method for driving the same
US9053776B2 (en) Setting information storage circuit and integrated circuit chip including the same
US9076538B2 (en) Fuse information storage circuit of semiconductor apparatus
US6442097B2 (en) Virtual channel DRAM
JP4646932B2 (en) Memory element

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATSUO, TATSURU;REEL/FRAME:035193/0087

Effective date: 20150107

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210103