US20150223872A1 - Surgical instruments with removable components - Google Patents
Surgical instruments with removable components Download PDFInfo
- Publication number
- US20150223872A1 US20150223872A1 US14/691,974 US201514691974A US2015223872A1 US 20150223872 A1 US20150223872 A1 US 20150223872A1 US 201514691974 A US201514691974 A US 201514691974A US 2015223872 A1 US2015223872 A1 US 2015223872A1
- Authority
- US
- United States
- Prior art keywords
- base
- seal plate
- jaw members
- pair
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B2018/1452—Probes having pivoting end effectors, e.g. forceps including means for cutting
- A61B2018/1455—Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1495—Electrodes being detachable from a support structure
Definitions
- the present disclosure relates generally to the field of reposable or reusable surgical instruments.
- the disclosure relates to instruments having separable and replaceable components to provide clean, sterile or refurbished surfaces in each instance of use.
- Instruments such as electrosurgical forceps are commonly used in open and endoscopic surgical procedures to coagulate, cauterize and seal tissue.
- Such forceps typically include a pair of jaws that can be controlled by a surgeon to grasp targeted tissue, such as, e.g., a blood vessel.
- the jaws may be approximated to apply a mechanical clamping force to the tissue, and are associated with at least one electrode surface to permit the delivery of electrosurgical energy to the tissue.
- the combination of the mechanical clamping force and the electrosurgical energy has been demonstrated to join adjacent layers of tissue captured between the jaws. When the adjacent layers of tissue include the walls of a blood vessel, sealing the tissue may result in hemostasis. Thereafter, the sealed tissue may be transected by advancing a knife through the jaws.
- various tissue-contacting components of an electrosurgical forceps tend to become contaminated or degraded.
- electrodes may become contaminated as portions of the treated tissue adhere to the tissue-contacting surfaces of the electrodes.
- a knife blade may become dull and less effective in transecting sealed tissue after repeated use, even in a single surgical procedure.
- a brand new instrument is often used. Once the procedure is complete, the used instrument is discarded.
- Instruments that are reposable, or reusable for multiple procedures reduce the instrumentation costs per procedure.
- Providing a reusable electrosurgical forceps presents various challenges.
- the complexity of an electrosurgical forceps tends to result in fairly labor intensive cleaning procedures to prepare the forceps for subsequent use. Improper cleaning may result in dangerous contamination being introduced surgical site.
- some reusable forceps have removable and replaceable components to provide clean surfaces for each use. Many of these instruments require arduous disassembly and reassembly procedures that require extensive training, and may discourage use of the instrument.
- the present disclosure describes a surgical instrument for treating tissue.
- the instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy.
- An end effector including a pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that one or both of the jaw members is induced to move relative to the other between open and closed positions in response to manipulation of the handle assembly.
- a base is supported on one of the jaw members.
- the base includes a mechanical mating feature, and an electrically conductive region that is in electrical communication with the connector.
- a selectively removable seal plate is supported on the base.
- the seal plate includes a mechanical mating feature complementarily engaging mechanical mating feature of the base to maintain the seal plate in position on the base during use.
- An electrically conductive region is provided on the seal plate, and is positioned to contact the electrically conductive region of the base when the mechanical mating features of the base and seal plate are engaged.
- the electrically conductive region of the seal plate is in electrical communication with an electrode surface on the seal plate.
- the complimentarily-engaging mechanical mating features include a pair of spaced protrusions on either the base or the seal plate, and a pair of spaced recesses open to opposing sides of the other of the base and the seal plate. The seal plate may thus be twisted onto the base.
- the protrusions may be spaced in a generally longitudinal direction and may extend from the base.
- the recesses may be open to opposing lateral sides of the seal plate.
- the recesses may include undercut slots such that a head portion of each of the protrusions overhangs a lower portion of the seal plate when the protrusions engage the slots.
- the slots may include a tapered opening for guiding the seal plate onto the protrusions.
- the seal plate may include a fastening layer constructed of an electrically insulative material and a sealing surface constructed of an electrically conductive material.
- the recesses may be defined in the fastening layer.
- the electrically conductive region of the base may be defined on one or more of the protrusions.
- One or more of the protrusions may extend beyond the electrode surface of the seal plate when the seal plate is coupled to the base such that the protrusion maintains a gap between the jaw members when the jaw members are moved to the closed position.
- a surgical instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy.
- An end effector including a pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that one or both of the jaw members is induced to move relative to the other between open and closed positions in response to manipulation of the handle assembly.
- a base is supported on one of the jaw members.
- the base includes a mechanical mating feature and an electrically conductive region.
- the electrically conductive region is in electrical communication with the connector.
- a selectively removable seal plate is supported on the base.
- the seal plate includes a mechanical mating feature complementarily engaging a mechanical mating feature of the base to maintain the seal plate in position on the base during use, and an electrically conductive region positioned to contact the electrically conductive region of the base when the mechanical mating features of the base and seal plate are engaged.
- the electrically conductive region of the seal plate is in electrical communication with an electrode surface on the seal plate.
- the mechanical mating feature of the base includes at least one protrusion constructed of an electrically isolative material and extending beyond the electrode surface of the seal plate when the seal plate is coupled to the base. The protrusion thus maintains a gap between the jaw members when the jaw members are moved to the closed position.
- the gap maintained may be between about 0.001 inches and about 0.006 inches.
- the mechanical mating feature of the seal plate may include at least through bore establishing a friction fit with the at least one protrusion, and the base may include a hole extending through the jaw member to provide access for a tool to be inserted for pressing the seal plate from the jaw member.
- the electrically conductive region of the base may include exposed leads of a flex circuit.
- a surgical instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy.
- a pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that at least one of the jaw members is induced to move relative to the other jaw member between open and closed positions in response to manipulation of the handle assembly.
- At least one of the jaw members includes a base including a mechanical mating feature and a flexible circuit supported by the base.
- the flexible circuit includes an exposed electrically conductive region that is in electrical communication with the connector.
- a seal plate is supported on the base.
- the seal plate includes a mechanical mating feature complementarily engaging the mechanical mating feature of the base to maintain the seal plate in position on the base during use.
- An electrically conductive region on the seal plate is positioned to contact the electrically conductive region of the flexible circuit when the mechanical mating features of the base and seal plate are engaged.
- the opposed jaw members may be operatively coupled to the distal end of the handle assembly by an elongated shaft extending therebetween.
- the flexible circuit may extend from the at least one jaw member proximally into the elongated shaft, and the flexible circuit may be constructed of a flexible polymer substrate in a substantially flat configuration.
- the flexible circuit may include a region of relatively greater flexibility to facilitate movement of the opposed jaw members between the open and closed positions.
- the flexible circuit may be electrically coupled to the connector through a sliding joint defined between the at least one jaw member and the elongated shaft.
- the sliding joint may include an electrically conductive spring pin biased between the at least one jaw member and the elongated shaft to maintain electrical contact between the at least one jaw member and the elongated shaft during movement of the opposed jaw members between the open and closed positions.
- the mechanical mating feature on the base may include an opening defined in the base, and the mechanical mating feature on the seal plate may include a post having a head portion.
- the head portion may be configured to snap into the opening in the base to maintain the seal plate in position on the base and to maintain electrical continuity between the seal plate and the flexible circuit.
- FIG. 1 is a perspective view of an endoscopic surgical instrument in accordance with an embodiment of the present disclosure having an end effector at a distal end;
- FIG. 2 is an enlarged, perspective view of the distal end of the instrument of FIG. 1 depicting a removable seal plate separated from the end effector;
- FIG. 3 is a perspective view of an alternate embodiment of an end effector with a removable seal plate separated from the end effector;
- FIGS. 4 and 5 are perspective views of alternate embodiments of removable seal plates
- FIG. 6 is a perspective view of an alternate embodiment of an end effector including a mechanism for receiving a twist-on seal plate;
- FIG. 7 is a side view of an alternate embodiment of an end effector including a pair of jaw members that are removable from an elongated shaft member, and wherein the jaw members each include a mechanism for receiving a snap-in, removable seal plate;
- FIG. 8 is a side view of an alternate embodiment of an end effector including a removable seal plate configured to hook to a distal end of one of the jaw members and a seal plate configured for magnetic coupling to another one of the jaw members;
- FIG. 9 is a perspective view of an alternate embodiment of an end effector including a jaw member configured to receive the seal plate of FIG. 10 ;
- FIG. 10 is a perspective view of a seal plate including bores configured for engagement with stop members defined on the jaw member depicted in FIG. 9 ;
- FIG. 11 is a perspective view of an alternate embodiment of a seal plate that includes posts configured for engagement with bores defined on a modified jaw member of FIG. 9 ;
- FIG. 12 is a perspective view of a wedge joint defined between two tubular members
- FIG. 13 is a partial, side view of an instrument including an end effector removably coupled to an elongated shaft by a bayonet coupling;
- FIG. 14 is a partial side view of an instrument including electrical and mechanical coupling mechanisms disposed at a proximal end of an elongated shaft.
- an embodiment of an electrosurgical instrument 10 is depicted.
- the instrument 10 includes a handle assembly 12 for remotely controlling an end effector 14 through an elongated shaft 16 .
- this configuration is typically associated with instruments for use in laparoscopic or endoscopic surgical procedures, various aspects of the present disclosure may be practiced with traditional open instruments, and in connection with endoluminal procedures as well.
- the instrument 10 is coupled to a source of electrosurgical energy, e.g., an electrosurgical generator 18 .
- the generator 18 may include devices such as the LIGASURE® Vessel Sealing Generator and the Force Triad® Generator as sold by Covidien.
- a cable 20 extends between the handle assembly 12 and the generator 18 , and includes a connector 22 for coupling the instrument 10 to the external generator 18 .
- a battery powered instrument may be provided in which a generator and connector may be internal or integral to the instrument.
- the connector 22 includes two prong members 22 a and 22 b that are dimensioned to mechanically and electrically connect the instrument 10 to opposite terminals, e.g., positive or active (+) and negative or return ( ⁇ ) terminals associated with the generator 18 .
- bipolar energy may be provided through the instrument 10 .
- the instrument 10 may be configured for delivering monopolar energy to the tissue.
- the instrument 10 delivers electrosurgical energy from an active terminal, e.g. (+), while a return pad (not shown) is placed generally beneath a patient and provides a return path to the opposite terminal, e.g. ( ⁇ ), of the generator 18 .
- the handle assembly 12 includes a stationary handle 24 and movable handle 26 .
- the movable handle 26 may be separated and approximated relative to the stationary handle 24 to respectively open and close the end effector 14 .
- a trigger 30 is also disposed on the handle assembly 12 , and is operable to extend and retract a knife 44 (see FIG. 2 ) through the end effector 14 .
- a footswitch (not shown) may be provided to initiate and terminate the delivery of electrosurgical energy to the end effector 14 .
- end effector 14 is depicted in an open configuration.
- Upper and lower jaw members 32 and 34 are separated from one another such that tissue may be received therebetween.
- the jaw members 32 , 34 are pivotally coupled to the elongated shaft 16 by a pivot pin 36 extending therethrough.
- the upper and lower jaw members 32 , 34 include respective proximal flanges 38 , 40 extending into a bifurcated distal end of the elongated shaft 16 .
- the proximal flanges 38 , 40 are operatively associated with the movable handle 26 ( FIG. 1 ) to open and close the jaw members 32 , 34 .
- Retraction of the movable handle 26 induces the jaw members 32 , 34 rotate about the pivot pin 36 to move from the open configuration to a closed configuration where the jaw members 32 , 34 are closer together.
- the jaw members 32 , 34 may provide an appropriate pressure to tissue captured therebetween to effect a tissue seal.
- Various mechanisms may be provided to operatively associate the movable handle 26 with the proximal flanges 38 , 40 .
- the movable handle 26 may be coupled to a reciprocating member (see items 288 , 290 in FIG. 13 ) that extends through the elongated shaft 16 as described in commonly owned U.S. Pat. No. 7,255,697 to Dycus et al.
- the reciprocating member may engage cam slots (see items 304 , 306 in FIG. 13 ) on each of the proximal flanges 38 , 40 such that the position of both of the jaw members 32 , 34 changes with respect to the elongated shaft 16 as the jaw members 32 , 34 are approximated.
- This type of motion may be characterized as “bilateral” jaw motion.
- Other “unilateral” constructions are also envisioned in which only one jaw member 32 , 34 moves with respect to the elongated shaft 16 .
- a reciprocating knife 44 is selectively movable through a knife channel 46 defined through the jaw members 32 , 34 .
- the knife 44 is operatively associated with trigger 30 ( FIG. 1 ) such that manipulation of the trigger 30 advances and/or retracts the knife 44 through the jaw members 32 , 34 .
- the knife 44 includes a sharp distal edge 48 that may be used to transect tissue sealed between the jaw members 32 , 34 .
- the knife 44 may be configured to remain in a proximally retracted position, e.g. between the proximal flanges 38 , 40 , until the jaw members 32 , 34 are moved to the closed configuration. Preventing advancement of the knife 44 while the jaw members 32 , 34 are in the open configuration may prevent inadvertent cutting of unsealed tissue.
- the lower jaw member 34 is configured to releasably receive a dove-tail seal plate 50 on a correspondingly shaped base 52 .
- the seal plate 50 includes an upper sealing surface 54 with a slot 54 a defined therein corresponding to the knife channel 46 .
- the slot 54 a and the knife channel 46 are optional features that may be eliminated from alternate embodiments (not shown).
- a tail portion 56 of the seal plate 50 protrudes laterally inward from a periphery of the sealing surface 54 to define a trapezoidal or dove-tail profile with the sealing surface 54 .
- the tail portion 56 extends along two longitudinal sides and a distal side of the seal plate 50 .
- a proximal side of the seal plate 50 is unobstructed by the tail portion 56 to permit the seal plate 50 to slide longitudinally onto the base 52 as indicated by arrow “A.”
- the tail portion 56 may form a friction fit with the base 52 to mechanically couple the seal plate 50 to the jaw member 34 . This type of engagement may facilitate accurate placement of the seal plate 50 while providing an effective and releasable attachment force.
- the sealing surface 54 is constructed of an electrically conductive material and is configured to deliver electrosurgical energy to tissue.
- the sealing surface 54 may be characterized as an electrode surface.
- the tail portion 56 may be constructed generally of plastic, steel or another material suitable for engaging the base 52 to establish a friction-fit with the base 52 .
- a first electrical connector 60 a on the tail portion 56 is in electrical communication with the sealing surface 54 .
- a second electrical connector 60 b is in electrical communication with one of the poles or terminals, e.g., ( ⁇ ), of the generator 18 ( FIG. 1 ).
- the two connectors 60 a , 60 b are positioned to electrically contact one another when the seal plate 50 is positioned on the base 52 .
- the electrical continuity may be established between the sealing surface 54 and the terminal, e.g. ( ⁇ ) of the generator 18 by mechanically coupling the modular seal plate 50 to the base 52 .
- An additional seal plate 50 may be similarly installed on the upper jaw member 32 to establish electrical continuity with the opposite terminal, e.g. (+).
- an alternate embodiment of an end effector 64 includes upper and lower jaw members 66 , 68 .
- the lower jaw member 68 is configured to releasably receive a modular snap-in seal plate 70 on a corresponding base 72 .
- the seal plate 70 includes a sealing surface 74 and a skirt portion 76 protruding therefrom. Tabs 78 protrude inwardly from the skirt 76 for reception in slots 80 defined in the base 72 .
- the skirt 76 includes stress-relieving notches 82 defined therein adjacent the tabs 78 .
- the notches 82 permit the skirt 76 to flex, and to temporarily move the tabs 78 laterally outward to permit placement of the skirt over the base 72 .
- the notches 82 may also facilitate removal of the seal plate 70 subsequent to use.
- the notches 82 provide surfaces for engaging a wedge (not shown) or another tool for removing the seal plate 70 from the base 72 .
- Electrical continuity may be established between the lower jaw member 68 and the seal plate 70 through one or more electrical connectors 82 disposed within the slots 80 .
- the connectors 82 maintain contact with the tabs 78 when the seal plate 70 is installed on the base 72 due to the inherent resiliency of the seal plate 70 .
- a connector 84 may be disposed on a lateral side of the base 72 such that the skirt 76 makes contact with the connector 84 when the seal plate 70 is installed on the base 72 .
- Seal plate 88 is similar to seal plate 70 ( FIG. 3 ) including a sealing surface 92 and a skirt 94 protruding therefrom. Seal plate 88 differs from seal plate 70 in that tabs 96 protrude laterally outward from the skirt 94 , rather than laterally inward. Outwardly protruding tabs 96 may facilitate installation of the seal plate 88 since the skirt 94 may be flexed laterally inward, in the direction of arrows “B,” to install the tabs 92 in corresponding slots (not shown).
- Seal plate 90 includes detents 98 thereon for engaging corresponding mating components (not shown) on the base (not shown).
- the mating components may include such devices as spring loaded ball plungers positioned to engage the detents 98 when the seal plate 90 is properly installed. Electrical continuity may be established through the contact of the detents 98 with the ball plungers or other mating components.
- an alternate embodiment of an end effector 100 includes a jaw member 102 that is configured to releasably receive a modular, twist-on seal plate 104 .
- the jaw member 102 includes a base 106 having a locating post 108 and a locking post 110 protruding therefrom.
- the locating and locking posts 108 , 110 are longitudinally spaced and positioned to engage slots 112 , 114 defined in a fastening layer 116 of the seal plate 104 .
- the slots 112 , 114 are undercut such that a head portion 118 , 120 of each of the posts 108 , 110 overhangs a lower portion 122 of the fastening layer 116 .
- the slots 112 , 114 are each open to an opposite lateral side of the seal plate 104 .
- the seal plate 104 may be installed on the base 106 by positioning the seal plate 104 between the posts 108 , 110 such that the fastening layer 116 abuts the base 106 , and twisting the seal 104 such that the slots 112 , 114 engage the posts 108 , 110 .
- the slots 112 , 114 each include one or more tapered openings 112 a , 114 a to guide the slots 112 , 114 onto the posts 108 , 110 .
- the slot 112 includes a taper on each longitudinal side of the opening 112 a , and may be installed on the locating post 108 prior to twisting the seal plate 104 to engage the slot 114 with the locking post 110 .
- the opening 114 a of the slot 114 includes a single taper to provide clearance for the locking post 100 to enter the slot 114 as the seal plate 104 is twisted.
- the locating post 108 may provide a pivot for accurately guiding the slot 114 onto the locking post 110 .
- the seal plate 104 snaps onto the base 106 when the seal plate 104 is properly located.
- the seal plate 104 includes a sealing surface 124 opposite the fastening layer 116 . Electrical continuity may be established between the sealing surface 124 and the jaw member 102 through one or more electrically conductive regions or connectors, e.g., connector 126 disposed on one posts, e.g., post 110 .
- the seal plate 104 may be constructed entirely of an electrically conductive material such that electrosurgical energy may be transmitted to the sealing surface 124 when the seal plate 104 is properly installed on the base 106 .
- the fastening layer 116 or other portions of the seal plate 104 may be constructed of an electrically insulative material, and an electrical connector 128 within the slot 114 may be in electrical communication with the sealing surface 124 .
- the electrical connector 128 is configured to contact the connector 126 on the post 110 when the seal plate 104 is twisted onto the jaw member 102 .
- an alternate embodiment of an end effector 130 includes upper and lower jaw members 132 , 134 .
- the jaw members 132 , 134 are each configured to releasably receive a respective seal plate 138 .
- the seal plates 138 include a sealing surface 140 , a skirt 142 and snap-in posts 144 .
- the sealing surfaces 140 are constructed of an electrically conductive material, and are positioned to contact tissue captured between the jaw members 132 , 134 .
- the skirt 142 encircles the sealing surface 140 , and may be constructed of a plastic material.
- the posts 144 protrude from the skirt 142 such that a head portion 146 of the posts 144 may engage a corresponding opening 148 in a base 150 defined by the respective jaw member 132 , 134 .
- a substantially flat flex circuit 152 is disposed on each of the jaw members 132 , 134 between the skirt 142 of the respective seal plate 138 and the base 150 .
- the flex circuits 152 may be constructed as a plurality of electrically conductive pathways substantially encased in an insulative coating.
- the coating may include a flexible polymer substrate such as a Kapton® tape or film available from DuPont.
- the flex circuit 152 disposed on the upper jaw member 132 is electrically coupled the first terminal (+) of the generator 18 ( FIG. 1 ), and the flex circuit 152 disposed on the lower jaw member 134 is electrically coupled to the second terminal ( ⁇ ) through an elongated shaft member 170 as described below.
- Exposed leads 160 on the flex circuits 152 are positioned to establish electrical continuity between the flex circuits 152 and the respective seal plates 138 when the seal plates 138 are installed to the jaw members 132 , 134 .
- the substantially flat configuration of the flex circuits 152 facilitates repeated engagement and disengagement of the selectively removable seal plates 138 with the bases 150 .
- the flex circuits 152 extend from their respective jaw members 132 , 134 proximally into the elongated shaft member 170 . Due to the flexibility of the flex circuits 152 , the flex circuits 152 may withstand sufficient bending to permit movement of the jaw members 132 , 134 between open and closed configurations without hindering the electrical operation of the flex circuits 152 . Various portions of the flex circuits 152 may be specifically configured to permit bending, e.g., by being constructed of a relatively flexible substrate material, or by including strategic openings in the substrate material.
- a sliding joint 158 is also provided to maintain electrical continuity between each of the jaw members 132 , 134 and the respective terminal (+), ( ⁇ ) of the generator 18 ( FIG. 1 ).
- a proximal flange 162 of the lower jaw member 134 includes an electrically conductive arc 164 disposed about a pivot pin 166 .
- a spring pin 168 is disposed on an elongated shaft member 170 , and is electrically coupled to the active (+) terminal of the generator 18 . The spring pin 168 is biased to maintain contact with the electrically conductive are 164 , as the jaw members 132 and 134 pivot between open and closed configurations.
- a proximal flange 172 of the upper jaw member 132 includes an electrically conductive arc 174 disposed about the pivot pin 166 .
- a spring pin 178 is disposed on an elongated shaft member 170 , and is electrically coupled to the return ( ⁇ ) terminal of the generator 18 . The spring pin 178 is biased to maintain contact with the arc 174 .
- the spring pins 168 , 178 provide a releasable engagement with the jaw members 132 , 134 .
- the jaw members 132 , 134 may be disassembled from the elongated shaft member 170 , and replaced with a new or refurbished pair of jaw members 132 , 134 . Electrical continuity may be reestablished with the spring pins 168 , 178 by mechanically coupling the new jaw members 132 , 134 to the shaft member 170 without requiring a separate electrical assembly.
- an alternate embodiment of an end effector 180 includes upper and lower jaw members 182 , 184 .
- the lower jaw member 184 is configured for releasable mating with a seal plate 188 .
- the seal plate 188 includes a distal hook portion 190 for snapping into a distal recess 192 of the lower jaw member 184 .
- a wire or round conductor 194 disposed at a proximal end of the seal plate 188 is configured to snap into trough 196 defined in the lower jaw member 184 .
- the position of the conductor 194 and trough 196 may be reversed such that a trough is defined on a removable seal plate and is configured to snap onto a conductor defined in a jaw member.
- the conductor 194 is electrically coupled to a sealing surface 200 such that the sealing surface 200 may be electrically coupled to a return ( ⁇ ) terminal of the generator 18 ( FIG. 1 ).
- the distal hook portion 190 is electrically isolated from the sealing surface 200 .
- the distal hook portion 190 may be independently coupled to the active (+) terminal of the generator 18 through the recess 192 to provide a monopolar tip to the end effector 180 .
- the upper jaw member 182 is configured for releasable engagement with an alternate seal plate 202 .
- the seal plate 202 includes a sealing surface 204 that may be electrically coupled to the active (+) terminal of the generator 18 .
- the sealing surface 204 opposes sealing surface 200 such that electrosurgical energy may be transmitted through tissue captured between the sealing surfaces 200 , 204 in a bipolar manner.
- the monopolar tip defined by the hook portion 190 may be electrically activated independently of the bipolar sealing surfaces 200 , 204 .
- the upper jaw member 182 includes a magnet 206 disposed therein.
- the magnet 206 is configured to attract the seal plate 206 and maintain the seal plate 206 in position on the jaw member 182 .
- the magnet 206 may be used exclusively to provide a releasable locking mechanism for the seal plate 206 . This type of engagement includes no moving or wearing parts. Alternatively, the magnet 206 may be employed to supplement other locking features such as hook portion 190 on the seal plate 188 .
- end effector 210 includes upper and lower jaw members 212 , 214 configured for releasably engaging seal plate 216 .
- the lower jaw member 214 includes a base 218 having a plurality of stop members 220 protruding therefrom.
- the seal plate 216 includes a plurality of through bores 222 defined therethrough corresponding to the position of the stop members 220 .
- the bores 222 may be placed over the stop members 220 to form a friction fit therewith to install the seal plate 216 to the base 218 .
- the upper and lower jaw members 212 , 214 may be moved to a closed configuration to seat the seal plate 216 into position.
- the stop members 220 may be configured to retract into the lower jaw member 214 to release the seal plate 216 from the base 218 once the seal plates are used.
- the base 218 may be configured to transmit electrosurgical energy to the seal plate 216 such that a sealing surface 224 may, in turn, transmit the electrosurgical energy to tissue.
- the stop members 220 are constructed of an electrically insulating material, and exhibit a height “h” over the base 218 .
- the seal plate 216 has a thickness “t” that is less than the height “h” of the stop members 220 such that the stop members 220 protrude from the sealing surface 224 when the seal plate 216 is installed.
- the difference between the height “h” of the stop members 220 and the thickness “t” of the seal plate 216 defines a separation or gap distance between the upper and lower jaw members 212 , 214 when the jaw members 212 , 214 are moved to a closed configuration.
- An appropriate gap distance for generating an effective tissue seal may be between about 0.001 inches and about 0.006 inches.
- a gap distance between about 0.002 inches and about 0.003 inches may be preferred in some instances.
- the stop members 220 serve as mechanical mating features by complementarily engaging the through bores 222 to maintain the seal plate 216 in position on the base 218 during use.
- Other configurations are envisioned in which mechanical mating features may serve as stop members.
- the locating post 108 described above with reference to FIG. 6 may be configured to serve as a stop member.
- the slot 112 defined in the seal plate 104 may be modified to extend through both the fastening layer 116 and the sealing surface 124 such that the locating post 108 could be extended to protrude beyond the sealing surface 124 to define an appropriate gap.
- an alternate embodiment of a seal plate 230 includes a sealing surface 232 and a plurality of engagement posts 234 protruding from an opposite side thereof.
- the seal plate 230 may be constructed entirely of an electrically conductive material by construction methods including metal injection molding (MIM).
- MIM metal injection molding
- the posts 234 are configured to form a friction fit with holes 236 (depicted in phantom) formed in the lower jaw member 214 .
- the holes 236 extend through the jaw member 214 such that a tool (not shown) may be inserted through the holes 236 to press the posts 234 out of the holes 236 and remove the seal plate 230 from the base 218 .
- releasable mechanical and electrical connections may be established between tubular members 240 , 242 with a wedge joint 244 .
- a proximal tubular member 240 may be coupled to a reusable handle assembly 12 (see FIG. 1 ) and distal tubular member 242 may be coupled to a modular end effector 14 (see FIG. 1 ).
- the wedge joint 244 provides a mechanism for removing and replacing the entire end effector 14 .
- the proximal tubular member 240 includes a laterally prominent wedge 246 defined between tapered walls 248 and 250 , and a laterally recessed wedge-receiving portion 252 defined between tapered walls 250 and 254 .
- the wedge 246 and wedge-receiving portion 252 engage a wedge-receiving portion 256 and wedge 258 of distal tubular member 242 when the proximal and distal tubular members 240 , 242 are laterally approximated.
- a friction fit may be established between the wedges 246 , 258 and the respective wedge-receiving portions 256 , 252 such that mechanical forces may be transmitted between the tubular members 240 , 242 .
- longitudinal and rotational movement of the proximal tubular member 240 induces a corresponding motion in the distal tubular member 242 .
- the proximal tubular member 240 includes an electrically conductive pin 260 protruding from a distal end thereof and an electrically conductive pin-receiving socket or slot 262 on a lateral side thereof.
- the pin 260 and socket 262 may be electrically coupled to opposite terminals (+), ( ⁇ ) of the generator 18 ( FIG. 1 ).
- the socket 262 is configured to receive an electrically conductive pin 264 protruding from a proximal end of the distal tubular member 242 .
- the electrically conductive pin 264 may be in electrical communication with a seal plate or an electrode of the modular end effector 14 (see FIG. 1 ).
- the pin 260 may be electrically coupled to a socket 266 defined in the distal tubular member 242 to establish electrical continuity between the end effector 14 and a return ( ⁇ ) terminal of the generator 18 .
- the proximal tubular member 272 includes a pair of pins 276 protruding laterally from a distal end thereof.
- the pins 276 form a bayonet-style engagement with a distal tubular member 278 of the end effector 270 .
- the pins 276 are electrically coupled to opposite terminals (+), ( ⁇ ) of the generator 18 ( FIG. 1 ), and engage a flex circuit 280 disposed within the distal tubular member 278 .
- the flex circuit 280 is electrically coupled to jaw members 282 , 284 such electrical continuity may be established between the jaw members 282 , 284 and the generator 18 .
- An additional mechanical coupling is established between a reciprocating drive rod 288 extending through the tubular member 272 and a distal drive rod 290 extending through the distal tubular member 278 .
- the drive rods 288 , 290 cooperate to facilitate movement of the jaw members 282 , 284 between open and closed configurations.
- Each of the jaw members 282 , 284 is coupled to the distal tubular member 278 about a pivot pin 292 such that the jaw members 282 , 284 are pivotable to a closed configuration where the jaw members 282 , 284 are closer together to clamp the tissue therebetween.
- the jaw members 282 , 284 include respective proximal drive flanges 294 , 296 extending into the distal tubular member 278 where the proximal drive flanges 294 , 296 engage a drive pin 298 .
- the drive pin 298 is movably disposed in a longitudinal drive slot 302 extending through the distal tubular member 278 .
- Each of the proximal drive flanges 294 , 296 of the jaw members 282 , 284 include a respective cam slot 304 , 306 that engages the drive pin 298 as the drive pin 298 reciprocates through the longitudinal drive slot 302 .
- the cam slots 302 and 304 are disposed obliquely with respect to the longitudinal drive slot 302 such that longitudinal movement of the drive pin 298 induce the jaw members 282 , 284 to pivot about the pivot pin 292 in the direction of arrows “C.”
- the drive pin 298 is operatively associated with the distal drive rod 290
- distal drive rod 290 is operatively associated with the reciprocating drive rod 288 through a separable coupling 308 .
- the coupling 308 is defined by a J-shaped end 310 , 312 of each of the drive rods 288 , 290 engaging the other J-shaped end 310 , 312 .
- the reciprocating drive rod 288 may be operatively associated with movable handle 26 ( FIG. 1 ) to induce longitudinal motion in the drive rod 288 . This longitudinal motion may be transmitted to the distal drive rod 290 through the coupling 308 . This longitudinal motion is transmitted to the drive pin 298 to open and close the jaw members 282 , 284 .
- a modular end effector 320 is configured for removable coupling to an elongated shaft 322 .
- a drive assembly 324 extends proximally from the end effector 320 , and may include reciprocating members for actuating jaw members 326 , 328 and/or a reciprocating knife 44 (see FIG. 2 ).
- the drive assembly 324 may also include electrical conductors (not shown) configured for the transmission of electrosurgical energy therethrough to provide electrosurgical energy to the jaw members 326 , 328 .
- a mechanical and electrical coupling member 330 is disposed at a proximal end of the drive assembly 324 , and is configured for releasable engagement with a corresponding coupling member 332 disposed within the elongated shaft 322 .
- the coupling member 332 may be mechanically coupled to one or more actuators such as movable handle 26 or trigger 30 (see FIG. 1 ) such that mechanical motion may be imparted to the end effector 320 through the drive assembly 24 .
- the coupling member 332 may be electrically coupled to electrosurgical generator 18 ( FIG. 1 ) such that electrosurgical energy may be delivered to the jaw members 326 , 328 .
- the coupling member 330 is inserted into the open distal end of the elongated shaft 322 and advanced until engaging the coupling member 332 .
- the corresponding coupling members 330 , 332 may be mechanically and electrically coupled to one another through a snap-fit engagement, a twist-to-lock arrangement or another mating mechanism.
- This modular configuration may be convenient for an operator to assemble since the end effector 320 is provided in a fully assembled condition. Many of the relatively small or delicate components of the end effector 320 , such as pivot pin 292 ( FIG. 13 ), drive pin 298 ( FIG. 13 ) and knife 44 ( FIG. 2 ), are preassembled to form a substantial modular unit that is convenient to manipulate by hand. Knife 44 may be protected from damage during installation of the end effector 320 due in part to its retracted position within the jaw members 326 , 328 .
- This modular configuration also locates the electrically engaging components, e.g., corresponding coupling members 330 , 332 , at a proximal location substantially spaced from a wet surgical site during use. Proximally locating the electrically engaging components may preserve functionality over time, and may facilitate cleaning of a modular system.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A surgical instrument includes a handle coupled to a source of electrosurgical energy. A pair of opposed jaw members is operatively coupled to a distal end of the handle such that the jaw members selectively move between open and closed positions. A base supported on one of the jaw members includes a mechanical mating feature and an electrically conductive region in electrical communication with the source of electrosurgical energy. A selectively removable seal plate includes a complementarily engaging a mechanical mating feature and an electrically conductive region positioned to contact the electrically conductive region of the base when the mechanical mating features of the base and seal plate are engaged. The complimentarily-engaging mechanical mating features include a pair of spaced protrusions and a pair of spaced recesses open to opposing sides of the base or the seal plate such that the seal plate may be twisted onto the base.
Description
- 1. Technical Field
- The present disclosure relates generally to the field of reposable or reusable surgical instruments. In particular, the disclosure relates to instruments having separable and replaceable components to provide clean, sterile or refurbished surfaces in each instance of use.
- 2. Background of Related Art
- Instruments such as electrosurgical forceps are commonly used in open and endoscopic surgical procedures to coagulate, cauterize and seal tissue. Such forceps typically include a pair of jaws that can be controlled by a surgeon to grasp targeted tissue, such as, e.g., a blood vessel. The jaws may be approximated to apply a mechanical clamping force to the tissue, and are associated with at least one electrode surface to permit the delivery of electrosurgical energy to the tissue. The combination of the mechanical clamping force and the electrosurgical energy has been demonstrated to join adjacent layers of tissue captured between the jaws. When the adjacent layers of tissue include the walls of a blood vessel, sealing the tissue may result in hemostasis. Thereafter, the sealed tissue may be transected by advancing a knife through the jaws. A detailed discussion of the use of an electrosurgical forceps may be found in U.S. Pat. No. 7,255,697 to Dycus et al.
- In use, various tissue-contacting components of an electrosurgical forceps tend to become contaminated or degraded. For example, electrodes may become contaminated as portions of the treated tissue adhere to the tissue-contacting surfaces of the electrodes. Also, a knife blade may become dull and less effective in transecting sealed tissue after repeated use, even in a single surgical procedure. In order to provide clean electrodes and a sharp knife for a particular surgical procedure, a brand new instrument is often used. Once the procedure is complete, the used instrument is discarded.
- Instruments that are reposable, or reusable for multiple procedures, reduce the instrumentation costs per procedure. Providing a reusable electrosurgical forceps, however, presents various challenges. For example, the complexity of an electrosurgical forceps tends to result in fairly labor intensive cleaning procedures to prepare the forceps for subsequent use. Improper cleaning may result in dangerous contamination being introduced surgical site. Also, some reusable forceps have removable and replaceable components to provide clean surfaces for each use. Many of these instruments require arduous disassembly and reassembly procedures that require extensive training, and may discourage use of the instrument.
- The present disclosure describes a surgical instrument for treating tissue. The instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy. An end effector including a pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that one or both of the jaw members is induced to move relative to the other between open and closed positions in response to manipulation of the handle assembly. A base is supported on one of the jaw members. The base includes a mechanical mating feature, and an electrically conductive region that is in electrical communication with the connector. A selectively removable seal plate is supported on the base. The seal plate includes a mechanical mating feature complementarily engaging mechanical mating feature of the base to maintain the seal plate in position on the base during use. An electrically conductive region is provided on the seal plate, and is positioned to contact the electrically conductive region of the base when the mechanical mating features of the base and seal plate are engaged. The electrically conductive region of the seal plate is in electrical communication with an electrode surface on the seal plate. The complimentarily-engaging mechanical mating features include a pair of spaced protrusions on either the base or the seal plate, and a pair of spaced recesses open to opposing sides of the other of the base and the seal plate. The seal plate may thus be twisted onto the base.
- The protrusions may be spaced in a generally longitudinal direction and may extend from the base. The recesses may be open to opposing lateral sides of the seal plate. The recesses may include undercut slots such that a head portion of each of the protrusions overhangs a lower portion of the seal plate when the protrusions engage the slots. The slots may include a tapered opening for guiding the seal plate onto the protrusions.
- The seal plate may include a fastening layer constructed of an electrically insulative material and a sealing surface constructed of an electrically conductive material. The recesses may be defined in the fastening layer. The electrically conductive region of the base may be defined on one or more of the protrusions. One or more of the protrusions may extend beyond the electrode surface of the seal plate when the seal plate is coupled to the base such that the protrusion maintains a gap between the jaw members when the jaw members are moved to the closed position.
- According to another aspect of the disclosure, a surgical instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy. An end effector including a pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that one or both of the jaw members is induced to move relative to the other between open and closed positions in response to manipulation of the handle assembly. A base is supported on one of the jaw members. The base includes a mechanical mating feature and an electrically conductive region. The electrically conductive region is in electrical communication with the connector. A selectively removable seal plate is supported on the base. The seal plate includes a mechanical mating feature complementarily engaging a mechanical mating feature of the base to maintain the seal plate in position on the base during use, and an electrically conductive region positioned to contact the electrically conductive region of the base when the mechanical mating features of the base and seal plate are engaged. The electrically conductive region of the seal plate is in electrical communication with an electrode surface on the seal plate. The mechanical mating feature of the base includes at least one protrusion constructed of an electrically isolative material and extending beyond the electrode surface of the seal plate when the seal plate is coupled to the base. The protrusion thus maintains a gap between the jaw members when the jaw members are moved to the closed position.
- The gap maintained may be between about 0.001 inches and about 0.006 inches. The mechanical mating feature of the seal plate may include at least through bore establishing a friction fit with the at least one protrusion, and the base may include a hole extending through the jaw member to provide access for a tool to be inserted for pressing the seal plate from the jaw member. The electrically conductive region of the base may include exposed leads of a flex circuit.
- According to another aspect of the disclosure, a surgical instrument includes a handle assembly having a connector for electrically coupling the handle assembly to a source of electrosurgical energy. A pair of opposed jaw members is operatively coupled to a distal end of the handle assembly such that at least one of the jaw members is induced to move relative to the other jaw member between open and closed positions in response to manipulation of the handle assembly. At least one of the jaw members includes a base including a mechanical mating feature and a flexible circuit supported by the base. The flexible circuit includes an exposed electrically conductive region that is in electrical communication with the connector. A seal plate is supported on the base. The seal plate includes a mechanical mating feature complementarily engaging the mechanical mating feature of the base to maintain the seal plate in position on the base during use. An electrically conductive region on the seal plate is positioned to contact the electrically conductive region of the flexible circuit when the mechanical mating features of the base and seal plate are engaged.
- The opposed jaw members may be operatively coupled to the distal end of the handle assembly by an elongated shaft extending therebetween. The flexible circuit may extend from the at least one jaw member proximally into the elongated shaft, and the flexible circuit may be constructed of a flexible polymer substrate in a substantially flat configuration. The flexible circuit may include a region of relatively greater flexibility to facilitate movement of the opposed jaw members between the open and closed positions.
- The flexible circuit may be electrically coupled to the connector through a sliding joint defined between the at least one jaw member and the elongated shaft. The sliding joint may include an electrically conductive spring pin biased between the at least one jaw member and the elongated shaft to maintain electrical contact between the at least one jaw member and the elongated shaft during movement of the opposed jaw members between the open and closed positions.
- The mechanical mating feature on the base may include an opening defined in the base, and the mechanical mating feature on the seal plate may include a post having a head portion. The head portion may be configured to snap into the opening in the base to maintain the seal plate in position on the base and to maintain electrical continuity between the seal plate and the flexible circuit.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
-
FIG. 1 is a perspective view of an endoscopic surgical instrument in accordance with an embodiment of the present disclosure having an end effector at a distal end; -
FIG. 2 is an enlarged, perspective view of the distal end of the instrument ofFIG. 1 depicting a removable seal plate separated from the end effector; -
FIG. 3 is a perspective view of an alternate embodiment of an end effector with a removable seal plate separated from the end effector; -
FIGS. 4 and 5 are perspective views of alternate embodiments of removable seal plates; -
FIG. 6 is a perspective view of an alternate embodiment of an end effector including a mechanism for receiving a twist-on seal plate; -
FIG. 7 is a side view of an alternate embodiment of an end effector including a pair of jaw members that are removable from an elongated shaft member, and wherein the jaw members each include a mechanism for receiving a snap-in, removable seal plate; -
FIG. 8 is a side view of an alternate embodiment of an end effector including a removable seal plate configured to hook to a distal end of one of the jaw members and a seal plate configured for magnetic coupling to another one of the jaw members; -
FIG. 9 is a perspective view of an alternate embodiment of an end effector including a jaw member configured to receive the seal plate ofFIG. 10 ; -
FIG. 10 is a perspective view of a seal plate including bores configured for engagement with stop members defined on the jaw member depicted inFIG. 9 ; -
FIG. 11 is a perspective view of an alternate embodiment of a seal plate that includes posts configured for engagement with bores defined on a modified jaw member ofFIG. 9 ; -
FIG. 12 is a perspective view of a wedge joint defined between two tubular members; -
FIG. 13 is a partial, side view of an instrument including an end effector removably coupled to an elongated shaft by a bayonet coupling; and -
FIG. 14 is a partial side view of an instrument including electrical and mechanical coupling mechanisms disposed at a proximal end of an elongated shaft. - Referring initially to
FIG. 1 , an embodiment of anelectrosurgical instrument 10 is depicted. Theinstrument 10 includes ahandle assembly 12 for remotely controlling anend effector 14 through anelongated shaft 16. Although this configuration is typically associated with instruments for use in laparoscopic or endoscopic surgical procedures, various aspects of the present disclosure may be practiced with traditional open instruments, and in connection with endoluminal procedures as well. - The
instrument 10 is coupled to a source of electrosurgical energy, e.g., anelectrosurgical generator 18. Thegenerator 18 may include devices such as the LIGASURE® Vessel Sealing Generator and the Force Triad® Generator as sold by Covidien. Acable 20 extends between thehandle assembly 12 and thegenerator 18, and includes aconnector 22 for coupling theinstrument 10 to theexternal generator 18. In other embodiments (not shown) a battery powered instrument may be provided in which a generator and connector may be internal or integral to the instrument. Theconnector 22 includes twoprong members instrument 10 to opposite terminals, e.g., positive or active (+) and negative or return (−) terminals associated with thegenerator 18. Thus, bipolar energy may be provided through theinstrument 10. Alternatively, theinstrument 10 may be configured for delivering monopolar energy to the tissue. In a monopolar configuration, theinstrument 10 delivers electrosurgical energy from an active terminal, e.g. (+), while a return pad (not shown) is placed generally beneath a patient and provides a return path to the opposite terminal, e.g. (−), of thegenerator 18. - To control the
end effector 14, thehandle assembly 12 includes astationary handle 24 andmovable handle 26. Themovable handle 26 may be separated and approximated relative to thestationary handle 24 to respectively open and close theend effector 14. Atrigger 30 is also disposed on thehandle assembly 12, and is operable to extend and retract a knife 44 (seeFIG. 2 ) through theend effector 14. A footswitch (not shown) may be provided to initiate and terminate the delivery of electrosurgical energy to theend effector 14. - Referring now to
FIG. 2 ,end effector 14 is depicted in an open configuration. Upper andlower jaw members jaw members elongated shaft 16 by apivot pin 36 extending therethrough. To engage thepivot pin 36, the upper andlower jaw members proximal flanges elongated shaft 16. Theproximal flanges FIG. 1 ) to open and close thejaw members movable handle 26 induces thejaw members pivot pin 36 to move from the open configuration to a closed configuration where thejaw members jaw members - Various mechanisms may be provided to operatively associate the
movable handle 26 with theproximal flanges movable handle 26 may be coupled to a reciprocating member (seeitems FIG. 13 ) that extends through theelongated shaft 16 as described in commonly owned U.S. Pat. No. 7,255,697 to Dycus et al. The reciprocating member may engage cam slots (seeitems FIG. 13 ) on each of theproximal flanges jaw members elongated shaft 16 as thejaw members jaw member elongated shaft 16. - A reciprocating
knife 44 is selectively movable through aknife channel 46 defined through thejaw members knife 44 is operatively associated with trigger 30 (FIG. 1 ) such that manipulation of thetrigger 30 advances and/or retracts theknife 44 through thejaw members knife 44 includes a sharpdistal edge 48 that may be used to transect tissue sealed between thejaw members knife 44 may be configured to remain in a proximally retracted position, e.g. between theproximal flanges jaw members knife 44 while thejaw members - According to one embodiment of the specification, the
lower jaw member 34 is configured to releasably receive a dove-tail seal plate 50 on a correspondingly shapedbase 52. Theseal plate 50 includes anupper sealing surface 54 with aslot 54 a defined therein corresponding to theknife channel 46. Theslot 54 a and theknife channel 46 are optional features that may be eliminated from alternate embodiments (not shown). Atail portion 56 of theseal plate 50 protrudes laterally inward from a periphery of the sealingsurface 54 to define a trapezoidal or dove-tail profile with the sealingsurface 54. Thetail portion 56 extends along two longitudinal sides and a distal side of theseal plate 50. A proximal side of theseal plate 50 is unobstructed by thetail portion 56 to permit theseal plate 50 to slide longitudinally onto the base 52 as indicated by arrow “A.” Thetail portion 56 may form a friction fit with the base 52 to mechanically couple theseal plate 50 to thejaw member 34. This type of engagement may facilitate accurate placement of theseal plate 50 while providing an effective and releasable attachment force. - The sealing
surface 54 is constructed of an electrically conductive material and is configured to deliver electrosurgical energy to tissue. Thus, the sealingsurface 54 may be characterized as an electrode surface. Thetail portion 56 may be constructed generally of plastic, steel or another material suitable for engaging the base 52 to establish a friction-fit with thebase 52. A firstelectrical connector 60 a on thetail portion 56 is in electrical communication with the sealingsurface 54. A secondelectrical connector 60 b is in electrical communication with one of the poles or terminals, e.g., (−), of the generator 18 (FIG. 1 ). The twoconnectors seal plate 50 is positioned on thebase 52. Thus, the electrical continuity may be established between the sealingsurface 54 and the terminal, e.g. (−) of thegenerator 18 by mechanically coupling themodular seal plate 50 to thebase 52. Anadditional seal plate 50 may be similarly installed on theupper jaw member 32 to establish electrical continuity with the opposite terminal, e.g. (+). - Referring now to
FIG. 3 , an alternate embodiment of anend effector 64 includes upper andlower jaw members lower jaw member 68 is configured to releasably receive a modular snap-inseal plate 70 on acorresponding base 72. Theseal plate 70 includes a sealingsurface 74 and askirt portion 76 protruding therefrom.Tabs 78 protrude inwardly from theskirt 76 for reception inslots 80 defined in thebase 72. Theskirt 76 includes stress-relievingnotches 82 defined therein adjacent thetabs 78. Thenotches 82 permit theskirt 76 to flex, and to temporarily move thetabs 78 laterally outward to permit placement of the skirt over thebase 72. Thenotches 82 may also facilitate removal of theseal plate 70 subsequent to use. Thenotches 82 provide surfaces for engaging a wedge (not shown) or another tool for removing theseal plate 70 from thebase 72. - Electrical continuity may be established between the
lower jaw member 68 and theseal plate 70 through one or moreelectrical connectors 82 disposed within theslots 80. Theconnectors 82 maintain contact with thetabs 78 when theseal plate 70 is installed on thebase 72 due to the inherent resiliency of theseal plate 70. Alternatively or additionally, aconnector 84 may be disposed on a lateral side of the base 72 such that theskirt 76 makes contact with theconnector 84 when theseal plate 70 is installed on thebase 72. - Referring now to
FIGS. 4 and 5 , alternate embodiments of snap-inseal plates Seal plate 88 is similar to seal plate 70 (FIG. 3 ) including a sealingsurface 92 and askirt 94 protruding therefrom.Seal plate 88 differs fromseal plate 70 in thattabs 96 protrude laterally outward from theskirt 94, rather than laterally inward. Outwardly protrudingtabs 96 may facilitate installation of theseal plate 88 since theskirt 94 may be flexed laterally inward, in the direction of arrows “B,” to install thetabs 92 in corresponding slots (not shown). The exterior surfaces of theskirt 94 may remain accessible such that no special tool is required for installation or removal.Seal plate 90 includesdetents 98 thereon for engaging corresponding mating components (not shown) on the base (not shown). The mating components may include such devices as spring loaded ball plungers positioned to engage thedetents 98 when theseal plate 90 is properly installed. Electrical continuity may be established through the contact of thedetents 98 with the ball plungers or other mating components. - Referring now to
FIG. 6 , an alternate embodiment of anend effector 100 includes ajaw member 102 that is configured to releasably receive a modular, twist-onseal plate 104. Thejaw member 102 includes a base 106 having a locatingpost 108 and a lockingpost 110 protruding therefrom. The locating and lockingposts slots fastening layer 116 of theseal plate 104. Theslots head portion posts lower portion 122 of thefastening layer 116. Theslots seal plate 104. Thus, theseal plate 104 may be installed on thebase 106 by positioning theseal plate 104 between theposts fastening layer 116 abuts thebase 106, and twisting theseal 104 such that theslots posts slots tapered openings slots posts slot 112 includes a taper on each longitudinal side of the opening 112 a, and may be installed on the locatingpost 108 prior to twisting theseal plate 104 to engage theslot 114 with the lockingpost 110. The opening 114 a of theslot 114 includes a single taper to provide clearance for the lockingpost 100 to enter theslot 114 as theseal plate 104 is twisted. Thus, the locatingpost 108 may provide a pivot for accurately guiding theslot 114 onto the lockingpost 110. Theseal plate 104 snaps onto the base 106 when theseal plate 104 is properly located. - The
seal plate 104 includes a sealingsurface 124 opposite thefastening layer 116. Electrical continuity may be established between the sealingsurface 124 and thejaw member 102 through one or more electrically conductive regions or connectors, e.g.,connector 126 disposed on one posts, e.g.,post 110. Theseal plate 104 may be constructed entirely of an electrically conductive material such that electrosurgical energy may be transmitted to the sealingsurface 124 when theseal plate 104 is properly installed on thebase 106. Alternatively, thefastening layer 116 or other portions of theseal plate 104 may be constructed of an electrically insulative material, and anelectrical connector 128 within theslot 114 may be in electrical communication with the sealingsurface 124. Theelectrical connector 128 is configured to contact theconnector 126 on thepost 110 when theseal plate 104 is twisted onto thejaw member 102. - Referring now to
FIG. 7 , an alternate embodiment of anend effector 130 includes upper andlower jaw members jaw members respective seal plate 138. Theseal plates 138 include a sealingsurface 140, askirt 142 and snap-inposts 144. The sealing surfaces 140 are constructed of an electrically conductive material, and are positioned to contact tissue captured between thejaw members skirt 142 encircles the sealingsurface 140, and may be constructed of a plastic material. Theposts 144 protrude from theskirt 142 such that ahead portion 146 of theposts 144 may engage acorresponding opening 148 in a base 150 defined by therespective jaw member - A substantially
flat flex circuit 152 is disposed on each of thejaw members skirt 142 of therespective seal plate 138 and thebase 150. Theflex circuits 152 may be constructed as a plurality of electrically conductive pathways substantially encased in an insulative coating. The coating may include a flexible polymer substrate such as a Kapton® tape or film available from DuPont. Theflex circuit 152 disposed on theupper jaw member 132 is electrically coupled the first terminal (+) of the generator 18 (FIG. 1 ), and theflex circuit 152 disposed on thelower jaw member 134 is electrically coupled to the second terminal (−) through anelongated shaft member 170 as described below. Exposed leads 160 on theflex circuits 152 are positioned to establish electrical continuity between theflex circuits 152 and therespective seal plates 138 when theseal plates 138 are installed to thejaw members flex circuits 152 facilitates repeated engagement and disengagement of the selectivelyremovable seal plates 138 with thebases 150. - The
flex circuits 152 extend from theirrespective jaw members elongated shaft member 170. Due to the flexibility of theflex circuits 152, theflex circuits 152 may withstand sufficient bending to permit movement of thejaw members flex circuits 152. Various portions of theflex circuits 152 may be specifically configured to permit bending, e.g., by being constructed of a relatively flexible substrate material, or by including strategic openings in the substrate material. - A sliding joint 158 is also provided to maintain electrical continuity between each of the
jaw members FIG. 1 ). Aproximal flange 162 of thelower jaw member 134 includes an electricallyconductive arc 164 disposed about apivot pin 166. A spring pin 168 is disposed on anelongated shaft member 170, and is electrically coupled to the active (+) terminal of thegenerator 18. The spring pin 168 is biased to maintain contact with the electrically conductive are 164, as thejaw members proximal flange 172 of theupper jaw member 132 includes an electrically conductive arc 174 disposed about thepivot pin 166. A spring pin 178 is disposed on anelongated shaft member 170, and is electrically coupled to the return (−) terminal of thegenerator 18. The spring pin 178 is biased to maintain contact with the arc 174. The spring pins 168, 178 provide a releasable engagement with thejaw members jaw members elongated shaft member 170, and replaced with a new or refurbished pair ofjaw members new jaw members shaft member 170 without requiring a separate electrical assembly. - Referring now to
FIG. 8 , an alternate embodiment of anend effector 180 includes upper andlower jaw members lower jaw member 184 is configured for releasable mating with aseal plate 188. Theseal plate 188 includes adistal hook portion 190 for snapping into adistal recess 192 of thelower jaw member 184. A wire orround conductor 194 disposed at a proximal end of theseal plate 188 is configured to snap intotrough 196 defined in thelower jaw member 184. In other embodiments (not shown), the position of theconductor 194 andtrough 196 may be reversed such that a trough is defined on a removable seal plate and is configured to snap onto a conductor defined in a jaw member. Theconductor 194 is electrically coupled to a sealingsurface 200 such that the sealingsurface 200 may be electrically coupled to a return (−) terminal of the generator 18 (FIG. 1 ). Thedistal hook portion 190 is electrically isolated from the sealingsurface 200. Thus, thedistal hook portion 190 may be independently coupled to the active (+) terminal of thegenerator 18 through therecess 192 to provide a monopolar tip to theend effector 180. - The
upper jaw member 182 is configured for releasable engagement with analternate seal plate 202. Theseal plate 202 includes a sealingsurface 204 that may be electrically coupled to the active (+) terminal of thegenerator 18. The sealingsurface 204 opposes sealingsurface 200 such that electrosurgical energy may be transmitted through tissue captured between the sealingsurfaces hook portion 190 may be electrically activated independently of the bipolar sealing surfaces 200, 204. - The
upper jaw member 182 includes amagnet 206 disposed therein. Themagnet 206 is configured to attract theseal plate 206 and maintain theseal plate 206 in position on thejaw member 182. Themagnet 206 may be used exclusively to provide a releasable locking mechanism for theseal plate 206. This type of engagement includes no moving or wearing parts. Alternatively, themagnet 206 may be employed to supplement other locking features such ashook portion 190 on theseal plate 188. - Referring now to
FIGS. 9 and 10 ,end effector 210 includes upper andlower jaw members seal plate 216. Thelower jaw member 214 includes a base 218 having a plurality ofstop members 220 protruding therefrom. Theseal plate 216 includes a plurality of throughbores 222 defined therethrough corresponding to the position of thestop members 220. Thebores 222 may be placed over thestop members 220 to form a friction fit therewith to install theseal plate 216 to thebase 218. The upper andlower jaw members seal plate 216 into position. Thestop members 220 may be configured to retract into thelower jaw member 214 to release theseal plate 216 from the base 218 once the seal plates are used. - The base 218 may be configured to transmit electrosurgical energy to the
seal plate 216 such that a sealingsurface 224 may, in turn, transmit the electrosurgical energy to tissue. Thestop members 220 are constructed of an electrically insulating material, and exhibit a height “h” over thebase 218. Theseal plate 216 has a thickness “t” that is less than the height “h” of thestop members 220 such that thestop members 220 protrude from the sealingsurface 224 when theseal plate 216 is installed. The difference between the height “h” of thestop members 220 and the thickness “t” of theseal plate 216 defines a separation or gap distance between the upper andlower jaw members jaw members - The
stop members 220 serve as mechanical mating features by complementarily engaging the throughbores 222 to maintain theseal plate 216 in position on the base 218 during use. Other configurations are envisioned in which mechanical mating features may serve as stop members. For example, the locatingpost 108 described above with reference toFIG. 6 may be configured to serve as a stop member. Theslot 112 defined in theseal plate 104 may be modified to extend through both thefastening layer 116 and the sealingsurface 124 such that the locatingpost 108 could be extended to protrude beyond the sealingsurface 124 to define an appropriate gap. - Referring now to
FIG. 11 , an alternate embodiment of aseal plate 230 includes a sealingsurface 232 and a plurality ofengagement posts 234 protruding from an opposite side thereof. Theseal plate 230 may be constructed entirely of an electrically conductive material by construction methods including metal injection molding (MIM). Theposts 234 are configured to form a friction fit with holes 236 (depicted in phantom) formed in thelower jaw member 214. Theholes 236 extend through thejaw member 214 such that a tool (not shown) may be inserted through theholes 236 to press theposts 234 out of theholes 236 and remove theseal plate 230 from thebase 218. - Referring now to
FIG. 12 , releasable mechanical and electrical connections may be established betweentubular members wedge joint 244. Aproximal tubular member 240 may be coupled to a reusable handle assembly 12 (seeFIG. 1 ) and distaltubular member 242 may be coupled to a modular end effector 14 (seeFIG. 1 ). Thus, the wedge joint 244 provides a mechanism for removing and replacing theentire end effector 14. - The proximal
tubular member 240 includes a laterallyprominent wedge 246 defined between taperedwalls portion 252 defined between taperedwalls wedge 246 and wedge-receivingportion 252 engage a wedge-receivingportion 256 and wedge 258 of distaltubular member 242 when the proximal and distaltubular members wedges portions tubular members tubular member 240 induces a corresponding motion in the distaltubular member 242. - Electrical connectivity may also be established by laterally approximating the
tubular members tubular member 240 includes an electricallyconductive pin 260 protruding from a distal end thereof and an electrically conductive pin-receiving socket or slot 262 on a lateral side thereof. Thepin 260 andsocket 262 may be electrically coupled to opposite terminals (+), (−) of the generator 18 (FIG. 1 ). Thesocket 262 is configured to receive an electricallyconductive pin 264 protruding from a proximal end of the distaltubular member 242. The electricallyconductive pin 264 may be in electrical communication with a seal plate or an electrode of the modular end effector 14 (seeFIG. 1 ). Thus, by establishing electrical communication between thesocket 262 and thepin 264, electrical connectivity may be established between theend effector 14 and an active (+) terminal of thegenerator 18. Similarly, thepin 260 may be electrically coupled to asocket 266 defined in the distaltubular member 242 to establish electrical continuity between theend effector 14 and a return (−) terminal of thegenerator 18. - Referring now to
FIG. 13 , an alternative embodiment of a mechanical and electrical coupling between a modular end effector 270 and a proximaltubular member 272 is depicted. The proximaltubular member 272 includes a pair ofpins 276 protruding laterally from a distal end thereof. Thepins 276 form a bayonet-style engagement with a distaltubular member 278 of the end effector 270. Thepins 276 are electrically coupled to opposite terminals (+), (−) of the generator 18 (FIG. 1 ), and engage aflex circuit 280 disposed within the distaltubular member 278. Theflex circuit 280 is electrically coupled tojaw members jaw members generator 18. - An additional mechanical coupling is established between a
reciprocating drive rod 288 extending through thetubular member 272 and adistal drive rod 290 extending through the distaltubular member 278. Thedrive rods jaw members jaw members tubular member 278 about apivot pin 292 such that thejaw members jaw members jaw members proximal drive flanges tubular member 278 where theproximal drive flanges drive pin 298. Thedrive pin 298 is movably disposed in alongitudinal drive slot 302 extending through the distaltubular member 278. Each of theproximal drive flanges jaw members respective cam slot drive pin 298 as thedrive pin 298 reciprocates through thelongitudinal drive slot 302. Thecam slots longitudinal drive slot 302 such that longitudinal movement of thedrive pin 298 induce thejaw members pivot pin 292 in the direction of arrows “C.” - The
drive pin 298 is operatively associated with thedistal drive rod 290, anddistal drive rod 290 is operatively associated with thereciprocating drive rod 288 through aseparable coupling 308. Thecoupling 308 is defined by a J-shapedend drive rods end reciprocating drive rod 288 may be operatively associated with movable handle 26 (FIG. 1 ) to induce longitudinal motion in thedrive rod 288. This longitudinal motion may be transmitted to thedistal drive rod 290 through thecoupling 308. This longitudinal motion is transmitted to thedrive pin 298 to open and close thejaw members - Referring now to
FIG. 14 , amodular end effector 320 is configured for removable coupling to anelongated shaft 322. Adrive assembly 324 extends proximally from theend effector 320, and may include reciprocating members for actuatingjaw members FIG. 2 ). Thedrive assembly 324 may also include electrical conductors (not shown) configured for the transmission of electrosurgical energy therethrough to provide electrosurgical energy to thejaw members electrical coupling member 330 is disposed at a proximal end of thedrive assembly 324, and is configured for releasable engagement with a correspondingcoupling member 332 disposed within theelongated shaft 322. - The
coupling member 332 may be mechanically coupled to one or more actuators such asmovable handle 26 or trigger 30 (seeFIG. 1 ) such that mechanical motion may be imparted to theend effector 320 through thedrive assembly 24. Similarly, thecoupling member 332 may be electrically coupled to electrosurgical generator 18 (FIG. 1 ) such that electrosurgical energy may be delivered to thejaw members modular end effector 320 to the elongated shaft, thecoupling member 330 is inserted into the open distal end of theelongated shaft 322 and advanced until engaging thecoupling member 332. The correspondingcoupling members - This modular configuration may be convenient for an operator to assemble since the
end effector 320 is provided in a fully assembled condition. Many of the relatively small or delicate components of theend effector 320, such as pivot pin 292 (FIG. 13 ), drive pin 298 (FIG. 13 ) and knife 44 (FIG. 2 ), are preassembled to form a substantial modular unit that is convenient to manipulate by hand.Knife 44 may be protected from damage during installation of theend effector 320 due in part to its retracted position within thejaw members coupling members - Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
Claims (12)
1-20. (canceled)
21. An end effector, comprising:
a pair of opposed jaw members;
a base supported on at least one of the pair of opposed jaw members, the base having an electrically conductive region;
a seal plate supported on the base and including an electrode surface having a bore extending through the electrode surface; and
at least one protrusion constructed of an electrically isolative material and extending upwardly from the base, through the bore of the seal plate, and beyond the electrode surface of the seal plate such that the at least one protrusion maintains a gap between the pair of opposed jaw members when the pair of opposed jaw members are moved to a closed position.
22. The end effector according to claim 21 , wherein the gap maintained is between about 0.001 inches and about 0.006 inches.
23. The end effector according to claim 21 , wherein the bore is configured to receive the at least one protrusion in a friction fit engagement.
24. A surgical instrument, comprising:
a handle assembly; and
a pair of opposed jaw members operatively coupled to a distal end of the handle assembly, at least one jaw member of the pair of opposed jaw members including:
a base having a mechanical mating feature;
a flexible circuit disposed on the base and including an electrically conductive region in electrical communication with the handle assembly; and
a seal plate supported on the base and including:
a mechanical mating feature configured to engage the mechanical mating feature of the base to maintain the seal plate in position on the base; and
an electrically conductive region in electrical communication with the electrically conductive region of the flexible circuit.
25. The surgical instrument according to claim 24 , further comprising an elongated shaft interconnecting the pair of opposed jaw members and the distal end of the handle assembly.
26. The surgical instrument according to claim 25 , wherein the flexible circuit extends proximally into the elongated shaft from the at least one jaw member.
27. The surgical instrument according to claim 25 , further comprising a sliding joint defined between the at least one jaw member and the elongated shaft, wherein the flexible circuit is electrically coupled to the handle assembly through the sliding joint.
28. The surgical instrument according to claim 27 , wherein the sliding joint includes an electrically conductive spring pin biased between the at least one jaw member and the elongated shaft to maintain electrical contact between the at least one jaw member and the elongated shaft during movement of the pair of opposed jaw members.
29. The surgical instrument according to claim 24 , wherein the flexible circuit is constructed of a flexible polymer substrate that has a substantially flat configuration.
30. The surgical instrument according to claim 24 , wherein the flexible circuit includes a region of relatively greater flexibility than a remainder of the flexible circuit to facilitate movement of the pair of opposed jaw members.
31. The surgical instrument according to claim 24 , wherein the mechanical mating feature of the base is an opening defined through the base, and wherein the mechanical mating feature of the seal plate is a post configured for receipt in the opening of the base to maintain the seal plate in position on the base and to maintain electrical continuity between the seal plate and the flexible circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/691,974 US20150223872A1 (en) | 2011-08-18 | 2015-04-21 | Surgical instruments with removable components |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/212,343 US9028492B2 (en) | 2011-08-18 | 2011-08-18 | Surgical instruments with removable components |
US14/691,974 US20150223872A1 (en) | 2011-08-18 | 2015-04-21 | Surgical instruments with removable components |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,343 Division US9028492B2 (en) | 2011-08-18 | 2011-08-18 | Surgical instruments with removable components |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150223872A1 true US20150223872A1 (en) | 2015-08-13 |
Family
ID=47713157
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,343 Expired - Fee Related US9028492B2 (en) | 2011-08-18 | 2011-08-18 | Surgical instruments with removable components |
US14/691,974 Abandoned US20150223872A1 (en) | 2011-08-18 | 2015-04-21 | Surgical instruments with removable components |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,343 Expired - Fee Related US9028492B2 (en) | 2011-08-18 | 2011-08-18 | Surgical instruments with removable components |
Country Status (4)
Country | Link |
---|---|
US (2) | US9028492B2 (en) |
EP (3) | EP3281596A3 (en) |
CN (2) | CN103687561B (en) |
WO (1) | WO2013025432A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170265923A1 (en) * | 2010-11-01 | 2017-09-21 | Atricure, Inc. | Robotic toolkit |
Families Citing this family (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
CA2442598C (en) | 2001-04-06 | 2011-10-04 | Sean T. Dycus | Vessel sealer and divider with non-conductive stop members |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8430876B2 (en) | 2009-08-27 | 2013-04-30 | Tyco Healthcare Group Lp | Vessel sealer and divider with knife lockout |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
US10045811B2 (en) | 2011-02-16 | 2018-08-14 | Covidien Lp | Surgical instrument with dispensable components |
US8864795B2 (en) | 2011-10-03 | 2014-10-21 | Covidien Lp | Surgical forceps |
US8968309B2 (en) | 2011-11-10 | 2015-03-03 | Covidien Lp | Surgical forceps |
US8968310B2 (en) | 2011-11-30 | 2015-03-03 | Covidien Lp | Electrosurgical instrument with a knife blade lockout mechanism |
US9113897B2 (en) | 2012-01-23 | 2015-08-25 | Covidien Lp | Partitioned surgical instrument |
US8968360B2 (en) | 2012-01-25 | 2015-03-03 | Covidien Lp | Surgical instrument with resilient driving member and related methods of use |
US8747434B2 (en) | 2012-02-20 | 2014-06-10 | Covidien Lp | Knife deployment mechanisms for surgical forceps |
US8961514B2 (en) * | 2012-03-06 | 2015-02-24 | Covidien Lp | Articulating surgical apparatus |
US9375282B2 (en) | 2012-03-26 | 2016-06-28 | Covidien Lp | Light energy sealing, cutting and sensing surgical device |
US9265569B2 (en) | 2012-03-29 | 2016-02-23 | Covidien Lp | Method of manufacturing an electrosurgical forceps |
US8968311B2 (en) | 2012-05-01 | 2015-03-03 | Covidien Lp | Surgical instrument with stamped double-flag jaws and actuation mechanism |
US9668807B2 (en) | 2012-05-01 | 2017-06-06 | Covidien Lp | Simplified spring load mechanism for delivering shaft force of a surgical instrument |
US9820765B2 (en) | 2012-05-01 | 2017-11-21 | Covidien Lp | Surgical instrument with stamped double-flange jaws |
US9039731B2 (en) | 2012-05-08 | 2015-05-26 | Covidien Lp | Surgical forceps including blade safety mechanism |
US9375258B2 (en) | 2012-05-08 | 2016-06-28 | Covidien Lp | Surgical forceps |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9681908B2 (en) | 2012-10-08 | 2017-06-20 | Covidien Lp | Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies |
US9265566B2 (en) | 2012-10-16 | 2016-02-23 | Covidien Lp | Surgical instrument |
AU2013375909B2 (en) * | 2013-08-07 | 2015-07-30 | Covidien Lp | Bipolar surgical instrument |
WO2015017995A1 (en) | 2013-08-07 | 2015-02-12 | Covidien Lp | Bipolar surgical instrument with tissue stop |
US10499975B2 (en) | 2013-08-07 | 2019-12-10 | Covidien Lp | Bipolar surgical instrument |
EP3030177A4 (en) | 2013-08-07 | 2017-04-26 | Covidien LP | Bipolar surgical instrument |
EP2853219B1 (en) | 2013-09-10 | 2018-06-06 | Erbe Elektromedizin GmbH | Vessel sealing instrument |
EP2845548B1 (en) * | 2013-09-10 | 2016-11-16 | Erbe Elektromedizin GmbH | Surgical instrument with pivotable jaws |
USD788302S1 (en) | 2013-10-01 | 2017-05-30 | Covidien Lp | Knife for endoscopic electrosurgical forceps |
CN103876823B (en) * | 2014-04-04 | 2015-10-21 | 常州市延陵电子设备有限公司 | Energy type hemorrhoid cutting stapling apparatus |
US9980769B2 (en) | 2014-04-08 | 2018-05-29 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
KR20240142608A (en) * | 2014-05-16 | 2024-09-30 | 어플라이드 메디컬 리소시스 코포레이션 | Electrosurgical system |
US10039592B2 (en) | 2014-09-17 | 2018-08-07 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9877777B2 (en) | 2014-09-17 | 2018-01-30 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US9918785B2 (en) | 2014-09-17 | 2018-03-20 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987076B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Multi-function surgical instruments |
US10080605B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US10258360B2 (en) * | 2014-09-25 | 2019-04-16 | Covidien Lp | Surgical instruments |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10076379B2 (en) * | 2014-12-15 | 2018-09-18 | Ethicon Llc | Electrosurgical instrument with removable components for cleaning access |
US10357311B2 (en) * | 2014-12-19 | 2019-07-23 | Ethicon Llc | Electrosurgical instrument with removable jaw components |
EP3236870B1 (en) | 2014-12-23 | 2019-11-06 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
CN105877837A (en) * | 2014-12-25 | 2016-08-24 | 瑞奇外科器械(中国)有限公司 | High-frequency electric surgical operating instrument and execution device thereof |
US10172612B2 (en) | 2015-01-21 | 2019-01-08 | Covidien Lp | Surgical instruments with force applier and methods of use |
USD844139S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Monopolar assembly of a multi-function surgical instrument |
USD844138S1 (en) | 2015-07-17 | 2019-03-26 | Covidien Lp | Handle assembly of a multi-function surgical instrument |
EP3138522B1 (en) * | 2015-09-03 | 2020-11-04 | Erbe Elektromedizin GmbH | Instrument for mounting, separating and/or coagulation of biological tissue |
GB201600546D0 (en) * | 2016-01-12 | 2016-02-24 | Gyrus Medical Ltd | Electrosurgical device |
US10426543B2 (en) | 2016-01-23 | 2019-10-01 | Covidien Lp | Knife trigger for vessel sealer |
US20170209206A1 (en) * | 2016-01-23 | 2017-07-27 | Covidien Lp | Devices and methods for tissue sealing and mechanical clipping |
US10537381B2 (en) | 2016-02-26 | 2020-01-21 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US10631887B2 (en) | 2016-08-15 | 2020-04-28 | Covidien Lp | Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures |
JP6326609B2 (en) * | 2016-12-01 | 2018-05-23 | コヴィディエン リミテッド パートナーシップ | Bipolar surgical instrument |
US10813695B2 (en) | 2017-01-27 | 2020-10-27 | Covidien Lp | Reflectors for optical-based vessel sealing |
US10973567B2 (en) | 2017-05-12 | 2021-04-13 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
US11172980B2 (en) | 2017-05-12 | 2021-11-16 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
USD854149S1 (en) | 2017-06-08 | 2019-07-16 | Covidien Lp | End effector for open vessel sealer |
USD854684S1 (en) | 2017-06-08 | 2019-07-23 | Covidien Lp | Open vessel sealer with mechanical cutter |
USD843574S1 (en) | 2017-06-08 | 2019-03-19 | Covidien Lp | Knife for open vessel sealer |
US11135005B2 (en) * | 2017-08-08 | 2021-10-05 | Microline Surgical, Inc. | Forceps having removable tips |
US11154348B2 (en) | 2017-08-29 | 2021-10-26 | Covidien Lp | Surgical instruments and methods of assembling surgical instruments |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11241275B2 (en) | 2018-03-21 | 2022-02-08 | Covidien Lp | Energy-based surgical instrument having multiple operational configurations |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11123132B2 (en) | 2018-04-09 | 2021-09-21 | Covidien Lp | Multi-function surgical instruments and assemblies therefor |
US10780544B2 (en) | 2018-04-24 | 2020-09-22 | Covidien Lp | Systems and methods facilitating reprocessing of surgical instruments |
US10828756B2 (en) | 2018-04-24 | 2020-11-10 | Covidien Lp | Disassembly methods facilitating reprocessing of multi-function surgical instruments |
USD904611S1 (en) | 2018-10-10 | 2020-12-08 | Bolder Surgical, Llc | Jaw design for a surgical instrument |
US11376062B2 (en) | 2018-10-12 | 2022-07-05 | Covidien Lp | Electrosurgical forceps |
US11471211B2 (en) | 2018-10-12 | 2022-10-18 | Covidien Lp | Electrosurgical forceps |
US11350982B2 (en) | 2018-12-05 | 2022-06-07 | Covidien Lp | Electrosurgical forceps |
USD938588S1 (en) * | 2019-01-25 | 2021-12-14 | Karl Storz Se & Co. Kg | Shaft attachable medical instrument |
JP1650796S (en) * | 2019-01-25 | 2020-01-20 | ||
USD966513S1 (en) * | 2019-01-25 | 2022-10-11 | Karl Storz Se & Co. Kg | Shaft attachable medical instrument |
JP1650869S (en) * | 2019-01-25 | 2020-01-20 | ||
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11523861B2 (en) | 2019-03-22 | 2022-12-13 | Covidien Lp | Methods for manufacturing a jaw assembly for an electrosurgical forceps |
US12053230B2 (en) | 2020-01-07 | 2024-08-06 | Covidien Lp | Surgical forceps having jaw members |
US20210205002A1 (en) * | 2020-01-07 | 2021-07-08 | Covidien Lp | Surgical forceps having jaw members |
US11622804B2 (en) | 2020-03-16 | 2023-04-11 | Covidien Lp | Forceps with linear trigger mechanism |
US20210369333A1 (en) * | 2020-05-29 | 2021-12-02 | Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America | Monolithic ceramic surgical device and method |
US11660109B2 (en) | 2020-09-08 | 2023-05-30 | Covidien Lp | Cutting elements for surgical instruments such as for use in robotic surgical systems |
US11925406B2 (en) | 2020-09-14 | 2024-03-12 | Covidien Lp | End effector assemblies for surgical instruments |
CN114305647A (en) * | 2021-12-30 | 2022-04-12 | 上海圣哲医疗科技有限公司 | Jaw module and surgical instrument |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766167A (en) * | 1993-12-17 | 1998-06-16 | United States Surgical Corporation | Monopolar electrosurgical Instruments |
US20030069522A1 (en) * | 1995-12-07 | 2003-04-10 | Jacobsen Stephen J. | Slotted medical device |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU401367A1 (en) | 1971-10-05 | 1973-10-12 | Тернопольский государственный медицинский институт | BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT |
DE2415263A1 (en) | 1974-03-29 | 1975-10-02 | Aesculap Werke Ag | Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws |
DE2514501A1 (en) | 1975-04-03 | 1976-10-21 | Karl Storz | Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece |
FR2315286A2 (en) | 1975-06-26 | 1977-01-21 | Lamidey Marcel | H.F. blood coagulating dissecting forceps - with adjustable stops to vary clamping space and circuit making contacts |
USD249549S (en) | 1976-10-22 | 1978-09-19 | Aspen Laboratories, Inc. | Electrosurgical handle |
USD263020S (en) | 1980-01-22 | 1982-02-16 | Rau Iii David M | Retractable knife |
GB2161082B (en) | 1984-01-30 | 1986-12-03 | Kh Nii Obschei Neot Khirurg | Bipolar electric surgical instrument |
DE3423356C2 (en) | 1984-06-25 | 1986-06-26 | Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen | Electrosurgical high frequency cutting instrument |
US4657016A (en) | 1984-08-20 | 1987-04-14 | Garito Jon C | Electrosurgical handpiece for blades, needles and forceps |
USD299413S (en) | 1985-07-17 | 1989-01-17 | The Stanley Works | Folding pocket saw handle |
USD295893S (en) | 1985-09-25 | 1988-05-24 | Acme United Corporation | Disposable surgical clamp |
USD295894S (en) | 1985-09-26 | 1988-05-24 | Acme United Corporation | Disposable surgical scissors |
JPH055106Y2 (en) | 1986-02-28 | 1993-02-09 | ||
USD298353S (en) | 1986-05-06 | 1988-11-01 | Vitalmetrics, Inc. | Handle for surgical instrument |
JPH0540112Y2 (en) | 1987-03-03 | 1993-10-12 | ||
DE8712328U1 (en) | 1987-09-11 | 1988-02-18 | Jakoubek, Franz, 7201 Emmingen-Liptingen | Endoscopy forceps |
US5665100A (en) | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5389102A (en) | 1990-09-13 | 1995-02-14 | United States Surgical Corporation | Apparatus and method for subcuticular stapling of body tissue |
US5190541A (en) | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
US5324289A (en) | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
USD348930S (en) | 1991-10-11 | 1994-07-19 | Ethicon, Inc. | Endoscopic stapler |
DE69316894T2 (en) | 1992-06-24 | 1998-09-24 | Microsurge Inc | REUSABLE ENDOSCOPIC, SURGICAL INSTRUMENT |
US5304203A (en) | 1992-10-20 | 1994-04-19 | Numed Technologies, Inc. | Tissue extracting forceps for laparoscopic surgery |
US5578052A (en) | 1992-10-27 | 1996-11-26 | Koros; Tibor | Insulated laparoscopic grasper with removable shaft |
USD349341S (en) | 1992-10-28 | 1994-08-02 | Microsurge, Inc. | Endoscopic grasper |
DE4303882C2 (en) | 1993-02-10 | 1995-02-09 | Kernforschungsz Karlsruhe | Combination instrument for separation and coagulation for minimally invasive surgery |
JP3390041B2 (en) | 1993-04-05 | 2003-03-24 | オリンパス光学工業株式会社 | Forceps |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
USD343453S (en) | 1993-05-05 | 1994-01-18 | Laparomed Corporation | Handle for laparoscopic surgical instrument |
USD354564S (en) | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
US5693051A (en) | 1993-07-22 | 1997-12-02 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
GB9322464D0 (en) | 1993-11-01 | 1993-12-22 | Gyrus Medical Ltd | Electrosurgical apparatus |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
DE4403252A1 (en) | 1994-02-03 | 1995-08-10 | Michael Hauser | Instrument shaft for min. invasive surgery |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
GB9413070D0 (en) | 1994-06-29 | 1994-08-17 | Gyrus Medical Ltd | Electrosurgical apparatus |
USD384413S (en) | 1994-10-07 | 1997-09-30 | United States Surgical Corporation | Endoscopic suturing instrument |
GB9425781D0 (en) | 1994-12-21 | 1995-02-22 | Gyrus Medical Ltd | Electrosurgical instrument |
DE19506363A1 (en) | 1995-02-24 | 1996-08-29 | Frost Lore Geb Haupt | Non-invasive thermometry in organs under hyperthermia and coagulation conditions |
DE19515914C1 (en) | 1995-05-02 | 1996-07-25 | Aesculap Ag | Tong or scissor-shaped surgical instrument |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
JPH1024051A (en) | 1995-09-20 | 1998-01-27 | Olympus Optical Co Ltd | Coagulation forceps with separating function |
USH1745H (en) | 1995-09-29 | 1998-08-04 | Paraschac; Joseph F. | Electrosurgical clamping device with insulation limited bipolar electrode |
AU703455B2 (en) | 1995-10-20 | 1999-03-25 | Ethicon Endo-Surgery, Inc. | Self protecting knife for curved jaw surgical instruments |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
USD408018S (en) | 1996-03-12 | 1999-04-13 | Mcnaughton Patrick J | Switch guard |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US5814043A (en) | 1996-09-06 | 1998-09-29 | Mentor Ophthalmics, Inc. | Bipolar electrosurgical device |
DE29616210U1 (en) | 1996-09-18 | 1996-11-14 | Olympus Winter & Ibe Gmbh, 22045 Hamburg | Handle for surgical instruments |
US5923475A (en) | 1996-11-27 | 1999-07-13 | Eastman Kodak Company | Laser printer using a fly's eye integrator |
JP3836551B2 (en) | 1996-12-04 | 2006-10-25 | ペンタックス株式会社 | Endoscopic hot biopsy forceps |
US5891142A (en) | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
US5916213A (en) * | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
JP3986127B2 (en) | 1997-08-06 | 2007-10-03 | オリンパス株式会社 | Endoscopic surgical instrument |
DE19738457B4 (en) | 1997-09-03 | 2009-01-02 | Celon Ag Medical Instruments | Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
USD402028S (en) | 1997-10-10 | 1998-12-01 | Invasatec, Inc. | Hand controller for medical system |
US6050996A (en) | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
DE19751108A1 (en) | 1997-11-18 | 1999-05-20 | Beger Frank Michael Dipl Desig | Electrosurgical operation tool, especially for diathermy |
JPH11169381A (en) | 1997-12-15 | 1999-06-29 | Olympus Optical Co Ltd | High frequency treating device |
EP0923907A1 (en) | 1997-12-19 | 1999-06-23 | Gyrus Medical Limited | An electrosurgical instrument |
DE19833600A1 (en) | 1998-07-25 | 2000-03-02 | Storz Karl Gmbh & Co Kg | Medical forceps with two independently movable jaw parts |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
JP4245278B2 (en) | 1998-10-23 | 2009-03-25 | コビディエン アクチェンゲゼルシャフト | Forceps for external incision blood vessel sealing with disposable electrodes |
USD449886S1 (en) | 1998-10-23 | 2001-10-30 | Sherwood Services Ag | Forceps with disposable electrode |
USD424694S (en) | 1998-10-23 | 2000-05-09 | Sherwood Services Ag | Forceps |
USD425201S (en) | 1998-10-23 | 2000-05-16 | Sherwood Services Ag | Disposable electrode assembly |
US6511480B1 (en) | 1998-10-23 | 2003-01-28 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
DE19858512C1 (en) | 1998-12-18 | 2000-05-25 | Storz Karl Gmbh & Co Kg | Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts |
US20030171747A1 (en) * | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
GB9911954D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and instrument |
GB9911956D0 (en) | 1999-05-21 | 1999-07-21 | Gyrus Medical Ltd | Electrosurgery system and method |
GB9912625D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical generator and system |
GB9912627D0 (en) | 1999-05-28 | 1999-07-28 | Gyrus Medical Ltd | An electrosurgical instrument |
GB9913652D0 (en) | 1999-06-11 | 1999-08-11 | Gyrus Medical Ltd | An electrosurgical generator |
US6293954B1 (en) * | 1999-06-21 | 2001-09-25 | Novare Surgical Systems, Inc. | Surgical clamp with replaceable clamp members |
DE19940689A1 (en) | 1999-08-27 | 2001-04-05 | Storz Karl Gmbh & Co Kg | Bipolar medical instrument |
USD465281S1 (en) | 1999-09-21 | 2002-11-05 | Karl Storz Gmbh & Co. Kg | Endoscopic medical instrument |
US6406485B1 (en) * | 1999-10-08 | 2002-06-18 | Pilling Weck Incorporated | Surgical grasping device and components thereof |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
JP4315557B2 (en) | 2000-01-12 | 2009-08-19 | オリンパス株式会社 | Medical treatment tool |
DE10003020C2 (en) | 2000-01-25 | 2001-12-06 | Aesculap Ag & Co Kg | Bipolar barrel instrument |
DE10027727C1 (en) | 2000-06-03 | 2001-12-06 | Aesculap Ag & Co Kg | Scissors-shaped or forceps-shaped surgical instrument |
DE10045375C2 (en) | 2000-09-14 | 2002-10-24 | Aesculap Ag & Co Kg | Medical instrument |
USD453923S1 (en) | 2000-11-16 | 2002-02-26 | Carling Technologies, Inc. | Electrical rocker switch guard |
US20020111624A1 (en) | 2001-01-26 | 2002-08-15 | Witt David A. | Coagulating electrosurgical instrument with tissue dam |
USD454951S1 (en) | 2001-02-27 | 2002-03-26 | Visionary Biomedical, Inc. | Steerable catheter |
USD466209S1 (en) | 2001-02-27 | 2002-11-26 | Visionary Biomedical, Inc. | Steerable catheter |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
EP1527746B1 (en) | 2001-04-06 | 2013-03-13 | Covidien AG | Vessel sealing forceps with disposable electrodes |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
USD457959S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer |
US20030229344A1 (en) | 2002-01-22 | 2003-12-11 | Dycus Sean T. | Vessel sealer and divider and method of manufacturing same |
CA2442598C (en) * | 2001-04-06 | 2011-10-04 | Sean T. Dycus | Vessel sealer and divider with non-conductive stop members |
US20030018332A1 (en) | 2001-06-20 | 2003-01-23 | Schmaltz Dale Francis | Bipolar electrosurgical instrument with replaceable electrodes |
US7753908B2 (en) * | 2002-02-19 | 2010-07-13 | Endoscopic Technologies, Inc. (Estech) | Apparatus for securing an electrophysiology probe to a clamp |
USD493888S1 (en) | 2003-02-04 | 2004-08-03 | Sherwood Services Ag | Electrosurgical pencil with pistol grip |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
USD502994S1 (en) | 2003-05-21 | 2005-03-15 | Blake, Iii Joseph W | Repeating multi-clip applier |
USD545432S1 (en) | 2003-08-08 | 2007-06-26 | Olympus Corporation | Distal portion of hemostatic forceps for endoscope |
USD509297S1 (en) | 2003-10-17 | 2005-09-06 | Tyco Healthcare Group, Lp | Surgical instrument |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
USD541938S1 (en) | 2004-04-09 | 2007-05-01 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
DE102004026179B4 (en) | 2004-05-14 | 2009-01-22 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
USD533942S1 (en) | 2004-06-30 | 2006-12-19 | Sherwood Services Ag | Open vessel sealer with mechanical cutter |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
USD535027S1 (en) | 2004-10-06 | 2007-01-09 | Sherwood Services Ag | Low profile vessel sealing and cutting mechanism |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD525361S1 (en) | 2004-10-06 | 2006-07-18 | Sherwood Services Ag | Hemostat style elongated dissecting and dividing instrument |
USD567943S1 (en) | 2004-10-08 | 2008-04-29 | Sherwood Services Ag | Over-ratchet safety for a vessel sealing instrument |
USD533274S1 (en) | 2004-10-12 | 2006-12-05 | Allegiance Corporation | Handle for surgical suction-irrigation device |
USD582038S1 (en) | 2004-10-13 | 2008-12-02 | Medtronic, Inc. | Transurethral needle ablation device |
USD564662S1 (en) | 2004-10-13 | 2008-03-18 | Sherwood Services Ag | Hourglass-shaped knife for electrosurgical forceps |
US20090204114A1 (en) * | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20060253126A1 (en) | 2005-05-04 | 2006-11-09 | Bernard Medical, Llc | Endoluminal suturing device and method |
USD538932S1 (en) | 2005-06-30 | 2007-03-20 | Medical Action Industries Inc. | Surgical needle holder |
USD541611S1 (en) | 2006-01-26 | 2007-05-01 | Robert Bosch Gmbh | Cordless screwdriver |
US7641653B2 (en) | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
USD547154S1 (en) | 2006-09-08 | 2007-07-24 | Winsource Industries Limited | Rotary driving tool |
USD575395S1 (en) | 2007-02-15 | 2008-08-19 | Tyco Healthcare Group Lp | Hemostat style elongated dissecting and dividing instrument |
USD575401S1 (en) | 2007-06-12 | 2008-08-19 | Tyco Healthcare Group Lp | Vessel sealer |
DE202007009317U1 (en) | 2007-06-26 | 2007-08-30 | Aesculap Ag & Co. Kg | Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit |
DE202007009165U1 (en) | 2007-06-29 | 2007-08-30 | Kls Martin Gmbh + Co. Kg | Surgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator |
US7877853B2 (en) * | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
DE202007016233U1 (en) | 2007-11-20 | 2008-01-31 | Aesculap Ag & Co. Kg | Surgical forceps |
DE102008018406B3 (en) | 2008-04-10 | 2009-07-23 | Bowa-Electronic Gmbh & Co. Kg | Electrosurgical device |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US20100228250A1 (en) | 2009-03-05 | 2010-09-09 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
USD617903S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector pointed tip |
USD617901S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector chamfered tip |
USD617900S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut bottom jaw |
USD617902S1 (en) | 2009-05-13 | 2010-06-15 | Tyco Healthcare Group Lp | End effector tip with undercut top jaw |
USD618798S1 (en) | 2009-05-13 | 2010-06-29 | Tyco Healthcare Group Lp | Vessel sealing jaw seal plate |
USD630324S1 (en) | 2009-08-05 | 2011-01-04 | Tyco Healthcare Group Lp | Dissecting surgical jaw |
USD627462S1 (en) | 2009-09-09 | 2010-11-16 | Tyco Healthcare Group Lp | Knife channel of a jaw device |
US8266783B2 (en) | 2009-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Method and system for manufacturing electrosurgical seal plates |
US8512371B2 (en) * | 2009-10-06 | 2013-08-20 | Covidien Lp | Jaw, blade and gap manufacturing for surgical instruments with small jaws |
USD628290S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
USD628289S1 (en) | 2009-11-30 | 2010-11-30 | Tyco Healthcare Group Lp | Surgical instrument handle |
US8858553B2 (en) | 2010-01-29 | 2014-10-14 | Covidien Lp | Dielectric jaw insert for electrosurgical end effector |
-
2011
- 2011-08-18 US US13/212,343 patent/US9028492B2/en not_active Expired - Fee Related
-
2012
- 2012-08-09 EP EP17187022.3A patent/EP3281596A3/en not_active Withdrawn
- 2012-08-09 CN CN201280035427.4A patent/CN103687561B/en not_active Expired - Fee Related
- 2012-08-09 EP EP12824142.9A patent/EP2744436B1/en not_active Not-in-force
- 2012-08-09 WO PCT/US2012/050094 patent/WO2013025432A1/en active Application Filing
- 2012-08-09 EP EP18204434.7A patent/EP3461445A1/en not_active Withdrawn
- 2012-08-09 CN CN201610576210.4A patent/CN106214250B/en not_active Expired - Fee Related
-
2015
- 2015-04-21 US US14/691,974 patent/US20150223872A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766167A (en) * | 1993-12-17 | 1998-06-16 | United States Surgical Corporation | Monopolar electrosurgical Instruments |
US20030069522A1 (en) * | 1995-12-07 | 2003-04-10 | Jacobsen Stephen J. | Slotted medical device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170265923A1 (en) * | 2010-11-01 | 2017-09-21 | Atricure, Inc. | Robotic toolkit |
US10085788B2 (en) * | 2010-11-01 | 2018-10-02 | Atricure, Inc. | Robotic toolkit |
Also Published As
Publication number | Publication date |
---|---|
EP3281596A2 (en) | 2018-02-14 |
CN103687561B (en) | 2016-08-17 |
EP3281596A3 (en) | 2018-05-09 |
CN106214250B (en) | 2020-04-03 |
EP3461445A1 (en) | 2019-04-03 |
EP2744436B1 (en) | 2017-10-04 |
EP2744436A1 (en) | 2014-06-25 |
US9028492B2 (en) | 2015-05-12 |
US20130046295A1 (en) | 2013-02-21 |
EP2744436A4 (en) | 2015-07-29 |
CN106214250A (en) | 2016-12-14 |
CN103687561A (en) | 2014-03-26 |
WO2013025432A1 (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9028492B2 (en) | Surgical instruments with removable components | |
US12059166B2 (en) | Surgical instrument for treating tissue | |
US11007000B2 (en) | Partitioned surgical instrument | |
EP3050532B1 (en) | Surgical forceps | |
EP1123058B1 (en) | Open vessel sealing forceps with stop member | |
EP1527746B1 (en) | Vessel sealing forceps with disposable electrodes | |
US9888958B2 (en) | Surgical forceps | |
US8685056B2 (en) | Surgical forceps | |
US20160045254A1 (en) | Surgical instrument | |
US20200188012A1 (en) | Jaw members of electrosurgical instruments and methods of manufacture thereof | |
US20240350158A1 (en) | Surgical instrument for treating tissue | |
JP4846824B2 (en) | Vascular sealing forceps with bipolar electrodes | |
JP2012020144A (en) | Blood vessel sealing forceps equipped with bipolar electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KERR, DUANE E.;EVANS, ALLAN J.;RESCHKE, ARLAN J.;AND OTHERS;SIGNING DATES FROM 20110727 TO 20110817;REEL/FRAME:035458/0765 |
|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:035506/0643 Effective date: 20120928 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |