US20150177080A1 - Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces - Google Patents

Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces Download PDF

Info

Publication number
US20150177080A1
US20150177080A1 US14/574,220 US201414574220A US2015177080A1 US 20150177080 A1 US20150177080 A1 US 20150177080A1 US 201414574220 A US201414574220 A US 201414574220A US 2015177080 A1 US2015177080 A1 US 2015177080A1
Authority
US
United States
Prior art keywords
sensor
sensing device
terminals
user
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/574,220
Inventor
Mario Esposito
Maurizio MACAGNO
Davide Giancarlo VIGANO'
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensoria Inc
Original Assignee
Sensoria Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensoria Inc filed Critical Sensoria Inc
Priority to US14/574,220 priority Critical patent/US20150177080A1/en
Assigned to SENSORIA INC. reassignment SENSORIA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ESPOSITO, MARIO, MACAGNO, Maurizio, VIGANO', Davide Giancarlo
Publication of US20150177080A1 publication Critical patent/US20150177080A1/en
Priority to US15/133,124 priority patent/US11154243B2/en
Priority to US16/095,268 priority patent/US11060926B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • A43D1/027Shoe fit indicating devices
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings
    • A61B2562/227Sensors with electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/447Skin evaluation, e.g. for skin disorder diagnosis specially adapted for aiding the prevention of ulcer or pressure sore development, i.e. before the ulcer or sore has developed
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation

Definitions

  • the present invention relates generally to sensors, including flexible and stretchable fabric-based pressure sensors, that may be associated with or incorporated in garments intended to be worn against a body surface (directly or indirectly). Sensors may also be associated with or incorporated in sheet-like materials, bandages and other accessories that contact the body (directly or indirectly), and may be provided as independently positionable sensor components. Systems and methods for storing, communicating, processing, analyzing and displaying data collected by sensor components for remote monitoring of conditions at body surfaces, or within the body, are also disclosed. Sensors and sensor systems provide substantially real-time feedback relating to current body conditions and may provide notifications or alerts to users, caretakers and/or clinicians, enabling early intervention when conditions indicate intervention is appropriate.
  • sensing systems have been incorporated in shoes, insoles, socks and garments for monitoring various physiological parameters for various applications, including recreational, sporting, military, diagnostic and medical applications.
  • Medical applications for sensing pressure, temperature and the like for purposes of monitoring neuropathic and other degenerative conditions with the goal of alerting individual and/or medical service providers to sensed parameters that may indicate the worsening of a condition, lack of healing, and the like, have been proposed.
  • Footwear-related sensing systems directed to providing sensory data for patients suffering from neuropathy, for gait analysis, rehabilitation assessment, shoe research, design and fitting, orthotic design and fitting, and the like, have been proposed.
  • Peripheral neuropathy is one of the most common complications of diabetes and results in wounds, ulcers, etc., which may be undetected and unsensed by the individual.
  • diabetic patients In the presence of neuropathy, diabetic patients often develop ulcers on the sole of the foot in areas of moderate or high pressure and shear, often resulting from walking during normal daily activities. About 70% of diabetics have measurable neuropathy, and every year about 5% of those patients get foot ulcers, and about 1% requires amputations. Foot ulcers are responsible for more hospitalizations than any other complication of diabetes and result in at least $40 billion in direct costs annually.
  • the components and assemblies for collection and analysis of data from sites such as feet and other body surfaces described herein are directed to providing intermittent or continuous monitoring and reporting of body conditions (such as pressure) at body locations for purposes of reducing the incidence and severity of ulcers and other wounds and accelerating the pace and quality of wound healing.
  • body conditions such as pressure
  • sensors, interfaces, systems and materials described herein for collection and analysis of physiological and biomechanical data from sites such as feet and other body parts may be used for a variety of sports-related, military, fitness, diagnostic and therapeutic purposes.
  • sensor systems of the present invention comprise one or more sensor(s) mounted to or incorporated in or associated with a substrate material such as a wearable garment, a wearable band, an independently positionable component, or another substrate, such as a flexible and/or pliable sheet material.
  • sensors are capable of sensing a physiological parameter of the underlying skin or tissue, or sensors are capable of sensing force or pressure exerted on or against an underlying skin or tissue.
  • Each sensor is electrically connected, via one or more flexible leads, to a flexible conductive trace mounted to or incorporated in or associated with the substrate, and conductive traces terminate at conductive signal transfer terminals mounted to or incorporated in or associated with the substrate.
  • Sensor systems and sensing devices described herein preferably comprise at least one flexible sensor (or means for sensing), and one or more of the sensor(s), flexible leads, and conductive traces may be stretchable and/or elastic as well as being flexible.
  • the sensor(s), flexible leads and conductive traces may all comprise flexible, pliable electrically conductive fabric materials. Garments incorporating such sensor systems and sensing devices may be comfortably worn by users under many conditions, providing real time monitoring of conditions at or near body surfaces to the user, a caretaker, and/or clinician.
  • the signal transfer terminal(s) on the substrate may be matingly received in signal receipt terminals associated with a Dedicated Electronic Device (DED) that is attachable to the substrate and serves as a (temporary or permanent) data collection device.
  • the DED may also (optionally) house batteries or other energy storage devices and serve as a sensor charging device.
  • the DED communicates with one or more external electronic device(s), such as a smartphone, personal computing device/display, host computer, or the like for signal transfer, processing, analysis and display to a user and/or others.
  • the external electronic device, and/or the DED communicates with an external, hosted computing system (operated, e.g., at a centralized, hosted facility and/or in the “Cloud”) that provides additional data analysis, formulates feedback, notifications, alerts, and the like, that may be displayed to the user, a caretaker, and/or a clinician through one or more computing and/or display devices.
  • an external, hosted computing system operted, e.g., at a centralized, hosted facility and/or in the “Cloud”
  • a caretaker, and/or a clinician through one or more computing and/or display devices.
  • one or more sensor(s) detect changes in voltage or resistance across a surface area that is associated with force exerted on the sensor, which is related to pressure (as force per unit surface area) and/or shear.
  • FSR Force Sensitive Resistor
  • piezo-resistive sensors may be used.
  • One type of piezoresistive force sensor that has been used previously in footwear pressure sensing applications known as the FLEXIFORCE® sensors, can be made in a variety of shapes and sizes, and measure resistance, which is inversely proportional to applied force.
  • These sensors use pressure sensitive inks with silver leads terminating in pins, with the pressure sensitive area and leads sandwiched between polyester film layers.
  • FLEXIFORCE® sensors are available from Tekscan, Inc., 307 West First Street, South Boston, Mass. 02127-1309 USA. Other types of sensors may also be integrated in or associated with various substrate materials (e.g., garments, sheet materials and the like), including sensors providing data relating to temperature, moisture, humidity, stress, strain, heart rate, respiratory rate, blood pressure, blood oxygen saturation, blood flow, local gas content, bacterial content, multi-axis acceleration, positioning (GPS) and the like. A variety of such sensors are known in the art and may be adapted for use in sensing systems described herein.
  • substrate materials e.g., garments, sheet materials and the like
  • sensors providing data relating to temperature, moisture, humidity, stress, strain, heart rate, respiratory rate, blood pressure, blood oxygen saturation, blood flow, local gas content, bacterial content, multi-axis acceleration, positioning (GPS) and the like.
  • GPS multi-axis acceleration, positioning
  • pressure sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise non-silicon-based materials such as flexible, conductive “e-textile” fabric material(s).
  • sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise flexible, conductive fabric materials that are substantially isotropic with respect to their flexibility and/or stretch properties.
  • substantially isotropic we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material.
  • Suitable materials such as piezoresistive fabric sensors, coated and/or impregnated fabrics, such as metallic coated fabric materials and fabric materials coated or impregnated with other types of conductive formulations, are known in the art and a variety of such fabric sensors may be used.
  • pressure sensors comprise flexible conductive woven fabric material that is stretchable and/or elastic and/or substantially isotropic with respect to their flexibility and/or stretch properties.
  • Fabrics comprising a knitted nylon/spandex substrate coated with a conductive formulation are suitable for use, for example, in fabricating biometric pressure sensors and in other applications requiring environmental stability and conformability to irregular configurations.
  • One advantage of using these types of e-textile sensors is that they perform reliably in a wide variety of environments (e.g. under different temperature and moisture conditions), and they're generally flexible, durable, washable, and comfortably worn against the skin.
  • Suitable flexible conductive fabric materials are available, for example, from VTT/Shieldex Trading USA, 4502 Rt-31, Palmyra, N.Y. 14522, from Statex Productions &maschines GmbH, Kleiner Ort 11 28357 Bremen Germany, and from Eeonyx Corp., 750 Belmont Way, Pinole, Calif. 94564.
  • Fabric sensors may be mounted to/in/on, or associated with, an underlying substrate such as fabric or sheet material that's non-conductive and flexible.
  • fabric or sheet material refers to many types of pliable materials, including traditional fabrics comprising woven or non-woven fibers or strands, as well as fiber reinforced sheet materials, and other types of flexible sheeting materials composed of natural and/or synthetic materials, including flexible plastic sheeting material, pliable thermoplastic, foam and composite materials, screen-like or mesh materials, and the like.
  • the underlying substrate may comprise a sheet material fabricated from flexible fabric material that is stretchy and/or elastic.
  • the sheet material forming the underlying substrate may be substantially isotropic with respect to its flexibility and/or stretch properties.
  • substantially isotropic, we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material.
  • one or more sensor(s) and/or sensing devices may be mounted to (e.g., sewn or otherwise attached or connected or fixed to) an internal surface of a garment for contacting an individual's skin, directly or indirectly, during use, and detecting pressure exerted against an individual's skin, or other parameters sensed at or near a skin surface.
  • one or more sensor(s) may be mounted (e.g., sewn or otherwise attached or connected or fixed to) an external surface of a garment.
  • sensors may likewise be mounted to/in/on, or associated with (e.g., sewn or otherwise attached or connected to or fixed to) an underlying substrate that may be conveniently positioned as desired by the user, a caretaker or clinician.
  • conductive yarns and/or e-textile fabric sensors may be knitted into, sandwiched between substrate layers (as in compression socks) or otherwise incorporated in fabric substrates.
  • conductive fabric sensors may be partially or fully enclosed in a flexible barrier material or envelope.
  • Conductive fabrics employed for the sensors, leads and/or traces are generally water resistant and water resistant fabrics are suitably used, without the use of a barrier, for many applications.
  • natural liquids or other solutions e.g., water, sweat, other bodily fluids
  • the e-properties (e.g., electrical conductivity) of the material can be negatively affected by fluid contact and build-up of biological or other debris.
  • a substantially liquid impervious barrier may be provided to protect the sensor(s), leads and/or traces from direct contact with liquids or other materials.
  • a sandwich approach in which a conductive sensor is enclosed in a substantially liquid impervious barrier may be employed to protect the sensor from contact with liquids and preserve the core resistive features (e-properties) and functions of the sensor(s).
  • Providing a protective barrier covering and/or enclosing the sensor(s) may also be particularly useful in cases when the sensor(s) cannot be exposed directly to an open wound or to a particularly sensitive area of human skin.
  • the barrier may be placed to seal the sensor(s) alone, or the leads and/or traces may be sealed as well.
  • external surface(s) of the barrier layer(s) may be attached to the underlying substrate (e.g., garment, skin or the like) via adhesive materials or in other ways.
  • Each sensor is generally associated with two conductive leads, and each of the leads is electrically connected to a conductive trace conveying electrical signals to a signal transfer terminal.
  • Conductive e-textile fabric sensors as previously described may be electrically connected to conductive leads, or may have a flexible fabric lead associated with or incorporated in the fabric sensor footprint.
  • flexible, conductive e-textile leads may comprise conductive fabric materials having high electrical conductivity.
  • Other types of flexible leads including conductive yarns, fibers, and the like may also be used.
  • the conductive leads are electrically connected to flexible conductive traces, which may comprise a variety of flexible conductive materials, such as a conductive fabric, conductive yarn, or the like.
  • the conductive traces are stretchable and/or elastic, at least along the longitudinal axis of the conductive trace.
  • conductive traces comprise a conductive e-textile fabric having high electrical conductivity, such as silver coated e-textile materials, and may be bonded to the underlying substrate material using adhesives, heat bonding or non conductive threads. Suitable e-textile materials are known in the art and are available, for example, from the vendors identified above.
  • Sensor(s) as described herein and sensor systems may be associated with a variety of substrates including, without limitation, garments intended to be worn (directly or indirectly) against the skin of an individual, such as a shirt or tunic, underwear, leggings, socks, footies, gloves, caps, bands such as wrist bands, leg bands, torso and back bands, brassieres, and the like.
  • Sensors and sensor systems may additionally be associated with wraps having different sizes and configurations for fitting onto or wrapping around a portion of an individual's body, and with bands, bandages, wound dressing materials, as well as with other types of accessories that contact a user's body surface (directly or indirectly) such as insoles, shoes, boots, belts, straps, and the like.
  • Conductive leads associated with each sensor are electrically connected to conductive traces, as described, which terminate at signal transfer terminals associated with the underlying substrate garment, band, wrap, bandage, or the like.
  • Each of the conductive traces terminates in a signal transfer terminal that is mounted to/in/on, or associated with, the underlying substrate and can be associated with a mating signal receipt terminal of a dedicated electronic device (DED) having data storage, processing and/or analysis capabilities.
  • DED dedicated electronic device
  • conductive traces and terminals are arranged in a predetermined arrangement that corresponds to the arrangement of signal receipt terminals in the DED.
  • signal transfer and receipt terminals may be mounted in cooperating fixtures for sliding engagement of the terminals.
  • signal transfer terminals may be provided as conductive fixtures that are electrically connected to the conductive trace (and thereby to a corresponding sensor) and detachably connectible to a mating conductive fixture located on the DED.
  • the mating terminals may comprise mechanically mating, electrically conductive members such as snaps or other types of fasteners providing secure mechanical mating and high integrity, high reliability transfer of signals and/or data.
  • easy and secure mating of the terminals may be enhanced using magnetic mechanisms or other types of mechanisms that help users to properly connect/disconnect the mating terminals with minimal effort.
  • the mechanism may allow an overweight diabetic patient to reach down to his own legs or feet and easily snap or unsnap the DED to/from the wearable device without excessive effort.
  • the DED in addition to having data recording, processing and/or analysis capabilities, may incorporate an energy source such as a battery providing energy for data recording, processing and/or analysis, as well as providing energy for operation of one or more of the sensor(s).
  • the energy source is preferably a rechargeable and/or replaceable battery source.
  • the DED generally provides a lightweight and water-tight enclosure for the data collection and processing electronics and (optional) energy source and provides receiving terminals that mate with the transfer terminals connected to the sensor(s) for conveying data from the sensors to the dedicated electronic device.
  • Dedicated electronic devices having signal receipt terminals that mate with the signal transfer terminals associated with the substrate may take a variety of form factors, depending on the form factor of the underlying sensing substrate and/or the conditions and location of the device during use.
  • the signal transfer terminals may be arranged in proximity to one another in an ankle region of the sock, and the DED may have the curved form factor of a band that extends partially around the ankle or lower leg and attaches to the underlying signal transfer terminals and sock substrate along a front and/or side portion of the user's ankle or lower leg.
  • the signal transfer terminals may be arranged at or near an exposed end of the wrap or band following its application to an underlying anatomical structure or body surface, and the DED may be provided as a band or a tab or a dongle-like or capsule-like device having aligned signal receipt terminals.
  • the DED may be provided as a substantially flexible or a substantially rigid component, depending upon the application, and it may take a variety of forms.
  • the DED preferably communicates with and transfers data to one or more external computing and/or display system(s), such as a smartphone, computer, tablet computer, dedicated computing device, medical records system or the like, using wired and/or wireless data communication means and protocols.
  • the DED and/or an external computing and/or display system may, in turn, communicate with a centralized host computing system (located, e.g., in the Cloud), where further data processing and analysis takes place.
  • a centralized host computing system located, e.g., in the Cloud
  • Substantially real-time feedback including data displays, notifications, alerts and the like, may be provided to the user, caretaker and/or clinician according to user, caretaker and/or clinician preferences.
  • the DED may store the data temporarily to a local memory, and periodically transfer the data (e.g., in batches) to the above mentioned external computing and/or display system(s).
  • Offline processing and feedback including data displays, notifications and the like may be provided to the user, caretaker, and/or clinician according to user, caretaker and/or clinician preferences.
  • an authentication routine and/or user identification system matches the DED and associated sensing system (e.g., the collection of sensor(s) associated with an underlying substrate) with the user, caretaker and/or clinician, and may link user information or data from other sources to a software- and/or firmware-implemented system residing on the external computing system.
  • the external computing device may itself communicate with a centralized host computing system or facility where data is stored, processed, analyzed, and the like, and where output, communications, instructions, commands, and the like may be formulated for delivery back to the user, caretaker and/or clinician through the external computing device and/or the DED.
  • Calibration routines may be provided to ensure that the DED and connected related sensor system are properly configured to work optimally for the specific user.
  • Configuration and setup routines may be provided to guide the user (or caretaker or medical professional) to input user information or data to facilitate data collection, and various protocols, routines, data analysis and/or display characteristics, and the like, may be selected by the user (or caretaker or medical professional) to provide data collection and analysis that is targeted to specific users.
  • Notification and alarm systems may be provided, and selectively enabled, to provide messages, warnings, alarms, and the like to the user, and/or to caretakers and/or medical providers, substantially in real-time, based on sensed data.
  • FIG. 1 shows an exemplary sensing device having a sock form factor and having one or more sensor patches electrically connected to one or more terminals by means of conductive pathways.
  • FIG. 2 shows another exemplary sensing device similar to that shown in FIG. 1 and having a different arrangement of sensor patches electrically connected to terminals by means of conductive pathways.
  • FIG. 3 shows another view of an exemplary sensing device similar to that shown in FIGS. 1 and 2 .
  • FIG. 4 shows a view of terminals of the sensing device and an exploded view of a detachable dedicated electronic device that, when attached to terminals on the sock, captures and optionally processes, stores and/or analyzes sensed signals or data.
  • FIG. 5 shows an enlarged, exploded view of an exemplary detachable electronic device similar to that shown in FIG. 4 .
  • FIGS. 6A and 6B show schematic illustrations of exemplary sensors having leads provided in different configurations.
  • FIG. 7 shows an image illustrating a sensor of the type illustrated in FIG. 6A mounted on a fabric substrate, with each of the leads connected to a conductive trace.
  • FIG. 9 shows an image illustrating two exemplary sensors of the type illustrated in FIG. 6A mounted on a fabric substrate, with each of the leads connected to a conductive trace and each of the traces terminating in a conductive signal transmit terminal.
  • FIG. 10 shows an image illustrating the external surface of a fabric substrate in a sock-like form factor, showing multiple conductive terminals for mating with terminals of an intermediate device.
  • FIGS. 11A and 11B show images illustrating dedicated electronic component for connecting to signal transmit terminals having a curved form factor for mounting at an ankle or lower leg portion of a user.
  • FIGS. 12A and 12B show a schematic diagrams illustrating one embodiment of mating mechanical and magnetic fasteners providing a mechanical and electrical connection between the dedicated electronic component and the signal transmit terminals, via mating magnetic snaps.
  • FIG. 12A shows a schematic exploded diagram illustrating exemplary components of the male connector
  • FIG. 12B shows a schematic exploded diagram illustrating exemplary components of the female connector.
  • FIG. 13 shows an image illustrating a sensor-activated device of the type shown in FIGS. 7-10 having a sock-like form factor in place on a user's foot, with an intermediate device having an anklet-like form factor as shown in FIGS. 11A and 11B connected to the external terminals for data collection and, optionally, analysis.
  • FIG. 14 shows a block diagram illustrating basic components of an exemplary data collection device and illustrating its interface with sensors provided in a substrate, an external computing device, and a centralized host system maintained, for example, in the Cloud.
  • FIG. 15 shows an image illustrating an independently positionable sensor mounted to conductive leads and signal transmit terminals for placement at the discretion of a patient or care provider.
  • FIG. 16A illustrates the placement of an independently positionable sensor device of the type illustrated in FIG. 15 at a location (e.g., on the bottom of a patient's foot or between layers of bandages) where the patient and/or caretaker would like to monitor conditions (e.g., pressure and/or shear), and
  • FIG. 16B illustrates signal transfer terminals connected to conductive traces connected to the sensor that are positionable, for example at the top of a patient's foot or on the exterior of a bandage, for connection to a dedicated electronic component.
  • FIG. 17 shows an image illustrating one view of a sensing system using a sensor device as illustrated in FIGS. 15-16B in combination with a versatile wrap, with the conductive signal transfer terminals exposed for connection to an electronic intermediate such as a Dedicated Electronic Device (DED).
  • DED Dedicated Electronic Device
  • FIGS. 18A and 18B illustrate an exemplary textile sensor employing a protective, substantially liquid impermeable barrier.
  • FIG. 18A shows one face of the assembled sensor system and
  • FIG. 18B shows the opposite face of the assembled sensor system.
  • FIG. 19 schematically illustrates a sensing system having one or more sensors with leads and conductive traces terminating in terminals in a bandage or wrap form factor.
  • FIG. 20 schematically illustrates a fabric-based sensing system having multiple sensors with leads and conductive traces terminating in signal transmit terminals for connection to an intermediate electronic device for data collection, storage and/or processing.
  • FIG. 21 schematically illustrates a patient setup protocol, clinician dashboard and patient offloading data display for monitoring wounds such as foot ulcers.
  • FIGS. 22A-22L illustrate exemplary device set ups, calibration and monitoring criteria input and routines, along with an exemplary clinician dashboard, a graphical representation of patient offloading data, and an exemplary sample of acquired pressure data.
  • FIG. 22A shows exemplary setup and calibration steps;
  • FIG. 22B shows an exemplary patient data input routine;
  • FIG. 22C shows an exemplary device setup routine;
  • FIG. 22D shows an exemplary device setup routine;
  • FIG. 22E shows another exemplary device setup routine;
  • FIG. 22F shows another exemplary device setup routine;
  • FIG. 22G shows an exemplary monitoring routine setup;
  • FIG. 22H shows another exemplary monitoring routine setup;
  • FIG. 22I shows an exemplary user calibration routine;
  • FIG. 22A shows exemplary setup and calibration steps
  • FIG. 22B shows an exemplary patient data input routine
  • FIG. 22C shows an exemplary device setup routine
  • FIG. 22D shows an exemplary device setup routine
  • FIG. 22E shows another exemplary device setup routine
  • FIG. 22F shows
  • FIG. 22J shows an exemplary clinician dashboard presenting patient status information for a plurality of patients using a sensing device of the present invention
  • FIG. 22K shows an exemplary patient offloading data display
  • FIG. 22L shows exemplary pressure data collected using an exemplary sensing system of the present invention.
  • FIG. 23 shows an exemplary sensing system having sensors located in a sock, with one or more sensors electrically connected to one or more terminals, and subsequently to a dedicated electronic device located in a shin guard.
  • systems incorporating sensors, leads, traces and terminals may be mounted to and/or incorporated in or associated with a garment having a sock-like form factor.
  • a substrate material in the form of a sock may be equipped with one or more sensors, leads, traces and connectors that provide signals and/or data to a dedicated (and preferably detachable) electronic device that gathers data from each sensor and communicates to an external computer and/or mobile device.
  • Sensors used in footwear and sock applications typically include pressure sensors capable of detecting levels of pressure (and/or force and/or shear) at one or more areas of the foot and may include other types of sensors, including temperature, accelerometers, heart rate monitors and/or moisture sensors, and the like. Based on the detected pressure, force and/or shear at one or more areas of the foot, and trends in those parameters over one or more monitoring period(s), conclusions relating to the lack of proper offloading and related conditions of the underlying skin or tissue, healing progression (or lack of healing), discomfort, extent and seriousness of injury, and the like, may be drawn and may be communicated to the user, caretaker and/or clinician, essentially in real time.
  • notifications, alerts, recommended actions, and the like may also be communicated to the user, caretaker and/or clinician based on the data analysis, essentially in real time.
  • These systems are suitable for use in medical and patient adherence monitoring applications, diabetic (and other) foot monitoring, sports and fitness applications, footwear fitting applications, military applications, etc.
  • FIGS. 1-5 One embodiment of a sensor system embodied in a sock-like form factor is illustrated in FIGS. 1-5 .
  • a flexible and preferably stretchable fabric substrate in the form of a sock 1 has one or more sensors, shown as sensor patches 2 , optionally including one or more pressure sensors constructed from flexible and conductive fabric as disclosed herein.
  • Each of the sensor patches 2 has leads and conductive traces or threads 3 , each terminating in a conductive signal transfer terminal 4 .
  • the sensor patches 2 and conductive traces or threads 3 may be woven into the fabric forming the sock, or may be applied to a surface of the fabric forming the sock.
  • e-textile fabric pressure sensors are applied to an internal surface of the fabric that contacts a user's skin (directly or indirectly) when the sock is worn. Additional fabric sensors may be used in connection with the sock, and other types of sensors, including heat sensors (e.g., thermocouples), moisture sensors, and the like, may also be incorporated in the sock with leads and traces terminating in additional signal transfer terminals.
  • the conductive traces may be applied to an internal or external surface of the underlying fabric substrate, and the terminals preferably have a conductive transfer interface accessible to the external surface of the fabric substrate.
  • the signal transfer terminals 4 are positioned in proximity to the top of the sock, although it will be appreciated they may be positioned elsewhere.
  • the signal transfer terminals 4 that connect to the sensor(s) in the sock are connectible to mating signal receiving terminals of a detachable electronic device (DED).
  • DED detachable electronic device
  • FIGS. 4 and 5 Simplified diagrams illustrating exemplary DEDs are shown in FIGS. 4 and 5 .
  • Detachable electronic device 5 receives signals from each of the signal transfer terminals, and thus collects data from each of the sensors. As shown in FIG.
  • the DED may comprise mechanical interface(s) 6 for attaching the DED to terminals 4 located on the sock (or another sensing device); a housing component 7 protecting internal DED components and providing signal transfer from the sensing device (e.g., terminals on the sock) to internal DED components; electronic and communications components 10 and conductive terminals 9 receiving signals from terminals 4 in the sock sensing device; a mating ring 12 , and an external housing lid 13 having a power button 14 for activating the DED.
  • An alternative, simplified DED is shown in FIG.
  • DED 5 comprising mechanical interface(s) 6 for attaching the DED to terminals 4 located on the sock (or another sensing device); an integrated component 15 providing a housing, electronic and communications components, and an external housing lid 13 . It will be appreciated that many other types and styles of DEDs may be provided for interfacing with and downloading signals and/or data from the underlying sock sensing device.
  • mechanically mating snaps are used as terminal interfaces and operated as mechanical switches that are switched on and off abruptly by an external driving force from one switch position (attached) to a second position (detached).
  • conductive, magnetic snap switches are used as mating terminals for transferring signals and/or data from the sock to the DED.
  • FIGS. 12A and 12B show one specific design of such snaps: an external magnetic ring may be used on the male (DED) snap to attract and maintain solid connection with a magnetic component of a female portion of the snap located on the underlying substrate.
  • properties of the magnetic field may be used to create snaps that can only connect in one orientation: in this way, the user is guided to properly connect the DED to the sensor system(s) associated with the underlying substrate.
  • Circuitry in the DED may provide the ability to automatically turn the data collection on and off, for example, based on the presence of the magnetic connection between the DED and the sensor system. It will be appreciated that many other types of mechanical and non-mechanical interfaces may be used to attach and detach the DED from the signal transfer terminals, and to transfer signals and/or data from the sensing system to the DED.
  • Circuitry in the DED may be provided for reading the sensor signals; firmware may be provided for processing signal data, applying post processing algorithms and formatting the data for communication to an external computing and/or display device.
  • the DED may incorporate firmware and/or software components for collecting, filtering, processing, analyzing data, or the like.
  • the DED hosts firmware subroutines that apply at least some of the following: low pass filtering algorithms to reduce incoming signal noise; pull up resistors logic to avoid shorting of the device and additional noise filtering.
  • the DED may be physically attached to the sensing substrate (e.g., sock) for data collection and then detached from the sensor terminals and physically mounted (e.g., though a USB or another wired connection), to an external computing and/or display device such as a phone, personal computing device, computer, or the like to download data.
  • the DED preferably has wireless communication capability (e.g., using Bluetooth, WiFi, or another wireless standard) and transmits signals and/or data to a computing and/or display device wirelessly. The DED is thus connected through a communication system to an external electronic device having computing and/or display capabilities.
  • the external computing and/or display device generally hosts client firmware and/or software and processing firmware and/or software for processing, analyzing, communicating and/or displaying data. It will be appreciated that the division of functions and processing, such as data processing, analysis, communications and display functions as between the DED and the external computing and/or display device may vary depending on many factors and is, to at least some extent, discretionary.
  • client software and communications systems are hosted on the external computing device (e.g., a computer or a mobile device such as a tablet or smartphone), and provide feedback to and interact with the user, communicating through an Internet connection via web services, to push collected data and retrieve processed data from the service and display (or otherwise communicate) it to the user.
  • the client software may comprise a set of applications that can run on multiple platforms (not limited to personal computers, tablets, smartphones) and sub-components (diagnostics, troubleshooting, data collecting, snap and match, shopping) to deliver a rich and complete user experience. The experience can be also delivered through an Internet browser.
  • server software components that apply crowdsourcing logic and/or machine learning technologies may be implemented to identify, profile, and cluster user data.
  • the data may be stored in a database and may be continuously or intermittently updated with incoming user supplied and/or sensor supplied data.
  • An optional software component that provides image and pattern recognition capabilities may also be implemented. This feature may allow a user to input data (e.g. images, external data accessed from databases, etc.) without entering any text input.
  • e-textile fabric sensors may be used with (and/or applied to) other types of wearable garments (e.g., underwear, t-shirts, trousers, tights, leggings, hats, gloves, bands, and the like), and dedicated electronic devices having different configurations may be designed to interface with a variety of sensor systems embodied in different types of garments.
  • the type of sensor(s), garment(s), placement of sensor(s), user identification, and the like may be input during an authentication and initial device calibration set up protocol.
  • FIGS. 6A-13 Another exemplary embodiment of a sensor system using e-textile fabric sensors in a sock form factor is shown in FIGS. 6A-13 .
  • FIG. 6A-13 Another exemplary embodiment of a sensor system using e-textile fabric sensors in a sock form factor is shown in FIGS. 6A-13 .
  • FIG. 6A-13 Another exemplary embodiment of a sensor system using e-textile fabric sensors in a sock form factor is shown in FIGS.
  • FIG. 6A shows an exemplary fabric sensor S with leads L 1 and L 2 .
  • sensor S 1 comprises a rectangular piece of e-textile conductive fabric, and conductive leads L 1 and L 2 are positioned on opposite sides of sensor S 1 .
  • Conductive leads L 1 and L 2 are shown as integral extensions, or pieces, of the same conductive fabric of sensor S 1 , but alternative types of leads may also be used.
  • FIG. 6B shows a similar fabric sensor S 2 having integral leads L 3 , L 4 extending from a common side of the sensor.
  • FIG. 6B shows a similar fabric sensor S 2 having integral leads L 3 , L 4 extending from a common side of the sensor.
  • Conductive leads having the same properties as the sensors may be used, or other types of conductive leads may be employed.
  • the arrangement of leads with respect to sensor(s) may vary, depending on the properties, size and configuration of the sensor and lead components.
  • E-textile fabric sensors are mounted to, or associated with, the underlying fabric substrate (e.g., a stretchable, knit fabric) in a variety of ways, including sewing, adhesive bonding, thermal bonding, and the like.
  • FIG. 7 shows an e-textile fabric sensor S 1 having the configuration shown in FIG. 6A attached to the inside of a stretchable, knit sock.
  • Sensor leads L 1 and L 2 are sewn or bonded to the underlying sock, and conductive traces T 1 and T 2 are mounted and electrically connected to leads L 1 and L 2 , as shown.
  • conductive traces T 1 and T 2 are fabricated from e-textile fabric materials having different properties from the materials of the sensor S 1 and leads L 1 and L 2 .
  • conductive terminals CT 1 , CT 2 terminate in conductive terminals CT 1 , CT 2 , as shown in FIGS. 8-10 .
  • conductive terminals CT 1 , CT 2 are provided as conductive mechanical snaps, illustrated in FIG. 8 , that penetrate the substrate sock material from the interior to the exterior surface of the sock.
  • the interior of the sock having the sensor/lead/trace/terminal arrangement is illustrated in FIG. 9 .
  • Multiple fabric sensors may be implemented, resulting in multiple conductive terminals communicating data collected from multiple sensors located in different areas of the foot.
  • FIG. 10 The exterior of the sock having signal transfer terminals CT 1 , CT 2 corresponding to a first sensor, and signal transfer terminals CT 3 and CT 4 corresponding to a second sensor, is illustrated in FIG. 10 .
  • the signal transfer terminals are aligned along a upper circumference of the sock, shown in this embodiment as an anklet.
  • FIGS. 12A and 12B One embodiment of a signal transfer and signal receipt terminal configuration that detachably mates, mechanically and magnetically, is shown in FIGS. 12A and 12B .
  • This is a mechanical two-part snap device having mating male ( FIG. 12A ) and female ( FIG. 12B ) connector components, as shown.
  • the male connector 20 comprises a central conductive pin element 21 surrounded by a non-conductive ring member 22 and having a magnetic perimeter portion 23 .
  • the female connector 25 comprises a central conductive pin receiving element 26 and contact that is electrically connected to the conductive area of the male connector when the connector portions are mechanically and/or magnetically connected to one another.
  • Female connector 25 also comprises a non-conductive collar 27 and a magnetic collar 28 sized and configured to mate with corresponding components of the male connector.
  • FIGS. 12A and 12B are shown in an exploded view; when assembled, the connector components nest to provide compact, highly functional connectors.
  • the polarity of magnetic components 23 , 28 may be arranged to provide male and female connectors that are connectable only when magnetically aligned in a predetermined orientation, which may facilitate user connection of the mating terminals.
  • this exemplary mating terminal configuration is illustrated having a round configuration, it will be appreciated that other configurations, including oval, linear, polygonal, and the like, may be used.
  • FIGS. 11A and 11B illustrate one exemplary embodiment of a dedicated electronic device (DED) 40 having signal receipt terminals RT 1 , RT 2 , RT 3 , RT 4 that mate mechanically with conductive terminals such as CT 1 -CT 4 to provide signal and/or data transfer from the sensor/lead/traces associated with the sock substrate to the DED.
  • DED 40 as illustrated in FIGS. 11A and 11B , comprises a curved housing or case enclosing an interior space containing processing, memory and/or communications components.
  • DED 40 may be installed on the exterior of a sock in the ankle or lower leg area of the user, as illustrated in FIG. 13 .
  • DED 40 preferably provides a protective and watertight housing or case protecting the electronic components provided within the housing.
  • the housing may be provided as a substantially rigid or a substantially flexible component and a variety of DED form factors may be provided, depending on the type and arrangement of underlying substrate and signal transfer terminals.
  • the DED incorporates processing, memory and/or communications functionalities within the housing.
  • a schematic diagram illustrating exemplary DED components and interfaces is shown in FIG. 14 .
  • the DED has signal receipt terminals (shown as “snap connectors”) that feed analog input signals to appropriate processing means, such as analog filters, A/D converters, and to a processing component.
  • processing means such as analog filters, A/D converters, and to a processing component.
  • Optional manual control input(s) and one or more optional output display(s) may be provided in or on the DED, as shown.
  • Local memory may also be provided, and means for communicating signals and/or data externally via wired or wireless protocols may be provided, as shown.
  • Signals and/or data is communicated from the DED to an external computing facility or device, such as a computer, base station, smartphone, or another bridge device, and/or to a centralized, hosted facility in a remote location, such as in the Cloud or at a centralized data processing and analysis facility.
  • an external computing facility or device such as a computer, base station, smartphone, or another bridge device
  • a centralized, hosted facility in a remote location such as in the Cloud or at a centralized data processing and analysis facility.
  • data output, analysis, notifications, alerts, and the like are communicated from the centralized hosted facility to the bridge device, and/or the DED, as shown. It will be appreciated that this is one exemplary data flow scheme, and that many other work flows may be advantageously used in connection with sensing systems of the present invention.
  • FIG. 15 schematically illustrates an independently positionable sensor system compnsmg a flexible pressure sensor S 1 electrically connected, via leads (not visible), to conductive traces T 1 and T 2 , which are in turn electrically connected to conductive signal transfer terminals CT 1 and CT 2 .
  • the pressure sensor S 1 , leads, and/or conductive traces may be mounted to or associated with an underlying non-conductive flexible substrate to provide mechanical integrity to and enhance the durability of the system.
  • independent flexible sensor system may be fabricated using a wide variety of sensor sizes, and sensor functions, trace lengths, configurations, underlying substrates, and the like, and that additional and different types of sensors may be incorporated in such independent flexible sensor systems, as described above.
  • FIGS. 16A and 16B schematically illustrate the use of an independently positionable sensor system on the surface of or within a bandage wrapped around a foot.
  • FIG. 16A shows the sensor S 1 positioned as desired at a location near the bottom of the foot.
  • the sensor S 1 may be anchored to the desired sensing location, if desired, using a variety of non-conductive anchoring means such as hook and loop and other types of fasteners.
  • Fastening means such as hook and loop fasteners, may be mounted on or associated with a surface (or partial surface) of the sensor S 1 .
  • the conductive traces T 1 , T 2 transmit signals/data to conductive signal transfer terminals CT 1 , CT 2 positioned or positionable at an accessible external location, such as at the top of the foot or at an ankle or lower leg position, as shown in FIG. 16B , providing access for connection of a DED and data downloading.
  • Wraps, bands, bandages, or other anchoring systems may be wrapped around the sensor system following placement to secure the sensor system, and sensor, in place at the desired sensing location and to maintain external access to the signal transfer terminals.
  • FIG. 17 illustrates a foot wrap 50 having an integrated sensor system, or employable in combination with an independently positionable sensor system such as that illustrated in FIGS. 16A and 16B positioned inside the wrap 50 , between the interior surface of wrap 50 and the foot (or another body surface).
  • the sensor is located at a desired sensing site on the foot and the conductive signal transfer terminals CT 1 , CT 2 are positioned outside wrap 30 at a location that is accessible to a DED.
  • this type of wrap system is shown and described with reference to a foot wrap, it may be embodied in various types of wraps, bandages, wound and/or ulcer dressing materials and the like having a variety of sizes, configurations, and sensing capabilities.
  • the location of the sensor(s) and conductive signal transfer terminals, and the path of the conductive traces, is highly flexible and may be adapted for sensing in many different types of applications.
  • FIGS. 18A and 18B illustrate one exemplary embodiment in which one or more protective layers or materials may be provided to protect one or more sensor(s) and, optionally the associated leads, and all or portions of conductive traces, from contact with liquids, body fluids or other solutions, while preserving the core resistive features and functions of the sensor(s).
  • a protective barrier may comprise a liquid impervious or substantially liquid impervious material, such as a generally thin plastic sheet material or a composite sheet material, that doesn't interfere with the sensing capacity of the sensor.
  • substantially liquid impervious we mean that liquid penetration of the material is insubstantial enough to affect the features and functions of the sensor(s).
  • the protective barrier may optionally be breathable and/or gas permeable.
  • a protective barrier may be provided on one surface of the sensor; in some embodiments, a sandwich- or envelope-type barrier that substantially seals the sensor in a substantially liquid impermeable envelope or pouch may be used.
  • barrier 30 comprises a thin, flexible sheet material and extends over and around sensor S, enclosing the sensor in a liquid impervious barrier or envelope.
  • surfaces or edges of barrier 30 are sealed, forming a pouch around the perimeter of sensor S at seal 31 .
  • An adhesive band 32 may be provided on one face (or both faces) of the protective barrier for mounting the sealed sensor component to an underlying surface or substrate (such as a garment, the skin of the user, or the like). Although adhesive band 32 is shown forming a peripheral band outside seal 31 , it will be appreciated that adhesive components, as well as other types of mounting mechanisms, may be applied to or used in connection with protected sensor components. In the embodiments shown in FIGS.
  • sensor S and leads L 1 and L 2 are encased within protective barrier 30 ; conductive traces T 1 and T 2 exit barrier 30 for attachment to conductive signal transfer terminals (not shown). Additional material layers may be provided inside and/or outside the barrier as shown in FIG. 18B to provide any desired functionality.
  • FIG. 19 schematically illustrates flexible pressure sensors S having conductive leads L 1 , L 2 electrically connected to conductive traces T 1 , T 2 in place on a flexible bandage 35 or on a wrap or another substrate for placement on or near wounds.
  • the signal transfer terminals (not shown) are located on opposite sides of the bandages and may be connected to independently positionable signal receiving terminals for signal transfer. This system provides flexibility as to placement of the bandages having different sizes and configurations on different body surfaces and on body surfaces of different sizes and configurations, while permitting convenient and flexible signal transfer.
  • FIG. 20 schematically illustrates a plurality of pressure sensors (S 1 -S 6 ) mounted to/in/on, or associated with, a substrate sheet material 36 that's flexible and non-conductive.
  • Each of the sensors S 1 -S 6 has conductive leads electrically connected to conductive traces that terminate in signal transfer terminals located at the edge of the substrate 36 .
  • the signal transfer terminals are connectible to mating signal receiving terminals of one or more DED(s), also mountable at the edge of the substrate.
  • the DED may have a strip-like form factor for connecting to aligned signal transfer terminals.
  • This type of sensor arrangement and system may be used, for example, in connection with various types of garments, bed sheets, chair pads, or the like, to provide data regarding pressure and/or shear at locations where a user sits, lies, or the like.
  • FIG. 21 schematically illustrates exemplary computer- and/or firmware- and/or software-implemented processes used by a medical monitoring system of the present invention.
  • patient setup and (optional) device authentication, program selection and the like are provided, as well as a user and/or clinician dashboard providing data output and analysis in accordance with the program selection.
  • output returned to the user and/or clinician is illustrated as patient offloading data, expressed as excess pressure, which provides information to the user and/or clinician as to pressure conditions (and conditions of the underlying skin and tissue) at the site of any of the pressure sensors provided in the system.
  • a garment having one or more sensing systems as described herein is positioned on a user with sensor(s) positioned in proximity to a body area desired to be monitored, or an independently positionable sensing band, or bandage, or substrate is positioned relative to one or more body surface areas of a user desired to be monitored.
  • a dedicated electronic device is mounted to/on or associated with exposed signal transfer terminals of the sensing system and an authentication protocol is initiated to match the garment/sensing system to the user.
  • the authentication protocol optionally loads user data, profile information, and the like, to one or more hosted systems, such as a centralized data processing and analysis facility, a medical records facility, a caretaker system, clinician dashboard, or the like.
  • Sensor calibration may then be conducted based on user specific information, conditions, and the like, and thresholds, limits or specific ranges, monitoring protocols, notifications, alerts, and the like may be selected by the user, a caretaker, clinician, or by the system to apply user-specific monitoring routines, parameters, and the like. Intermittent or substantially continuous user monitoring may then be initiated, with monitoring data and results provided to the user, a centralized data processing and analysis facility, a medical records facility, a caretaker system, clinician dashboard, and the like. Changes and updates to monitoring protocols may be implemented based on monitoring feedback, changes in user condition, etc.
  • FIGS. 22A-22L schematically illustrate exemplary device set up, calibration and monitoring criteria input, along with an exemplary clinician dashboard, a graphical representation of patient offloading data, and an exemplary sample of acquired pressure data.
  • Processing systems and means for executing device set up and calibration, and for monitoring and reporting sensed data may reside at a computing facility that is remote from the sensing device or means and the dedicated electronic device and may comprise computer implemented systems and methods at a host computer system, a medical facility computer system, in a computing environment such as the Cloud, or the like. Reports may be displayed at the computing facility, or at any display device (e.g. a monitor, smartphone, computer, electronic healthcare system, or the like) that is capable of communicating with the computing facility.
  • any display device e.g. a monitor, smartphone, computer, electronic healthcare system, or the like
  • FIG. 22A schematically illustrates an exemplary setup and calibration protocol involving a patient information setup routine, a device information set up routine, a monitoring criteria set up routine and a calibration routine.
  • routines are available for patients having different conditions, for different device configurations, sensor types and locations, monitoring protocols, and the like.
  • routines may be programmed or programmable and selectable by a user and/or by medical personnel.
  • the routines may reside in the DED, a computing device or another bridge device, in cloud services, or the like.
  • FIG. 22B schematically illustrates an exemplary patient data collection protocol forming part of the patient information setup.
  • a doctor or another medical professional can collect and input data to associate to the specific patient/device pair.
  • Patient identification, patient-specific information like weight, height, condition, physician, ulcer location and condition, as well as procedures undergone, hospital admissions, notes, and the like not only add information related to the specific case, but can also be used as guidance for the device calibration procedure. This information also provides meaningful data to use in aggregated views of the overall patient data.
  • FIGS. 22C-22F schematically illustrate exemplary device setup protocols including a sensor activation selection menu.
  • the system model number and identification is provided, along with the type of data collection. Real-time alerting and notification features may be selected.
  • Various sensors and sensor locations may be selected and activated, while others may remain inactivated, as shown in FIGS. 22C and 22D .
  • FIG. 22D illustrates an exemplary sensor activation menu for a sock type sensor surface, where the doctor or medical assistant can activate specific sensors in a set of 5 available for the specific example.
  • FIG. 22E illustrates an exemplary sensor activation menu for a dressing/wrap type sensor surface, where the doctor or medical assistant can specify which type of sensor (A, B, C in the specific example) will be used for any specific patient.
  • FIG. 22F illustrates an exemplary sensor activation menu for an insole type sensor surface, where the doctor or medical assistant can activate specific sensors in a set of 5 available for the specific example.
  • FIG. 22G schematically illustrates monitoring criteria selection menus, including a monitoring threshold selection menu and a notification selection and activation menu.
  • FIG. 22H schematically illustrates in more detail the monitor thresholds and notification selection and activation menu.
  • the doctor or medical assistant can define different thresholds to monitor before and after the first 72 hours post medical procedure or post sensor activation.
  • the exemplary monitor thresholds define two levels of severity: yellow and red.
  • the yellow threshold can be surpassed for a limited period of time (for example 5 minutes every hour) without consequence: after this time-based threshold has been surpassed, the system will alert the patient or caregiver according to a notification or alert protocol.
  • This embodiment also allows the use and selection of a red threshold that, if it is surpassed at any time, the system alerts the patient or caregiver immediately.
  • Thresholds are managed through a hysteresis cycle, to avoid multiple alerts to be raised when the pressure level is averaging around the threshold level.
  • the threshold levels can be preset by the parameters input for the patient and based on historical data, or defined/tuned by the doctor or medical assistant.
  • Notifications may include vibration of the device, e-mails sent to specific addresses, text messages sent to specific phone numbers, robo-calls from an automated speech system, or the like, and the notification type, frequency, etc. may be set by the user or a medical professional as part of the monitoring routine, as shown.
  • daily reports may be sent to the doctor or caregiver for each patient using such a sensor system.
  • FIG. 22I schematically illustrates a sample calibration protocol for automatic set up of parameters such as filter thresholds, signal gain, voltage-to-pressure formulae, and the like, based on user-specific criteria.
  • background data may be collected while the user is in various positions or doing various activities, such as sitting, standing, walking, or the like, to collect patient-specific data so that various parameters of the sensing system may be normalized to, or standardized against patient-specific “normal” parameters.
  • FIG. 22J illustrates an exemplary clinician dashboard displaying diabetic patient data by patient name, medical condition, foot ulcer location and condition, medical procedural history, monitoring sensor device and location, substantial real-time monitoring information, and patient status based on monitoring information.
  • patients are categorized in red, yellow or green status based on monitoring information so that clinicians may contact and check on patients having conditions categorized in the red status and avert more serious conditions.
  • the doctor or medical assistant can pivot the data on different “dimensions”, such as type of offloading device, medical condition, ulcer location, etc.
  • the doctor or medical assistant can also filter and sort data based on the same dimensions, to extract a view of the data aggregated for specific area of interest, both for ease of access as well as statistical purpose. For example, by analyzing this data as aggregate, specific types of offloading devices, coupled with specific types of monitoring devices used, might show a better outcome for patients with ulcers in the metatarsal area.
  • FIG. 22K schematically illustrates a patient offloading data display clearly showing excessive pressure exerted at sensing locations in real-time and historically, and providing a history of notifications and alerts provided.
  • This data can be used by the doctor or medical assistant for the purpose of analyzing in detail the behavior of a patient, observing correlations and outcomes, as well as to provide the basis for honest conversations with patients about their behavior and how it affects the healing process.
  • the same data can also be used to send reports to the patient, with emphasis on the good habits and positive reinforcement to improve the adherence and help the healing process.
  • FIG. 22L schematically illustrates sensed force/pressure data collected using a sensing system as described herein with sensors located at the heelbone and at a metatarsal area, with signals in areas A and B illustrating data collected while the user walked 10 steps; signals in area C corresponding to the user jumping, signals in area D corresponding to the user shifting his weight, and signals in areas E and F illustrating data collected while the user walks additional steps following the previous activity.
  • signals in areas A and B illustrating data collected while the user walked 10 steps
  • signals in area C corresponding to the user jumping
  • signals in area D corresponding to the user shifting his weight
  • signals in areas E and F illustrating data collected while the user walks additional steps following the previous activity.
  • sensors and sensor systems described herein are applicable to patients with multiple types of foot related problems such as flat foot, injuries from accidents or military personnel injured on the battle field or patients suffering from peripheral neuropathy, and more specifically diabetic neuropathic feet wherein portions of the foot may be insensitive to pressure.
  • the user, caretaker and/or clinician may be alerted to lack of patient adherence to offloading guidance, areas of excess pressure and/or shear, substantially in real-time, to facilitate prevention of ulcer formation and to promote ulcer and wound healing.
  • a user/patient or an athlete wears a sock incorporating a flexible sensing system, as described. They turn on the device using a switch on the DED and put the foot in a shoe.
  • the DED establishes a connection with one or more remote computing devices or services (e.g., via USB/Wi-Fi/Bluetooth/other medium), and pressure-related data is transferred to the remote computing device/service, where data processing and analysis takes place.
  • Ranked recommendations related to patient adherence, performance and goal achievements, injury preventions, what/if analysis may be communicated and displayed to the patient, athlete and/or coach/caregiver in substantially real-time, allowing the patient, athlete and/or coach/caregiver to make changes to the patient's or athlete's behavior or activity in response to the sensed pressure and returned results.
  • systems incorporating the DED and signal receipt terminals may be mounted to and/or incorporated in or associated with other types of intermediate dedicated electronic devices, such as a protective device (e.g., a shin guard).
  • a protective device e.g., a shin guard
  • FIG. 23 a substrate material in the form of a sock may be equipped with one or more sensors S 1 . . . Sn, leads and traces T 1 . . . Tn that provide signals and/or data to a set of terminals CT 1 . . . CTn.
  • the terminals may comprise snaps, or connectors, mounted on the sock (male or female part) and on mating locations on a protective device, such as a shin guard device (female or male counterpart).
  • the connectors on the sock may be located in areas where the shin guard usually overlies the sock, such that the counterpart connectors on the shin guard easily snap together and connect not only the terminals, but the sock and the shin guard.
  • the shin guard can be manually positioned between the sock and the shin of the wearer, of be inserted in a proper fabric socket built-in the sock.
  • the shin guard is generally fabricated from a harder outer casing material and a shock absorber material on the inside.
  • Sensors and sensing systems of the present invention may also be used to assist in footwear fitting.
  • sensors When consumers buy or order footwear in a store or online, it's difficult to assess proper fit, particularly given the large selections available and without the ability to try on footwear in their specific everyday scenario. Even when consumers shop in a store and have the ability to try footwear on, the location and the limited time and experience may not identify poorly fitting footwear. This results in lost sales opportunities and high return rates, which discourages consumers from making online purchases and significantly raises sales costs for online merchants. Being able to purchase and order footwear having confidence that it will fit well would provide substantial benefit.
  • Pressure sensor(s) incorporated in a sock form factor, or positioned as independently positionable sensors may be used to detect pressure on different points and areas of the foot and identify areas of discomfort.
  • analytics may find and display recommended fit options for shoes, insoles and/or orthotics for specific individuals, and the individual may be alerted in real-time as to recommended fit options.
  • the device-collected sensor data can be augmented with individualized information provided directly by the user(s), such as requested shoe type, model, or other search criteria.
  • pressure sensors incorporated in a sock form factor, or in independently positionable sensing systems may collect comfort and anatomic data as well as data relating to humidity, temperature, and other parameters at one or more locations on an individual's foot.
  • the collected data may be augmented with user provided information, such as requested shoe type, model, and other search criteria, which may be processed to provide output as individual-specific recommendations and alerts.
  • a user may take a picture of a shoe and send the image to a computing device or service (e.g. via e-mail).
  • the footwear image may be processed and matched to footwear metadata maintained in one or more database(s) to identify potential matching footwear.
  • a selection of related shoes, including the matching one, may be presented to the user. The selection may take in account comfort zones and foot anatomy of the current user that share common features and needs, and may rank the returned selection according to various parameters or user preferences.
  • the DED control software collects data from a sensor system to determine the anatomy of the foot.
  • footwear recommendations may be displayed to the wearer, ranked according to projected fit, or other user preference(s). These systems, or similar systems, may be used to find and display ranked recommended fit options for footwear, insoles and/or orthotics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Business, Economics & Management (AREA)
  • Dermatology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

Sensing devices including flexible and stretchable fabric-based pressure sensors may be associated with or incorporated in garments intended to be worn against a body surface (directly or indirectly), or may be associated with other types of flexible substrates, such as sheet-like materials, bandages, and other materials that contact the body (directly or indirectly), and may be provided as independently positionable sensor components. Systems and methods for storing, communicating, processing, analyzing and displaying data collected by sensor components for remote monitoring of conditions at body surfaces, or within the body, are also disclosed. Sensors and sensor systems provide substantially real-time feedback relating to current body conditions and may provide notifications or alerts to users, caretakers, and/or clinicians, enabling early intervention when conditions indicate intervention is appropriate.

Description

    REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a divisional application of U.S. patent application Ser. No. 13/753,456, filed Jan. 29, 2013, which claims priority from U.S. Provisional Patent Application No. 61/592,333, filed Jan. 30, 2012 and from U.S. Provisional Patent Application No. 61/747,877 filed Dec. 31, 2012. The disclosures of the previous applications are incorporated by reference herein in their entireties.
  • FIELD
  • The present invention relates generally to sensors, including flexible and stretchable fabric-based pressure sensors, that may be associated with or incorporated in garments intended to be worn against a body surface (directly or indirectly). Sensors may also be associated with or incorporated in sheet-like materials, bandages and other accessories that contact the body (directly or indirectly), and may be provided as independently positionable sensor components. Systems and methods for storing, communicating, processing, analyzing and displaying data collected by sensor components for remote monitoring of conditions at body surfaces, or within the body, are also disclosed. Sensors and sensor systems provide substantially real-time feedback relating to current body conditions and may provide notifications or alerts to users, caretakers and/or clinicians, enabling early intervention when conditions indicate intervention is appropriate.
  • BACKGROUND
  • Various types of sensing systems have been incorporated in shoes, insoles, socks and garments for monitoring various physiological parameters for various applications, including recreational, sporting, military, diagnostic and medical applications. Medical applications for sensing pressure, temperature and the like for purposes of monitoring neuropathic and other degenerative conditions with the goal of alerting individual and/or medical service providers to sensed parameters that may indicate the worsening of a condition, lack of healing, and the like, have been proposed. Footwear-related sensing systems directed to providing sensory data for patients suffering from neuropathy, for gait analysis, rehabilitation assessment, shoe research, design and fitting, orthotic design and fitting, and the like, have been proposed.
  • Potential causes of peripheral neuropathy include diabetes, alcoholism, uremia, AIDS, tissue injury and nutritional deficiencies. Peripheral neuropathy is one of the most common complications of diabetes and results in wounds, ulcers, etc., which may be undetected and unsensed by the individual. There are 25 million diabetics in the US alone, with a projected population of 500 million diabetics worldwide by 2030. In the presence of neuropathy, diabetic patients often develop ulcers on the sole of the foot in areas of moderate or high pressure and shear, often resulting from walking during normal daily activities. About 70% of diabetics have measurable neuropathy, and every year about 5% of those patients get foot ulcers, and about 1% requires amputations. Foot ulcers are responsible for more hospitalizations than any other complication of diabetes and result in at least $40 billion in direct costs annually.
  • There is strong evidence that uncomplicated plantar ulcers can be healed in 6-8 weeks, yet current US clinical trials have reported a 76% treatment failure rate at 12 weeks. Many approaches to monitoring diabetic patients for the purpose of preventing ulceration from occurring, or to facilitate healing of existing ulcers, have been proposed, yet little or no improvement in ulceration or its complications has been observed. Off-loading may be an important aspect of ulcer prevention and healing. In “Practical guidelines on the management and prevention of the diabetic foot,” the authors concluded that mechanical off-loading is the cornerstone of treatment for ulcers with increased biomechanical stress. See, Diabetes Metab. Res. Rev. 2008; 24 (Suppl 1): S181-S187. It has been demonstrated that the offloading capacity of custom-made footwear for high-risk patients can be effectively improved and preserved using in-shoe plantar pressure analysis as guidance for footwear modification, which should reduce the risk of pressure-related diabetic foot ulcers. See, e.g., Diabet. Med. 2012 December;29 (12):1542-9. Sensing devices and footwear having sensors incorporated for monitoring pressure and other body parameters have been proposed. These devices have generally not been successful in preventing ulceration or accelerating healing of wounds, in part as a result of poor patient compliance. Notwithstanding the existence of several pressure sensing systems, the incidence of, patient pain and costs associated with diabetic ulcers has not declined. In one aspect, the components and assemblies for collection and analysis of data from sites such as feet and other body surfaces described herein are directed to providing intermittent or continuous monitoring and reporting of body conditions (such as pressure) at body locations for purposes of reducing the incidence and severity of ulcers and other wounds and accelerating the pace and quality of wound healing. In other aspects, sensors, interfaces, systems and materials described herein for collection and analysis of physiological and biomechanical data from sites such as feet and other body parts may be used for a variety of sports-related, military, fitness, diagnostic and therapeutic purposes.
  • SUMMARY
  • In one aspect, sensor systems of the present invention comprise one or more sensor(s) mounted to or incorporated in or associated with a substrate material such as a wearable garment, a wearable band, an independently positionable component, or another substrate, such as a flexible and/or pliable sheet material. In one aspect, sensors are capable of sensing a physiological parameter of the underlying skin or tissue, or sensors are capable of sensing force or pressure exerted on or against an underlying skin or tissue. Each sensor is electrically connected, via one or more flexible leads, to a flexible conductive trace mounted to or incorporated in or associated with the substrate, and conductive traces terminate at conductive signal transfer terminals mounted to or incorporated in or associated with the substrate. Sensor systems and sensing devices described herein preferably comprise at least one flexible sensor (or means for sensing), and one or more of the sensor(s), flexible leads, and conductive traces may be stretchable and/or elastic as well as being flexible. In some embodiments, the sensor(s), flexible leads and conductive traces may all comprise flexible, pliable electrically conductive fabric materials. Garments incorporating such sensor systems and sensing devices may be comfortably worn by users under many conditions, providing real time monitoring of conditions at or near body surfaces to the user, a caretaker, and/or clinician.
  • The signal transfer terminal(s) on the substrate may be matingly received in signal receipt terminals associated with a Dedicated Electronic Device (DED) that is attachable to the substrate and serves as a (temporary or permanent) data collection device. The DED may also (optionally) house batteries or other energy storage devices and serve as a sensor charging device. The DED communicates with one or more external electronic device(s), such as a smartphone, personal computing device/display, host computer, or the like for signal transfer, processing, analysis and display to a user and/or others. In some embodiments, the external electronic device, and/or the DED, communicates with an external, hosted computing system (operated, e.g., at a centralized, hosted facility and/or in the “Cloud”) that provides additional data analysis, formulates feedback, notifications, alerts, and the like, that may be displayed to the user, a caretaker, and/or a clinician through one or more computing and/or display devices.
  • In some embodiments, one or more sensor(s) detect changes in voltage or resistance across a surface area that is associated with force exerted on the sensor, which is related to pressure (as force per unit surface area) and/or shear. In some embodiments, FSR (Force Sensitive Resistor) or piezo-resistive sensors may be used. One type of piezoresistive force sensor that has been used previously in footwear pressure sensing applications, known as the FLEXIFORCE® sensors, can be made in a variety of shapes and sizes, and measure resistance, which is inversely proportional to applied force. These sensors use pressure sensitive inks with silver leads terminating in pins, with the pressure sensitive area and leads sandwiched between polyester film layers. FLEXIFORCE® sensors are available from Tekscan, Inc., 307 West First Street, South Boston, Mass. 02127-1309 USA. Other types of sensors may also be integrated in or associated with various substrate materials (e.g., garments, sheet materials and the like), including sensors providing data relating to temperature, moisture, humidity, stress, strain, heart rate, respiratory rate, blood pressure, blood oxygen saturation, blood flow, local gas content, bacterial content, multi-axis acceleration, positioning (GPS) and the like. A variety of such sensors are known in the art and may be adapted for use in sensing systems described herein.
  • In some embodiments, pressure sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise non-silicon-based materials such as flexible, conductive “e-textile” fabric material(s). In some embodiments, sensors and/or associated leads and/or conductive traces incorporated in sensing systems of the present invention comprise flexible, conductive fabric materials that are substantially isotropic with respect to their flexibility and/or stretch properties. By “substantially” isotropic, we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material. Suitable materials, such as piezoresistive fabric sensors, coated and/or impregnated fabrics, such as metallic coated fabric materials and fabric materials coated or impregnated with other types of conductive formulations, are known in the art and a variety of such fabric sensors may be used. In some embodiments, pressure sensors comprise flexible conductive woven fabric material that is stretchable and/or elastic and/or substantially isotropic with respect to their flexibility and/or stretch properties.
  • Fabrics comprising a knitted nylon/spandex substrate coated with a conductive formulation are suitable for use, for example, in fabricating biometric pressure sensors and in other applications requiring environmental stability and conformability to irregular configurations. One advantage of using these types of e-textile sensors is that they perform reliably in a wide variety of environments (e.g. under different temperature and moisture conditions), and they're generally flexible, durable, washable, and comfortably worn against the skin. Suitable flexible conductive fabric materials are available, for example, from VTT/Shieldex Trading USA, 4502 Rt-31, Palmyra, N.Y. 14522, from Statex Productions & Vertriebs GmbH, Kleiner Ort 11 28357 Bremen Germany, and from Eeonyx Corp., 750 Belmont Way, Pinole, Calif. 94564.
  • Techniques for deriving force and/or pressure measurements using e-textile fabric materials are known in the art and various techniques may be suitable. See, e.g., http://www.kobakant.at/DIY/?p=913. Techniques for measuring other parameters using e-textile fabric materials, such as humidity and temperature measurements, are also known and may be used in sensing systems of the present invention. See, e.g., http://www.nano-tera.ch/pdf!posters2012/TWIGS105.pdf. Fabric sensors of the present invention may thus be capable of monitoring various parameters, including force, pressure, humidity, temperature, gas content, and the like, at the site. Additional monitoring capabilities may be available using fabric sensors as innovation in fabric sensors proceeds and as nano-materials and materials incorporating nano-structures are developed and become commercially feasible. Flexible (and optionally stretchable or elastic) conductive fabric sensor(s), leads and/or traces may be mounted to/in/on, or associated with, an underlying substrate such as fabric or sheet material that's non-conductive and flexible. The term “fabric” or “sheet material” as used herein, refers to many types of pliable materials, including traditional fabrics comprising woven or non-woven fibers or strands, as well as fiber reinforced sheet materials, and other types of flexible sheeting materials composed of natural and/or synthetic materials, including flexible plastic sheeting material, pliable thermoplastic, foam and composite materials, screen-like or mesh materials, and the like. The underlying substrate may comprise a sheet material fabricated from flexible fabric material that is stretchy and/or elastic. The sheet material forming the underlying substrate may be substantially isotropic with respect to its flexibility and/or stretch properties. By “substantially” isotropic, we mean to include materials that have no more than a 15% variation and, in some embodiments, no more than a 10% variation in flexibility and/or stretch properties in any direction, or along any axis of the material.
  • For garment applications, for example, one or more sensor(s) and/or sensing devices may be mounted to (e.g., sewn or otherwise attached or connected or fixed to) an internal surface of a garment for contacting an individual's skin, directly or indirectly, during use, and detecting pressure exerted against an individual's skin, or other parameters sensed at or near a skin surface. In situations where pressure or other parameters are desired to be measured as they impact an outer surface or fabric layer, one or more sensor(s) may be mounted (e.g., sewn or otherwise attached or connected or fixed to) an external surface of a garment. For applications such as bands, bandages and independently positionable sensing components, sensors may likewise be mounted to/in/on, or associated with (e.g., sewn or otherwise attached or connected to or fixed to) an underlying substrate that may be conveniently positioned as desired by the user, a caretaker or clinician. In alternative embodiments, conductive yarns and/or e-textile fabric sensors may be knitted into, sandwiched between substrate layers (as in compression socks) or otherwise incorporated in fabric substrates.
  • In some embodiments, conductive fabric sensors may be partially or fully enclosed in a flexible barrier material or envelope. Conductive fabrics employed for the sensors, leads and/or traces are generally water resistant and water resistant fabrics are suitably used, without the use of a barrier, for many applications. In cases where the sensor is frequently exposed to body fluids, natural liquids or other solutions (e.g., water, sweat, other bodily fluids) however, the e-properties (e.g., electrical conductivity) of the material can be negatively affected by fluid contact and build-up of biological or other debris. To mitigate this condition, a substantially liquid impervious barrier may be provided to protect the sensor(s), leads and/or traces from direct contact with liquids or other materials. In some embodiments, a sandwich approach in which a conductive sensor is enclosed in a substantially liquid impervious barrier may be employed to protect the sensor from contact with liquids and preserve the core resistive features (e-properties) and functions of the sensor(s). Providing a protective barrier covering and/or enclosing the sensor(s) may also be particularly useful in cases when the sensor(s) cannot be exposed directly to an open wound or to a particularly sensitive area of human skin. The barrier may be placed to seal the sensor(s) alone, or the leads and/or traces may be sealed as well. When protected sensing components are used, external surface(s) of the barrier layer(s) may be attached to the underlying substrate (e.g., garment, skin or the like) via adhesive materials or in other ways.
  • Each sensor is generally associated with two conductive leads, and each of the leads is electrically connected to a conductive trace conveying electrical signals to a signal transfer terminal. Conductive e-textile fabric sensors as previously described may be electrically connected to conductive leads, or may have a flexible fabric lead associated with or incorporated in the fabric sensor footprint. In general, flexible, conductive e-textile leads may comprise conductive fabric materials having high electrical conductivity. Other types of flexible leads, including conductive yarns, fibers, and the like may also be used. The conductive leads are electrically connected to flexible conductive traces, which may comprise a variety of flexible conductive materials, such as a conductive fabric, conductive yarn, or the like. In some embodiments, the conductive traces are stretchable and/or elastic, at least along the longitudinal axis of the conductive trace. In some embodiments, conductive traces comprise a conductive e-textile fabric having high electrical conductivity, such as silver coated e-textile materials, and may be bonded to the underlying substrate material using adhesives, heat bonding or non conductive threads. Suitable e-textile materials are known in the art and are available, for example, from the vendors identified above.
  • Sensor(s) as described herein and sensor systems, including fabric e-textile pressure sensors and a variety of other types of sensors, with conductive leads and traces, may be associated with a variety of substrates including, without limitation, garments intended to be worn (directly or indirectly) against the skin of an individual, such as a shirt or tunic, underwear, leggings, socks, footies, gloves, caps, bands such as wrist bands, leg bands, torso and back bands, brassieres, and the like. Sensors and sensor systems may additionally be associated with wraps having different sizes and configurations for fitting onto or wrapping around a portion of an individual's body, and with bands, bandages, wound dressing materials, as well as with other types of accessories that contact a user's body surface (directly or indirectly) such as insoles, shoes, boots, belts, straps, and the like. Conductive leads associated with each sensor are electrically connected to conductive traces, as described, which terminate at signal transfer terminals associated with the underlying substrate garment, band, wrap, bandage, or the like.
  • Each of the conductive traces terminates in a signal transfer terminal that is mounted to/in/on, or associated with, the underlying substrate and can be associated with a mating signal receipt terminal of a dedicated electronic device (DED) having data storage, processing and/or analysis capabilities. In general, conductive traces and terminals are arranged in a predetermined arrangement that corresponds to the arrangement of signal receipt terminals in the DED. Many different types of signal transfer and receipt terminals are known and may be used in this application. In one exemplary embodiment, signal transfer and receipt terminals may be mounted in cooperating fixtures for sliding engagement of the terminals. In another embodiment, signal transfer terminals may be provided as conductive fixtures that are electrically connected to the conductive trace (and thereby to a corresponding sensor) and detachably connectible to a mating conductive fixture located on the DED. The mating terminals may comprise mechanically mating, electrically conductive members such as snaps or other types of fasteners providing secure mechanical mating and high integrity, high reliability transfer of signals and/or data. In some embodiments, easy and secure mating of the terminals may be enhanced using magnetic mechanisms or other types of mechanisms that help users to properly connect/disconnect the mating terminals with minimal effort. For example, the mechanism may allow an overweight diabetic patient to reach down to his own legs or feet and easily snap or unsnap the DED to/from the wearable device without excessive effort.
  • The DED, in addition to having data recording, processing and/or analysis capabilities, may incorporate an energy source such as a battery providing energy for data recording, processing and/or analysis, as well as providing energy for operation of one or more of the sensor(s). The energy source is preferably a rechargeable and/or replaceable battery source. The DED generally provides a lightweight and water-tight enclosure for the data collection and processing electronics and (optional) energy source and provides receiving terminals that mate with the transfer terminals connected to the sensor(s) for conveying data from the sensors to the dedicated electronic device.
  • Dedicated electronic devices having signal receipt terminals that mate with the signal transfer terminals associated with the substrate may take a variety of form factors, depending on the form factor of the underlying sensing substrate and/or the conditions and location of the device during use. When sensors are incorporated in a sock-like form factor for monitoring conditions sensed at the foot, for example, the signal transfer terminals may be arranged in proximity to one another in an ankle region of the sock, and the DED may have the curved form factor of a band that extends partially around the ankle or lower leg and attaches to the underlying signal transfer terminals and sock substrate along a front and/or side portion of the user's ankle or lower leg. When sensors are incorporated in a wrap or band, the signal transfer terminals may be arranged at or near an exposed end of the wrap or band following its application to an underlying anatomical structure or body surface, and the DED may be provided as a band or a tab or a dongle-like or capsule-like device having aligned signal receipt terminals. The DED may be provided as a substantially flexible or a substantially rigid component, depending upon the application, and it may take a variety of forms.
  • The DED preferably communicates with and transfers data to one or more external computing and/or display system(s), such as a smartphone, computer, tablet computer, dedicated computing device, medical records system or the like, using wired and/or wireless data communication means and protocols. The DED and/or an external computing and/or display system may, in turn, communicate with a centralized host computing system (located, e.g., in the Cloud), where further data processing and analysis takes place. Substantially real-time feedback, including data displays, notifications, alerts and the like, may be provided to the user, caretaker and/or clinician according to user, caretaker and/or clinician preferences.
  • In some embodiments, the DED may store the data temporarily to a local memory, and periodically transfer the data (e.g., in batches) to the above mentioned external computing and/or display system(s). Offline processing and feedback, including data displays, notifications and the like may be provided to the user, caretaker, and/or clinician according to user, caretaker and/or clinician preferences.
  • In operation, an authentication routine and/or user identification system matches the DED and associated sensing system (e.g., the collection of sensor(s) associated with an underlying substrate) with the user, caretaker and/or clinician, and may link user information or data from other sources to a software- and/or firmware-implemented system residing on the external computing system. The external computing device may itself communicate with a centralized host computing system or facility where data is stored, processed, analyzed, and the like, and where output, communications, instructions, commands, and the like may be formulated for delivery back to the user, caretaker and/or clinician through the external computing device and/or the DED.
  • Calibration routines may be provided to ensure that the DED and connected related sensor system are properly configured to work optimally for the specific user. Configuration and setup routines may be provided to guide the user (or caretaker or medical professional) to input user information or data to facilitate data collection, and various protocols, routines, data analysis and/or display characteristics, and the like, may be selected by the user (or caretaker or medical professional) to provide data collection and analysis that is targeted to specific users. Specific examples are provided below. Notification and alarm systems may be provided, and selectively enabled, to provide messages, warnings, alarms, and the like to the user, and/or to caretakers and/or medical providers, substantially in real-time, based on sensed data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an exemplary sensing device having a sock form factor and having one or more sensor patches electrically connected to one or more terminals by means of conductive pathways.
  • FIG. 2 shows another exemplary sensing device similar to that shown in FIG. 1 and having a different arrangement of sensor patches electrically connected to terminals by means of conductive pathways.
  • FIG. 3 shows another view of an exemplary sensing device similar to that shown in FIGS. 1 and 2.
  • FIG. 4 shows a view of terminals of the sensing device and an exploded view of a detachable dedicated electronic device that, when attached to terminals on the sock, captures and optionally processes, stores and/or analyzes sensed signals or data.
  • FIG. 5 shows an enlarged, exploded view of an exemplary detachable electronic device similar to that shown in FIG. 4.
  • FIGS. 6A and 6B show schematic illustrations of exemplary sensors having leads provided in different configurations.
  • FIG. 7 shows an image illustrating a sensor of the type illustrated in FIG. 6A mounted on a fabric substrate, with each of the leads connected to a conductive trace.
  • FIG. 8 shows an image illustrating two exemplary conductive traces mounted on an internal surface of a fabric substrate in a sock-like form factor, terminating in conductive signal transmit terminals that penetrate the fabric substrate.
  • FIG. 9 shows an image illustrating two exemplary sensors of the type illustrated in FIG. 6A mounted on a fabric substrate, with each of the leads connected to a conductive trace and each of the traces terminating in a conductive signal transmit terminal.
  • FIG. 10 shows an image illustrating the external surface of a fabric substrate in a sock-like form factor, showing multiple conductive terminals for mating with terminals of an intermediate device.
  • FIGS. 11A and 11B show images illustrating dedicated electronic component for connecting to signal transmit terminals having a curved form factor for mounting at an ankle or lower leg portion of a user.
  • FIGS. 12A and 12B show a schematic diagrams illustrating one embodiment of mating mechanical and magnetic fasteners providing a mechanical and electrical connection between the dedicated electronic component and the signal transmit terminals, via mating magnetic snaps. FIG. 12A shows a schematic exploded diagram illustrating exemplary components of the male connector; FIG. 12B shows a schematic exploded diagram illustrating exemplary components of the female connector.
  • FIG. 13 shows an image illustrating a sensor-activated device of the type shown in FIGS. 7-10 having a sock-like form factor in place on a user's foot, with an intermediate device having an anklet-like form factor as shown in FIGS. 11A and 11B connected to the external terminals for data collection and, optionally, analysis.
  • FIG. 14 shows a block diagram illustrating basic components of an exemplary data collection device and illustrating its interface with sensors provided in a substrate, an external computing device, and a centralized host system maintained, for example, in the Cloud.
  • FIG. 15 shows an image illustrating an independently positionable sensor mounted to conductive leads and signal transmit terminals for placement at the discretion of a patient or care provider.
  • FIG. 16A illustrates the placement of an independently positionable sensor device of the type illustrated in FIG. 15 at a location (e.g., on the bottom of a patient's foot or between layers of bandages) where the patient and/or caretaker would like to monitor conditions (e.g., pressure and/or shear), and FIG. 16B illustrates signal transfer terminals connected to conductive traces connected to the sensor that are positionable, for example at the top of a patient's foot or on the exterior of a bandage, for connection to a dedicated electronic component.
  • FIG. 17 shows an image illustrating one view of a sensing system using a sensor device as illustrated in FIGS. 15-16B in combination with a versatile wrap, with the conductive signal transfer terminals exposed for connection to an electronic intermediate such as a Dedicated Electronic Device (DED).
  • FIGS. 18A and 18B illustrate an exemplary textile sensor employing a protective, substantially liquid impermeable barrier. FIG. 18A shows one face of the assembled sensor system and FIG. 18B shows the opposite face of the assembled sensor system.
  • FIG. 19 schematically illustrates a sensing system having one or more sensors with leads and conductive traces terminating in terminals in a bandage or wrap form factor.
  • FIG. 20 schematically illustrates a fabric-based sensing system having multiple sensors with leads and conductive traces terminating in signal transmit terminals for connection to an intermediate electronic device for data collection, storage and/or processing.
  • FIG. 21 schematically illustrates a patient setup protocol, clinician dashboard and patient offloading data display for monitoring wounds such as foot ulcers.
  • FIGS. 22A-22L illustrate exemplary device set ups, calibration and monitoring criteria input and routines, along with an exemplary clinician dashboard, a graphical representation of patient offloading data, and an exemplary sample of acquired pressure data. FIG. 22A shows exemplary setup and calibration steps; FIG. 22B shows an exemplary patient data input routine; FIG. 22C shows an exemplary device setup routine; FIG. 22D shows an exemplary device setup routine; FIG. 22E shows another exemplary device setup routine; FIG. 22F shows another exemplary device setup routine; FIG. 22G shows an exemplary monitoring routine setup; FIG. 22H shows another exemplary monitoring routine setup; FIG. 22I shows an exemplary user calibration routine; FIG. 22J shows an exemplary clinician dashboard presenting patient status information for a plurality of patients using a sensing device of the present invention; FIG. 22K shows an exemplary patient offloading data display; and FIG. 22L shows exemplary pressure data collected using an exemplary sensing system of the present invention.
  • FIG. 23 shows an exemplary sensing system having sensors located in a sock, with one or more sensors electrically connected to one or more terminals, and subsequently to a dedicated electronic device located in a shin guard. It will be understood that the appended drawings are not necessarily to scale, and that they present simplified, schematic views of many aspects of systems and components of the present invention. Specific design features, including dimensions, orientations, locations and configurations of various illustrated components may be modified, for example, for use in various intended applications and environments.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS Sensors and Sensor Systems Used in a Sock-like Form Factor
  • In one embodiment, systems incorporating sensors, leads, traces and terminals may be mounted to and/or incorporated in or associated with a garment having a sock-like form factor. One version of this embodiment is illustrated in FIGS. 1-5. In general, a substrate material in the form of a sock may be equipped with one or more sensors, leads, traces and connectors that provide signals and/or data to a dedicated (and preferably detachable) electronic device that gathers data from each sensor and communicates to an external computer and/or mobile device. Sensors used in footwear and sock applications typically include pressure sensors capable of detecting levels of pressure (and/or force and/or shear) at one or more areas of the foot and may include other types of sensors, including temperature, accelerometers, heart rate monitors and/or moisture sensors, and the like. Based on the detected pressure, force and/or shear at one or more areas of the foot, and trends in those parameters over one or more monitoring period(s), conclusions relating to the lack of proper offloading and related conditions of the underlying skin or tissue, healing progression (or lack of healing), discomfort, extent and seriousness of injury, and the like, may be drawn and may be communicated to the user, caretaker and/or clinician, essentially in real time. In addition, notifications, alerts, recommended actions, and the like may also be communicated to the user, caretaker and/or clinician based on the data analysis, essentially in real time. These systems are suitable for use in medical and patient adherence monitoring applications, diabetic (and other) foot monitoring, sports and fitness applications, footwear fitting applications, military applications, etc.
  • One embodiment of a sensor system embodied in a sock-like form factor is illustrated in FIGS. 1-5. In this embodiment, a flexible and preferably stretchable fabric substrate in the form of a sock 1 has one or more sensors, shown as sensor patches 2, optionally including one or more pressure sensors constructed from flexible and conductive fabric as disclosed herein. Each of the sensor patches 2 has leads and conductive traces or threads 3, each terminating in a conductive signal transfer terminal 4. The sensor patches 2 and conductive traces or threads 3 may be woven into the fabric forming the sock, or may be applied to a surface of the fabric forming the sock. In one embodiment, e-textile fabric pressure sensors are applied to an internal surface of the fabric that contacts a user's skin (directly or indirectly) when the sock is worn. Additional fabric sensors may be used in connection with the sock, and other types of sensors, including heat sensors (e.g., thermocouples), moisture sensors, and the like, may also be incorporated in the sock with leads and traces terminating in additional signal transfer terminals. In general, the conductive traces may be applied to an internal or external surface of the underlying fabric substrate, and the terminals preferably have a conductive transfer interface accessible to the external surface of the fabric substrate. In the embodiment illustrated in FIGS. 1-5, the signal transfer terminals 4 are positioned in proximity to the top of the sock, although it will be appreciated they may be positioned elsewhere.
  • The signal transfer terminals 4 that connect to the sensor(s) in the sock are connectible to mating signal receiving terminals of a detachable electronic device (DED). Simplified diagrams illustrating exemplary DEDs are shown in FIGS. 4 and 5. Detachable electronic device 5 receives signals from each of the signal transfer terminals, and thus collects data from each of the sensors. As shown in FIG. 4, the DED may comprise mechanical interface(s) 6 for attaching the DED to terminals 4 located on the sock (or another sensing device); a housing component 7 protecting internal DED components and providing signal transfer from the sensing device (e.g., terminals on the sock) to internal DED components; electronic and communications components 10 and conductive terminals 9 receiving signals from terminals 4 in the sock sensing device; a mating ring 12, and an external housing lid 13 having a power button 14 for activating the DED. An alternative, simplified DED is shown in FIG. 5, comprising mechanical interface(s) 6 for attaching the DED to terminals 4 located on the sock (or another sensing device); an integrated component 15 providing a housing, electronic and communications components, and an external housing lid 13. It will be appreciated that many other types and styles of DEDs may be provided for interfacing with and downloading signals and/or data from the underlying sock sensing device.
  • In one embodiment, mechanically mating snaps are used as terminal interfaces and operated as mechanical switches that are switched on and off abruptly by an external driving force from one switch position (attached) to a second position (detached). In another embodiment, conductive, magnetic snap switches are used as mating terminals for transferring signals and/or data from the sock to the DED. FIGS. 12A and 12B show one specific design of such snaps: an external magnetic ring may be used on the male (DED) snap to attract and maintain solid connection with a magnetic component of a female portion of the snap located on the underlying substrate. In this exemplary embodiment, properties of the magnetic field may be used to create snaps that can only connect in one orientation: in this way, the user is guided to properly connect the DED to the sensor system(s) associated with the underlying substrate. Circuitry in the DED may provide the ability to automatically turn the data collection on and off, for example, based on the presence of the magnetic connection between the DED and the sensor system. It will be appreciated that many other types of mechanical and non-mechanical interfaces may be used to attach and detach the DED from the signal transfer terminals, and to transfer signals and/or data from the sensing system to the DED.
  • Circuitry in the DED may be provided for reading the sensor signals; firmware may be provided for processing signal data, applying post processing algorithms and formatting the data for communication to an external computing and/or display device. The DED may incorporate firmware and/or software components for collecting, filtering, processing, analyzing data, or the like. In one embodiment, the DED hosts firmware subroutines that apply at least some of the following: low pass filtering algorithms to reduce incoming signal noise; pull up resistors logic to avoid shorting of the device and additional noise filtering.
  • In one embodiment, the DED may be physically attached to the sensing substrate (e.g., sock) for data collection and then detached from the sensor terminals and physically mounted (e.g., though a USB or another wired connection), to an external computing and/or display device such as a phone, personal computing device, computer, or the like to download data. In other embodiments, the DED preferably has wireless communication capability (e.g., using Bluetooth, WiFi, or another wireless standard) and transmits signals and/or data to a computing and/or display device wirelessly. The DED is thus connected through a communication system to an external electronic device having computing and/or display capabilities. The external computing and/or display device generally hosts client firmware and/or software and processing firmware and/or software for processing, analyzing, communicating and/or displaying data. It will be appreciated that the division of functions and processing, such as data processing, analysis, communications and display functions as between the DED and the external computing and/or display device may vary depending on many factors and is, to at least some extent, discretionary.
  • In some embodiments, client software and communications systems are hosted on the external computing device (e.g., a computer or a mobile device such as a tablet or smartphone), and provide feedback to and interact with the user, communicating through an Internet connection via web services, to push collected data and retrieve processed data from the service and display (or otherwise communicate) it to the user. The client software may comprise a set of applications that can run on multiple platforms (not limited to personal computers, tablets, smartphones) and sub-components (diagnostics, troubleshooting, data collecting, snap and match, shopping) to deliver a rich and complete user experience. The experience can be also delivered through an Internet browser.
  • For some applications, server software components that apply crowdsourcing logic and/or machine learning technologies may be implemented to identify, profile, and cluster user data. The data may be stored in a database and may be continuously or intermittently updated with incoming user supplied and/or sensor supplied data. An optional software component that provides image and pattern recognition capabilities may also be implemented. This feature may allow a user to input data (e.g. images, external data accessed from databases, etc.) without entering any text input.
  • While this specific example of sensor systems has been described with reference to a sock form factor, it will be appreciated that e-textile fabric sensors may be used with (and/or applied to) other types of wearable garments (e.g., underwear, t-shirts, trousers, tights, leggings, hats, gloves, bands, and the like), and dedicated electronic devices having different configurations may be designed to interface with a variety of sensor systems embodied in different types of garments. The type of sensor(s), garment(s), placement of sensor(s), user identification, and the like, may be input during an authentication and initial device calibration set up protocol. Another exemplary embodiment of a sensor system using e-textile fabric sensors in a sock form factor is shown in FIGS. 6A-13. FIG. 6A shows an exemplary fabric sensor S with leads L1 and L2. In this example, sensor S1 comprises a rectangular piece of e-textile conductive fabric, and conductive leads L1 and L2 are positioned on opposite sides of sensor S1. Conductive leads L1 and L2 are shown as integral extensions, or pieces, of the same conductive fabric of sensor S1, but alternative types of leads may also be used. FIG. 6B shows a similar fabric sensor S2 having integral leads L3, L4 extending from a common side of the sensor. It will be appreciated that although rectangular sensors are illustrated, fabric sensors having a variety of sizes and configurations may be provided. Conductive leads having the same properties as the sensors may be used, or other types of conductive leads may be employed. It will also be appreciated that the arrangement of leads with respect to sensor(s) may vary, depending on the properties, size and configuration of the sensor and lead components.
  • E-textile fabric sensors are mounted to, or associated with, the underlying fabric substrate (e.g., a stretchable, knit fabric) in a variety of ways, including sewing, adhesive bonding, thermal bonding, and the like. FIG. 7 shows an e-textile fabric sensor S1 having the configuration shown in FIG. 6A attached to the inside of a stretchable, knit sock. Sensor leads L1 and L2 are sewn or bonded to the underlying sock, and conductive traces T1 and T2 are mounted and electrically connected to leads L1 and L2, as shown. In this embodiment, conductive traces T1 and T2 are fabricated from e-textile fabric materials having different properties from the materials of the sensor S1 and leads L1 and L2.
  • The conductive traces T1, T2 terminate in conductive terminals CT1, CT2, as shown in FIGS. 8-10. In the embodiment illustrated, conductive terminals CT1, CT2 are provided as conductive mechanical snaps, illustrated in FIG. 8, that penetrate the substrate sock material from the interior to the exterior surface of the sock. The interior of the sock having the sensor/lead/trace/terminal arrangement is illustrated in FIG. 9. Multiple fabric sensors may be implemented, resulting in multiple conductive terminals communicating data collected from multiple sensors located in different areas of the foot. It will be appreciated that other types of sensors may be integrated in this sock format sensing device (and in other formats of sensing devices), and that additional conductive terminals may be provided for transmission of signals and/or data from other types of sensors. The exterior of the sock having signal transfer terminals CT1, CT2 corresponding to a first sensor, and signal transfer terminals CT3 and CT4 corresponding to a second sensor, is illustrated in FIG. 10. In this embodiment, the signal transfer terminals are aligned along a upper circumference of the sock, shown in this embodiment as an anklet.
  • One embodiment of a signal transfer and signal receipt terminal configuration that detachably mates, mechanically and magnetically, is shown in FIGS. 12A and 12B. This is a mechanical two-part snap device having mating male (FIG. 12A) and female (FIG. 12B) connector components, as shown. The male connector 20 comprises a central conductive pin element 21 surrounded by a non-conductive ring member 22 and having a magnetic perimeter portion 23. The female connector 25 comprises a central conductive pin receiving element 26 and contact that is electrically connected to the conductive area of the male connector when the connector portions are mechanically and/or magnetically connected to one another. Female connector 25 also comprises a non-conductive collar 27 and a magnetic collar 28 sized and configured to mate with corresponding components of the male connector. The components illustrated in FIGS. 12A and 12B are shown in an exploded view; when assembled, the connector components nest to provide compact, highly functional connectors. The polarity of magnetic components 23, 28 may be arranged to provide male and female connectors that are connectable only when magnetically aligned in a predetermined orientation, which may facilitate user connection of the mating terminals. Although this exemplary mating terminal configuration is illustrated having a round configuration, it will be appreciated that other configurations, including oval, linear, polygonal, and the like, may be used.
  • FIGS. 11A and 11B illustrate one exemplary embodiment of a dedicated electronic device (DED) 40 having signal receipt terminals RT1, RT2, RT3, RT4 that mate mechanically with conductive terminals such as CT1-CT4 to provide signal and/or data transfer from the sensor/lead/traces associated with the sock substrate to the DED. DED 40, as illustrated in FIGS. 11A and 11B, comprises a curved housing or case enclosing an interior space containing processing, memory and/or communications components. In this embodiment, DED 40 may be installed on the exterior of a sock in the ankle or lower leg area of the user, as illustrated in FIG. 13. DED 40 preferably provides a protective and watertight housing or case protecting the electronic components provided within the housing. The housing may be provided as a substantially rigid or a substantially flexible component and a variety of DED form factors may be provided, depending on the type and arrangement of underlying substrate and signal transfer terminals.
  • The DED incorporates processing, memory and/or communications functionalities within the housing. A schematic diagram illustrating exemplary DED components and interfaces is shown in FIG. 14. The DED has signal receipt terminals (shown as “snap connectors”) that feed analog input signals to appropriate processing means, such as analog filters, A/D converters, and to a processing component. Optional manual control input(s) and one or more optional output display(s) may be provided in or on the DED, as shown. Local memory may also be provided, and means for communicating signals and/or data externally via wired or wireless protocols may be provided, as shown. Signals and/or data is communicated from the DED to an external computing facility or device, such as a computer, base station, smartphone, or another bridge device, and/or to a centralized, hosted facility in a remote location, such as in the Cloud or at a centralized data processing and analysis facility. Following data analysis in accordance with predetermined and/or pre-programmed instructions, data output, analysis, notifications, alerts, and the like are communicated from the centralized hosted facility to the bridge device, and/or the DED, as shown. It will be appreciated that this is one exemplary data flow scheme, and that many other work flows may be advantageously used in connection with sensing systems of the present invention.
  • Although these specific embodiments have been illustrated and described with reference to the wearable substrate having a sock form factor, it will be appreciated that the sensors, leads, traces and terminals, as well as different types of DEDs may be adapted for use in other types of garment and non-garment applications. Similar types of flexible e-textile sensors may be applied to or associated with a wide variety of non-conductive underlying flexible substrate materials, including woven and non-woven materials, and incorporated in a variety of sensor systems. Additional exemplary systems are described below, and are non-limiting.
  • Wrap, Band and Sheet Sensor Applications
  • In additional applications, flexible sensors and sensor systems of the present invention may be fabricated as independently positionable sensor components and used in a variety of applications. FIG. 15 schematically illustrates an independently positionable sensor system compnsmg a flexible pressure sensor S1 electrically connected, via leads (not visible), to conductive traces T1 and T2, which are in turn electrically connected to conductive signal transfer terminals CT1 and CT2. The pressure sensor S1, leads, and/or conductive traces may be mounted to or associated with an underlying non-conductive flexible substrate to provide mechanical integrity to and enhance the durability of the system. It will be appreciated that this type of independent flexible sensor system may be fabricated using a wide variety of sensor sizes, and sensor functions, trace lengths, configurations, underlying substrates, and the like, and that additional and different types of sensors may be incorporated in such independent flexible sensor systems, as described above.
  • One or more of these types of independently positionable flexible sensor systems may be positioned by a user, caretaker and/or clinician at a desired body site and anchored at the site using bands, wraps, or other anchoring devices. FIGS. 16A and 16B schematically illustrate the use of an independently positionable sensor system on the surface of or within a bandage wrapped around a foot. FIG. 16A shows the sensor S1 positioned as desired at a location near the bottom of the foot. The sensor S1 may be anchored to the desired sensing location, if desired, using a variety of non-conductive anchoring means such as hook and loop and other types of fasteners. Fastening means, such as hook and loop fasteners, may be mounted on or associated with a surface (or partial surface) of the sensor S1. The conductive traces T1, T2 transmit signals/data to conductive signal transfer terminals CT1, CT2 positioned or positionable at an accessible external location, such as at the top of the foot or at an ankle or lower leg position, as shown in FIG. 16B, providing access for connection of a DED and data downloading. Wraps, bands, bandages, or other anchoring systems may be wrapped around the sensor system following placement to secure the sensor system, and sensor, in place at the desired sensing location and to maintain external access to the signal transfer terminals.
  • FIG. 17 illustrates a foot wrap 50 having an integrated sensor system, or employable in combination with an independently positionable sensor system such as that illustrated in FIGS. 16A and 16B positioned inside the wrap 50, between the interior surface of wrap 50 and the foot (or another body surface). The sensor is located at a desired sensing site on the foot and the conductive signal transfer terminals CT1, CT2 are positioned outside wrap 30 at a location that is accessible to a DED. It will be appreciated that while this type of wrap system is shown and described with reference to a foot wrap, it may be embodied in various types of wraps, bandages, wound and/or ulcer dressing materials and the like having a variety of sizes, configurations, and sensing capabilities. The location of the sensor(s) and conductive signal transfer terminals, and the path of the conductive traces, is highly flexible and may be adapted for sensing in many different types of applications.
  • FIGS. 18A and 18B illustrate one exemplary embodiment in which one or more protective layers or materials may be provided to protect one or more sensor(s) and, optionally the associated leads, and all or portions of conductive traces, from contact with liquids, body fluids or other solutions, while preserving the core resistive features and functions of the sensor(s). A protective barrier may comprise a liquid impervious or substantially liquid impervious material, such as a generally thin plastic sheet material or a composite sheet material, that doesn't interfere with the sensing capacity of the sensor. By “substantially” liquid impervious we mean that liquid penetration of the material is insubstantial enough to affect the features and functions of the sensor(s). The protective barrier may optionally be breathable and/or gas permeable. Many such liquid impervious barrier materials are known. In some embodiments, a protective barrier may be provided on one surface of the sensor; in some embodiments, a sandwich- or envelope-type barrier that substantially seals the sensor in a substantially liquid impermeable envelope or pouch may be used.
  • In the embodiment shown in FIGS. 18A and 18B, barrier 30 comprises a thin, flexible sheet material and extends over and around sensor S, enclosing the sensor in a liquid impervious barrier or envelope. In the embodiment shown, surfaces or edges of barrier 30 are sealed, forming a pouch around the perimeter of sensor S at seal 31. An adhesive band 32 may be provided on one face (or both faces) of the protective barrier for mounting the sealed sensor component to an underlying surface or substrate (such as a garment, the skin of the user, or the like). Although adhesive band 32 is shown forming a peripheral band outside seal 31, it will be appreciated that adhesive components, as well as other types of mounting mechanisms, may be applied to or used in connection with protected sensor components. In the embodiments shown in FIGS. 18A and 18B, sensor S and leads L1 and L2 are encased within protective barrier 30; conductive traces T1 and T2 exit barrier 30 for attachment to conductive signal transfer terminals (not shown). Additional material layers may be provided inside and/or outside the barrier as shown in FIG. 18B to provide any desired functionality.
  • FIG. 19 schematically illustrates flexible pressure sensors S having conductive leads L1, L2 electrically connected to conductive traces T1, T2 in place on a flexible bandage 35 or on a wrap or another substrate for placement on or near wounds. The signal transfer terminals (not shown) are located on opposite sides of the bandages and may be connected to independently positionable signal receiving terminals for signal transfer. This system provides flexibility as to placement of the bandages having different sizes and configurations on different body surfaces and on body surfaces of different sizes and configurations, while permitting convenient and flexible signal transfer.
  • FIG. 20 schematically illustrates a plurality of pressure sensors (S1-S6) mounted to/in/on, or associated with, a substrate sheet material 36 that's flexible and non-conductive. Each of the sensors S1-S6 has conductive leads electrically connected to conductive traces that terminate in signal transfer terminals located at the edge of the substrate 36. The signal transfer terminals are connectible to mating signal receiving terminals of one or more DED(s), also mountable at the edge of the substrate. In this embodiment, the DED may have a strip-like form factor for connecting to aligned signal transfer terminals. This type of sensor arrangement and system may be used, for example, in connection with various types of garments, bed sheets, chair pads, or the like, to provide data regarding pressure and/or shear at locations where a user sits, lies, or the like.
  • FIG. 21 schematically illustrates exemplary computer- and/or firmware- and/or software-implemented processes used by a medical monitoring system of the present invention. In some embodiments, patient setup and (optional) device authentication, program selection and the like are provided, as well as a user and/or clinician dashboard providing data output and analysis in accordance with the program selection. One specific example of output returned to the user and/or clinician is illustrated as patient offloading data, expressed as excess pressure, which provides information to the user and/or clinician as to pressure conditions (and conditions of the underlying skin and tissue) at the site of any of the pressure sensors provided in the system.
  • In one exemplary methodology of the present invention, a garment having one or more sensing systems as described herein is positioned on a user with sensor(s) positioned in proximity to a body area desired to be monitored, or an independently positionable sensing band, or bandage, or substrate is positioned relative to one or more body surface areas of a user desired to be monitored. A dedicated electronic device is mounted to/on or associated with exposed signal transfer terminals of the sensing system and an authentication protocol is initiated to match the garment/sensing system to the user. The authentication protocol optionally loads user data, profile information, and the like, to one or more hosted systems, such as a centralized data processing and analysis facility, a medical records facility, a caretaker system, clinician dashboard, or the like. Sensor calibration may then be conducted based on user specific information, conditions, and the like, and thresholds, limits or specific ranges, monitoring protocols, notifications, alerts, and the like may be selected by the user, a caretaker, clinician, or by the system to apply user-specific monitoring routines, parameters, and the like. Intermittent or substantially continuous user monitoring may then be initiated, with monitoring data and results provided to the user, a centralized data processing and analysis facility, a medical records facility, a caretaker system, clinician dashboard, and the like. Changes and updates to monitoring protocols may be implemented based on monitoring feedback, changes in user condition, etc.
  • FIGS. 22A-22L schematically illustrate exemplary device set up, calibration and monitoring criteria input, along with an exemplary clinician dashboard, a graphical representation of patient offloading data, and an exemplary sample of acquired pressure data. Processing systems and means for executing device set up and calibration, and for monitoring and reporting sensed data may reside at a computing facility that is remote from the sensing device or means and the dedicated electronic device and may comprise computer implemented systems and methods at a host computer system, a medical facility computer system, in a computing environment such as the Cloud, or the like. Reports may be displayed at the computing facility, or at any display device (e.g. a monitor, smartphone, computer, electronic healthcare system, or the like) that is capable of communicating with the computing facility.
  • FIG. 22A schematically illustrates an exemplary setup and calibration protocol involving a patient information setup routine, a device information set up routine, a monitoring criteria set up routine and a calibration routine. A variety of different routines are available for patients having different conditions, for different device configurations, sensor types and locations, monitoring protocols, and the like. Various routines may be programmed or programmable and selectable by a user and/or by medical personnel. The routines may reside in the DED, a computing device or another bridge device, in cloud services, or the like.
  • FIG. 22B schematically illustrates an exemplary patient data collection protocol forming part of the patient information setup. In this example, a doctor or another medical professional can collect and input data to associate to the specific patient/device pair. Patient identification, patient-specific information like weight, height, condition, physician, ulcer location and condition, as well as procedures undergone, hospital admissions, notes, and the like not only add information related to the specific case, but can also be used as guidance for the device calibration procedure. This information also provides meaningful data to use in aggregated views of the overall patient data.
  • FIGS. 22C-22F schematically illustrate exemplary device setup protocols including a sensor activation selection menu. In this exemplary device setup routine, the system model number and identification is provided, along with the type of data collection. Real-time alerting and notification features may be selected. Various sensors and sensor locations may be selected and activated, while others may remain inactivated, as shown in FIGS. 22C and 22D. FIG. 22D illustrates an exemplary sensor activation menu for a sock type sensor surface, where the doctor or medical assistant can activate specific sensors in a set of 5 available for the specific example.
  • FIG. 22E illustrates an exemplary sensor activation menu for a dressing/wrap type sensor surface, where the doctor or medical assistant can specify which type of sensor (A, B, C in the specific example) will be used for any specific patient. FIG. 22F illustrates an exemplary sensor activation menu for an insole type sensor surface, where the doctor or medical assistant can activate specific sensors in a set of 5 available for the specific example.
  • FIG. 22G schematically illustrates monitoring criteria selection menus, including a monitoring threshold selection menu and a notification selection and activation menu. FIG. 22H schematically illustrates in more detail the monitor thresholds and notification selection and activation menu. In this example, the doctor or medical assistant can define different thresholds to monitor before and after the first 72 hours post medical procedure or post sensor activation.
  • The exemplary monitor thresholds define two levels of severity: yellow and red. In one embodiment, the yellow threshold can be surpassed for a limited period of time (for example 5 minutes every hour) without consequence: after this time-based threshold has been surpassed, the system will alert the patient or caregiver according to a notification or alert protocol. This embodiment also allows the use and selection of a red threshold that, if it is surpassed at any time, the system alerts the patient or caregiver immediately. Thresholds are managed through a hysteresis cycle, to avoid multiple alerts to be raised when the pressure level is averaging around the threshold level. The threshold levels can be preset by the parameters input for the patient and based on historical data, or defined/tuned by the doctor or medical assistant. Notifications may include vibration of the device, e-mails sent to specific addresses, text messages sent to specific phone numbers, robo-calls from an automated speech system, or the like, and the notification type, frequency, etc. may be set by the user or a medical professional as part of the monitoring routine, as shown. In some embodiments, daily reports may be sent to the doctor or caregiver for each patient using such a sensor system.
  • FIG. 22I schematically illustrates a sample calibration protocol for automatic set up of parameters such as filter thresholds, signal gain, voltage-to-pressure formulae, and the like, based on user-specific criteria. In this calibration, background data may be collected while the user is in various positions or doing various activities, such as sitting, standing, walking, or the like, to collect patient-specific data so that various parameters of the sensing system may be normalized to, or standardized against patient-specific “normal” parameters.
  • FIG. 22J illustrates an exemplary clinician dashboard displaying diabetic patient data by patient name, medical condition, foot ulcer location and condition, medical procedural history, monitoring sensor device and location, substantial real-time monitoring information, and patient status based on monitoring information. In the clinician dashboard shown, patients are categorized in red, yellow or green status based on monitoring information so that clinicians may contact and check on patients having conditions categorized in the red status and avert more serious conditions. The doctor or medical assistant can pivot the data on different “dimensions”, such as type of offloading device, medical condition, ulcer location, etc. The doctor or medical assistant can also filter and sort data based on the same dimensions, to extract a view of the data aggregated for specific area of interest, both for ease of access as well as statistical purpose. For example, by analyzing this data as aggregate, specific types of offloading devices, coupled with specific types of monitoring devices used, might show a better outcome for patients with ulcers in the metatarsal area.
  • FIG. 22K schematically illustrates a patient offloading data display clearly showing excessive pressure exerted at sensing locations in real-time and historically, and providing a history of notifications and alerts provided. This data can be used by the doctor or medical assistant for the purpose of analyzing in detail the behavior of a patient, observing correlations and outcomes, as well as to provide the basis for honest conversations with patients about their behavior and how it affects the healing process. The same data can also be used to send reports to the patient, with emphasis on the good habits and positive reinforcement to improve the adherence and help the healing process.
  • FIG. 22L schematically illustrates sensed force/pressure data collected using a sensing system as described herein with sensors located at the heelbone and at a metatarsal area, with signals in areas A and B illustrating data collected while the user walked 10 steps; signals in area C corresponding to the user jumping, signals in area D corresponding to the user shifting his weight, and signals in areas E and F illustrating data collected while the user walks additional steps following the previous activity. It will be appreciated that many other types of input and output may be provided in connection with sensor systems of the present invention, and that these diagrams are provided for purposes of illustrating specific examples of useful input and output and do not limit the invention in any way.
  • Medical and Athletic Monitoring
  • The specific examples of sensors and sensor systems described herein are applicable to patients with multiple types of foot related problems such as flat foot, injuries from accidents or military personnel injured on the battle field or patients suffering from peripheral neuropathy, and more specifically diabetic neuropathic feet wherein portions of the foot may be insensitive to pressure. The user, caretaker and/or clinician may be alerted to lack of patient adherence to offloading guidance, areas of excess pressure and/or shear, substantially in real-time, to facilitate prevention of ulcer formation and to promote ulcer and wound healing.
  • In one scenario, a user/patient or an athlete wears a sock incorporating a flexible sensing system, as described. They turn on the device using a switch on the DED and put the foot in a shoe. The DED establishes a connection with one or more remote computing devices or services (e.g., via USB/Wi-Fi/Bluetooth/other medium), and pressure-related data is transferred to the remote computing device/service, where data processing and analysis takes place. Ranked recommendations related to patient adherence, performance and goal achievements, injury preventions, what/if analysis may be communicated and displayed to the patient, athlete and/or coach/caregiver in substantially real-time, allowing the patient, athlete and/or coach/caregiver to make changes to the patient's or athlete's behavior or activity in response to the sensed pressure and returned results.
  • In another embodiment, systems incorporating the DED and signal receipt terminals may be mounted to and/or incorporated in or associated with other types of intermediate dedicated electronic devices, such as a protective device (e.g., a shin guard). One version of this embodiment is illustrated in FIG. 23. In this embodiment, a substrate material in the form of a sock may be equipped with one or more sensors S1 . . . Sn, leads and traces T1 . . . Tn that provide signals and/or data to a set of terminals CT1 . . . CTn. The terminals may comprise snaps, or connectors, mounted on the sock (male or female part) and on mating locations on a protective device, such as a shin guard device (female or male counterpart). The connectors on the sock may be located in areas where the shin guard usually overlies the sock, such that the counterpart connectors on the shin guard easily snap together and connect not only the terminals, but the sock and the shin guard. The shin guard can be manually positioned between the sock and the shin of the wearer, of be inserted in a proper fabric socket built-in the sock. In this embodiment, the shin guard is generally fabricated from a harder outer casing material and a shock absorber material on the inside. Electronic components of the dedicated electronic device (DED), as described earlier, may be provided in a core area or recess within the shin guard, well protected from excessive impact. The DED gathers data from each sensor by means of direct connections between its inputs/outputs and mating terminals CT1 . . . CTn and communicates signals and/or data to an external computing and/or bridge device, as described previously.
  • This type of arrangement may be used in a variety of sports that require leg and/or foot protection (e.g. soccer, hockey, football, etc.). Sensors may be placed in specific locations on a sock or another item of apparel, dependent on the type of sport and activity that is desired to be monitored. In one scenario, a soccer team may wear a sensor equipped (instrumented) sock and the shin guard with embedded DED to collect pressure data that can be processed in real-time or after the fact and extract useful statistical data for the individual and the team. For example, by placing specific sensors on the sides of the sock (foot), a software system receiving the data from the DED may be capable of determining whether the pressure signal spikes coming from the inner sensor are related to run, walk, a pass or a shot. The system may provide statistical data such as number of passes, number of shots, ball possession, etc. by means of data analysis and synthesis.
  • Footwear Fitting
  • Throughout the footwear industry, there are multiple international sizing systems and, even more importantly, a lack of standardization in shoe sizing. Sensors and sensing systems of the present invention may also be used to assist in footwear fitting. When consumers buy or order footwear in a store or online, it's difficult to assess proper fit, particularly given the large selections available and without the ability to try on footwear in their specific everyday scenario. Even when consumers shop in a store and have the ability to try footwear on, the location and the limited time and experience may not identify poorly fitting footwear. This results in lost sales opportunities and high return rates, which discourages consumers from making online purchases and significantly raises sales costs for online merchants. Being able to purchase and order footwear having confidence that it will fit well would provide substantial benefit. In 2010 three hundred and fifty million shoes were sold online, however about a third got returned. E commerce has seen tremendous growth in recent years; however, online footwear sales make up only 12% of the total footwear market (compared to 50% for computers and 60% for books). The reason is that consumers are less comfortable buying shoes online since they cannot try on footwear before purchasing.
  • Pressure sensor(s) incorporated in a sock form factor, or positioned as independently positionable sensors, may be used to detect pressure on different points and areas of the foot and identify areas of discomfort. Using databases and data analysis of pressure sensors positioned on a user's foot, analytics may find and display recommended fit options for shoes, insoles and/or orthotics for specific individuals, and the individual may be alerted in real-time as to recommended fit options. The device-collected sensor data can be augmented with individualized information provided directly by the user(s), such as requested shoe type, model, or other search criteria.
  • In another embodiment, pressure sensors incorporated in a sock form factor, or in independently positionable sensing systems, may collect comfort and anatomic data as well as data relating to humidity, temperature, and other parameters at one or more locations on an individual's foot. The collected data may be augmented with user provided information, such as requested shoe type, model, and other search criteria, which may be processed to provide output as individual-specific recommendations and alerts.
  • In another embodiment, a user may take a picture of a shoe and send the image to a computing device or service (e.g. via e-mail). The footwear image may be processed and matched to footwear metadata maintained in one or more database(s) to identify potential matching footwear. A selection of related shoes, including the matching one, may be presented to the user. The selection may take in account comfort zones and foot anatomy of the current user that share common features and needs, and may rank the returned selection according to various parameters or user preferences. In one embodiment, the DED control software collects data from a sensor system to determine the anatomy of the foot. Once wearer's anatomical foot data is processed and compared to footwear data maintained in one or more databases, footwear recommendations may be displayed to the wearer, ranked according to projected fit, or other user preference(s). These systems, or similar systems, may be used to find and display ranked recommended fit options for footwear, insoles and/or orthotics.
  • While the present invention has been described above with reference to the accompanying drawings in which particular embodiments are shown and explained, it is to be understood that persons skilled in the art may modify the embodiments described herein without departing from the spirit and broad scope of the invention. Accordingly, the descriptions provided above are considered as being illustrative and exemplary of specific structures, aspects and features within the broad scope of the present invention and not as limiting the scope of the invention.

Claims (22)

1. A sensing device comprising: at least one piezoresistive fabric sensor; at least two electrically conductive leads extending from each piezoresistive fabric sensor; at least one electrically conductive trace connected to each conductive lead; and at least one signal transfer terminal electrically connected to each conductive trace; wherein each trace is fabricated from a Material having different properties from the piezoresistive fabric sensor and lead material, and at least one piezoresistive fabric sensor, at least two electrically conductive leads, at least one electrically conductive trace, and at least one signal transfer terminal is associated with a non electrically conductive substrate that is flexible and stretchable.
2. The sensing device of claim 1, additionally comprising at least one additional non-fabric sensor.
3. The sensing device of claim 1, wherein the at least one piezoresistive fabric sensor is capable of sensing pressure or force exerted on the sensor.
4. The sensing device of claim 1, wherein the at least two electrically conductive fabric leads extending from the at least one piezoresistive fabric sensor and are formed as integral extensions of the at least one piezoresistive fabric sensor.
5. The sensing device of claim 1, wherein the at least two electrically conductive leads are positioned on opposite sides of the at least one piezoresistive fabric sensor.
6. The sensing device of claim 1, wherein the non-electrically conductive substrate is in the form factor of an insole, shoe, boot, belt or strap.
7. The sensing device of claim 1, wherein the non-electrically conductive substrate is in the form factor of a wearable garment.
8. The sensing device of claim 7, wherein the non-electrically conductive substrate is in the form factor of a sock or an anklet.
9. The sensing device of claim 7, wherein the wearable garment is selected from the group consisting of: shirts, underwear, leggings, footies, gloves, caps, body bands and brassieres.
10. The sensing device of claim 1, wherein the non-electrically conductive substrate is in the form of a bandage, wrap, band, wound dressing, sheet or pad.
11. The sensing device of claim 1, additionally comprising at least one sensor capable of sensing at least one of moisture and temperature.
12. The sensing device of claim 1, additionally comprising a dedicated electronic device having signal receipt terminals that mate with signal transfer terminals of the sensing device and a housing component with signal processing and communications components located within the housing component.
13. The sensing device of claim 12, wherein the housing component is flexible.
14. The sensing device of claim 12, wherein the housing component of the dedicated electronic device is in the form of a curved housing configured to fit partially around the front portion of a user's lower leg or ankle.
15. The sensing device of claim 12, wherein the signal receipt terminals of the dedicated electronic device and the signal transfer terminals of the sensing device are mounted in cooperating fixtures for sliding engagement of terminals.
16. The sensing device of claim 12, wherein the signal receipt terminals of the dedicated electronic device and the signal transfer terminals of the sensing device are configured for magnetic engagement of terminals.
17. The sensing device of claim 12, additionally comprising an accelerometer.
18. A sock comprising at least two piezoresistive sensors; at least two electrically conductive leads extending from each piezoresistive sensor: at least one electrically conductive trace connected to each of the conductive leads: and at least one signal transfer terminal electrically connected to each of the conductive traces; wherein the signal transfer terminals are arranged in proximity to one another in a location corresponding to a front portion of a users lower leg or ankle region.
19. The sock of claim 18, in combination with a dedicated electronic device having signal receipt terminals that mate with signal transfer terminals of the sock and a flexible housing component in the form of a curved housing configured to fit partially around the front portion of a user's lower leg or ankle, with signal processing and communications components located within the housing component.
20. A system for data collection and remote monitoring of conditions at or near a body surface, comprising: at least one sensing device configured for positioning in direct or indirect contact with a portion of a user's body surface and having signal transfer terminals associated with a flexible, non-conductive substrate; a dedicated electronic device having signal processing and communications components and signal receipt terminals that receive signals from the signal transfer terminals of the sensing device; and a remote computing facility configured to receive data from the dedicated electronic device and execute data analysis in accordance with at least one of programmed and programmable instructions and routines, wherein the at least one sensing device comprises at least one piezoresistive fabric sensor; at least two fabric leads extending from each piezoresistive fabric sensor; and at least one electrically conductive trace connected to each conductive lead and terminating in one of the signal transfer terminals.
21. A method for fitting footwear to a users feet, comprising: placing at least one pressure sensor of a sensing device comprising a flexible, piezoresistive sensor, at least two flexible leads connected to the sensor, at least one flexible, electrically conductive trace connected to each of the leads, and at least one signal transfer terminal electrically connected to each of the flexible, conductive traces at a location at or near an area of the user's foot; placing footwear on the user's foot and thereby locating the at least one pressure sensor between the user's foot and the footwear; collecting data relating to sensed pressure conditions while the user wears the footwear; augmenting collected data with user information; and providing user-specific recommendations for footwear that fits the anatomy of the user's foot.
22. The method of claim 21, wherein the at least one pressure sensor is incorporated in a sock form factor.
US14/574,220 2012-01-30 2014-12-17 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces Abandoned US20150177080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/574,220 US20150177080A1 (en) 2012-01-30 2014-12-17 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
US15/133,124 US11154243B2 (en) 2012-01-30 2016-04-19 Sensor systems for user-specific evaluation of gait, footwear and garment fitting; monitoring of contact, force, pressure and/or shear at or near body surfaces
US16/095,268 US11060926B2 (en) 2012-01-30 2017-04-21 Sensor assemblies; sensor-enabled garments and objects; devices and systems for data collection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261592333P 2012-01-30 2012-01-30
US201261747877P 2012-12-31 2012-12-31
US13/753,456 US8925392B2 (en) 2012-01-30 2013-01-29 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
US14/574,220 US20150177080A1 (en) 2012-01-30 2014-12-17 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/753,456 Division US8925392B2 (en) 2012-01-30 2013-01-29 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
PCT/US2014/049263 A-371-Of-International WO2015017712A1 (en) 2012-01-30 2014-07-31 Methods and systems for data collection, analysis and formulation of user-specific feedback; use of sensing systems as input devices

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/588,363 Continuation-In-Part US20150182843A1 (en) 2012-01-30 2014-12-31 Methods and systems for data collection, analysis, formulation and reporting of user-specific feedback
US15/133,124 Continuation-In-Part US11154243B2 (en) 2012-01-30 2016-04-19 Sensor systems for user-specific evaluation of gait, footwear and garment fitting; monitoring of contact, force, pressure and/or shear at or near body surfaces
PCT/US2017/028976 Continuation-In-Part WO2017185050A1 (en) 2012-01-30 2017-04-21 Sensor assemblies; sensor-enabled garments and objects; devices and systems for data collection

Publications (1)

Publication Number Publication Date
US20150177080A1 true US20150177080A1 (en) 2015-06-25

Family

ID=48868978

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/753,456 Expired - Fee Related US8925392B2 (en) 2012-01-30 2013-01-29 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
US14/574,220 Abandoned US20150177080A1 (en) 2012-01-30 2014-12-17 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/753,456 Expired - Fee Related US8925392B2 (en) 2012-01-30 2013-01-29 Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces

Country Status (10)

Country Link
US (2) US8925392B2 (en)
EP (1) EP2809232B1 (en)
JP (1) JP6272238B2 (en)
KR (1) KR20140123977A (en)
CN (1) CN104219999A (en)
AU (1) AU2013215287A1 (en)
CA (1) CA2862732A1 (en)
ES (1) ES2618728T3 (en)
HK (1) HK1204898A1 (en)
WO (1) WO2013116242A2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105697A1 (en) * 2015-12-16 2017-06-22 Intel Corporation Physiological characteristic measurement system
WO2017120387A1 (en) * 2016-01-06 2017-07-13 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Compression stockings and methods of thereof
US9827996B2 (en) 2015-06-25 2017-11-28 Bebop Sensors, Inc. Sensor systems integrated with steering wheels
US9836151B2 (en) 2012-03-14 2017-12-05 Bebop Sensors, Inc. Multi-touch pad controller
US20180003579A1 (en) * 2014-12-31 2018-01-04 Sensoria Inc. Sensors, interfaces and sensor systems for data collection and integrated monitoring of conditions at or near body surfaces
US9863823B2 (en) 2015-02-27 2018-01-09 Bebop Sensors, Inc. Sensor systems integrated with footwear
US9965076B2 (en) 2014-05-15 2018-05-08 Bebop Sensors, Inc. Piezoresistive sensors and applications
US10026292B2 (en) 2016-07-13 2018-07-17 Palarum Llc Patient monitoring system
US10082381B2 (en) 2015-04-30 2018-09-25 Bebop Sensors, Inc. Sensor systems integrated with vehicle tires
WO2018203915A1 (en) * 2017-05-05 2018-11-08 Veil Intimates Llc Formed brassiere and associated method of manufacture
US10215164B2 (en) 2015-12-07 2019-02-26 Intel Corporation Fabric-based piezoelectric energy harvesting
US10268315B2 (en) 2014-05-15 2019-04-23 Bebop Sensors, Inc. Two-dimensional sensor arrays
US10282011B2 (en) 2014-05-15 2019-05-07 Bebop Sensors, Inc. Flexible sensors and applications
US10288507B2 (en) 2009-10-16 2019-05-14 Bebop Sensors, Inc. Piezoresistive sensors and sensor arrays
USD849390S1 (en) * 2017-03-14 2019-05-28 Sultan Abdul-Malik Compression sock
US10325472B1 (en) 2018-03-16 2019-06-18 Palarum Llc Mount for a patient monitoring device
US10362989B2 (en) 2014-06-09 2019-07-30 Bebop Sensors, Inc. Sensor system integrated with a glove
US10480104B2 (en) 2016-09-27 2019-11-19 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
US20200008745A1 (en) * 2018-07-09 2020-01-09 V Reuben F. Burch Wearable Flexible Sensor Motion Capture System
US10602932B2 (en) 2015-12-16 2020-03-31 Siren Care, Inc. System and method for detecting inflammation in a foot
USD889673S1 (en) * 2019-02-27 2020-07-07 Miriam Y. Salloum Flexible wearable foot sling
US10884496B2 (en) 2018-07-05 2021-01-05 Bebop Sensors, Inc. One-size-fits-all data glove
WO2021154818A1 (en) * 2020-01-27 2021-08-05 Talis Clinical LLC Monitoring system for care protocols
US11109807B2 (en) 2018-12-14 2021-09-07 Siren Care, Inc. Sensing garment and method for making same
US11468976B2 (en) * 2013-03-14 2022-10-11 Nike, Inc. Apparel and location information system
US11480481B2 (en) 2019-03-13 2022-10-25 Bebop Sensors, Inc. Alignment mechanisms sensor systems employing piezoresistive materials
US11518205B2 (en) 2018-11-29 2022-12-06 Grote Industries, Inc. Smart cable system for a truck trailer
WO2022271803A1 (en) * 2021-06-22 2022-12-29 Cornell University Modular wearable interface devices
USD987283S1 (en) * 2021-06-09 2023-05-30 Erin Karlsson Sock
TWI829572B (en) * 2022-04-08 2024-01-11 長庚大學 Sole data collection device and sole data collection method
US12125359B2 (en) 2023-05-22 2024-10-22 Palarum Llc Mount for a patient monitoring device

Families Citing this family (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380831B2 (en) * 2005-10-28 2016-07-05 Nike, Inc. Article of apparel with zonal force attenuation properties
CA2696932A1 (en) * 2007-08-22 2009-02-26 Commonwealth Scientific And Industrial Research Organisation A system, garment and method
US8161826B1 (en) * 2009-03-05 2012-04-24 Stryker Corporation Elastically stretchable fabric force sensor arrays and methods of making
US20160345902A1 (en) * 2009-10-23 2016-12-01 Bend Tech, LLC System to measure foot function
EP4335362A1 (en) 2010-05-08 2024-03-13 The Regents of The University of California Method and apparatus for early detection of ulcers by scanning of subepidermal moisture
EP2629705B1 (en) 2010-10-22 2018-10-10 Össur HF Adjustable socket system
US8763261B1 (en) * 2011-01-12 2014-07-01 Adam Kemist Apparatus for measuring the internal fit of footwear
US9305120B2 (en) 2011-04-29 2016-04-05 Bryan Marc Failing Sports board configuration
CN103781404A (en) * 2011-06-20 2014-05-07 健康监测有限公司 Independent non-interfering wearable health monitoring and alert system
EP2581701B1 (en) * 2011-10-11 2013-05-29 King Saud University An apparatus for determining a dimension of a selected surface of an object
AU2012334971A1 (en) 2011-11-12 2014-05-29 Lim Innovations, Inc. Modular prosthetic sockets and methods for making same
WO2015175838A1 (en) * 2014-05-15 2015-11-19 Sensoria, Inc. Gloves with sensors for monitoring and analysis of position, pressure and movement
WO2017120063A1 (en) * 2016-01-04 2017-07-13 Sensoria Inc. Sensor-enabled footwear; sensors, interfaces and sensor systems for data collection
WO2017185050A1 (en) * 2016-04-21 2017-10-26 Sensoria, Inc. Sensor assemblies; sensor-enabled garments and objects; devices and systems for data collection
US11060926B2 (en) * 2012-01-30 2021-07-13 Sensoria, Inc. Sensor assemblies; sensor-enabled garments and objects; devices and systems for data collection
US9307930B2 (en) * 2012-02-06 2016-04-12 Koninklijke Philips N.V. Patient interface sizing gauge
WO2014005071A1 (en) 2012-06-28 2014-01-03 Ossur Hf Adjustable prosthetic limb system
US9498128B2 (en) 2012-11-14 2016-11-22 MAD Apparel, Inc. Wearable architecture and methods for performance monitoring, analysis, and feedback
US9330342B2 (en) * 2012-12-10 2016-05-03 The Regents Of The University Of California On-bed monitoring system for range of motion exercises with a pressure sensitive bed sheet
WO2014100045A1 (en) 2012-12-17 2014-06-26 Qi2 ELEMENTS II, LLC Foot-mounted sensor systems for tracking body movement
GB201317746D0 (en) 2013-10-08 2013-11-20 Smith & Nephew PH indicator
CA2900343C (en) 2013-02-08 2017-10-10 Footfalls And Heartbeats Limited Method for optimizing contact resistance in electrically conductive textiles
US20140276235A1 (en) * 2013-03-15 2014-09-18 First Principles, Inc. Biofeedback systems and methods
US20140296651A1 (en) * 2013-04-01 2014-10-02 Robert T. Stone System and Method for Monitoring Physiological Characteristics
BR112015028905A2 (en) 2013-05-21 2017-07-25 Orpyx Medical Tech Inc pressure data acquisition set and method of acquiring pressure data
US9504407B2 (en) * 2013-05-21 2016-11-29 Chin Keong Lam Method and system for processing runner data
US9468542B2 (en) 2013-06-21 2016-10-18 Lim Innovations, Inc. Prosthetic socket and socket liner with moisture management capability
US10119208B2 (en) 2013-08-16 2018-11-06 Footfalls And Heartbeats Limited Method for making electrically conductive textiles and textile sensor
US9788789B2 (en) * 2013-08-30 2017-10-17 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
WO2015069781A1 (en) * 2013-11-05 2015-05-14 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Actuated foot orthotic with sensors
US10321832B2 (en) 2013-11-23 2019-06-18 MAD Apparel, Inc. System and method for monitoring biometric signals
US10292652B2 (en) 2013-11-23 2019-05-21 MAD Apparel, Inc. System and method for monitoring biometric signals
US11219396B2 (en) 2013-11-23 2022-01-11 MAD Apparel, Inc. System and method for monitoring biometric signals
DE112014005532T5 (en) 2013-12-05 2016-08-18 Fisher & Paykel Healthcare Limited Surface size measurement tools and methods
WO2015095232A1 (en) 2013-12-16 2015-06-25 Lim Innovations, Inc. Method and system for assembly of a modular prosthetic socket based on residual limb metrics
WO2015103442A1 (en) * 2014-01-02 2015-07-09 Sensoria Inc. Methods and systems for data collection, analysis, formulation and reporting of user-specific feedback
WO2015116192A1 (en) * 2014-01-31 2015-08-06 Hewlett-Packard Development Company, L.P. Comfort-based garment management
US9459089B2 (en) * 2014-04-09 2016-10-04 Qualcomm Incorporated Method, devices and systems for detecting an attachment of an electronic patch
US10216904B2 (en) * 2014-04-16 2019-02-26 Carkmh, Llc Cloud-assisted rehabilitation methods and systems for musculoskeletal conditions
US20150297100A1 (en) * 2014-04-18 2015-10-22 Hilario Castillo Vital Socks
US10617354B2 (en) 2014-04-29 2020-04-14 MAD Apparel, Inc. Biometric electrode system and method of manufacture
US9474633B2 (en) 2014-05-05 2016-10-25 Lim Innovations, Inc. Alignable coupling assembly for connecting two prosthetic limb components
US9696833B2 (en) 2014-05-15 2017-07-04 Bebop Sensors, Inc. Promoting sensor isolation and performance in flexible sensor arrays
CN104027107A (en) * 2014-05-23 2014-09-10 浙江大学 Wearable electrocardio measurement device
US9858611B2 (en) * 2014-05-29 2018-01-02 Like A Glove Ltd. Self-measuring garment
US10245775B2 (en) 2014-06-04 2019-04-02 Lim Innovations, Inc. Method and apparatus for transferring a digital profile of a residual limb to a prosthetic socket strut
US9710060B2 (en) * 2014-06-09 2017-07-18 BeBop Senors, Inc. Sensor system integrated with a glove
US10398376B2 (en) * 2014-06-17 2019-09-03 MAD Apparel, Inc. Garment integrated electrical interface system and method of manufacture
US20150359485A1 (en) * 2014-06-17 2015-12-17 MAD Apparel, Inc. Biometric signal conduction system and method of manufacture
WO2015199699A1 (en) 2014-06-26 2015-12-30 Hewlett-Packard Development Company, L.P. Generating specifications for an orthosis
US9554732B2 (en) 2014-06-30 2017-01-31 Everyday Olympian, Inc. Modular physical activity monitoring system
US10390755B2 (en) 2014-07-17 2019-08-27 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US10383550B2 (en) 2014-07-17 2019-08-20 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US10279201B2 (en) 2014-07-17 2019-05-07 Elwha Llc Monitoring and treating pain with epidermal electronics
US10279200B2 (en) 2014-07-17 2019-05-07 Elwha Llc Monitoring and treating pain with epidermal electronics
US10099053B2 (en) 2014-07-17 2018-10-16 Elwha Llc Epidermal electronics to monitor repetitive stress injuries and arthritis
US20160073701A1 (en) * 2014-09-17 2016-03-17 Penn Engineering & Manufacturing Corp. Wearable Electrical Connectors
WO2016054057A1 (en) * 2014-09-29 2016-04-07 MAD Apparel, Inc. Garment integrated electrical interface system and method of manufacture
US9687695B2 (en) 2014-10-22 2017-06-27 Dalsu Lee Methods and systems for training proper running of a user
JP6880412B2 (en) * 2014-10-30 2021-06-02 ビーボップ センサーズ、インコーポレイテッド Sensor system integrated with the glove
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
US9833607B2 (en) 2014-10-30 2017-12-05 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US9566033B2 (en) * 2014-11-03 2017-02-14 Phillip Bogdanovich Garment system with electronic components and associated methods
US10542934B2 (en) 2014-11-03 2020-01-28 Cipher Skin Garment system providing biometric monitoring
US10638969B2 (en) * 2014-11-10 2020-05-05 Walgreens Health Solutions, LLC Wireless pressure ulcer alert methods and systems therefor
US9913611B2 (en) * 2014-11-10 2018-03-13 MAD Apparel, Inc. Garment integrated sensing system and method
CN106999047A (en) * 2014-11-21 2017-08-01 埃尔瓦有限公司 The system for monitoring the damage of body part after the blow
US10143423B2 (en) * 2014-11-21 2018-12-04 Elwha Llc Systems to monitor body portions for injury after impact
US20160143535A1 (en) * 2014-11-21 2016-05-26 Elwha Llc Systems to monitor body portions for injury after impact
US10512420B2 (en) 2014-11-21 2019-12-24 Elwha Llc Systems to monitor body portions for injury after impact
US20160157779A1 (en) * 2014-12-08 2016-06-09 Intel Corporation Wearable sensor apparatus with multiple flexible substrates
US20190159727A1 (en) * 2014-12-31 2019-05-30 Sensoria Inc. Sensor-enabled footwear; sensors, interfaces and sensor systems for data collection
US20160228049A1 (en) * 2015-02-06 2016-08-11 Nxp B.V. Wound monitoring
US10335086B2 (en) 2015-02-27 2019-07-02 Elwha Llc Item attachable to a subject and including a sensor for sensing an object that a body portion of the subject may contact
US9881477B2 (en) 2015-02-27 2018-01-30 Elwha Llc Device having a sensor for sensing an object and a communicator for coupling the sensor to a determiner for determining whether a subject may collide with the object
DE102015105004B3 (en) * 2015-03-31 2016-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Textile material with incorporated elastomer sensors
EP3280322A4 (en) * 2015-04-10 2018-10-24 Ivan Arbouzov Multi-sensor, modular, subject observation and monitoring system
US10182740B2 (en) 2015-04-24 2019-01-22 Bruin Biometrics, Llc Apparatus and methods for determining damaged tissue using sub-epidermal moisture measurements
CN104881113A (en) * 2015-05-09 2015-09-02 深圳市前海安测信息技术有限公司 Remote auxiliary diagnosis and treatment doctor terminal wearable device and remote auxiliary diagnosis and treatment method
EP3527175B1 (en) 2015-05-13 2021-12-08 Ossur Iceland EHF Adjustable socket system
US20160340811A1 (en) * 2015-05-18 2016-11-24 Wigwam Mills, Inc. Fabric and method for manufacturing sock
JP2016220813A (en) * 2015-05-28 2016-12-28 国立大学法人東北大学 Measuring apparatus
US10368810B2 (en) 2015-07-14 2019-08-06 Welch Allyn, Inc. Method and apparatus for monitoring a functional capacity of an individual
US20170112388A1 (en) * 2015-10-22 2017-04-27 Welch Allyn, Inc. Method and apparatus for performing biological measurements
US11116397B2 (en) 2015-07-14 2021-09-14 Welch Allyn, Inc. Method and apparatus for managing sensors
US20180211730A1 (en) * 2015-07-21 2018-07-26 Arizona Board Of Regents On Behalf Of The University Of Arizona Health information (data) medical collection, processing and feedback continuum systems and methods
US10166680B2 (en) 2015-07-31 2019-01-01 Heinz Hemken Autonomous robot using data captured from a living subject
US9676098B2 (en) 2015-07-31 2017-06-13 Heinz Hemken Data collection from living subjects and controlling an autonomous robot using the data
US9979591B2 (en) * 2015-08-28 2018-05-22 Samsung Electronics Co., Ltd. Event notifications for applications
US10617350B2 (en) 2015-09-14 2020-04-14 Welch Allyn, Inc. Method and apparatus for managing a biological condition
WO2017045102A1 (en) * 2015-09-14 2017-03-23 欧利速精密工业股份有限公司 Three-dimensional size measurement system for internal volume of shoe body
CN106510100A (en) * 2015-09-14 2017-03-22 欧利速精密工业股份有限公司 Three-dimensional size measuring system for internal volume of shoe body
US9721553B2 (en) 2015-10-14 2017-08-01 Bebop Sensors, Inc. Sensor-based percussion device
US10918340B2 (en) 2015-10-22 2021-02-16 Welch Allyn, Inc. Method and apparatus for detecting a biological condition
US10964421B2 (en) 2015-10-22 2021-03-30 Welch Allyn, Inc. Method and apparatus for delivering a substance to an individual
US10588359B2 (en) 2015-11-05 2020-03-17 Veil Intimates Llc Formed brassiere and associated method of manufacture
GB2544082A (en) 2015-11-05 2017-05-10 Impact Tech Labs Ltd A wearable garment
GB2546721B (en) 2015-11-05 2020-08-05 Nurvv Ltd A structure to absorb, dissipate and measure a force
CN205107687U (en) * 2015-11-05 2016-03-30 深圳市前海安测信息技术有限公司 A pressure sensor , wearable equipment and system for gait information acquisition
US10179056B2 (en) 2015-11-25 2019-01-15 Lim Innovations, Inc. Transfemoral prosthetic socket with a textile-based cover and intra-frame force applicators
CN105486326A (en) * 2015-11-26 2016-04-13 联想(北京)有限公司 Information processing method and electronic equipment
CN105476633A (en) * 2015-11-30 2016-04-13 江门大诚医疗器械有限公司 BIA (bio-impedance analysis)-based human body water measurement shoe pad
AU2016381570B2 (en) * 2015-12-28 2020-02-20 Dexcom, Inc. Wearable apparatus for continuous blood glucose monitoring
US9786148B2 (en) 2016-01-21 2017-10-10 Plethy, Inc. Devices, systems, and methods for health monitoring using circumferential changes of a body portion
CN108471986B (en) 2016-01-21 2021-09-07 普莱西公司 Devices, systems, and methods for health monitoring using perimeter changes of body parts
CN105595531B (en) * 2016-02-02 2018-11-30 何泽熹 Shoes lumen data gather computer and its acquisition method
TWI629012B (en) * 2016-02-24 2018-07-11 國立清華大學 Intelligent insole
TW201737856A (en) * 2016-02-25 2017-11-01 威廉 袁 Smart garment
US20170305301A1 (en) * 2016-04-22 2017-10-26 Bebop Sensors, Inc. Vehicle seat sensor systems for use with occupant classification systems
WO2017195038A1 (en) 2016-05-13 2017-11-16 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
CN107638177A (en) * 2016-07-21 2018-01-30 北京动量科技有限责任公司 A kind of intelligent sphere socks and its implementation
CN106175791A (en) * 2016-08-08 2016-12-07 北京微心百源科技发展有限公司 A kind of infantile pneumonia prior-warning device and Forecasting Methodology
PL418511A1 (en) * 2016-08-31 2018-03-12 Bartosz Jędrzejewski Device and the system that stimulates feeling, perception and motor activity
US20180124493A1 (en) * 2016-11-02 2018-05-03 Bragi GmbH Galvanic linkage for smart sock or other wearable devices
KR102294218B1 (en) * 2017-01-06 2021-08-27 나이키 이노베이트 씨.브이. Systems, platforms and methods for personalized shopping using automated shopping assistants
KR102283395B1 (en) * 2017-02-03 2021-07-30 브루인 바이오메트릭스, 엘엘씨 Determination of susceptibility to diabetic foot ulcers
JP7015305B2 (en) 2017-02-03 2022-02-02 ブルーイン、バイオメトリクス、リミテッド、ライアビリティー、カンパニー Measurement of tissue viability
CN109890273B (en) 2017-02-03 2022-10-11 布鲁恩生物有限责任公司 Measurement of edema
US11419740B2 (en) 2017-02-06 2022-08-23 Ossur Iceland Ehf Adjustable socket system
US10940028B2 (en) 2017-02-06 2021-03-09 Ossur Iceland Ehf Adjustable socket system
US10993819B2 (en) 2017-02-06 2021-05-04 Ossur Iceland Ehf Adjustable socket system
US11324424B2 (en) 2017-03-09 2022-05-10 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
WO2018162736A1 (en) 2017-03-09 2018-09-13 Smith & Nephew Plc Wound dressing, patch member and method of sensing one or more wound parameters
CN106821332A (en) * 2017-03-21 2017-06-13 中山大学附属第医院 Multifunctional diabetic foot detector
JP7113845B2 (en) * 2017-04-04 2022-08-05 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト wearable medical device
US11883262B2 (en) 2017-04-11 2024-01-30 Smith & Nephew Plc Component positioning and stress relief for sensor enabled wound dressings
GB201707619D0 (en) * 2017-05-12 2017-06-28 Shoes2Run Ltd Apparatus and system for measuring one or more parameters of a person's foot
EP3635732A1 (en) 2017-05-15 2020-04-15 Smith & Nephew plc Wound analysis device and method
WO2018210693A1 (en) 2017-05-15 2018-11-22 Smith & Nephew Plc Negative pressure wound therapy system using eulerian video magnification
US11097103B2 (en) * 2017-06-06 2021-08-24 Myant Inc. Sensor band for multimodal sensing of biometric data
US20180344171A1 (en) * 2017-06-06 2018-12-06 Myant Inc. Sensor band for multimodal sensing of biometric data
WO2018229609A1 (en) * 2017-06-12 2018-12-20 3M Innovative Properties Company Stretchable conductors
US10180721B2 (en) * 2017-06-14 2019-01-15 Apple Inc. Fabric-based devices with force sensing
EP3641627B1 (en) 2017-06-23 2023-05-31 Smith & Nephew PLC Positioning of sensors for sensor enabled wound monitoring or therapy
US11763365B2 (en) 2017-06-27 2023-09-19 Nike, Inc. System, platform and method for personalized shopping using an automated shopping assistant
CN108209881B (en) * 2017-07-03 2019-11-12 深圳市前海未来无限投资管理有限公司 A kind of foot status early warning method and device
CN108209882B (en) * 2017-07-03 2019-11-12 深圳市前海未来无限投资管理有限公司 Foot method for monitoring state and device
CN108209879B (en) * 2017-07-03 2020-02-07 深圳市行远科技发展有限公司 Early warning signal generation method and device
GB201710807D0 (en) * 2017-07-05 2017-08-16 Rosnes Ltd Self-monitoring supports
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
GB201809007D0 (en) 2018-06-01 2018-07-18 Smith & Nephew Restriction of sensor-monitored region for sensor-enabled wound dressings
CN111093726B (en) 2017-08-10 2023-11-17 史密夫及内修公开有限公司 Sensor positioning for performing wound monitoring or treatment of sensors
GB201804971D0 (en) 2018-03-28 2018-05-09 Smith & Nephew Electrostatic discharge protection for sensors in wound therapy
GB201718870D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Inc Sensor enabled wound therapy dressings and systems
EP3681376A1 (en) 2017-09-10 2020-07-22 Smith & Nephew PLC Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
TWI657761B (en) * 2017-09-21 2019-05-01 劉懿賢 Sole measuring device
GB201718859D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Sensor positioning for sensor enabled wound therapy dressings and systems
EP3687380A1 (en) 2017-09-27 2020-08-05 Smith & Nephew plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
EP3687396A1 (en) 2017-09-28 2020-08-05 Smith & Nephew plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
WO2019075185A1 (en) 2017-10-11 2019-04-18 Plethy, Inc. Devices, systems, and methods for adaptive health monitoring using behavioral, psychological, and physiological changes of a body portion
JP2021502845A (en) 2017-11-15 2021-02-04 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Integrated sensor-enabled wound monitoring and / or treatment coverings and systems
CA3080407A1 (en) 2017-11-16 2019-05-23 Bruin Biometrics, Llc Providing a continuity of care across multiple care settings
EP3749181B1 (en) 2018-02-09 2024-02-21 Bruin Biometrics, LLC Detection of tissue damage
ES2957705T3 (en) * 2018-02-16 2024-01-24 Soccerment S R L Device for monitoring sports performance, in particular football performance
CN112367903A (en) * 2018-02-20 2021-02-12 塞仁护理公司 Garment for monitoring a user and method for manufacturing the same
WO2019162272A1 (en) 2018-02-21 2019-08-29 T.J.Smith And Nephew, Limited Monitoring of body loading and body position for the treatment of pressure ulcers or other injuries
ES2723548B2 (en) * 2018-02-23 2020-12-18 Rosado Pedro Jose Iglesias GARMENTS OF SIZING AND MONITORING OF BODY PARAMETERS AND USE PROCEDURE
KR101932457B1 (en) 2018-03-06 2018-12-26 이홍규 Apparatus for generating information regarding inside of shoes, and method using the same
US10895026B2 (en) * 2018-03-14 2021-01-19 National Textile University, Faisalabad Systems and methods for manufacturing a sock for monitoring health conditions
DE102018109913A1 (en) * 2018-04-25 2019-10-31 Helmholtz-Zentrum Dresden - Rossendorf E.V. Multi-sensory therapeutic-diagnostic system for monitoring orthopedic training and athletic performance
EP3804452A1 (en) 2018-06-04 2021-04-14 T.J. Smith & Nephew, Limited Device communication management in user activity monitoring systems
US11321327B2 (en) 2018-06-28 2022-05-03 International Business Machines Corporation Intelligence situational awareness
CN108936946A (en) * 2018-07-24 2018-12-07 深圳大学 Foot pressure detection insole, system and method
US11589813B2 (en) 2018-07-30 2023-02-28 Cipher Skin Garment system providing biometric monitoring for medical condition assessment
EP3849401A1 (en) 2018-09-12 2021-07-21 Smith & Nephew plc Device, apparatus and method of determining skin perfusion pressure
GB2591899B (en) 2018-10-11 2022-03-09 Bruin Biometrics Llc Device with disposable element
WO2020118696A1 (en) * 2018-12-14 2020-06-18 Siren Care, Inc. Method for registration and activation of temperature-sensing garments
GB201820927D0 (en) 2018-12-21 2019-02-06 Smith & Nephew Wound therapy systems and methods with supercapacitors
EP3899974A1 (en) * 2018-12-21 2021-10-27 The Procter & Gamble Company Apparatus and method for operating a personal grooming appliance or household cleaning appliance
LU101075B1 (en) * 2018-12-28 2020-06-29 Luxembourg Inst Science & Tech List Body motion analysis data treatment
US20200281496A1 (en) * 2019-03-06 2020-09-10 General Electric Company Sensor assembly for patient monitoring systems
GB2614490B (en) 2019-03-18 2023-12-06 Smith & Nephew Design rules for sensor integrated substrates
US11304650B1 (en) * 2019-03-20 2022-04-19 University Of South Florida Systems and methods for heel-to-shin testing
CN111957024A (en) * 2019-05-19 2020-11-20 郑州大学 Wearable Taiji motion gait evaluation and training system based on cloud platform
US10932719B2 (en) 2019-06-14 2021-03-02 Jawad Trad In-vivo fluid monitoring devices and methods
CN112294538A (en) * 2019-09-24 2021-02-02 黑龙江中医药大学 Integrated sterile gauze cotton pad
GB201914443D0 (en) 2019-10-07 2019-11-20 Smith & Nephew Sensor enabled negative pressure wound monitoring apparatus with different impedances inks
IT201900018455A1 (en) * 2019-10-10 2021-04-10 Pp One S R L WEARABLE DEVICE FOR THE PREVENTION OF THE FORMATION OF DECUBITUS SORES EQUIPPED WITH ELECTRONICS AND REFERENCE METHOD
US10842415B1 (en) 2019-10-25 2020-11-24 Plethy, Inc. Devices, systems, and methods for monitoring and assessing gait, stability, and/or balance of a user
CN110736579A (en) * 2019-11-21 2020-01-31 东华大学 compression force tester under tight exercise protection
KR102230403B1 (en) * 2020-01-03 2021-03-23 최진우 Body health check system for companion animal
JP2021148458A (en) * 2020-03-16 2021-09-27 株式会社東芝 Shape measurement method and shape measurement device
WO2022051251A1 (en) 2020-09-04 2022-03-10 Ossur Iceland Ehf Interchangeable distal end for a prosthetic socket system
US11589459B2 (en) 2020-12-23 2023-02-21 Nextiles, Inc. Connectors for integrating conductive threads to non-compatible electromechanical devices
CN112773006A (en) * 2021-02-02 2021-05-11 北京大学深圳医院 Diabetic foot health care socks
US11642075B2 (en) 2021-02-03 2023-05-09 Bruin Biometrics, Llc Methods of treating deep and early-stage pressure induced tissue damage
KR102687183B1 (en) * 2021-03-31 2024-07-25 중앙대학교 산학협력단 High elasticity, high sensitivity strain sensor capable of detecting multi-axis strain, and method of preparing same
GB2605637B (en) * 2021-04-08 2023-09-06 Oxford Healthtech Ltd Sensing device for sensing a compressive pressure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610253A (en) * 1983-08-19 1986-09-09 Brig Research Ltd. Method and apparatus for the prevention of pressure sores
US5736656A (en) * 1996-05-22 1998-04-07 Fullen Systems, Inc. Apparatus and method for measuring the magnitude and distribution of forces on the foot of a quadruped
US20070129907A1 (en) * 2005-12-05 2007-06-07 Demon Ronald S Multifunction shoe with wireless communications capabilities
US20080000304A1 (en) * 2006-03-03 2008-01-03 North Carolina State University Sensor device for real-time monitoring of relative movement using capacitive fabric sensors
US20100152619A1 (en) * 2008-12-16 2010-06-17 24/8 Llc System, method, and computer-program product for measuring pressure points
US20100324455A1 (en) * 2009-05-23 2010-12-23 Lasercure Sciences, Inc. Devices for management of foot injuries and methods of use and manufacture thereof
US20110191044A1 (en) * 2009-09-30 2011-08-04 Stafford Gary A Interconnect for on-body analyte monitoring device

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642096A (en) * 1992-03-20 1997-06-24 Paromed Medizintechnik Gmbh Device for prevention of ulcers in the feet of diabetes patients
US5546955A (en) 1992-06-18 1996-08-20 Wilk; Peter J. Medical stocking for temperature detection
US6500210B1 (en) * 1992-09-08 2002-12-31 Seattle Systems, Inc. System and method for providing a sense of feel in a prosthetic or sensory impaired limb
US5678448A (en) * 1994-01-14 1997-10-21 Fullen Systems, Inc. System for continuously measuring forces applied by the foot
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US6216545B1 (en) * 1995-11-14 2001-04-17 Geoffrey L. Taylor Piezoresistive foot pressure measurement
US6174294B1 (en) 1996-08-02 2001-01-16 Orbital Technologies, Inc. Limb load monitor
US6360597B1 (en) 1997-01-08 2002-03-26 The Trustees Of Boston University In-shoe remote telemetry gait analysis system
US6546813B2 (en) * 1997-01-08 2003-04-15 The Trustees Of Boston University Patient monitoring system employing array of force sensors on a bedsheet or similar substrate
US7107706B1 (en) 1997-08-14 2006-09-19 Promdx Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US6687523B1 (en) 1997-09-22 2004-02-03 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure for monitoring vital signs of infants
WO1999015722A2 (en) 1997-09-22 1999-04-01 Georgia Tech Research Corporation Full-fashioned weaving process for production of a woven garment with intelligence capability
US6381482B1 (en) 1998-05-13 2002-04-30 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure
US6272936B1 (en) * 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
US6315009B1 (en) 1998-05-13 2001-11-13 Georgia Tech Research Corp. Full-fashioned garment with sleeves having intelligence capability
US6970731B1 (en) 1998-09-21 2005-11-29 Georgia Tech Research Corp. Fabric-based sensor for monitoring vital signs
US6474367B1 (en) 1998-09-21 2002-11-05 Georgia Tech Research Corp. Full-fashioned garment in a fabric and optionally having intelligence capability
EP1198197B1 (en) 1999-07-06 2007-05-16 Georgia Tech Research Corporation Garment for monitoring vital signs of infants
US6195921B1 (en) * 1999-09-28 2001-03-06 Vinncente Hoa Gia Truong Virtual intelligence shoe with a podiatric analysis system
CA2394571A1 (en) 1999-12-15 2001-06-21 James M. Horton Sock for detection of pressure points in feet
US6918883B2 (en) 1999-12-15 2005-07-19 Cannon Research Institute Of Carolinas Medical Center Sock for detection of pressure points on feet
US6275996B1 (en) * 2000-01-28 2001-08-21 Acushnet Company Articles with removable elements
IL152105A0 (en) 2000-04-03 2003-07-31 Univ Brunel Conductive pressure sensitive textile
US6543299B2 (en) 2001-06-26 2003-04-08 Geoffrey L. Taylor Pressure measurement sensor with piezoresistive thread lattice
ES2269821T3 (en) * 2001-11-20 2007-04-01 Ip2H Ag PROCEDURE TO ESTABLISH A TELECOMMUNICATION CONNECTION AND A TELECOMMUNICATION NETWORK.
EP1511418B1 (en) 2002-02-07 2009-04-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) Body movement monitoring device
DE10314211A1 (en) 2002-03-28 2003-11-06 Lilienfeld Toal Hermann Von Pressure-sensitive sock has pressure-sensitive material for detecting forces acting on sock extending over entire foot region and enabling position-resolved detection of pressure acting on sock
US6941775B2 (en) 2002-04-05 2005-09-13 Electronic Textile, Inc. Tubular knit fabric and system
US20030224155A1 (en) 2002-06-03 2003-12-04 International Fashion Machines, Inc. Electronically controllable, visually dynamic textile, fabric, or flexible substrate
US8111165B2 (en) * 2002-10-02 2012-02-07 Orthocare Innovations Llc Active on-patient sensor, method and system
JP2004132765A (en) 2002-10-09 2004-04-30 Fukui Prefecture Pressure sensitive sheet for load distribution measurement
ITMI20030649A1 (en) 2003-04-01 2004-10-02 Fond Don Carlo Gnocchi Onlu S INTEGRATED STRUCTURE FOR SIGNAL DETECTION
FR2858758B1 (en) 2003-08-14 2006-04-07 Tam Telesante Sarl MEDICAL MONITORING SYSTEM USING A CLOTHING
WO2005032447A2 (en) 2003-08-22 2005-04-14 Foster-Miller, Inc. Physiological monitoring garment
WO2006030405A1 (en) 2004-09-14 2006-03-23 University Of Limerick A transducer apparatus for measuring biomedical pressures
JP4871298B2 (en) 2005-02-07 2012-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An apparatus for determining a person's stress level and providing feedback based on the determined stress level.
JP2009503734A (en) * 2005-08-01 2009-01-29 マーケル・カロリン・エム. Wearable fitness device and fitness device capable of exchanging a plurality of wearable members
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US20070089800A1 (en) * 2005-10-24 2007-04-26 Sensatex, Inc. Fabrics and Garments with Information Infrastructure
DE102005055842A1 (en) * 2005-11-23 2007-05-24 Alpha-Fit Gmbh Pressure sensor for incorporation in clinical test socks or stockings incorporates pressure-sensitive threads or ribbons
US8060944B2 (en) * 2005-12-02 2011-11-22 Lueking Daniel E Apparatus and methods for holding shin guards in position
US8583272B2 (en) 2006-04-21 2013-11-12 Donald Spector Orthopods and equipment to generate orthopedic supports from computerized data inputs
DE102006025447A1 (en) 2006-05-31 2007-12-27 Lenhart, Peter, Dr. med. Sensor device and method for generating and visualizing the running motor of a person indicative signals
GB2439750A (en) 2006-07-06 2008-01-09 Wound Solutions Ltd Monitoring a limb wound
US7997007B2 (en) 2006-09-15 2011-08-16 Early Success, Inc. Stimulus training system and apparatus to effectuate therapeutic treatment
GB2443208A (en) 2006-10-27 2008-04-30 Studio 1 Ventures Ltd Textile pressure sensor
US7726206B2 (en) 2006-11-02 2010-06-01 The Regents Of The University Of California Foot pressure alert and sensing system
US20080160851A1 (en) 2006-12-27 2008-07-03 Motorola, Inc. Textiles Having a High Impedance Surface
US20080161731A1 (en) 2006-12-27 2008-07-03 Woods Sherrod A Apparatus, system, and method for monitoring the range of motion of a patient's joint
GB2445760A (en) 2007-01-19 2008-07-23 Wound Solutions Ltd A flexible pressure sensor
US7698101B2 (en) 2007-03-07 2010-04-13 Apple Inc. Smart garment
US7722358B2 (en) * 2007-06-15 2010-05-25 Microsoft Corporation Electrical connection between devices
US7484408B2 (en) * 2007-06-18 2009-02-03 Intel Corporation Method and apparatus for measuring lower extremity volume
US8610690B2 (en) * 2007-07-27 2013-12-17 Tpk Touch Solutions Inc. Capacitive sensor and method for manufacturing same
CA2696932A1 (en) * 2007-08-22 2009-02-26 Commonwealth Scientific And Industrial Research Organisation A system, garment and method
US8206325B1 (en) 2007-10-12 2012-06-26 Biosensics, L.L.C. Ambulatory system for measuring and monitoring physical activity and risk of falling and for automatic fall detection
KR100982532B1 (en) 2008-02-26 2010-09-16 한국생산기술연구원 Digital garment using knitting technology and fabricating method thereof
US20090234262A1 (en) * 2008-03-13 2009-09-17 Reid Jr Lawrence G Health Monitoring and Management System
US8161826B1 (en) * 2009-03-05 2012-04-24 Stryker Corporation Elastically stretchable fabric force sensor arrays and methods of making
WO2009152456A2 (en) * 2008-06-13 2009-12-17 Nike, Inc. Footwear having sensor system
PL2337452T3 (en) * 2008-07-03 2015-05-29 Monsanto Technology Llc Combinations of derivatized saccharide surfactants and etheramine oxide surfactants as herbicide adjuvants
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
CN102355847B (en) * 2009-01-24 2016-05-25 杨章民 Sensing apparatus
US8639455B2 (en) * 2009-02-09 2014-01-28 Alterg, Inc. Foot pad device and method of obtaining weight data
EP2398383A4 (en) * 2009-02-20 2013-07-03 Univ Colorado Regents Footwear-based body weight monitor and postural allocation, physical activity classification, and energy expenditure calculator
CA2662431A1 (en) 2009-02-24 2010-08-24 The Business Accelerators Inc. Biometric characterizing system and method and apparel linking system and method
US8081083B2 (en) * 2009-03-06 2011-12-20 Telehealth Sensors Llc Mattress or chair sensor envelope with an antenna
US10729357B2 (en) 2010-04-22 2020-08-04 Leaf Healthcare, Inc. Systems and methods for generating and/or adjusting a repositioning schedule for a person
US8140143B2 (en) 2009-04-16 2012-03-20 Massachusetts Institute Of Technology Washable wearable biosensor
US8655441B2 (en) 2009-04-16 2014-02-18 Massachusetts Institute Of Technology Methods and apparatus for monitoring patients and delivering therapeutic stimuli
US8732866B2 (en) 2009-11-20 2014-05-27 Ryan T. Genz Fabric constructions with sensory transducers
US8348841B2 (en) 2010-04-09 2013-01-08 The Board Of Trustees Of The University Of Arkansas Wireless nanotechnology based system for diagnosis of neurological and physiological disorders
US8443634B2 (en) 2010-04-27 2013-05-21 Textronics, Inc. Textile-based electrodes incorporating graduated patterns
WO2011140113A1 (en) 2010-05-03 2011-11-10 Lark Technologies, Inc. System and method for providing sleep quality feedback
PT105191A (en) 2010-07-08 2012-01-09 Fiorima Fabricacao De Peugas S A ITEM FOR INTEGRATED BIOMETRIC MONITORING
US8628485B2 (en) 2010-08-06 2014-01-14 Covenant Ministries Of Benevolence Inc. Gait analysis system and methods
CA2813656C (en) 2010-10-29 2023-09-26 Orpyx Medical Technologies Inc. Peripheral sensory and supersensory replacement system
IT1402915B1 (en) 2010-12-03 2013-09-27 Milano Politecnico BSI TYPE CLUTCH HEAD FOR THE DETECTION OF LIFE PARAMETERS OF A NEWBORN.
US8753275B2 (en) 2011-01-13 2014-06-17 BioSensics LLC Intelligent device to monitor and remind patients with footwear, walking aids, braces, or orthotics
US20130281795A1 (en) 2012-04-18 2013-10-24 The Board Of Trustees Of The University Of Arkansas Wearable remote electrophysiological monitoring system
US20130281815A1 (en) 2012-04-18 2013-10-24 The Board Of Trustees Of The University Of Arkansas Wearable remote electrophysiological monitoring system
US20130211208A1 (en) 2011-03-08 2013-08-15 Vijay K. Varadan Smart materials, dry textile sensors, and electronics integration in clothing, bed sheets, and pillow cases for neurological, cardiac and/or pulmonary monitoring
CN102283642B (en) * 2011-06-10 2014-12-10 中国科学院深圳先进技术研究院 Wearable system capable of continuously measuring multiple physiological parameters based on body sensor network
EP2729067A4 (en) 2011-07-14 2014-10-29 Mc10 Inc Detection of a force on a foot or footwear

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610253A (en) * 1983-08-19 1986-09-09 Brig Research Ltd. Method and apparatus for the prevention of pressure sores
US5736656A (en) * 1996-05-22 1998-04-07 Fullen Systems, Inc. Apparatus and method for measuring the magnitude and distribution of forces on the foot of a quadruped
US20070129907A1 (en) * 2005-12-05 2007-06-07 Demon Ronald S Multifunction shoe with wireless communications capabilities
US20080000304A1 (en) * 2006-03-03 2008-01-03 North Carolina State University Sensor device for real-time monitoring of relative movement using capacitive fabric sensors
US20100152619A1 (en) * 2008-12-16 2010-06-17 24/8 Llc System, method, and computer-program product for measuring pressure points
US20100324455A1 (en) * 2009-05-23 2010-12-23 Lasercure Sciences, Inc. Devices for management of foot injuries and methods of use and manufacture thereof
US20110191044A1 (en) * 2009-09-30 2011-08-04 Stafford Gary A Interconnect for on-body analyte monitoring device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288507B2 (en) 2009-10-16 2019-05-14 Bebop Sensors, Inc. Piezoresistive sensors and sensor arrays
US10753814B2 (en) 2009-10-16 2020-08-25 Bebop Sensors, Inc. Piezoresistive sensors and sensor arrays
US11204664B2 (en) 2012-03-14 2021-12-21 Bebop Sensors, Inc Piezoresistive sensors and applications
US9836151B2 (en) 2012-03-14 2017-12-05 Bebop Sensors, Inc. Multi-touch pad controller
US10802641B2 (en) 2012-03-14 2020-10-13 Bebop Sensors, Inc. Piezoresistive sensors and applications
US10114493B2 (en) 2012-03-14 2018-10-30 Bebop Sensors, Inc. Multi-touch pad controller
US12009084B2 (en) * 2013-03-14 2024-06-11 Nike, Inc. Apparel and location information system
US20230005591A1 (en) * 2013-03-14 2023-01-05 Nike, Inc. Apparel and Location Information System
US11468976B2 (en) * 2013-03-14 2022-10-11 Nike, Inc. Apparel and location information system
US9965076B2 (en) 2014-05-15 2018-05-08 Bebop Sensors, Inc. Piezoresistive sensors and applications
US10268315B2 (en) 2014-05-15 2019-04-23 Bebop Sensors, Inc. Two-dimensional sensor arrays
US10282011B2 (en) 2014-05-15 2019-05-07 Bebop Sensors, Inc. Flexible sensors and applications
US11147510B2 (en) 2014-06-09 2021-10-19 Bebop Sensors, Inc. Flexible sensors and sensor systems
US10362989B2 (en) 2014-06-09 2019-07-30 Bebop Sensors, Inc. Sensor system integrated with a glove
US20180003579A1 (en) * 2014-12-31 2018-01-04 Sensoria Inc. Sensors, interfaces and sensor systems for data collection and integrated monitoring of conditions at or near body surfaces
US10352787B2 (en) 2015-02-27 2019-07-16 Bebop Sensors, Inc. Sensor systems integrated with footwear
US9863823B2 (en) 2015-02-27 2018-01-09 Bebop Sensors, Inc. Sensor systems integrated with footwear
US10082381B2 (en) 2015-04-30 2018-09-25 Bebop Sensors, Inc. Sensor systems integrated with vehicle tires
US9827996B2 (en) 2015-06-25 2017-11-28 Bebop Sensors, Inc. Sensor systems integrated with steering wheels
US10654486B2 (en) 2015-06-25 2020-05-19 Bebop Sensors, Inc. Sensor systems integrated with steering wheels
US10215164B2 (en) 2015-12-07 2019-02-26 Intel Corporation Fabric-based piezoelectric energy harvesting
US10638937B2 (en) 2015-12-16 2020-05-05 Siren Care, Inc. System and method for detecting inflammation in a foot
CN108366733A (en) * 2015-12-16 2018-08-03 英特尔公司 Physiological property measuring system
WO2017105697A1 (en) * 2015-12-16 2017-06-22 Intel Corporation Physiological characteristic measurement system
US10602932B2 (en) 2015-12-16 2020-03-31 Siren Care, Inc. System and method for detecting inflammation in a foot
WO2017120387A1 (en) * 2016-01-06 2017-07-13 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Compression stockings and methods of thereof
US10657787B2 (en) 2016-07-13 2020-05-19 Palarum Llc Patient monitoring system
US10403114B2 (en) 2016-07-13 2019-09-03 Palarum Llc Patient monitoring system
US10026292B2 (en) 2016-07-13 2018-07-17 Palarum Llc Patient monitoring system
US11727781B2 (en) 2016-07-13 2023-08-15 Palarum Llc Patient monitoring system
US10557220B2 (en) 2016-09-27 2020-02-11 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
US11891730B2 (en) 2016-09-27 2024-02-06 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
US10480104B2 (en) 2016-09-27 2019-11-19 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
US11447896B2 (en) 2016-09-27 2022-09-20 Siren Care, Inc. Smart yarn and method for manufacturing a yarn containing an electronic device
USD849390S1 (en) * 2017-03-14 2019-05-28 Sultan Abdul-Malik Compression sock
US10993483B2 (en) 2017-05-05 2021-05-04 Veil Intimates Llc Brassiere and associated method of manufacture
WO2018203915A1 (en) * 2017-05-05 2018-11-08 Veil Intimates Llc Formed brassiere and associated method of manufacture
US11037424B2 (en) 2018-03-16 2021-06-15 Palarum Llc Mount for a patient monitoring device
US11694535B2 (en) 2018-03-16 2023-07-04 Palarum Llc Mount for a patient monitoring device
US10559184B2 (en) 2018-03-16 2020-02-11 Palarum Llc Mount for a patient monitoring device
US10325472B1 (en) 2018-03-16 2019-06-18 Palarum Llc Mount for a patient monitoring device
US10884496B2 (en) 2018-07-05 2021-01-05 Bebop Sensors, Inc. One-size-fits-all data glove
US20200008745A1 (en) * 2018-07-09 2020-01-09 V Reuben F. Burch Wearable Flexible Sensor Motion Capture System
US11672480B2 (en) * 2018-07-09 2023-06-13 V Reuben F. Burch Wearable flexible sensor motion capture system
US11518205B2 (en) 2018-11-29 2022-12-06 Grote Industries, Inc. Smart cable system for a truck trailer
USD950400S1 (en) 2018-12-14 2022-05-03 Siren Care, Inc. Sensing garment
US11109807B2 (en) 2018-12-14 2021-09-07 Siren Care, Inc. Sensing garment and method for making same
US11911180B2 (en) 2018-12-14 2024-02-27 Siren Care, Inc. Sensing garment and method for making same
USD889673S1 (en) * 2019-02-27 2020-07-07 Miriam Y. Salloum Flexible wearable foot sling
US11480481B2 (en) 2019-03-13 2022-10-25 Bebop Sensors, Inc. Alignment mechanisms sensor systems employing piezoresistive materials
WO2021154818A1 (en) * 2020-01-27 2021-08-05 Talis Clinical LLC Monitoring system for care protocols
USD987283S1 (en) * 2021-06-09 2023-05-30 Erin Karlsson Sock
WO2022271803A1 (en) * 2021-06-22 2022-12-29 Cornell University Modular wearable interface devices
TWI829572B (en) * 2022-04-08 2024-01-11 長庚大學 Sole data collection device and sole data collection method
US12125359B2 (en) 2023-05-22 2024-10-22 Palarum Llc Mount for a patient monitoring device
US12125360B2 (en) 2023-07-14 2024-10-22 Palarum Llc Patient monitoring system

Also Published As

Publication number Publication date
EP2809232A2 (en) 2014-12-10
HK1204898A1 (en) 2015-12-11
WO2013116242A2 (en) 2013-08-08
EP2809232A4 (en) 2015-04-01
EP2809232B1 (en) 2016-10-12
ES2618728T3 (en) 2017-06-22
AU2013215287A1 (en) 2014-08-28
WO2013116242A3 (en) 2014-10-23
US8925392B2 (en) 2015-01-06
US20130192071A1 (en) 2013-08-01
CN104219999A (en) 2014-12-17
CA2862732A1 (en) 2013-08-08
JP2015509028A (en) 2015-03-26
KR20140123977A (en) 2014-10-23
JP6272238B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
US8925392B2 (en) Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
US20160206242A1 (en) Methods and systems for data collection, analysis and formulation of user-specific feedback; use of sensing systems as input devices
US11154243B2 (en) Sensor systems for user-specific evaluation of gait, footwear and garment fitting; monitoring of contact, force, pressure and/or shear at or near body surfaces
US20180003579A1 (en) Sensors, interfaces and sensor systems for data collection and integrated monitoring of conditions at or near body surfaces
Shu et al. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array
US8224418B2 (en) Integral heart rate monitoring garment
US11060926B2 (en) Sensor assemblies; sensor-enabled garments and objects; devices and systems for data collection
WO2017165238A1 (en) Wearable computer system and method of rebooting the system via user movements
US20090234262A1 (en) Health Monitoring and Management System
WO2009005373A1 (en) Footwear for prevention of foot ulceration
CN103781404A (en) Independent non-interfering wearable health monitoring and alert system
US10426394B2 (en) Method and apparatus for monitoring urination of a subject
US20190159727A1 (en) Sensor-enabled footwear; sensors, interfaces and sensor systems for data collection
WO2017120063A1 (en) Sensor-enabled footwear; sensors, interfaces and sensor systems for data collection
US20180235539A1 (en) System and method for dynamic focusing on the heart and/or lungs by frequency tuning and analysis of phase and/or amplitude modulations
WO2017190965A1 (en) A method and apparatus for verifying whether to change a determined wearing status of a device
US11272881B2 (en) Tubular compression garment for monitoring the therapy and physiological activity of a person
Healey Gsr sock: A new e-textile sensor prototype
Purwono et al. Prototype Design of Smart Diabetic Shoes with Lora Module Communication
CN111920383A (en) Wearable acquisition equipment and wearable acquisition system
Saidani et al. Smart insole monitoring system for fall detection and bad plantar pressure
US20240148266A1 (en) Bioimpedance Sensing Devices, Systems, and Techniques to Assess a Fluid State of a Body, or Portion thereof
US20240079141A1 (en) Systems and methods for stroke detection at a foot site
WO2022224252A1 (en) Long-term wearable health monitoring, diagnostics and therapy device
TWM502363U (en) Wearable device with wireless bluetooth massage function

Legal Events

Date Code Title Description
AS Assignment

Owner name: SENSORIA INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESPOSITO, MARIO;MACAGNO, MAURIZIO;VIGANO', DAVIDE GIANCARLO;REEL/FRAME:034885/0623

Effective date: 20150123

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION