US20150111826A1 - Acylated glucagon analogues - Google Patents

Acylated glucagon analogues Download PDF

Info

Publication number
US20150111826A1
US20150111826A1 US14/517,497 US201414517497A US2015111826A1 US 20150111826 A1 US20150111826 A1 US 20150111826A1 US 201414517497 A US201414517497 A US 201414517497A US 2015111826 A1 US2015111826 A1 US 2015111826A1
Authority
US
United States
Prior art keywords
isoglu
carboxy
ac4c
heptadecanoyl
aib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/517,497
Other versions
US9896495B2 (en
Inventor
Ditte Riber
Jakob Lind Tolborg
Dieter Wolfgang Hamprecht
Wolfgang Rist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zealand Pharma AS
Original Assignee
Zealand Pharma AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/517,497 priority Critical patent/US9896495B2/en
Application filed by Zealand Pharma AS filed Critical Zealand Pharma AS
Publication of US20150111826A1 publication Critical patent/US20150111826A1/en
Assigned to BOEHRINGER INGELHEIM INTERNATIONAL GMBH reassignment BOEHRINGER INGELHEIM INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG.
Assigned to ZEALAND PHARMA A/S reassignment ZEALAND PHARMA A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOLBORG, JAKOB LIND, RIBER, DITTE
Assigned to BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG. reassignment BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RIST, WOLFGANG
Assigned to ZEALAND PHARMA A/S reassignment ZEALAND PHARMA A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOEHRINGER INGELHEIM INTERNATIONAL GMBH
Assigned to BOEHRINGER INGELHEIM INTERNATIONAL GMBH reassignment BOEHRINGER INGELHEIM INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BI RESEARCH ITALIA S.A.S. DI BI IT S.R.L
Assigned to BI RESEARCH ITALIA S.A.S. DI BI IT S.R.L reassignment BI RESEARCH ITALIA S.A.S. DI BI IT S.R.L ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMPRECHT, DIETER WOLFGANG
Priority to US15/852,458 priority patent/US10457714B2/en
Application granted granted Critical
Publication of US9896495B2 publication Critical patent/US9896495B2/en
Priority to US16/569,381 priority patent/US11091528B2/en
Priority to US17/369,061 priority patent/US11884713B2/en
Assigned to ZEALAND PHARMA A/S reassignment ZEALAND PHARMA A/S RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ZOOLANDER SA LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides materials and methods for the treatment of obesity and excess weight, diabetes, and other associated metabolic disorders. In particular, the invention provides novel acylated glucagon analogue peptides effective in such methods. The peptides may mediate their effect by having increased selectivity for the GLP-1 receptor as compared to human glucagon.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional No. 61/892,256, filed Oct. 17, 2013, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to acylated glucagon analogues and their medical use, for example in the treatment of obesity and excess weight, diabetes, and other metabolic disorders.
  • BACKGROUND OF THE INVENTION
  • Pre-proglucagon is a 158 amino acid precursor polypeptide that is differentially processed in the tissues to form a number of structurally related proglucagon-derived peptides, including glucagon (Glu), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and oxyntomodulin (OXM). These molecules are involved in a wide variety of physiological functions, including glucose homeostasis, insulin secretion, gastric emptying and intestinal growth, as well as regulation of food intake.
  • Glucagon is a 29-amino acid peptide that corresponds to amino acids 53 to 81 of pre-proglucagon. Oxyntomodulin (OXM) is a 37 amino acid peptide which includes the complete 29 amino acid sequence of glucagon with an octapeptide carboxyterminal extension (amino acids 82 to 89 of pre-proglucagon, and termed “intervening peptide 1” or IP-1. The major biologically active fragment of GLP-1 is produced as a 30-amino acid, C-terminally amidated peptide that corresponds to amino acids 98 to 127 of pre-proglucagon.
  • Glucagon helps maintain the level of glucose in the blood by binding to glucagon receptors on hepatocytes, causing the liver to release glucose—stored in the form of glycogen—through glycogenolysis. As these stores become depleted, glucagon stimulates the liver to synthesize additional glucose by gluconeogenesis. This glucose is released into the bloodstream, preventing the development of hypoglycemia.
  • GLP-1 decreases elevated blood glucose levels by improving glucose-stimulated insulin secretion and promotes weight loss chiefly through decreasing food intake.
  • OXM is released into the blood in response to food ingestion and in proportion to meal calorie content. OXM has been shown to suppress appetite and inhibit food intake in humans (Cohen et al, Journal of Endocrinology and Metabolism, 88, 4696-4701, 2003; WO 2003/022304). In addition to those anorectic effects, which are similar to those of GLP-1, OXM must also affect body weight by another mechanism, since rats treated with oxyntomodulin show less body weight gain than pair-fed rats (Bloom, Endocrinology 2004, 145, 2687). Treatment of obese rodents with OXM also improves their glucose tolerance (Parlevliet et al, Am J Physiol Endocrinol Metab, 294, E142-7, 2008) and suppresses body weight gain (WO 2003/022304).
  • OXM activates both the glucagon and the GLP-1 receptors with a two-fold higher potency for the glucagon receptor over the GLP-1 receptor, but is less potent than native glucagon and GLP-1 on their respective receptors. Human glucagon is also capable of activating both receptors, though with a strong preference for the glucagon receptor over the GLP-1 receptor. GLP-1 on the other hand is not capable of activating glucagon receptors. The mechanism of action of oxyntomodulin is not well understood. In particular, it is not known whether some of the extrahepatic effects of the hormone are mediated through the GLP-1 and glucagon receptors, or through one or more unidentified receptors.
  • Other peptides have been shown to bind and activate both the glucagon and the GLP-1 receptor (Hjort et al, Journal of Biological Chemistry, 269, 30121-30124, 1994) and to suppress body weight gain and reduce food intake (see, for example, WO 2006/134340, WO 2007/100535, WO 2008/10101, WO 2008/152403, WO 2009/155257, WO 2009/155258, WO2010/070252, WO2010/070253, WO 2010/070255, WO 2010/070251, WO2011/006497, WO2011/160630, WO2011/160633, WO2013/092703, WO2014/041195.
  • Obesity is a globally increasing health problem associated with various diseases, particularly cardiovascular disease (CVD), type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. As a result, obesity has been found to reduce life expectancy. According to 2005 projections by the World Health Organization there are 400 million adults (age>15) classified as obese worldwide. In the US, obesity is now believed to be the second-leading cause of preventable death after smoking.
  • The rise in obesity drives an increase in diabetes, and approximately 90% of people with type 2 diabetes may be classified as obese. There are 246 million people worldwide with diabetes, and by 2025 it is estimated that 380 million will have diabetes. Many have additional cardiovascular risk factors, including high/aberrant LDL and triglycerides and low HDL.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the invention provides a compound having the formula:

  • R1—P1—P2—R2
  • wherein
  • R1 is H, C1-4 alkyl, acetyl, formyl, benzoyl or trifluoroacetyl;
  • R2 is OH or NH2;
  • P1 is a peptide having the sequence:
  • H-X2-X3-GTFTSDYSKYLDSΨAAHDFVEWLLSA

    wherein:
    • X2 is selected from Aib, Ala, D-Ala, Ser, N-Me-Ser, Ac3c, Ac4c and Ac5c;
    • X3 is selected from Gln and His;
  • P2 is absent or is a sequence of 1-20 amino acid units independently selected from the group consisting of Ala, Leu, Ser, Thr, Tyr, Cys, Glu, Lys, Arg, Dbu, Dpr and Orn;
  • or a pharmaceutically acceptable salt or solvate thereof;
  • Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a substituent having the formula Z2-Z1;
  • -Z1 is a fatty chain having a polar group at one end of the chain and a connection to Z2, —X— at the end of the chain distal from the polar group,
  • wherein the polar group comprises a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;
    and —X— is a bond, —CO—, —SO—, or —SO2—;
  • -Z2- is a spacer of formula:
  • Figure US20150111826A1-20150423-C00001
  • wherein:
    each Y is independently —NH, —NR, —S or —O, where R is alkyl, a protecting group or forms a linkage to another part of the spacer Z2;
    each X is independently a bond, CO—, SO—, or SO2—;
    with the proviso that when Y is —S, X is a bond;
    each V is independently a bivalent organic moiety linking Y and X;
    and n is 1-10;
    or a pharmaceutically acceptable salt or solvate thereof.
  • P1 may have the sequence:
  • H-Aib-QGTFTSDYSKYLDSΨAAHDFVEWLLSA

    e.g.

  • H-Aib-QGTFTSDYSKYLDS-K([15-carboxy-pentadecanoyl]-isoGlu)-AAHDFVEWLLSA.
  • The compound of the invention may be:

  • H-H-Aib-QGTFTSDYSKYLDSLIΨAAHDFVEWLLSA-NH2
  • e.g.

  • H-H-Aib-QGTFTSDYSKYLDS-K([15-carboxy-pentadecanoyl]-isoGlu)-AAHDFVEWLLSA-NH2.
  • In a second aspect, the invention provides a compound having the formula:

  • R1—P1—P2—R2
  • wherein
  • R1 is H, C1-4 alkyl, acetyl, formyl, benzoyl or trifluoroacetyl;
  • R2 is OH or NH2;
  • P1 is a peptide having the sequence:
  • His-X2-X3-GTFTSDYSKYL-X15-X16-X17-X18-A-X20-DFI-
    X24-WLE-X28-A

    wherein:
    • X2 is selected from Aib, Ac3c, Ac4c and Ac5c;
    • X3 is selected from Gln and His;
    • X15 is selected from Asp and Glu;
    • X16 is selected from Glu and Ψ;
    • X17 is selected from Arg and Ψ;
    • X18 is selected from Ala and Arg;
    • X20 is selected from Lys and His;
    • X24 is selected from Glu and Ψ;
    • X28 is selected from Ser and Ψ;
      and P2 is absent or is a sequence of 1-20 amino acid units independently selected from the group consisting of Ala, Leu, Ser, Thr, Tyr, Cys, Glu, Lys, Arg, Dbu, Dpr and Orn;
      wherein the compound contains one and only one Ψ
      and wherein said Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a substituent having the formula -Z2-Z1;
  • -Z1 is a fatty chain having a polar group at one end of the chain and a connection to Z2, —X— at the end of the chain distal from the polar group,
  • wherein the polar group comprises a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;
    and —X— is a bond, —CO—, —SO—, or —SO2—;
  • -Z2- is a spacer of formula:
  • Figure US20150111826A1-20150423-C00002
  • wherein:
    each Y is independently —NH—, —NR, —S or —O, where R is alkyl, a protecting group or forms a linkage to another part of the spacer Z2;
    each X is independently a bond, CO—, SO—, or SO2—;
    with the proviso that when Y is —S, X is a bond;
    each V is independently a bivalent organic moiety linking Y and X;
    and n is 1-10;
    or a pharmaceutically acceptable salt or solvate thereof.
  • In some embodiments of the second aspect:
    • X2 is selected from Aib and Ac4c;
    • X3 is Gln;
    • X15 is selected from Asp and Glu;
    • X16 is Ψ;
    • X17 is Arg;
    • X18 is Ala;
    • X20 is selected from Lys and His;
    • X24 is Glu;
    • X28 is Ser.
  • Useful combinations of residues include the following:
    • X2 is Ac4c and X20 is Lys;
    • X2 is Aib and X20 is His.
  • Additionally or alternatively, it may be desirable that X2 is Aib if X15 is E or that X15 is D if X2 is Ac4c.
  • Particularly interesting substituents Z2Z1 include [17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3 and [17-carboxy-heptadecanoyl]-isoGlu-GSGSGG.
  • P1 may have a sequence selected from:
  • H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA
    H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA
    H-Aib-QGTFTSDYSKYLEΨRAAKDFIEWLESA
    H-Ac4c-QGTFTSDYSKYLDΨRAAKDFIEWLESA
    and
    H-Aib-QGTFTSDYSKYLEΨRAAHDFIEWLESA

    e.g. from
    • H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAKDFIEWLESA
    • H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA
    • H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA
    • H-Ac4c-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA and
    • H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAHDFIEWLESA
  • The compound of the invention may be selected from:
    • H-H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLEΨRAAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2 and
    • H-H-Aib-QGTFTSDYSKYLEΨRAAHDFIEWLESA-NH2
      e.g. from
    • H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2 and
    • H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAHDFIEWLESA-NH2
  • In alternative embodiments of the second aspect:
    • X2 is selected from Aib and Ac4c;
    • X3 is selected from Gln and His;
    • X15 is Asp;
    • X16 is Glu;
    • X17 is selected from Arg and Ψ;
    • X18 is selected from Ala and Arg;
    • X20 is Lys;
    • X24 is selected from Glu and Ψ;
    • X28 is selected from Ser and Ψ;
  • In some embodiments, when X28 is Ψ, X2 is Ac4c.
  • In some embodiments, when X3 is His, X2 is Ac4c and X17 is Ψ.
  • In some embodiments, when X17 is Ψ, Z2Z1 is [17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3 or [17-carboxy-heptadecanoyl]-isoGlu.
  • In some embodiments, when X24 or X28 is Ψ, Z2Z1 is [17-carboxy-heptadecanoyl]-isoGlu-GSGSGG.
  • P1 may have a sequence selected from:
  • H-Aib-QGTFTSDYSKYLDEΨAAKDFIEWLESA
    H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA
    H-Ac4c-HGTFTSDYSKYLDEΨRAKDFIEWLESA
    H-Ac4c-QGTFTSDYSKYLDEΨAAKDFIEWLESA
    H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA
    H-Aib-QGTFTSDYSKYLDERAAKDFIΨWLESA
    H-Ac4c-QGTFTSDYSKYLDERAAKDFIΨWLESA
    H-Ac4c-QGTFTSDYSKYLDERRAKDFIΨWLESA
    H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLEΨA
    and
    H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLEΨA

    e.g. from
    • H-Aib-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA
    • H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA
    • H-Ac4c-HGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA
    • H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA
    • H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-RAKDFIEWLESA
    • H-Aib-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA
    • H-Ac4c-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA
    • H-Ac4c-QGTFTSDYSKYLDERRAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA
    • H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A and
    • H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
  • The compound of the invention may be selected from:
    • H-H-Aib-QGTFTSDYSKYLDEΨAAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
    • H-H-Ac4c-HGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDEΨAAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLDERAAKDFIΨWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIΨWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIΨWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLEΨA-NH2 and
    • H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLEΨA-NH2
      e.g. from
    • H-H-Aib-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
    • H-H-Ac4c-HGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-RAKDFIEWLESA-NH2
    • H-H-Aib-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERRAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2 and
    • H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
  • For the avoidance of doubt, in all aspects of the invention, those positions which are not expressly stated to permit variability are fixed and thus may only include the stated residue.
  • In all aspects, the compound of the invention comprises a residue Ψ, i.e. a residue selected from Lys, Arg, Orn and Cys in which the side chain is conjugated to a substituent Z2-Z1- as described in more detail below.
  • The substituent is conjugated to the functional group at the distal end of the side chain from the alpha-carbon. The normal ability of the Lys, Arg, Orn or Cys side chain to participate in interactions mediated by that functional group (e.g. intra- and inter-molecular interactions) may therefore be reduced or completely eliminated by the presence of the substituent. Thus, the overall properties of the compound may be relatively insensitive to changes in the actual amino acid present as residue Ψ. Consequently, it is believed that any of the residues Lys, Arg, Orn and Cys may be present at any position where Ψ is permitted. However, in certain embodiments, it may be advantageous that the amino acid component of Ψ is Lys.
  • In some embodiments, -Z1 is an acyl group of formula:

  • A-B-Alk-(CO)—
  • or a sulfonyl group of formula:

  • A-B-Alk-(SO2)—;
  • A is —COOH or a carboxylic acid bioisostere;
  • B is a bond, C6arylene, or C6arylene-O—;
  • Alk is a saturated or unsaturated fatty chain of 6 to 18 carbon atoms in length, optionally substituted with one or more substituents selected from fluoro, trifluoromethyl, hydroxymethyl, amino, hydroxyl, C1-4alkoxy, oxo, and carboxyl;

  • -Z2- is —SA—, —SA—SB—, or —SB—SA—;
  • —SA— is a single amino acid residue selected from γ-Glu, α-Glu, α-Asp, β-Asp, Ala, β-Ala (3-aminopropanoic acid), and Gaba (4-aminobutanoic acid);
  • —SB— is a linker of general formula:

  • Pun
  • wherein n is 1-10 and each PU is independently selected from PU i and PU iii;
    each PU i is independently a natural or unnatural amino acid residue; and
    each PU iii is independently a residue of general formula:
  • Figure US20150111826A1-20150423-C00003
  • wherein m is 0-5 and p is 1, 3, 4, or 5.
  • In any aspect of the invention, R1 may be selected from H and C1-4 alkyl (e.g. methyl).
  • The compounds of the invention are glucagon analogue peptides. References herein to a glucagon analogue peptide should be construed as references to a compound of the invention or to a peptide P1 or P1-P2 as the context requires. Reference to a compound of the invention should be taken to include any pharmaceutically acceptable salt (e.g. an acetate or chloride salt) or solvate thereof, unless otherwise stated or excluded by context.
  • The invention provides a composition comprising a compound of the invention as defined herein (including pharmaceutically acceptable salts or solvates thereof, as already described) in admixture with a carrier. In preferred embodiments, the composition is a pharmaceutical composition and the carrier is a pharmaceutically acceptable carrier. The glucagon analogue peptide may be in the form of a pharmaceutically acceptable salt of the glucagon analogue.
  • The compounds described herein find use, inter alia, in preventing weight gain or promoting weight loss. By “preventing” is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of weight gain. The peptides may cause a decrease in food intake and/or increased energy expenditure, resulting in the observed effect on body weight. Independently of their effect on body weight, the compounds of the invention may have a beneficial effect on glucose control and/or on circulating cholesterol levels, being capable of lowering circulating LDL levels and increasing HDL/LDL ratio. Thus the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for the prevention of conditions caused or characterised by inadequate glucose control or dyslipidaemia (e.g. elevated LDL levels or reduced HDL/LDL ratio), diabetes (especially Type 2 diabetes), metabolic syndrome, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or microvascular disease. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
  • The invention also provides a compound of the invention for use in a method of medical treatment, particularly for use in a method of treatment of a condition as described above.
  • The invention also provides the use of a compound of the invention in the preparation of a medicament for the treatment of a condition as described above.
  • The compound of the invention may be administered as part of a combination therapy with an agent for treatment of diabetes, obesity, dyslipidaemia or hypertension.
  • In such cases, the two active agents may be given together or separately, and as part of the same pharmaceutical formulation or as separate formulations.
  • Thus the compound of the invention can be used in combination with an anti-diabetic agent including but not limited to a biguanide (e.g. metformin), a sulfonylurea, a meglitinide or glinide (e.g. nateglinide), a DPP-IV inhibitor, an SGLT2 inhibitor, a glitazone, an insulin, or an insulin analogue. Examples of insulin analogues include but are not limited to Lantus™Novorapid™, Humalog™, Novomix™, Actraphane HM™, Levemir™and Apidra™.
  • The compound can further be used in combination with an anti-obesity agent including but not limited to a glucagon-like peptide receptor 1 agonist, peptide YY or analogue thereof, cannabinoid receptor 1 antagonist, lipase inhibitor, melanocortin receptor 4 agonist, melanin concentrating hormone receptor 1 antagonist, phentermine (alone or in combination with topiramate), a combination of norepinephrinedopamine reuptake inhibitor and opioid receptor antagonist (e.g. a combination of bupropion and naltrexone), or a serotonergic agent (e.g. lorcaserin).
  • The compound can further be used in combination with an anti-hypertension agent including but not limited to an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, diuretic, beta-blocker, or calcium channel blocker.
  • The compound can be used in combination with an anti-dyslipidaemia agent including but not limited to a statin, a fibrate, a niacin or a cholesterol absorbtion inhibitor.
  • Thus the invention further provides a composition or therapeutic kit comprising a compound of the invention and for example an anti-diabetic agent, anti-obesity agent, anti-hypertension agent or anti-dyslipidaemia agent as described above. Also provided is such a composition or therapeutic kit for use in a method of medical treatment, especially for treatment of a condition as described above.
  • The compound of the invention may be made by synthetic chemistry. Accordingly the invention provides a method of synthesis of a compound of the invention.
  • The invention may also be made by a combination of recombinant and synthetic methods. The method may comprise expressing a precursor peptide sequence, optionally purifying the compound thus produced, and adding or modifying one or more amino acids to produce a compound of the invention or a compound comprising the amino acid sequence P1 or P1-P2. The step of modification may comprise introduction of an Orn residue (e.g. by modification of a precursor residue) and/or introduction of a substituent Z2Z1 at the site of a residue Ψ.
  • The precursor peptide may be expressed from a nucleic acid encoding the precursor peptide in a cell or a cell-free expression system comprising such a nucleic acid.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Throughout this specification, the conventional one letter and three letter codes for naturally occurring amino acids are used, as well as generally accepted abbreviations for other amino acids, such as Aib (α-aminoisobutyric acid), Orn (ornithine), Dbu (2,4-diaminobutyric acid), Dpr (2,3-diaminopropanoic acid), Ac3c (1-amino-cyclopropanecarboxylic acid), Ac4c (1-amino-cyclobutanecarboxylic acid) and Ac5c (1-amino-cyclopentanecarboxylic acid).
  • Ac3c, Ac4c and Ac5c have similar structures and are to some extent interchangeable, although Ac4c may be preferred.
  • Glucagon is a 29-amino acid peptide that corresponds to amino acids 53 to 81 of pre-proglucagon and has the sequence His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr. Oxyntomodulin (OXM) is a 37 amino acid peptide which includes the complete 29 amino acid sequence of glucagon with an octapeptide carboxyterminal extension (amino acids 82 to 89 of pre-proglucagon, having the sequence Lys-Arg-Asn-Arg-Asn-Asn-Ile-Ala and termed “intervening peptide 1” or IP-1; the full sequence of human oxyntomodulin is thus His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-Lys-Arg-Asn-Arg-Asn-Asn-Ile-Ala). The major biologically active fragment of GLP-1 is produced as a 30-amino acid, C-terminally amidated peptide that corresponds to amino acids 98 to 127 of pre-proglucagon.
  • The term “native glucagon” thus refers to native human glucagon having the sequence H-His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-OH.
  • Amino acids within the sequence P1 of the compounds of the invention can be considered to be numbered consecutively from 1 to 29 in the conventional N-terminal to C-terminal direction. Reference to a “position” within P1 should be construed accordingly, as should reference to positions within native human glucagon and other molecules.
  • A compound of the invention may comprise a C-terminal peptide sequence P2 of 1-20 amino acids, for example to stabilise the conformation and/or secondary structure of the glucagon analogue peptide, and/or to render the glucagon analogue peptide more resistant to enzymatic hydrolysis, e.g. as described in WO99/46283.
  • When present, P2 represents a peptide sequence of 1-20 amino acid residues, e.g. in the range of 1-15, more preferably in the range of 1-10, in particular in the range of 1-7 amino acid residues, e.g., 1, 2, 3, 4, 5, 6 or 7 amino acid residues, such as 6 amino acid residues. Each of the amino acid residues in the peptide sequence P2 may independently be selected from Ala, Leu, Ser, Thr, Tyr, Cys, Glu, Lys, Arg, Dbu (2,4-diaminobutyric acid), Dpr (2,3-diaminopropanoic acid) and Orn (ornithine). Preferably, the amino acid residues are selected from Ser, Thr, Tyr, Glu, Lys, Arg, Dbu, Dpr and Orn, more preferably selected exclusively from Glu, Lys, and Cys. The above-mentioned amino acids may have either D- or L-configuration, which in certain embodiments, have an L-configuration. Particularly preferred sequences P2 are sequences of four, five, six or seven consecutive lysine residues (i.e. Lys3, Lys4, Lys5, Lys6 or Lys7), and particularly five or six consecutive lysine residues. Other exemplary sequences of P2 are shown in WO 01/04156. Alternatively the C-terminal residue of the sequence P2 may be a Cys residue. This may assist in modification (e.g. PEGylation, or conjugation to albumin) of the compound. In such embodiments, the sequence P2 may, for example, be only one amino acid in length (i.e. P2=Cys) or may be two, three, four, five, six or even more amino acids in length. The other amino acids therefore serve as a spacer between the peptide P1 and the terminal Cys residue.
  • The peptide sequence P2 has no more than 25% sequence identity with the corresponding sequence of the IP-1 portion of human OXM (which has the sequence Lys-Arg-Asn-Arg-Asn-Asn-Ile-Ala).
  • “Percent (%) amino acid sequence identity” of a given peptide or polypeptide sequence with respect to another polypeptide sequence (e.g. IP-1) is calculated as the percentage of amino acid residues in the given peptide sequence that are identical with correspondingly positioned amino acid residues in the corresponding sequence of that other polypeptide when the two are aligned with one another, introducing gaps for optimal alignment if necessary. % identity values may be determined using WU-BLAST-2 (Altschul et al., Methods in Enzymology, 266:460-480 (1996)). WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span=1, overlap fraction=0.125, word threshold (T)=11. A % amino acid sequence identity value is determined by the number of matching identical residues as determined by WU-BLAST-2, divided by the total number of residues of the reference sequence (gaps introduced by WU-BLAST-2 into the reference sequence to maximize the alignment score being ignored), multiplied by 100.
  • Thus, when P2 is aligned optimally with the 8 amino acids of IP-1, it has no more than two amino acids which are identical with the corresponding amino acids of IP-1.
  • In certain embodiments, P2 is absent.
  • Ψ is a residue of Lys, Arg, Orn or Cys whose side chain is conjugated to a substituent Z2-Z1. Without wishing to be bound by any particular theory, it is thought that the substituent binds plasma proteins (e.g. albumin) in the blood stream, thus shielding the compounds of the invention from enzymatic degradation and thereby enhancing the half-life of the compounds. It may also modulate the potency of the compound, e.g. with respect to the glucagon receptor and/or the GLP-1 receptor.
  • The Group Z1
  • Z1 is a fatty chain having a connection to Z2, referred to herein as —X— and, at the end of the chain distal from the connection to Z2, a polar group. —X— may be, for example, a bond, acyl (—CO—), sulfinyl (—SO—), or sulfonyl (—SO2—), the connection being located at the ω-position with respect to the polar group, that is, at the end of the chain distal from the polar group.
  • Preferably, the polar group is an acidic or weakly acid group, for example a carboxylic acid or a carboxylic acid bioisostere, a phosphonate, or a sulfonate. The polar group may have a pKa of between −2 and 12 in water, more preferably between 1 and 7, more preferably between 3 and 6. Certain preferred polar groups have a pKa of between 4 and 5.
  • The polar group preferably comprises a carboxylic acid or carboxylic acid bioisostere. Suitable carboxylic acid bioisosteres are known in the art. Preferably the bioisostere has a proton having a pKa similar to the corresponding carboxylic acid. Examples of suitable bioisoteres may include, not by way of limitation, tetrazole, acylsulfomides, acylhydroxylamine, and squaric acid derivatives, as shown below ( - - - indicates the point of attachment):
  • Figure US20150111826A1-20150423-C00004
  • The polar group may be a group of formula A-B-, wherein A is a carboxylic acid (—COOH) or a carboxylic acid bioisostere, a phosphonic acid (—P(O)(OH)2), or a sulfonic acid (—SO2OH) group, and B is a bond or linker between A and the fatty chain. In some embodiments, the polar group is —COOH, that is, A is —COOH and B is a bond.
  • When B is a linker, it may be a cycloalkylene, heterocycloalkylene, C6arylene, or C5-6heteroarylene, or C6arylene-O— or C6-6heteroarylene-O—.
  • When B is phenylene it may, for example, be selected from 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, preferably 1,4-phenylene (so that A-B- is a 4-benzoic acid substituent or 4-benzoic acid bioisostere). When B is phenylene-O—, it may, for example, be selected from 1,2-phenylene-O—, 1,3-phenylene-O—, 1,4-phenylene-O—, preferably 1,4-phenylene-O. Each phenylene of B may be optionally substituted with one or more substituents selected from fluoro, methyl, trifluoromethyl, amino, hydroxyl, and C1-4alkoxy, preferably methoxy. It will be appreciated that substituent identity and position may be selected to subtly alter the pKa of the polar group. Suitable inductively or mesomerically electron-withdrawing or donating groups and their positional effects are known in the art. In some embodiments, B may be C5-6heteroarylene, for example, pyridinylene or thiofuranylene, and may be optionally substituted as described.
  • For example, in some embodiments, A-B- may be selected from:
  • Figure US20150111826A1-20150423-C00005
  • Preferably, A is —COOH. In some preferred polar groups, A is a carboxylic acid and B is C6arylene-O—.
  • Fatty chain as used herein refers to a moiety comprising a chain of carbon atoms, the carbon atoms being predominantly substituted with hydrogen or hydrogen-like atoms, for example, a hydrocarbon chain. Such fatty chains are often referred to as lipophilic, although it will be appreciated that substitution may alter the lipophilic properties of the overall molecule.
  • The fatty chain may by aliphatic. It may be entirely saturated or may include one or more double or triple bonds. Each double bond, if present, may be in the E or Z configuration. The fatty chain may also have one or more cycloalkylene or heterocycloalkylene moieties in its length, and additionally or alternatively may have one or more arylene or heteroarylene moieties in its length. For example, the fatty chain may incorporate a phenylene or piperazinylene moiety in its length as, for example, shown below (wherein - - - represents the points of attachment within the chain).
  • Figure US20150111826A1-20150423-C00006
  • The fatty chain may be derived from a fatty acid, for example, it may be derived from a medium-chain fatty acid (MCFA) with an aliphatic tail of 6-12 carbon atoms, a long-chain fatty acid (LCFA) with an aliphatic tail of 13-21 carbon atoms, or a very long-chain fatty acid (LCFA) with an aliphatic tail of 22 carbon atoms or more. Examples of linear saturated fatty acids from which suitable fatty chains may be derived include tridecylic (tridecanoic) acid, myristic (tetradecanoic) acid, pentadecylic (pentadecanoic) acid, palmitic (hexadecanoic) acid, and margaric (heptadecanoic) acid. Examples of linear unsaturated fatty acids from which suitable fatty chains may be derived include myristoleic acid, palmitoleic acid, sapienic acid and oleic acid.
  • The fatty chain may be connected to Z2 by an amide linkage, a sulfinamide linkage, a sulfonamide linkage, or by an ester linkage, or by an ether, thioether or amine linkage. Accordingly, the fatty chain may have at the w position, that is, the position distal to the polar group, a bond to Z2 or an acyl (—CO—), sulfinyl (—SO—), or sulfonyl (—SO2—) group. Preferably, the fatty chain has an acyl (—CO—) group at the position distal to the polar group and is connected to Z2 by an amide or ester linkage.
  • In some embodiments, Z1 is a group of formula:

  • A-B-Alk-X—
  • where A-B- is the polar group defined above, X is a bond, acyl (—CO—), sulfinyl (—SO—), or sulfonyl (—SO2—), and Alk is a fatty chain that may be optionally substituted with one or more substituents. The fatty chain is preferably 6 to 18 carbon atoms in length (e.g. a C6-18alkylene), more preferably, 8 to 18 carbons in length (e.g. a C8-18alkylene), more preferably, 12 to 16 carbons in length (e.g. C12-16alkylene), and may be saturated or unsaturated. Preferably, Alk is saturated, that is, preferably Alk is alkylene.
  • In some embodiments, Z1 is an acyl group of formula:

  • A-B-Alk-(CO)—
  • or a sulfonyl group of formula:

  • A-B-Alk-(SO2)—.
  • Optional substituents on the fatty chain may be independently selected from fluoro, C1-4alkyl, preferably methyl; trifluoromethyl, hydroxymethyl, amino, hydroxyl, C1-4alkoxy, preferably methoxy; oxo, and carboxyl, and may be independently located at any point along the chain. In some embodiments, each optional substituent is selected from fluoro, methyl, and hydroxyl. Where more than one substituent is present, substituents may be the same or different. Preferably, the number of substituents is 0 to 3; more preferably the fatty chain is unsubstituted.
  • Preferably, Z1 is an acyl group of formula:

  • A-B-alkylene-(CO)—
  • Where A and B are as defined above.
  • In some embodiments, Z1 is:

  • 4-carboxyphenoxynonanoyl HOOC—C6H4—O—(CH2)8—(CO)—.
  • Certain preferred Z1 are derived from long-chain saturated α,ω-dicarboxylic acids of formula HOOC—(CH2)12-18—COOH, preferably, long-chain saturated α-ω-dicarboxylic acids having an even number of carbon atoms in the aliphatic chain. For example, and not by way of limitation, Z1 may be:

  • 13-carboxytridecanoyl HOOC—(CH2)12—(CO)—

  • 15-carboxpentadecanoyl HOOC—(CH2)14—(CO)—; or

  • 17-carboxyheptadecanoyl HOOC—(CH2)16—(CO)—.
  • The carboxylic acid group may be replaced by a bioisotere as detailed herein.
  • The Group Z2
  • Z2 is spacer that connects Z1 to the side chain of the amino acid component of Ψ. At its most general, Z2 is a spacer bound at one terminus by Y, which may be a nitrogen, oxygen or sufhur atom, and at the other terminus by X, which may be a bond or an acyl (—CO—), sulfinyl (—SO—), or sulfonyl (—SO2—). Accordingly, Z2 may be a spacer of formula ( - - - indicate points of attachment):
  • Figure US20150111826A1-20150423-C00007
  • wherein:
  • Y may be —NH—, —NR, —S or —O, where R may be alkyl, a protecting group or may form a linkage to another part of the spacer, with the remaining valency forming a linkage to Z1;
  • X may be a bond, CO—, SO—, or SO2—, with the remaining valency forming a linkage to the side chain of the amino acid component of Ψ;
  • V is a bivalent organic moiety linking Y and X;
  • and n may be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. Where n is 2 or more, each Y, V, and X is independent of every other Y, V, and X.
  • Accordingly, Z2 may be bound at each side by amide, sulfinamide, sulfonamide, or ester linkages or by amino, ether, or thioether linkages depending upon the nature of Y and X and the corresponding linking groups on Z1 and the side chain. Preferably, when Y is S, X is a bond. Where n is 2 or greater, each V may also be bound to each adjacent V by linkages as described. Preferably, linkages are amides, esters or sulfonamides, most preferably amides. Accordingly, in some embodiments, each Y is —NH or —NR and each X is CO—or SO2—.
  • In some embodiments, Z2 is a spacer of formula —SA—, —SB—, —SA—SB— or —SB—SA—, wherein SA and SB are as defined below.
  • In some embodiments, Z2 is selected from —SA— or —SB—SA—, that is, [side chain]Z2Z1 is [side chain]—SA-Z1 or [side chain]—SB—SA-Z1.
  • The Group SA
  • SA may be a single amino acid residue or a residue of an amino acid derivative, especially an amino acid derivative residue having a sulfinyl or sulfonyl in place of the carboxy moiety at the C terminus. Additionally or alternatively, the single amino acid residue may have an oxygen or sulfur atom in place of the nitrogen atom at the N terminus. Preferably, SA is a single amino acid residue.
  • In some embodiments, the amino acid may be selected from γ-Glu, α-Glu, α-Asp, β-Asp, Ala, β-Ala (3-aminopropanoic acid), and Gaba (4-aminobutanoic acid). It will be understood that amino acids may be D or L, or a racemic or enantioenriched mixture. In some embodiments, the amino acid is an L-amino acid. In some embodiments, the amino acid is a D-amino acid.
  • In some preferred embodiments, SA has a carboxylic acid substituent, with γ-Glu, α-Glu, α-Asp, and β-Asp, and sulfinyl and sulfonyl derivatives thereof, being preferred. Accordingly, in some embodiments, the amino acid residue is:
  • Figure US20150111826A1-20150423-C00008
  • where —X— is —CO—, —SO—, —SO2—, preferably —CO—, and a is 1 or 2, preferably 2. In some embodiments, the carboxylic acid is an ester, and the amino acid residue is:
  • Figure US20150111826A1-20150423-C00009
  • where —X— is —CO—, —SO—, —SO2—, preferably —CO—, and a is 1 or 2, preferably 2, and R is C1-4alkyl or C6aryl. Preferably R is C1-4alkyl, preferably methyl or ethyl, more preferably ethyl.
  • Preferably, SA is γ-Glu.
  • The Group SB
  • SB may be a linker of general formula:

  • Pun
  • wherein PU is a polymeric unit and n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. One terminus of the linker SB is an —NH, —NR, S or —O, wherein R may be alkyl, a protecting group or may form a linkage to another part of the polymeric unit; while the other is a bond or CO—, SO— or SO2—. Accordingly, each polymeric unit PU may be bound at each side by amide, sulfinamide, sulfonamide, or ester linkages or by amino, ether, or thioether linkages depending upon the nature of Y and X and the corresponding linking groups on Z1, SA, and Lys.
  • In some embodiments, each PU may be independently a unit of formula:
  • Figure US20150111826A1-20150423-C00010
  • wherein:
  • Y may be —NH, —NR, S or —O, wherein R may be alkyl, a protecting group or may form a linkage to another part of the spacer, with the remaining valency forming a linkage to Z1;
  • X may be a bond, CO—, SO—, or SO2—, with the remaining valency forming a linkage to Lys;
  • and V is a bivalent organic moiety linking Y and X.
  • In some embodiments, V is the α-carbon of a natural or unnatural amino acid, that is V is —CHRAA—, wherein RAA is an amino acid side chain; or V is an optionally substituted C1-6alkylene, or V is a chain comprising one or more units of ethylene glycol in series, also known as PEG chain, for example, —CH2CH2—(OCH2CH2)m—O—(CH2)p—, where m is 0, 1, 2, 3, 4, or 5, and p is 1, 2, 3, 4, or 5; when X is CO—, p is preferably 1, 3, 4, or 5. Optional alkylene substituents include fluoro, methyl, hydroxy, hydroxymethy, and amino.
  • Preferred PU units include:
  • (i). Single amino acid residues: PU i;
  • (ii). Dipeptide residues: PU ii; and
  • (iii). Amino-(PEG)m-carboxylic acid residues: PU iii.
  • and may be present in any combination or order. For example, SB may comprise one or more of each of PU i, PU ii, and PU iii in any order, or may comprise one or more units of PU i, PU ii, and PU iii only, or one of more units selected from PU i and PU ii, PU i and PU iii, or PU ii and PU iii.
  • (i). PU i Single Amino Acid Residues
  • Each PU i may be independently selected from any natural or unnatural amino acid residue and, for example, may be selected from Gly, Pro, Ala, Val, Leu, Ile, Met, Cys, Phe, Tyr, Trp, His, Lys, Arg, Gln, Asn, α-Glu, γ-Glu, Asp, Ser Thr, Gaba, Aib, β-Ala, 5-aminopentanoyl, 6-aminohexanoyl, 7-aminoheptanoyl, 8-aminooctanoyl, 9-aminononanoyl, and 10-aminodecanoyl. Preferably, PU i amino acid residues are selected from Gly, Ser, Ala, Thr, and Cys, more preferably from Gly and Ser.
  • In some embodiments, SB is —(PU i)n—, wherein n is 1 to 8, more preferably 5 to 7, most preferably 6. In some preferred embodiments, SB is —(PU i)n—, n is 6 and each PU i is independently selected from Gly or Ser, with a preferred sequence being -Gly-Ser-Gly-Ser-Gly-Gly-.
  • (ii). PU ii Dipeptide Residues
  • Each PU ii may be independently selected from any dipeptide residue comprising two natural or unnatural amino acid residues bound by an amide linkage. Preferred PU ii dipeptide residues include Gly-Gly, Gly-Ser, Ser-Gly, Gly-Ala, Ala-Gly, and Ala-Ala, more preferably Gly-Ser and Gly-Gly.
  • In some embodiments, SB is —(PU ii)n—, wherein n is 2 to 4, more preferably 3, and each PU ii is independently selected from Gly-Ser and Gly-Gly. In some preferred embodiments SB is —(PU ii)n—, n is 3 and each PU ii is independently selected from Gly-Ser and Gly-Gly, with a preferred sequence being -(Gly-Ser)-(Gly-Ser)-(Gly-Gly).
  • Amino acids having stereogenic centres within PU i and Puii may be racemic, enantioenriched, or enantiopure. In some embodiments, the or each amino acid is independently an L-amino acid. In some embodiments, the or each amino acid is independently a D-amino acid.
  • (iii). PU iii Amino-(PEG)m-Carboxylic Acid Residues
  • Each may be independently a residue of general formula:
  • Figure US20150111826A1-20150423-C00011
  • wherein m is 0, 1, 2, 3, 4, or 5, preferably 1 or 2, and p is 1, 3, 4, or 5, preferably 1.
  • In some embodiments, m is 1 and p is 1, that is, PU iii is a residue of 8-amino-3,6-dioxaoctanoic acid (also known as {2-[2-aminoethoxy]ethoxy}acetic acid and H2N-PEG3—COOH). This residue is referred to herein as -PEG3-.
  • In some embodiments, m is 2 and p is 1, that is, PU iii is a residue of 11-amino-3,6,9-trioxaundecanoic acid (also known as H2N-PEG4—COOH). This residue is referred to herein as -PEG4-
  • In some embodiments, SB is —(PU iii)n—, wherein n is 1 to 3, more preferably 2.
  • In some preferred embodiments, SB is selected from -PEG3-PEG3- and -PEG4-PEG4-.
  • Preferred -Z2-Z1
  • It will be understood that the above preferences may be independently combined to give preferred -Z2-Z1 combinations.
  • Some preferred -Z2-Z1 combinations are shown below (in each case, - - - indicates the point of attachment to the side chain of the amino acid component of Ψ:
  • (i) [17-Carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3
  • Figure US20150111826A1-20150423-C00012
  • (ii) [17-Carboxy-heptadecanoyl]-isoGlu
  • Figure US20150111826A1-20150423-C00013
  • (iii) [13-Carboxy-tridecanoyl]-isoGlu-Peg3-Peg3
  • Figure US20150111826A1-20150423-C00014
  • (iv) [Carboxyphenoxynonanoyl]-isoGlu-Peg3-Peg3
  • Figure US20150111826A1-20150423-C00015
  • (v) [13-Carboxy-tridecanoyl]-isoGlu-Peg4-Peg4
  • Figure US20150111826A1-20150423-C00016
  • (vi) [17-Carboxy-heptadecanoyl]-Peg3-Peg3-isoGlu
  • Figure US20150111826A1-20150423-C00017
  • (vii) [17-Carboxy-heptadecanoyl]-isoGlu-GSGSGG
  • Figure US20150111826A1-20150423-C00018
  • (viii) [17-Carboxy-heptadecanoyl]-AA-Peg3-Peg3
  • Figure US20150111826A1-20150423-C00019
  • The presence of the polar group at the end of Z1 is believed to enhance the pharmacokinetic properties of the compound, for example, by increasing half life and/or mean residence time, and reducing clearance. The linker may also contribute to these pharmacokinetic properties. Linkers comprising more than one amino acid unit (or moieties of similar size) may improve pharmacokinetic properties compared to those consisting of just one amino acid unit or the like. These properties may enable the compound to be administered less frequently than an equivalent compound with the same peptide backbone but no modification or a different modification (e.g. a substituent with an aliphatic fatty chain lacking a polar group and/or having a shorter linker moiety).
  • Without wishing to be bound by any particular theory, the inventors have found that, especially when longer linkers were included, the polar or charged group at the end of Z1 may be capable of participating in an undesirable intra-molecular interaction with the free N-terminus of the molecule which might compromise the beneficial effects of the polar group on pharmacokinetics. The peptide backbones of the compounds described herein are believed to adopt relatively well-defined helical secondary structure, so the capacity of the polar group to engage in such interactions may depend on its location within the molecule. When located towards the C-terminus, interaction with the N-terminus may be relatively unlikely. However, the inventors were surprised to find that the substituent could be located at residues 16 and 17 of the molecule without necessarily compromising the pharmacokinetic benefits obtained.
  • The term “conjugated” is used here to describe the physical attachment of one identifiable chemical moiety to another, and the structural relationship between such moieties. It should not be taken to imply any particular method of synthesis.
  • The skilled reader will be well aware of suitable techniques that can be used to perform the coupling reactions using general synthetic methodologies listed e.g. in “Comprehensive Organic Transformations, A Guide to Functional Group Preparations”, 2nd edition, Larock, R. C.; Wiley-VCH: New York, 1999. Such transformations may take place at any suitable stage during the synthesis process.
  • Peptide Synthesis
  • The compounds of the present invention may be manufactured either by standard synthetic methods, recombinant expression systems, or any other state of the art method. Thus the glucagon analogues may be synthesized in a number of ways, including, for example, a method which comprises:
  • (a) synthesizing the peptide by means of solid-phase or liquid-phase methodology, either stepwise or by fragment assembly, and isolation and purifying of the final peptide product; or
  • (b) expressing a precursor peptide sequence from a nucleic acid construct that encodes the precursor peptide, recovering the expression product, and modifying the precursor peptide to yield a compound of the invention.
  • Expression is typically performed from a nucleic acid encoding the precursor peptide, which may be performed in a cell or a cell-free expression system comprising such a nucleic acid.
  • It is preferred to synthesize the analogues of the invention by means of solid-phase or liquid-phase peptide synthesis. In this context, reference is made to WO 98/11125 and, among many others, Fields, G B et al., 2002, “Principles and practice of solid-phase peptide synthesis”. In: Synthetic Peptides (2nd Edition), and the Examples herein.
  • For recombinant expression, the nucleic acid fragments encoding the precursor peptide will normally be inserted in suitable vectors to form cloning or expression vectors. The vectors can, depending on purpose and type of application, be in the form of plasmids, phages, cosmids, mini-chromosomes, or virus, but also naked DNA which is only expressed transiently in certain cells is an important vector. Preferred cloning and expression vectors (plasmid vectors) are capable of autonomous replication, thereby enabling high copy-numbers for the purposes of high-level expression or high-level replication for subsequent cloning.
  • In general outline, an expression vector comprises the following features in the 5′→3′ direction and in operable linkage: a promoter for driving expression of the nucleic acid fragment, optionally a nucleic acid sequence encoding a leader peptide enabling secretion (to the extracellular phase or, where applicable, into the periplasma), the nucleic acid fragment encoding the precursor peptide, and optionally a nucleic acid sequence encoding a terminator. They may comprise additional features such as selectable markers and origins of replication. When operating with expression vectors in producer strains or cell lines it may be preferred that the vector is capable of integrating into the host cell genome. The skilled person is very familiar with suitable vectors and is able to design one according to their specific requirements.
  • The vectors of the invention are used to transform host cells to produce the precursor peptide. Such transformed cells can be cultured cells or cell lines used for propagation of the nucleic acid fragments and vectors, and/or used for recombinant production of the precursor peptides.
  • Preferred transformed cells are micro-organisms such as bacteria [such as the species Escherichia (e.g. E. coli), Bacillus (e.g. Bacillus subtilis), Salmonella, or Mycobacterium (preferably non-pathogenic, e.g. M. bovis BCG), yeasts (e.g., Saccharomyces cerevisiae and Pichia pastoris), and protozoans. Alternatively, the transformed cells may be derived from a multicellular organism, i.e. it may be fungal cell, an insect cell, an algal cell, a plant cell, or an animal cell such as a mammalian cell. For the purposes of cloning and/or optimised expression it is preferred that the transformed cell is capable of replicating the nucleic acid fragment of the invention. Cells expressing the nucleic fragment can be used for small-scale or large-scale preparation of the peptides of the invention.
  • When producing the precursor peptide by means of transformed cells, it is convenient, although far from essential, that the expression product is secreted into the culture medium.
  • Efficacy
  • Binding of the relevant compounds to GLP-1 or glucagon (Glu) receptors may be used as an indication of agonist activity, but in general it is preferred to use a biological assay which measures intracellular signalling caused by binding of the compound to the relevant receptor. For example, activation of the glucagon receptor by a glucagon agonist will stimulate cellular cyclic AMP (cAMP) formation. Similarly, activation of the GLP-1 receptor by a GLP-1 agonist will stimulate cellular cAMP formation. Thus, production of cAMP in suitable cells expressing one of these two receptors can be used to monitor the relevant receptor activity. Use of a suitable pair of cell types, each expressing one receptor but not the other, can hence be used to determine agonist activity towards both types of receptor.
  • The skilled person will be aware of suitable assay formats, and examples are provided below. The GLP-1 receptor and/or the glucagon receptor may have the sequence of the receptors as described in the examples. For example, the assays may employ the human glucagon receptor (Glucagon-R) having primary accession number GI:4503947 and/or the human glucagon-like peptide 1 receptor (GLP-1R) having primary accession number GI:166795283. (in that where sequences of precursor proteins are referred to, it should of course be understood that assays may make use of the mature protein, lacking the signal sequence).
  • EC50 values may be used as a numerical measure of agonist potency at a given receptor. An EC50 value is a measure of the concentration of a compound required to achieve half of that compound's maximal activity in a particular assay. Thus, for example, a compound having EC50[GLP-1] lower than the EC50[GLP-1] of glucagon in a particular assay may be considered to have higher GLP-1 receptor agonist potency than glucagon.
  • The compounds described in this specification are typically GluGLP-1 dual agonists, as determined by the observation that they are capable of stimulating cAMP formation at both the glucagon receptor and the GLP-1 receptor. The stimulation of each receptor can be measured in independent assays and afterwards compared to each other.
  • By comparing the EC50 value for the GLP-1 receptor (EC50 [GLP-1-R]) with the EC50 value for the Glucagon receptor, (EC50 [GlucagonR]) for a given compound. the relative GLP-1R selectivity can be calculated as follows:
  • Relative GLP-1R selectivity [compound]=(EC50 [GLP-1R])/(EC50 [Glucagon-R])
  • The term “EC50” stands for the half maximal Effective Concentration, typically at a particular receptor, or on the level of a particular marker for receptor function, and can refer to an inhibitory or an antagonistic activity, depending on the specific biochemical context.
  • Without wishing to be bound by any particular theory, a compound's relative selectivity may allow its effect on the GLP-1 or glucagon receptor to be compared directly to its effect on the other receptor. For example, the higher a compound's relative GLP-1 selectivity is, the more effective that compound may be on the GLP-1 receptor as compared to the glucagon receptor. Typically the results are compared for glucagon and GLP-1 receptors from the same species, e.g. human glucagon and GLP-1 receptors, or murine glucagon and GLP-1 receptors.
  • The compounds of the invention may have a higher relative GLP-1R selectivity than human glucagon in that for a particular level of glucagon-R agonist activity, the compound may display a higher level of GLP-1R agonist activity (i.e. greater potency at the GLP-1 receptor) than glucagon. It will be understood that the absolute potency of a particular compound at the glucagon and GLP-1 receptors may be higher, lower or approximately equal to that of native human glucagon, as long as the appropriate relative GLP-1R selectivity is achieved.
  • Nevertheless, the compounds of this invention may have a lower EC50 [GLP-1R] than human glucagon. The compounds may have a lower EC50[GLP-1-R] than glucagon while maintaining an EC50 [Glucagon-R] that is less than 10-fold higher than that of human glucagon, less than 5-fold higher than that of human glucagon, or less than 2-fold higher than that of human glucagon.
  • The compounds of the invention may have an EC50 [Glucagon-R] that is less than two-fold that of human glucagon. The compounds may have an EC50 [Glucagon-R] that is less than two-fold that of human glucagon and have an EC50 [GLP-1R] that is less than half that of human glucagon, less than a fifth of that of human glucagon, or less than a tenth of that of human glucagon.
  • The relative GLP-1R selectivity of the compounds may be between 0.05 and 20. For example, the compounds may have a relative selectivity of 0.05-0.20, 0.1-0.30, 0.2-0.5, 0.3-0.7, or 0.5-1.0; 1.0-2.0, 1.5-3.0, 2.0-4.0 or 2.5-5.0; or 0.05-20, 0.075-15, 0.1-10, 0.15-5, 0.75-2.5 or 0.9-1.1.
  • In certain embodiments, it may be desirable that EC50 of any given compound for both the Glucagon-R and GLP-1R, e.g. for the human glucagon and GLP-1 receptors, should be less than 1 nM.
  • Therapeutic Uses
  • The compounds of the invention may provide attractive treatment and/or prevention options for, inter alia, obesity and metabolic diseases including diabetes, as discussed below.
  • Diabetes comprises a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Acute signs of diabetes include excessive urine production, resulting compensatory thirst and increased fluid intake, blurred vision, unexplained weight loss, lethargy, and changes in energy metabolism. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs, notably the eyes, kidneys, nerves, heart and blood vessels. Diabetes is classified into type 1 diabetes, type 2 diabetes and gestational diabetes on the basis on pathogenetic characteristics.
  • Type 1 diabetes accounts for 5-10% of all diabetes cases and is caused by auto-immune destruction of insulin-secreting pancreatic β-cells.
  • Type 2 diabetes accounts for 90-95% of diabetes cases and is a result of a complex set of metabolic disorders. Type 2 diabetes is the consequence of endogenous insulin production becoming insufficient to maintain plasma glucose levels below the diagnostic thresholds.
  • Gestational diabetes refers to any degree of glucose intolerance identified during pregnancy.
  • Pre-diabetes includes impaired fasting glucose and impaired glucose tolerance and refers to those states that occur when blood glucose levels are elevated but below the levels that are established for the clinical diagnosis for diabetes.
  • A large proportion of people with type 2 diabetes and pre-diabetes are at increased risk of morbidity and mortality due to the high prevalence of additional metabolic risk factors including abdominal obesity (excessive fat tissue around the abdominal internal organs), atherogenic dyslipidemia (blood fat disorders including high triglycerides, low HDL cholesterol and/or high LDL cholesterol, which foster plaque buildup in artery walls), elevated blood pressure (hypertension) a prothrombotic state (e.g. high fibrinogen or plasminogen activator inhibitor-1 in the blood), and proinflammatory state (e.g., elevated C-reactive protein in the blood).
  • Conversely, obesity confers an increased risk of developing pre-diabetes, type 2 diabetes as well as e.g. certain types of cancer, obstructive sleep apnea and gall-bladder disease.
  • Dyslipidaemia is associated with increased risk of cardiovascular disease. High Density Lipoprotein (HDL) is of clinical importance since an inverse correlation exists between plasma HDL concentrations and risk of atherosclerotic disease. The majority of cholesterol stored in atherosclerotic plaques originates from LDL and hence elevated concentrations Low Density Lipoproteins (LDL) is closely associated with atherosclerosis. The HDL/LDL ratio is a clinical risk indictor for atherosclerosis and coronary atherosclerosis in particular.
  • Metabolic syndrome is characterized by a group of metabolic risk factors in one person. They include abdominal obesity (excessive fat tissue around the abdominal internal organs), atherogenic dyslipidemia (blood fat disorders including high triglycerides, low HDL cholesterol and/or high LDL cholesterol, which foster plaque buildup in artery walls), elevated blood pressure (hypertension), insulin resistance and glucose intolerance, prothrombotic state (e.g. high fibrinogen or plasminogen activator inhibitor-1 in the blood), and proinflammatory state (e.g., elevated C-reactive protein in the blood).
  • Individuals with the metabolic syndrome are at increased risk of coronary heart disease and other diseases related to other manifestations of arteriosclerosis (e.g., stroke and peripheral vascular disease). The dominant underlying risk factors for this syndrome appear to be abdominal obesity.
  • Without wishing to be bound by any particular theory, it is believed that the compounds of the invention act as dual agonists both on the human glucagon-receptor and the human GLP1-receptor, abbreviated here as dual GluGLP-1 agonists. The dual agonist may combine the effect of glucagon, e.g. on fat metabolism, with the effect of GLP-1, e.g. on blood glucose levels and food intake. They may therefore act to accelerate elimination of excessive adipose tissue, induce sustainable weight loss, and improve glycaemic control. Dual GluGLP-1 agonists may also act to reduce cardiovascular risk factors such as high cholesterol, high LDL-cholesterol or low HDL/LDL cholesterol ratios.
  • The compounds of the present invention can therefore be used in a subject in need thereof as pharmaceutical agents for preventing weight gain, promoting weight loss, reducing excess body weight or treating obesity (e.g. by control of appetite, feeding, food intake, calorie intake, and/or energy expenditure), including morbid obesity, as well as associated diseases and health conditions including but not limited to obesity linked inflammation, obesity linked gallbladder disease and obesity induced sleep apnea. The compounds of the invention may also be used for treatment of conditions caused by or associated with impaired glucose control, including metabolic syndrome, insulin resistance, glucose intolerance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, atherosclerois, arteriosclerosis, coronary heart disease, peripheral artery disease and stroke, in a subject in need thereof. Some of these conditions can be associated with obesity. However, the effects of the compounds of the invention on these conditions may be mediated in whole or in part via an effect on body weight, or may be independent thereof.
  • The synergistic effect of dual GluGLP-1 agonists may also result in reduction of cardiovascular risk factors such as high cholesterol and LDL, which may be entirely independent of their effect on body weight.
  • Thus the invention provides the use of a compound of the invention in the treatment of a condition as described above, in an individual in need thereof.
  • The invention also provides a compound of the invention for use in a method of medical treatment, particularly for use in a method of treatment of a condition as described above.
  • In a preferred aspect, the compounds described may be used in treating diabetes, esp. type 2 diabetes.
  • In a specific embodiment, the present invention comprises use of a compound for treating diabetes, esp. type 2 diabetes in an individual in need thereof.
  • In a not less preferred aspect, the compounds described may be used in preventing weight gain or promoting weight loss.
  • In a specific embodiment, the present invention comprises use of a compound for preventing weight gain or promoting weight loss in an individual in need thereof.
  • In a specific embodiment, the present invention comprises use of a compound in a method of treatment of a condition caused or characterised by excess body weight, e.g. the treatment and/or prevention of obesity, morbid obesity, morbid obesity prior to surgery, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea, prediabetes, diabetes, esp. type 2 diabetes, hypertension, atherogenic dyslipidimia, atherosclerois, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or microvascular disease in an individual in need thereof.
  • In another aspect, the compounds described may be used in a method of lowering circulating LDL levels, and/or increasing HDL/LDL ratio.
  • In a specific embodiment, the present invention comprises use of a compound in a method of lowering circulating LDL levels, and/or increasing HDL/LDL ratio in an individual in need thereof.
  • In another aspect, the compounds described may be used in a method of lowering circulating triglyceride levels.
  • Pharmaceutical Compositions
  • The compounds of the present invention may be formulated as pharmaceutical compositions prepared for storage or administration. Such a composition typically comprises a therapeutically effective amount of a compound of the invention, in the appropriate form, in a pharmaceutically acceptable carrier.
  • The therapeutically effective amount of a compound of the present invention will depend on the route of administration, the type of mammal being treated, and the physical characteristics of the specific mammal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy, and may depend on such factors as weight, diet, concurrent medication and other factors, well known to those skilled in the medical arts. The dosage sizes and dosing regimen most appropriate for human use may be guided by the results obtained by the present invention, and may be confirmed in properly designed clinical trials. The compounds of the present invention may be particularly useful for treatment of humans.
  • An effective dosage and treatment protocol may be determined by conventional means, starting with a low dose in laboratory animals and then increasing the dosage while monitoring the effects, and systematically varying the dosage regimen as well. Numerous factors may be taken into consideration by a clinician when determining an optimal dosage for a given subject. Such considerations are known to the skilled person.
  • The term “pharmaceutically acceptable carrier” includes any of the standard pharmaceutical carriers. Pharmaceutically acceptable carriers for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985). For example, sterile saline and phosphate-buffered saline at slightly acidic or physiological pH may be used. pH buffering agents may be phosphate, citrate, acetate, trishydroxymethyl)aminomethane (TRIS), N-Tris(hydroxymethyl)methyl-3-aminopropanesulphonic acid (TAPS), ammonium bicarbonate, diethanolamine, histidine, which is a preferred buffer, arginine, lysine, or acetate or mixtures thereof. The term further encompasses any agents listed in the US Pharmacopeia for use in animals, including humans.
  • The term “pharmaceutically acceptable salt” refers to a salt of any one of the compounds of the invention. Salts include pharmaceutically acceptable salts such as acid addition salts and basic salts. Examples of acid addition salts include hydrochloride salts, citrate salts and acetate salts. Examples of basic salts include salts where the cation is selected from alkali metals, such as sodium and potassium, alkaline earth metals, such as calcium, and ammonium ions +N(R3)3(R4), where R3 and R4 independently designates optionally substituted C1-6-alkyl, optionally substituted C2-6-alkenyl, optionally substituted aryl, or optionally substituted heteroaryl. Other examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences”, 17th edition. Ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and more recent editions, and in the Encyclopaedia of Pharmaceutical Technology.
  • “Treatment” is an approach for obtaining beneficial or desired clinical results. For the purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. “Treatment” is an intervention performed with the intention of preventing the development or altering the pathology of a disorder. Accordingly, “treatment” refers to both therapeutic treatment and prophylactic or preventative measures in certain embodiments. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented. By treatment is meant inhibiting or reducing an increase in pathology or symptoms (e.g. weight gain, hyperglycemia) when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of the relevant condition.
  • The pharmaceutical compositions can be in unit dosage form. In such form, the composition is divided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparations, for example, packeted tablets, capsules, and powders in vials or ampoules. The unit dosage form can also be a capsule, cachet, or tablet itself, or it can be the appropriate number of any of these packaged forms. It may be provided in single dose injectable form, for example in the form of a pen. In certain embodiments, packaged forms include a label or insert with instructions for use. Compositions may be formulated for any suitable route and means of administration. Pharmaceutically acceptable carriers or diluents include those used in formulations suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
  • Subcutaneous or transdermal modes of administration may be particularly suitable for the compounds described herein.
  • Compositions of the invention may further be compounded in, or attached to, for example through covalent, hydrophobic and electrostatic interactions, a drug carrier, drug delivery system and advanced drug delivery system in order to further enhance stability of the compound, increase bioavailability, increase solubility, decrease adverse effects, achieve chronotherapy well known to those skilled in the art, and increase patient compliance or any combination thereof. Examples of carriers, drug delivery systems and advanced drug delivery systems include, but are not limited to, polymers, for example cellulose and derivatives, polysaccharides, for example dextran and derivatives, starch and derivatives, poly(vinyl alcohol), acrylate and methacrylate polymers, polylactic and polyglycolic acid and block co-polymers thereof, polyethylene glycols, carrier proteins, for example albumin, gels, for example, thermogelling systems, for example block co-polymeric systems well known to those skilled in the art, micelles, liposomes, microspheres, nanoparticulates, liquid crystals and dispersions thereof, L2 phase and dispersions there of, well known to those skilled in the art of phase behaviour in lipid-water systems, polymeric micelles, multiple emulsions, self-emulsifying, self-microemulsifying, cyclodextrins and derivatives thereof, and dendrimers.
  • Combination Therapy
  • A compound or composition of the invention may be administered as part of a combination therapy with an agent for treatment of obesity, hypertension, dyslipidemia or diabetes.
  • In such cases, the two active agents may be given together or separately, and as part of the same pharmaceutical formulation or as separate formulations.
  • Thus a compound or composition of the invention can further be used in combination with an anti-obesity agent, including but not limited to a glucagon-like peptide receptor 1 agonist, peptide YY or analogue thereof, cannabinoid receptor 1 antagonist, lipase inhibitor, melanocortin receptor 4 agonist, melanin concentrating hormone receptor 1 antagonist, phentermine (alone or in combination with topiramate), a combination of norepinephrinedopamine reuptake inhibitor and opioid receptor antagonist (e.g. a combination of bupropion and naltrexone), or a serotonergic agent (e.g. lorcaserin).
  • A compound or composition of the invention can be used in combination with an anti-hypertension agent, including but not limited to an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, diuretics, beta-blocker, or calcium channel blocker.
  • A compound or composition of the invention can be used in combination with a dyslipidaemia agent, including but not limited to a statin, a fibrate, a niacin and/or a cholesterol absorbtion inhibitor.
  • Further, a compound or composition of the invention can be used in combination with an anti-diabetic agent, including but not limited to a biguanide (e.g. metformin), a sulfonylurea, a meglitinide or glinide (e.g. nateglinide), a DPP-IV inhibitor, an SGLT2 inhibitor, a glitazone, a different GLP-1 agonist, an insulin or an insulin analogue. In a preferred embodiment, the compound or salt thereof is used in combination with insulin or an insulin analogue, DPP-IV inhibitor, sulfonylurea or metformin, particularly sulfonylurea or metformin, for achieving adequate glycemic control. Examples of insulin analogues include but are not limited to Lantus, Novorapid, Humalog, Novomix, and Actraphane HM, Levemir and Apidra.
  • EXAMPLES Example 1 General Synthesis of Glucagon Analogues
  • Solid phase peptide synthesis (SPPS) was performed on a microwave assisted synthesizer using standard Fmoc strategy in NMP on a polystyrene resin (TentaGel S Ram). HATU was used as coupling reagent together with DIPEA as base. Piperidine (20% in NMP) was used for deprotection. Pseudoprolines: Fmoc-Phe-Thr(psiMe,Mepro)-OH and Fmoc-Asp-Ser(psiMe,Mepro)-OH (purchased from NovaBiochem) were used where applicable.
  • Abbreviations employed are as follows:
    • Boc: tert-butyloxycarbonyl
    • ivDde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl
    • Dde: 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl
    • DCM: dichloromethane
    • DMF: N,N-dimethylformamide
    • DIPEA: diisopropylethylamine
    • EDT: 1,2-ethanedithiol
    • EtOH: ethanol
    • Et2O: diethyl ether
    • HATU: N-[(dimethylamino)-1H-1,2,3-triazol[4,5-b]pyridine-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide
    • MeCN: acetonitrile
    • NMP: N-methylpyrrolidone
    • TFA: trifluoroacetic acid
    • TIS: triisopropylsilane
  • Cleavage:
  • The crude peptide was cleaved from the resin by treatment with 952.52.5% (vv) TFA/TIS/water at room temperature (r.t.) for 2 hours. Most of the TFA was removed at reduced pressure and the crude peptide was precipitated and washed with diethylether and allowed to dry to constant weight at ambient temperature.
  • The following compounds were synthesised:
    • 1 H-H-Aib-QGTFTSDYSKYLDS-K([15-carboxy-pentadecanoyl]-isoGlu)-AAHDFVEWLLSA-NH2.
    • 2 H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAKDFIEWLESA-NH2
    • 3 H-H-Aib-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • 4 H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
    • 5 H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
    • 6 H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
    • 7 H-H-Ac4c-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
    • 8 H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAHDFIEWLESA-NH2
    • 9 H-H-Ac4c-HGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
    • 10 H-H-Aib-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
    • 11 H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
    • 12 H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-RAKDFIEWLESA-NH2
    • 13 H-H-Ac4c-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • 14 H-H-Ac4c-QGTFTSDYSKYLDERRAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
    • 15 H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
    • 16 H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
  • The acylated GLP-1 analogue semaglutide was also synthesised, and has the structure:

  • H-H-[2-methyl-Ala]-EGTFTSDVSSYLEGQAA-K([17-Carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-EFIAWLVRGRG-OH.
  • Example 2 Glucagon Receptor and GLP-1-Receptor Efficacy Assays
  • The cDNA encoding either the human glucagon receptor (Glucagon-R) (primary accession number P47871) or the human glucagon-like peptide 1 receptor (GLP-1R) (primary accession number P43220) were synthesized and cloned into a mammalian expression vector containing a Zeocin resistance marker.
  • The mammalian expression vectors encoding the Glucagon-R or the GLP-1-R were transfected into Chinese hamster ovary (CHO) cells by the Attractene method. Stably expressing clones were obtained by Zeocin selection (250 μg/mL) upon limited dilution of cells resistant to the selection pressure. Glucagon-R and GLP-1-R cell clones expressing were picked, propagated and tested in the Glucagon-R and GLP-1-R efficacy assays as described below. One Glucagon-R expressing clone and one GLP-1-R expressing clone were chosen for compound profiling.
  • CHO cells expressing the human Glucagon-R, or human GLP-1-R were seeded 24 hours prior to the assay at 30,000 cells per well in 96-well microtiter plates in culture in 100 μl growth medium. On the day of analysis, growth medium was removed and the cells were washed once with 200 μl of assay buffer (Krebs-Ringer-buffer—KRBH). The buffer was removed and the cells were incubated for 15 min at room temperature in 10 μl KRBH (KRBH+10 mM HEPES, 5 mM NaHCO3, 0.1% (V/V) BSA) with 0.1 mM IBMX in deionized water containing increasing concentrations of test peptides. The reaction was stopped by the addition of lysis buffer (0.1% w/v BSA, 5 mM HEPES, 0.3% v/v Tween-20). After cell lysis for 10 min at room temperature, lysates were transferred to 384-well plates and 10 μl of acceptor/donorbead mixture as contained in the AlphaScreen™ cAMP Functional Assay Kit was added. After one hour of incubation at room temperature in the dark, the cAMP content was determined applying the AlphaScreen™ cAMP Functional Assay Kit from Perkin-Elmer according to manufacturer instructions. EC50 and relative efficacies compared to reference compounds (glucagon and GLP-1) were calculated applying computer aided curve fitting. The GLP-1glucagon ratio is calculated as defined earlier. See Table 1.
  • TABLE 1
    EC50 EC50 Ratio
    hGCGR hGLP-1R GLP-1/
    Compound CHO-K1 [nM] CHO-K1 [nM] Glucagon
    1 0.21 nM 0.38 nM 1.81
    2 0.13 nM 1.76 nM 13.54
    3 1.48 nM 0.70 nM 0.47
    4 0.45 nM 0.70 nM 1.56
    5 0.18 nM 0.83 nM 4.61
    6 0.44 nM 1.43 nM 3.25
    7 0.11 nM 0.97 nM 8.82
    8 0.31 nM 0.80 nM 2.58
    9 0.07 nM 0.97 nM 13.86
    10 1.08 nM 0.41 nM 0.38
    11 0.28 nM 0.56 nM 2.00
    12 0.07 nM 0.48 nM 6.86
    13 0.52 nM 0.33 nM 0.63
    14 0.18 nM 0.60 nM 3.33
    15 0.92 nM 0.61 nM 0.65
    16 0.16 nM 0.53 nM 3.31
  • Example 3 Agonistic Activity on Endogenous GLP-1 Receptor
  • Agonistic activity of the test compounds on endogenous GLP-1 receptors was determined using a murine insulinoma cell line. Intracellular cAMP was used an indicator of receptor activation.
  • Cells were cultured for 24 h at a density of 10,000 cells/well in a 384-well plate. Medium was removed and 10 μL KRBH buffer (NaCl 130 mM, KCl 3.6 mM, NaH2PO4 0.5 mM, MgSO4 0.5 mM, CaCl2 1.5 mM) containing test compound or GLP-1 (at increasing concentrations from 0.1 pM to 100 nM) or solvent control (0.1% (vv) DMSO) was added to the wells for 15 minutes at a temperature of 26° C.
  • The cellular cAMP content is measured using the AlphaScreen cAMP Functional Assay Kit (Perkin Elmer). Measurement was performed using the Envision (PerkinElmer) according to manufacturer's recommendations.
  • Results were converted into cAMP concentrations using a cAMP standard curve prepared in KRBH buffer containing 0.1% (vv) DMSO. The resulting cAMP curves were plotted as absolute cAMP concentrations (nM) over log (test compound concentration) and analyzed using the curve fitting program XLfit.
  • Parameters calculated to describe both the potency as well as the agonistic activity of each test compound on the endogenous GLP-1 receptors were:
  • pEC50 (negative logarithmic value of EC50, a concentration resulting in a half-maximal elevation of cAMP levels, reflecting the potency of the test compound);
  • Percent control (% CTL) (% cAMP elevation for each test compound concentration normalized based on the GLP-1-induced maximum cAMP response (100% CTL)). See Table 2.
  • TABLE 2
    Compound EC50 [nM]
    1 0.60 nM
    2 0.69 nM
    3 0.15 nM
    4 0.40 nM
    5 0.65 nM
    6 0.54 nM
    7 0.47 nM
    8 0.36 nM
    9 0.84 nM
    10 0.60 nM
    11 0.72 nM
    12 0.81 nM
    13 0.37 nM
    14 0.38 nM
    15 0.25 nM
    16 0.34 nM
  • Example 4 Agonistic Activity on Endogenous Glucagon Receptor
  • Agonistic activity of the test compounds on endogenous glucagon receptor was determined by measuring their effect on rate of glycogen synthesis in primary rat hepatocytes. Upon activation of the glucagon receptor, an inhibition of the glycogen synthesis rate is expected. Rate of glycogen synthesis was determined by counting the amount of radioactively labeled glucose incorporated into the cellular glycogen stores in a defined period of time.
  • Primary rat hepatocytes were cultured at a density of 40,000 cells/well in a 24-well plate for 24 hours at 37° C. and 5% CO2.
  • Medium was discarded and the cells washed with PBS. 180 μL of KRBH-based buffer containing 0.1% BSA and glucose at a concentration of 22.5 mM was then added to the wells, followed by test compound and 40 μCi/ml D-[U14C] glucose (20 μL each). Incubation was continued for 3 hours.
  • At the end of the incubation period, the incubation buffer was aspirated and cells washed once with ice-cold PBS before lysis by incubation for 30 min at room temperature with 100 μL 1 mol/l NaOH.
  • Cell lysates were transferred to 96-well filter plates and glycogen precipitated by incubating the filter-plates for 120 min at 4° C. followed by washing the filter plates 4 times with ice-cold ethanol (70%). The resulting precipitates were filtered to dryness and the amount of incorporated 14C-glucose determined by using a Topcount scintillation counter according to manufacturer's recommendations.
  • Wells with vehicle controls (0.1% (vv) DMSO in KRBH buffer) were included as reference for non-inhibited glycogen synthesis (100% CTL). Wells without added D-[U14C] glucose were included as controls for non-specific background signal (subtracted from all values). Endogenous glucagon peptide was used as a positive control.
  • All treatments were performed at least in duplicates.
  • Parameters calculated to describe both the potency as well as the agonistic activity of each test compound on the endogenous glucagon receptor are pEC50 and % CTL.
  • % CTL is determined by calculating the percentage of CPM/well in the presence of the test compound compared to the CPM/well of the vehicle control after subtracting the background CPM/well:

  • [CPM/well(basal)−CPM/well(sample)]*100/[CPM/well(basal)−CPM/well(control)]
  • An activator of the glucagon receptor will result in an inhibition of the glycogen synthesis rate and will give % CTL values between 0% CTL (complete inhibition) and 100% CTL (no observable inhibition).
  • The resulting activity curves were plotted as absolute counts (unit: cpm/sample) over log (test compound concentration) and analyzed using the curve fitting program XLfit.
  • pEC50 (negative logarithmic value of EC50) reflects the potency of the test compound.
  • TABLE 3
    Compound EC50 [nM]
    1 0.85 nM
    2 0.11 nM
    3 0.94 nM
    4 1.79 nM
    5 0.21 nM
    6 0.80 nM
    7 0.34 nM
    8 0.29 nM
    9 0.11 nM
    10 1.53 nM
    11 0.95 nM
    12 0.45 nM
    13 0.43 nM
    14 0.19 nM
    15 3.63 nM
    16 0.19 nM
  • The terms EC50 and pEC50 quoted in relation to GLP-1R activation could equally be regarded as IC50 and pIC50 in relation to glycogen synthesis.
  • Example 5 Estimate of Pharmacokinetic Parameters
  • Pharmacokinetic parameters of the test compounds were determined after intravenous administration to Han/Wistar rats. The acylated GLP-1 analogue semaglutide was also tested for comparison purposes.
  • Male Wistar rats were obtained from Charles River (Germany) weighing approximately 180 to 210 g at time of arrival at the test facility. Rats were caged in European standard rat cages type IV with light cycle of 12-hour dark and 12-hour light. During the study rats were housed in standard rat cages type III. Both diet Altromin 1324 (Altromin, Germany) and water was administered ad libitum during the whole experimental period. The animals were housed in the test facility for at least 4 days in order to assure proper acclimatization.
  • The compounds were first dissolved in 0.1% aqueous ammonia to a nominal concentration of 2 mg/ml, and then diluted to the desired dosing strength (10 μM) in sterile PBS containing 25 mM phosphate buffer, pH 7.4. Intravenous injections corresponding to 20 nmol/kg were given via a lateral tail vein.
  • Blood samples (200 μl) were collected from the periorbital plexus at time points 0.08, 0.25, 0.5, 1, 2, 4, 8, 24, 32 and 48 h post dosing into K3EDTA tubes and centrifuged for 5 minutes at 4° C. within 20 minutes of sampling. Plasma samples (>100 μl) were transferred to 96-well PCR plates, immediately frozen and kept at −20° C. until analysed for plasma concentration for the respective GLP-1-glucagon compound using LC-MS/MS. Individual plasma concentration-time profiles were analysed by a non-compartmental approach using ToxKin™ version 3.2 (Unilog IT Services), and the resulting pharmacokinetic parameters were determined. See Table 4.
  • TABLE 4
    Mean
    Clearance Terminal Residence
    Compound (ml/min/kg) half life (h) Time (h)
    2 0.11 9.1 13.6
    3 0.056 23.4 28.7
    4 0.11 13.7 17.6
    Semaglutide 0.10 9.0 11.4

Claims (41)

1. A compound having the formula:

R1—P1—P2—R2
wherein
R1 is H, C1-4 alkyl, acetyl, formyl, benzoyl or trifluoroacetyl;
R2 is OH or NH2;
P1 is a peptide having the sequence:
H-X2-X3-GTFTSDYSKYLDSΨAAHDFVEWLLSA
wherein:
X2 is selected from Aib, Ala, D-Ala, Ser, N-Me-Ser, Ac3c, Ac4c and Ac5c;
X3 is selected from Gln and His;
P2 is absent or is a sequence of 1-20 amino acid units independently selected from the group consisting of Ala, Leu, Ser, Thr, Tyr, Cys, Glu, Lys, Arg, Dbu, Dpr and Orn;
or a pharmaceutically acceptable salt or solvate thereof;
Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a substituent having the formula -Z2-Z1;
-Z1 is a fatty chain having a polar group at one end of the chain and a connection to Z2, —X— at the end of the chain distal from the polar group,
wherein the polar group comprises a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;
and —X— is a bond, —CO—, —SO—, or —SO2—;
-Z2- is a spacer of formula:
Figure US20150111826A1-20150423-C00020
wherein:
each Y is independently —NH, —NR, —S or —O, where R is alkyl, a protecting group or forms a linkage to another part of the spacer Z2;
each X is independently a bond, CO—, SO—, or SO2—;
with the proviso that when Y is S, X is a bond;
each V is independently a bivalent organic moiety linking Y and X;
and n is 1-10;
or a pharmaceutically acceptable salt or solvate thereof.
2. A compound according to claim 1 wherein P1 has the sequence:
H-Aib-QGTFTSDYSKYLDSΨAAHDFVEWLLSA
3. A compound according to claim 2 which is:

H-H-Aib-QGTFTSDYSKYLDSΨAAHDFVEWLLSA-NH2
4. A compound having the formula:

R1—P1—P2—R2
wherein
R1 is H, C1-4 alkyl, acetyl, formyl, benzoyl or trifluoroacetyl;
R2 is OH or NH2;
P1 is a peptide having the sequence:
His-X2-X3-GTFTSDYSKYL-X15-X16-X17-X18-A-X20-DFI- X24-WLE-X28-A
wherein:
X2 is selected from Aib, Ac3c, Ac4c and Ac5c;
X3 is selected from Gln and His;
X15 is selected from Asp and Glu;
X16 is selected from Glu and Ψ;
X17 is selected from Arg and Ψ;
X18 is selected from Ala and Arg;
X20 is selected from Lys and His;
X24 is selected from Glu and Ψ;
X28 is selected from Ser and P;
and P2 is absent or is a sequence of 1-20 amino acid units independently selected from the group consisting of Ala, Leu, Ser, Thr, Tyr, Cys, Glu, Lys, Arg, Dbu, Dpr and Orn;
wherein the compound contains one and only one Ψ
and wherein said Ψ is a residue of Lys, Arg, Orn or Cys in which the side chain is conjugated to a substituent having the formula -Z2Z1;
-Z1 is a fatty chain having a polar group at one end of the chain and a connection to Z2, —X— at the end of the chain distal from the polar group,
wherein the polar group comprises a carboxylic acid or a carboxylic acid bioisostere, a phosphonic acid, or a sulfonic acid group;
and —X— is a bond, —CO—, —SO—, or —SO2—;
-Z2- is a spacer of formula:
Figure US20150111826A1-20150423-C00021
wherein:
each Y is independently —NH, —NR, —S or —O, where R is alkyl, a protecting group or forms a linkage to another part of the spacer Z2;
each X is independently a bond, CO—, SO—, or SO2—;
with the proviso that when Y is —S, X is a bond;
each V is independently a bivalent organic moiety linking Y and X;
and n is 1-10;
or a pharmaceutically acceptable salt or solvate thereof.
5. A compound according to claim 4 wherein:
X2 is selected from Aib and Ac4c;
X3 is Gln;
X15 is selected from Asp and Glu;
X16 is Ψ;
X17 is Arg;
X18 is Ala;
X20 is selected from Lys and His;
X24 is Glu;
X28 is Ser.
6. A compound according to claim 4 or claim 5 wherein:
X2 is Ac4c and X20 is Lys;
X2 is Aib and X20 is His.
7. A compound according to any one of claims 4 to 6 wherein
X2 is Aib if X15 is E; or
X15 is D if X2 is Ac4c.
8. A compound according to any one of claims 4 to 7 wherein P1 has a sequence selected from:
H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA H-Aib-QGTFTSDYSKYLEΨRAAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDΨRAAKDFIEWLESA and H-Aib-QGTFTSDYSKYLEΨRAAHDFIEWLESA
9. A compound according to claim 8 which is selected from:
H-H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLEΨRAAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDΨRAAKDFIEWLESA-NH2 and
H-H-Aib-QGTFTSDYSKYLEΨRAAHDFIEWLESA-NH2
10. A compound according to claim 4 wherein:
X2 is selected from Aib and Ac4c;
X3 is selected from Gln and His;
X15 is Asp;
X16 is Glu;
X17 is selected from Arg and Ψ;
X18 is selected from Ala and Arg;
X20 is Lys;
X24 is selected from Glu and Ψ;
X28 is selected from Ser and Ψ;
11. A compound according to claim 10 wherein, when X28 is Ψ, X2 is Ac4c.
12. A compound according to claim 10 wherein, when X3 is His, X2 is Ac4c and X17 is Ψ.
13. A compound according to claim 10 wherein P1 has a sequence selected from:
H-Aib-QGTFTSDYSKYLDEΨAAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA H-Ac4c-HGTFTSDYSKYLDEΨRAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDEΨAAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA H-Aib-QGTFTSDYSKYLDERAAKDFIΨWLESA H-Ac4c-QGTFTSDYSKYLDERAAKDFIΨWLESA H-Ac4c-QGTFTSDYSKYLDERRAKDFIΨWLESA H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLEΨA and H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLEΨA
14. A compound according to claim 13 which is selected from:
H-H-Aib-QGTFTSDYSKYLDEΨAAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
H-H-Ac4c-HGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDEΨAAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDEΨRAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLDERAAKDFIΨWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIΨWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIΨWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERAAKDFI EWLEΨA-NH2 and
H-H-Ac4c-QGTFTSDYSKYLDERRAKDFI EWLEΨA-NH2
15. A compound according to any one of claims 1 to 14 wherein -Z1 is an acyl group of formula:

A-B-Alk-(CO)—
or a sulfonyl group of formula:

A-B-Alk-(SO2)—;
A is —COOH or a carboxylic acid bioisostere;
B is a bond, C6arylene, or C6arylene-O—;
Alk is a saturated or unsaturated fatty chain of 6 to 18 carbon atoms in length, optionally substituted with one or more substituents selected from fluoro, C1-4alkyl, trifluoromethyl, hydroxymethyl, amino, hydroxyl, C1-4alkoxy, oxo, and carboxyl;
-Z2- is —SA—, —SA—SB—, or —SB—SA—;
—SA— is a single amino acid residue selected from γ-Glu, α-Glu, α-Asp, β-Asp, Ala, β-Ala (3-aminopropanoic acid), and Gaba (4-aminobutanoic acid);
—SB— is a linker of general formula:

Pun
wherein n is 1-10 and each PU is independently selected from PU i and PU iii;
each PU i is independently a natural or unnatural amino acid residue; and
each PU iii is independently a residue of general formula:
Figure US20150111826A1-20150423-C00022
wherein m is 0-5 and p is 1, 3, 4, or 5.
16. A compound according to any one of claims 1 to 14 wherein Z1-Z2 is selected from:
(i) [17-Carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3;
(ii) [17-Carboxy-heptadecanoyl]-isoGlu
(iii) [13-Carboxy-tridecanoyl]-isoGlu-Peg3-Peg3;
(iv) [Carboxyphenoxynonanoyl]-isoGlu-Peg3-Peg3;
(v) [13-Carboxy-tridecanoyl]-isoGlu-Peg4-Peg4;
(vi) [17-Carboxy-heptadecanoyl]-Peg3-Peg3-isoGlu;
(vii) [17-Carboxy-heptadecanoyl]-isoGlu-GSGSGG; and
(viii) [17-Carboxy-heptadecanoyl]-AA-Peg3-Peg3.
17. A compound according to claim 1 wherein P1 has the sequence:
H-Aib-QGTFTSDYSKYLDS-K([15-carboxy-pentadecanoyl]- isoGlu)-AAHDFVEWLLSA.
18. A compound according to claim 17 which is:

H-H-Aib-QGTFTSDYSKYLDS-K([15-carboxy-pentadecanoyl]-isoGlu)-AAHDFVEWLLSA-NH2.
19. A compound according to any one of claims 4 to 7 wherein Z2-Z1 is [17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3 or [17-carboxy-heptadecanoyl]-isoGlu-GSGSGG.
20. A compound according to claim 10 or claim 12 wherein, when X17 is Ψ, Z2Z1 is [17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3 or [17-Carboxy-heptadecanoyl]-isoGlu.
21. A compound according to claim 10 or claim 11 wherein, when X24 or X28 is Ψ, Z2Z1 is [17-carboxy-heptadecanoyl]-isoGlu-GSGSGG.
22. A compound according to claim 8 wherein P1 has a sequence selected from:
H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]- isoGlu-Peg3-Peg3)-RAAKDFIEWLESA H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]- isoGlu-GSGSGG)-RAAKDFIEWLESA H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]- isoGlu-GSGSGG)-RAAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]- isoGlu-GSGSGG)-RAAKDFIEWLESA and H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]- isoGlu-Peg3-Peg3)-RAAHDFIEWLESA
23. A compound according to claim 22 which is selected from:
H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLD-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-RAAKDFIEWLESA-NH2 and
H-H-Aib-QGTFTSDYSKYLE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAAHDFIEWLESA-NH2
24. A compound according to claim 13 wherein P1 has a sequence selected from:
H-Aib-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]- isoGlu)-AAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]- isoGlu-Peg3-Peg3)-RAKDFIEWLESA H-Ac4c-HGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]- isoGlu-Peg3-Peg3)-RAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]- isoGlu)-AAKDFIEWLESA H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]- isoGlu)-RAKDFIEWLESA H-Aib- QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]- isoGlu-GSGSGG)-WLESA H-Ac4c-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy- heptadecanoyl]-isoGlu-GSGSGG)-WLESA H-Ac4c-QGTFTSDYSKYLDERRAKDFI-K([17-carboxy- heptadecanoyl]-isoGlu-GSGSGG)-WLESA H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLE-K([17-carboxy- heptadecanoyl]-isoGlu-GSGSGG)-A and H-H-Ac4c-QGTFTSDYSKYLDERRAKDREWLE-K([17-carboxy- heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
25. A compound according to claim 24 which is selected from:
H-H-Aib-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
H-H-Ac4c-HGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu-Peg3-Peg3)-RAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-AAKDFIEWLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDE-K([17-carboxy-heptadecanoyl]-isoGlu)-RAKDFIEWLESA-NH2
H-H-Aib-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERAAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERRAKDFI-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-WLESA-NH2
H-H-Ac4c-QGTFTSDYSKYLDERAAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2 and
H-H-Ac4c-QGTFTSDYSKYLDERRAKDFIEWLE-K([17-carboxy-heptadecanoyl]-isoGlu-GSGSGG)-A-NH2
26. A composition comprising a compound according to any one of the preceding claims in admixture with a carrier.
27. A composition according to claim 26 wherein the composition is a pharmaceutical composition, and the carrier is a pharmaceutically acceptable carrier.
28. A compound according to any one of claims 1 to 25 for use in a method of medical treatment.
29. A compound according to any one of claims 1 to 25 for use in a method of preventing weight gain or promoting weight loss in an individual in need thereof.
30. A compound according to any one of claims 1 to 25 for use in a method of lowering circulating LDL levels, and/or increasing HDL/LDL ratio in an individual in need thereof.
31. A compound according to any one of claims 1 to 25 for use in a method of treatment of a condition caused or characterised by excess body weight.
32. A compound according to any one of claims 1 to 25 for use in a method of prevention or treatment of obesity, morbid obesity, morbid obesity prior to surgery, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea, diabetes, metabolic syndrome, hypertension, atherogenic dyslipidimia, atherosclerois, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or microvascular disease.
33. A compound for use according to any one of claims 29 to 32 wherein the compound is administered as part of a combination therapy together with an agent for treatment of diabetes, obesity, dyslipidemia or hypertension.
34. A compound for use according to claim 33 wherein the agent for treatment of diabetes is a biguanide (e.g. metformin), a sulfonylurea, a meglitinide or glinide (e.g. nateglinide), a DPP-IV inhibitor, an SGLT2 inhibitor, a glitazone, a different GLP-1 agonist, an insulin or an insulin analogue.
35. A compound for use according to claim 33, wherein the agent for treatment of obesity is a glucagon-like peptide receptor 1 agonist, peptide YY receptor agonist or analogue thereof, cannabinoid receptor 1 antagonist, lipase inhibitor, melanocortin receptor 4 agonist, melanin concentrating hormone receptor 1 antagonist, phentermine, a combination of norepinephrinedopamine reuptake inhibitor and opioid receptor antagonist (e.g. a combination of phentermine and topiramate), a combination of bupropion and naltrexone, or a serotonergic agent.
36. A compound for use according to claim 33 wherein the agent for treatment of hypertension is an angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, diuretic, beta-blocker, or calcium channel blocker.
37. A compound for use according to claim 33 wherein the agent for treatment of dyslipidaemia is a statin, a fibrate, a niacin and/or a cholesterol absorbtion inhibitor.
38. A therapeutic kit comprising a compound according to any of claims 1 to 25 or a composition according to claim 26 or 27.
39. A method of synthesis of a compound according to any one of claims 1 to 25.
40. A method of producing a compound according to any one of claims 1 to 25, the method comprising expressing a precursor peptide sequence from a nucleic acid construct that encodes the precursor peptide, recovering the expression product, and modifying the precursor peptide to yield a compound according to any one of claims 1 to 25.
41. A method according to claim 40 comprising modifying the precursor peptide to introduce the substituent at residue Ψ.
US14/517,497 2013-10-17 2014-10-17 Acylated glucagon analogues Active US9896495B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/517,497 US9896495B2 (en) 2013-10-17 2014-10-17 Acylated glucagon analogues
US15/852,458 US10457714B2 (en) 2013-10-17 2017-12-22 Acylated glucagon analogues
US16/569,381 US11091528B2 (en) 2013-10-17 2019-09-12 Acylated glucagon analogues
US17/369,061 US11884713B2 (en) 2013-10-17 2021-07-07 Acylated glucagon analogues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361892256P 2013-10-17 2013-10-17
US14/517,497 US9896495B2 (en) 2013-10-17 2014-10-17 Acylated glucagon analogues

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/852,458 Continuation US10457714B2 (en) 2013-10-17 2017-12-22 Acylated glucagon analogues

Publications (2)

Publication Number Publication Date
US20150111826A1 true US20150111826A1 (en) 2015-04-23
US9896495B2 US9896495B2 (en) 2018-02-20

Family

ID=51868185

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/517,497 Active US9896495B2 (en) 2013-10-17 2014-10-17 Acylated glucagon analogues
US15/852,458 Active US10457714B2 (en) 2013-10-17 2017-12-22 Acylated glucagon analogues
US16/569,381 Active US11091528B2 (en) 2013-10-17 2019-09-12 Acylated glucagon analogues
US17/369,061 Active US11884713B2 (en) 2013-10-17 2021-07-07 Acylated glucagon analogues

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/852,458 Active US10457714B2 (en) 2013-10-17 2017-12-22 Acylated glucagon analogues
US16/569,381 Active US11091528B2 (en) 2013-10-17 2019-09-12 Acylated glucagon analogues
US17/369,061 Active US11884713B2 (en) 2013-10-17 2021-07-07 Acylated glucagon analogues

Country Status (33)

Country Link
US (4) US9896495B2 (en)
EP (1) EP3057984B1 (en)
JP (1) JP6538665B2 (en)
KR (2) KR102569036B1 (en)
CN (1) CN105745222A (en)
AP (1) AP2016009212A0 (en)
AR (1) AR098065A1 (en)
AU (1) AU2014336098B2 (en)
BR (1) BR112016008115B1 (en)
CA (1) CA2926314C (en)
CL (1) CL2016000873A1 (en)
CY (1) CY1121462T1 (en)
DK (1) DK3057984T3 (en)
EA (1) EA034322B1 (en)
ES (1) ES2688708T3 (en)
HK (1) HK1221965A1 (en)
HR (1) HRP20181505T1 (en)
HU (1) HUE039616T2 (en)
IL (1) IL244795B (en)
LT (1) LT3057984T (en)
MX (1) MX368436B (en)
MY (1) MY176022A (en)
PE (1) PE20160683A1 (en)
PH (1) PH12016500675B1 (en)
PL (1) PL3057984T3 (en)
PT (1) PT3057984T (en)
RS (1) RS57632B1 (en)
SA (1) SA516370967B1 (en)
SG (1) SG11201602965WA (en)
SI (1) SI3057984T1 (en)
TW (1) TWI666220B (en)
UA (1) UA122767C2 (en)
WO (1) WO2015055801A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169310B2 (en) 2010-06-24 2015-10-27 Zealand Pharma A/S Glucagon analogues
US9180169B2 (en) 2012-09-17 2015-11-10 Zealand Pharma A/S Glucagon analogues
US9259477B2 (en) 2011-11-03 2016-02-16 Zealand Pharma A/S GLP-1 receptor agonist peptide gastrin conjugates
US9403894B2 (en) 2010-06-23 2016-08-02 Zealand Pharma A/S Glucagon analogues
US9649362B2 (en) 2010-04-27 2017-05-16 Zealand Pharma A/S Peptide conjugates of GLP-1 receptor agonists and gastrin and their use
US9764004B2 (en) 2015-10-26 2017-09-19 Eli Lilly And Company Glucagon receptor agonists
US9988429B2 (en) 2013-10-17 2018-06-05 Zealand Pharma A/S Glucagon analogues
US10004786B2 (en) 2009-07-13 2018-06-26 Zealand Pharma A/S Acylated glucagon analogues
WO2018140857A3 (en) * 2017-01-27 2018-09-20 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Bifunctional small peptide for autoimmune diabetes
US10093713B2 (en) 2013-11-06 2018-10-09 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
US10100097B2 (en) 2012-05-03 2018-10-16 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
US10131702B2 (en) 2013-11-06 2018-11-20 Zealand Pharma A/S Glucagon-GLP-1-GIP triple agonist compounds
US10253078B2 (en) 2014-10-29 2019-04-09 Zealand Pharma A/S GIP agonist compounds and methods
US10336802B2 (en) 2015-04-16 2019-07-02 Zealand Pharma A/S Acylated glucagon analogue
US10442847B2 (en) 2012-07-23 2019-10-15 Zealand Pharma A/S Glucagon analogues
US10457714B2 (en) 2013-10-17 2019-10-29 Zealand Pharma A/S Acylated glucagon analogues
US10905745B2 (en) 2016-12-09 2021-02-02 Zealand Pharma A/S Acylated GLP-1/GLP-2 dual agonists
US11485766B2 (en) * 2018-04-05 2022-11-01 Sun Pharmaceutical Industries Limited GLP-1 analogues
US11744873B2 (en) 2021-01-20 2023-09-05 Viking Therapeutics, Inc. Compositions and methods for the treatment of metabolic and liver disorders

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA116217C2 (en) 2012-10-09 2018-02-26 Санофі Exendin-4 derivatives as dual glp1/glucagon agonists
WO2014096150A1 (en) 2012-12-21 2014-06-26 Sanofi Dual glp1/gip or trigonal glp1/gip/glucagon agonists
WO2015086733A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/glucagon receptor agonists
EP3080154B1 (en) 2013-12-13 2018-02-07 Sanofi Dual glp-1/gip receptor agonists
WO2015086730A1 (en) 2013-12-13 2015-06-18 Sanofi Non-acylated exendin-4 peptide analogues
TW201609795A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues as dual GLP-1/GIP receptor agonists
TW201625670A (en) 2014-04-07 2016-07-16 賽諾菲公司 Dual GLP-1/glucagon receptor agonists derived from EXENDIN-4
TW201625669A (en) 2014-04-07 2016-07-16 賽諾菲公司 Peptidic dual GLP-1/glucagon receptor agonists derived from Exendin-4
TW201625668A (en) 2014-04-07 2016-07-16 賽諾菲公司 Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
AR105319A1 (en) 2015-06-05 2017-09-27 Sanofi Sa PROPHARMS THAT INCLUDE A DUAL AGONIST GLU-1 / GLUCAGON CONJUGATE HIALURONIC ACID CONNECTOR
WO2016198628A1 (en) 2015-06-12 2016-12-15 Sanofi Non-acylated exendin-4 derivatives as dual glp-1/glucagon receptor agonists
WO2016198624A1 (en) 2015-06-12 2016-12-15 Sanofi Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists
TW201706291A (en) 2015-07-10 2017-02-16 賽諾菲公司 New EXENDIN-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists
EP3384935A4 (en) * 2015-12-02 2019-08-21 Hanmi Pharm. Co., Ltd. Protein complex using fatty acid derivative, and preparation method therefor
CN106928086B (en) * 2015-12-31 2019-05-31 深圳翰宇药业股份有限公司 A kind of preparation method of long-chain compound
AR109514A1 (en) 2016-09-09 2018-12-19 Zealand Pharma As AMILINE ANALOGS
JP7377195B2 (en) 2017-09-29 2023-11-09 ハンミ ファーマシューティカル カンパニー リミテッド Protein conjugate containing a non-peptidic polymer-bonded fatty acid derivative compound as a linker and method for producing the same
CN110041219B (en) * 2019-05-09 2020-09-25 南京工业大学 Liquid phase synthesis method of side chain of Somaloutide
AU2020384729A1 (en) 2019-11-11 2022-04-14 Boehringer Ingelheim International Gmbh NPY2 receptor agonists
CN111285780A (en) * 2020-01-16 2020-06-16 浙江工业大学 Convergent liquid phase synthesis method of side chain of Somaloutide
CN111253287A (en) * 2020-01-16 2020-06-09 浙江工业大学 Method for synthesizing side chain of Somalutide in liquid phase convergence manner
CN111269137A (en) * 2020-01-16 2020-06-12 浙江工业大学 Method for preparing side chain of Somalutide by liquid phase method
EP4138874A1 (en) 2020-04-24 2023-03-01 Boehringer Ingelheim International GmbH Glucagon analogues as long-acting glp-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis
WO2022029231A1 (en) 2020-08-07 2022-02-10 Boehringer Ingelheim International Gmbh Soluble npy2 receptor agonists
KR20240043778A (en) * 2021-07-30 2024-04-03 베링거 인겔하임 인터내셔날 게엠베하 Dosage regimens for long-acting GLP1/glucagon receptor agonists
WO2024038067A1 (en) 2022-08-18 2024-02-22 Boehringer Ingelheim International Gmbh Combination therapy comprising long acting glp-1/glucagon and npy2 receptor agonists

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288627A (en) 1980-02-12 1981-09-08 Phillips Petroleum Company Oxidation of thiols employing cobalt molybdate/triethylamine catalyst
NZ202757A (en) 1981-12-23 1985-11-08 Novo Industri As Peptides and medicaments
US5614492A (en) 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
US5118666A (en) 1986-05-05 1992-06-02 The General Hospital Corporation Insulinotropic hormone
US5120712A (en) 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
JP3262329B2 (en) 1990-01-24 2002-03-04 アイ. バックレイ,ダグラス GLP-1 analog useful for the treatment of diabetes
US5545618A (en) 1990-01-24 1996-08-13 Buckley; Douglas I. GLP-1 analogs useful for diabetes treatment
DE69107455T3 (en) 1990-05-09 2004-09-23 Novozymes A/S A CELLULASE PREPARATION CONTAINING AN ENDOGLUCANASE ENZYME.
DK36392D0 (en) 1992-03-19 1992-03-19 Novo Nordisk As USE OF CHEMICAL COMPOUND
US5846747A (en) 1992-03-25 1998-12-08 Novo Nordisk A/S Method for detecting glucagon-like peptide-1 antagonists and agonists
DK39892D0 (en) 1992-03-25 1992-03-25 Bernard Thorens PEPTIDE
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
WO1995005848A1 (en) 1993-08-24 1995-03-02 Novo Nordisk A/S Protracted glp-1
AU7685894A (en) 1993-09-07 1995-03-27 Amylin Pharmaceuticals, Inc. Methods for regulating gastrointestinal motility
US5705483A (en) 1993-12-09 1998-01-06 Eli Lilly And Company Glucagon-like insulinotropic peptides, compositions and methods
US5512549A (en) 1994-10-18 1996-04-30 Eli Lilly And Company Glucagon-like insulinotropic peptide analogs, compositions, and methods of use
US5523449A (en) 1995-05-17 1996-06-04 Bayer Corporation Process for preparing phosphorodichlorido-dithioates by reacting alkylmercaptans with phosphorus trichloride in the presence of sulfur
WO1997046584A1 (en) 1996-06-05 1997-12-11 Boehringer Mannheim Gmbh Exendin analogues, processes for their preparation and medicaments containing them
US6110703A (en) 1996-07-05 2000-08-29 Novo Nordisk A/S Method for the production of polypeptides
JP2001501593A (en) 1996-08-08 2001-02-06 アミリン・ファーマシューティカルズ,インコーポレイテッド Methods for regulating gastrointestinal motility
US6956026B2 (en) 1997-01-07 2005-10-18 Amylin Pharmaceuticals, Inc. Use of exendins for the reduction of food intake
UA72181C2 (en) 1996-08-30 2005-02-15 Ново Нордіск А/С Derivatives of glucanolike peptide-1
US7235627B2 (en) 1996-08-30 2007-06-26 Novo Nordisk A/S Derivatives of GLP-1 analogs
US6277819B1 (en) 1996-08-30 2001-08-21 Eli Lilly And Company Use of GLP-1 or analogs in treatment of myocardial infarction
US6006753A (en) 1996-08-30 1999-12-28 Eli Lilly And Company Use of GLP-1 or analogs to abolish catabolic changes after surgery
US6458924B2 (en) 1996-08-30 2002-10-01 Novo Nordisk A/S Derivatives of GLP-1 analogs
US6268343B1 (en) 1996-08-30 2001-07-31 Novo Nordisk A/S Derivatives of GLP-1 analogs
ATE290014T1 (en) 1996-09-09 2005-03-15 Zealand Pharma As SOLID PHASE PEPTIDE SYNTHESIS
IL128828A0 (en) 1996-09-09 2000-01-31 Zealand Pharmaceuticals As Peptide prodrugs containing an alpha-hydroxy acid linker
UA65549C2 (en) 1996-11-05 2004-04-15 Елі Ліллі Енд Компані Use of glucagon-like peptides such as glp-1, glp-1 analog, or glp-1 derivative in methods and compositions for reducing body weight
AU5065198A (en) 1996-11-15 1998-06-10 Maria Grazia Masucci Fusion proteins having increased half-lives
US6410511B2 (en) 1997-01-08 2002-06-25 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
US6136784A (en) 1997-01-08 2000-10-24 Amylin Pharmaceuticals, Inc. Amylin agonist pharmaceutical compositions containing insulin
EP0981611A1 (en) 1997-02-05 2000-03-01 1149336 Ontario Inc. Polynucleotides encoding proexendin, and methods and uses thereof
US5846937A (en) 1997-03-03 1998-12-08 1149336 Ontario Inc. Method of using exendin and GLP-1 to affect the central nervous system
AU7652998A (en) 1997-05-07 1998-11-27 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. New cysteine derivatives, processes for their production, and pharmaceuticals containing them
US7157555B1 (en) 1997-08-08 2007-01-02 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
BR9811866A (en) 1997-08-08 2000-08-15 Amylin Pharmaceuticals Inc Exendin agonist compounds
DK1032587T4 (en) 1997-11-14 2013-04-08 Amylin Pharmaceuticals Llc New exendin agonist compounds
US7223725B1 (en) 1997-11-14 2007-05-29 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
NZ504258A (en) 1997-11-14 2002-12-20 Amylin Pharmaceuticals Inc Exendin 3 and 4 agonist compounds for the treatment of diabetes
US7220721B1 (en) 1997-11-14 2007-05-22 Amylin Pharmaceuticals, Inc. Exendin agonist peptides
EP1049486A4 (en) 1997-12-05 2006-01-04 Lilly Co Eli Glp-1 formulations
ATE366115T1 (en) 1998-02-13 2007-07-15 Amylin Pharmaceuticals Inc INOTROPIC AND DIURETIC EFFECTS OF EXENDIN AND GLP-1
US6703359B1 (en) 1998-02-13 2004-03-09 Amylin Pharmaceuticals, Inc. Inotropic and diuretic effects of exendin and GLP-1
EP1062240B1 (en) 1998-02-27 2010-04-28 Novo Nordisk A/S N-terminally modified glp-1 derivatives
WO1999043708A1 (en) 1998-02-27 1999-09-02 Novo Nordisk A/S Glp-1 derivatives of glp-1 and exendin with protracted profile of action
IL138214A0 (en) 1998-03-09 2001-10-31 Zealand Pharmaceuticals As Pharmacolgically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis
DE69918070T2 (en) 1998-03-13 2005-08-25 Novo Nordisk A/S Stabilized, aqueous glucagon solutions containing detergents
WO1999049788A1 (en) 1998-03-30 1999-10-07 Focus Surgery, Inc. Ablation system
SE9802080D0 (en) 1998-06-11 1998-06-11 Hellstroem Pharmaceutical composition for the treatment of functional dyspepsia and / or irritable bowel syndrome and new use of substances therein
AU776514B2 (en) 1998-08-10 2004-09-09 General Hospital Corporation, The Differentiation of non-insulin producing cells into insulin producing cells by GLP-1 or exendin-4 and uses thereof
WO2000020592A1 (en) 1998-10-07 2000-04-13 Medical College Of Georgia Research Institute, Inc. Glucose-dependent insulinotropic peptide for use as an osteotropic hormone
US6284725B1 (en) 1998-10-08 2001-09-04 Bionebraska, Inc. Metabolic intervention with GLP-1 to improve the function of ischemic and reperfused tissue
BR9915961A (en) 1998-12-07 2001-08-21 Sod Conseils Rech Applic Glp-1 analogs
PT1143989E (en) 1999-01-14 2007-03-30 Amylin Pharmaceuticals Inc Exendins for glucagon suppression
US7399489B2 (en) 1999-01-14 2008-07-15 Amylin Pharmaceuticals, Inc. Exendin analog formulations
JP4426727B2 (en) 1999-01-14 2010-03-03 アミリン・ファーマシューティカルズ,インコーポレイテッド Novel exendin agonist preparation and administration method thereof
US6451987B1 (en) 1999-03-15 2002-09-17 Novo Nordisk A/S Ion exchange chromatography of proteins and peptides
EP1163211B1 (en) 1999-03-17 2008-09-24 Novo Nordisk A/S Method for acylating peptides and proteins
US6451974B1 (en) 1999-03-17 2002-09-17 Novo Nordisk A/S Method of acylating peptides and novel acylating agents
US6271241B1 (en) 1999-04-02 2001-08-07 Neurogen Corporation Cycloalkyl and aryl fused aminoalkyl-imidazole derivatives: modulators and GLP-1 receptors
US6924264B1 (en) 1999-04-30 2005-08-02 Amylin Pharmaceuticals, Inc. Modified exendins and exendin agonists
JP2002544127A (en) 1999-04-30 2002-12-24 アミリン・ファーマシューティカルズ,インコーポレイテッド Modified exendins and exendin agonists
ATE252601T1 (en) 1999-05-17 2003-11-15 Conjuchem Inc LONG-ACTING INSULINOTROPE PEPTIDES
US7601691B2 (en) 1999-05-17 2009-10-13 Conjuchem Biotechnologies Inc. Anti-obesity agents
US6506724B1 (en) 1999-06-01 2003-01-14 Amylin Pharmaceuticals, Inc. Use of exendins and agonists thereof for the treatment of gestational diabetes mellitus
US6344180B1 (en) 1999-06-15 2002-02-05 Bionebraska, Inc. GLP-1 as a diagnostic test to determine β-cell function and the presence of the condition of IGT and type II diabetes
EP1076066A1 (en) 1999-07-12 2001-02-14 Zealand Pharmaceuticals A/S Peptides for lowering blood glucose levels
US6528486B1 (en) 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
US6586438B2 (en) 1999-11-03 2003-07-01 Bristol-Myers Squibb Co. Antidiabetic formulation and method
AU775663B2 (en) 2000-10-20 2004-08-12 Amylin Pharmaceuticals, Inc. Treatment of hibernating myocardium and diabetic cardiomyopathy with a GLP-1 peptide
GB0121709D0 (en) 2001-09-07 2001-10-31 Imp College Innovations Ltd Food inhibition agent
AU2002346491A1 (en) 2001-12-19 2003-07-09 Eli Lilly And Company Crystalline compositions for controlling blood glucose
CZ2004710A3 (en) 2001-12-20 2005-02-16 Eli Lilly And Company Insulin compound exhibiting protracted activity
CA2490564A1 (en) 2002-07-04 2004-01-15 Zealand Pharma A/S Glp-1 and methods for treating diabetes
BR0314996A (en) 2002-10-02 2005-08-09 Zealand Pharma As Composition, pharmaceutically acceptable composition, method for producing the composition, methods for stabilizing exendin-4 (1-39) or a variant, derivative or analogue thereof against degradation, before, during or after intended use, to treat diseases, to treat disease states associated with elevated blood glucose levels, to regulate blood glucose levels, to regulate gastric emptying, to stimulate the release of insulin in a mammal to reduce blood glucose level in a mammal, to reduce the level of plasma lipids in a mammal, to reduce mortality and morbidity after myocardial infarction in a mammal, to stimulate insulin release in a mammal, and to produce a stabilized exendin (1-39), and stabilized exendin (1-39)
US7192922B2 (en) 2002-11-19 2007-03-20 Allegheny-Singer Research Institute Method of treating left ventricular dysfunction
GB0300571D0 (en) 2003-01-10 2003-02-12 Imp College Innovations Ltd Modification of feeding behaviour
BRPI0409600A (en) 2003-04-29 2006-04-18 Lilly Co Eli insulin analog, composition, method of treating hyperglycemia, and proinsulin analogue
US7623530B2 (en) 2003-11-20 2009-11-24 Nokia Corporation Indication of service flow termination by network control to policy decision function
JP2007519642A (en) 2004-01-30 2007-07-19 ワラタ ファーマシューティカルズ, インコーポレイテッド Combined use of a GLP-1 agonist and gastrin to regulate blood glucose levels
US8076288B2 (en) 2004-02-11 2011-12-13 Amylin Pharmaceuticals, Inc. Hybrid polypeptides having glucose lowering activity
JP5175103B2 (en) 2004-11-12 2013-04-03 ノヴォ ノルディスク アー/エス Stable peptide formulation
TWI362392B (en) 2005-03-18 2012-04-21 Novo Nordisk As Acylated glp-1 compounds
WO2006121860A2 (en) 2005-05-06 2006-11-16 Bayer Pharmaceuticals Corporation Glucagon-like peptide 1 (glp-1) receptor agonists and their pharmacological methods of use
WO2006134340A2 (en) 2005-06-13 2006-12-21 Imperial Innovations Limited Oxyntomodulin analogues and their effects on feeding behaviour
US20090202497A1 (en) 2005-08-23 2009-08-13 The General Hospital Corporation Use of glp-1, glp-1 derivatives or glp-1 fragments for skin regeneration, stimulation of hair growth, or treatment of diabetes
WO2007056362A2 (en) 2005-11-07 2007-05-18 Indiana University Research And Technology Corporation Glucagon analogs exhibiting physiological solubility and stability
WO2007081824A2 (en) 2006-01-06 2007-07-19 Case Western Reserve University Fibrillation resistant proteins
WO2007095737A1 (en) 2006-02-21 2007-08-30 Waratah Pharmaceuticals Inc. Combination therapy for the treatment of diabetes comprising an exendin agonist and a gastrin compound
US7928058B2 (en) 2006-02-22 2011-04-19 Merck Sharp & Dohme Corp. Pharmaceutical composition comprising oxyntomodulin derivatives and a method for reducing body weight using the composition
CN101622276B (en) 2006-07-18 2015-04-22 赛诺菲-安万特 Antagonist antibody against EphA2 for the treatment of cancer
ITMI20061607A1 (en) 2006-08-09 2008-02-10 Maria Vincenza Carriero PEPTIDES WITH PHARMACOLOGICAL ACTIVITY
WO2008043033A2 (en) 2006-10-04 2008-04-10 Case Western Reserve University Fibrillation-resistant insulin and insulin analogues
EA023886B1 (en) 2006-11-08 2016-07-29 Зеаланд Фарма А/С Selective glucagon-like-peptide-2 (glp-2) analogues
WO2008071010A1 (en) 2006-12-12 2008-06-19 Waratah Pharmaceuticals Inc. Combination treatments with selected growth/hormone regulatory factors for diabetes and related diseases
TWI428346B (en) 2006-12-13 2014-03-01 Imp Innovations Ltd Novel compounds and their effects on feeding behaviour
MX2009006564A (en) 2007-01-05 2009-06-26 Univ Indiana Res & Tech Corp Glucagon analogs exhibiting enhanced solubility in physiological ph buffers.
KR20090119876A (en) 2007-02-15 2009-11-20 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 Glucagon/glp-1 receptor co-agonists
EP2025684A1 (en) 2007-08-15 2009-02-18 Zealand Pharma A/S Glucagon analogues
FR2917552B1 (en) 2007-06-15 2009-08-28 Sagem Defense Securite METHOD FOR REGULATING THE TRANSMISSION GEIGE WITHIN A RECEPTION TERMINAL
ATE520714T1 (en) 2007-06-15 2011-09-15 Zealand Pharma As GLUCAGON ANALOGUE
EP2930182A1 (en) 2007-11-20 2015-10-14 Ambrx, Inc. Modified insulin polypeptides and their uses
GB2455553B (en) 2007-12-14 2012-10-24 Nuaire Ltd Motor mounting assembly for an axial fan
RU2524423C2 (en) 2008-01-09 2014-07-27 Санофи-Авентис Дойчланд Гмбх Novel insulin derivatives with extremely delayed time/action profile
NZ586589A (en) 2008-01-09 2012-04-27 Sanofi Aventis Deutschland Novel insulin analogues having an extremely delayed time-action profile
DE102008003566A1 (en) 2008-01-09 2009-07-16 Sanofi-Aventis Deutschland Gmbh New insulin analogs useful for treating diabetes
DE102008003568A1 (en) 2008-01-09 2009-07-16 Sanofi-Aventis Deutschland Gmbh New insulin analogs useful for treating diabetes
US8993516B2 (en) 2008-04-14 2015-03-31 Case Western Reserve University Meal-time insulin analogues of enhanced stability
WO2009132129A2 (en) 2008-04-22 2009-10-29 Case Western Reserve University Isoform-specific insulin analogues
TWI451876B (en) 2008-06-13 2014-09-11 Lilly Co Eli Pegylated insulin lispro compounds
PA8830501A1 (en) 2008-06-17 2010-07-27 Univ Indiana Res & Tech Corp GLUCAGON / GLP-1 RECEIVER CO-AGONISTS
WO2009155257A1 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability physiological ph buffers
SG192405A1 (en) 2008-06-17 2013-08-30 Univ Indiana Res & Tech Corp Gip-based mixed agonists for treatment of metabolic disorders and obesity
PL219335B1 (en) 2008-07-04 2015-04-30 Inst Biotechnologii I Antybiotyków New slow-release insulin analogues
AU2009276346B2 (en) 2008-07-31 2014-07-03 Case Western Reserve University Halogen-stabilized insulin
US9074014B2 (en) 2008-08-07 2015-07-07 Ipsen Pharma S.A.S. Analogues of glucose-dependent insulinotropic polypeptide
EP2340049B1 (en) 2008-09-12 2015-11-11 Novo Nordisk A/S Method of acylating a peptide or protein
CA2747155A1 (en) * 2008-12-15 2010-06-24 Zealand Pharma A/S Glucagon analogues
PL2370460T3 (en) 2008-12-15 2014-09-30 Zealand Pharma As Glucagon analogues
CN102292348B (en) 2008-12-15 2015-07-08 西兰制药公司 Glucagon analogues
KR20110126589A (en) 2008-12-15 2011-11-23 질랜드 파마 에이/에스 Glucagon analogues
US8481485B2 (en) 2008-12-19 2013-07-09 Indiana University Research And Technology Corporation Insulin analogs
AU2009335715B2 (en) 2008-12-19 2016-09-15 Indiana University Research And Technology Corporation Amide-based insulin prodrugs
WO2010096052A1 (en) 2009-02-19 2010-08-26 Merck Sharp & Dohme Corp. Oxyntomodulin analogs
WO2010107487A2 (en) 2009-03-18 2010-09-23 Wu Nian Lipid-drug conjugates for drug delivery
CN101519446A (en) 2009-03-31 2009-09-02 上海一就生物医药有限公司 Method for preparing recombinant human insulin and analogs of recombinant human insulin
PE20120902A1 (en) 2009-05-08 2012-08-08 Genentech Inc HUMANIZED ANTI-EGFL7 ANTIBODIES
SG176858A1 (en) 2009-06-16 2012-02-28 Univ Indiana Res & Tech Corp Gip receptor-active glucagon compounds
AP3329A (en) 2009-07-13 2015-06-30 Zealand Pharma As Acylated glucagon analogues
CA2784757A1 (en) 2009-12-16 2011-07-07 Novo Nordisk A/S Double-acylated glp-1 derivatives
US20110312881A1 (en) 2009-12-21 2011-12-22 Amunix, Inc. Bifunctional polypeptide compositions and methods for treatment of metabolic and cardiovascular diseases
CN102892425A (en) 2010-01-20 2013-01-23 西兰制药公司 Treatment of cardiac conditions
EP2528618A4 (en) 2010-01-27 2015-05-27 Univ Indiana Res & Tech Corp Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
JP2013523620A (en) 2010-03-26 2013-06-17 ノヴォ ノルディスク アー/エス New glucagon analog
RU2559320C2 (en) 2010-03-26 2015-08-10 Ново Нордиск А/С Novel glucagon analogues
AR080592A1 (en) 2010-03-26 2012-04-18 Lilly Co Eli PEPTIDE WITH ACTIVITY FOR GIP-R AND GLP-1-R, FAMILY FORMULATION THAT UNDERSTANDS IT, ITS USE TO PREPARE A USEFUL MEDICINAL PRODUCT FOR THE TREATMENT OF MELLITUS DIABETES AND TO INDICATE WEIGHT LOSS
CN103003300B (en) 2010-04-27 2017-06-09 西兰制药公司 Peptide conjugate of the receptor stimulating agents of GLP 1 and gastrin and application thereof
WO2011134284A1 (en) 2010-04-27 2011-11-03 浙江贝达药业有限公司 Glucagon-like peptide-1 analogue and use thereof
UY33462A (en) 2010-06-23 2012-01-31 Zealand Pharma As GLUCAGON ANALOGS
AP2013006671A0 (en) 2010-06-24 2013-01-31 Zealand Pharma As Glucagon analogues
WO2012062803A1 (en) 2010-11-09 2012-05-18 Novo Nordisk A/S Double-acylated glp-1 derivatives
AU2012208349A1 (en) 2011-01-20 2013-07-18 Zealand Pharma A/S Combination of acylated glucagon analogues with insulin analogues
CA2830974A1 (en) 2011-03-28 2012-10-04 Jesper F. Lau Novel glucagon analogues
ES2612278T3 (en) 2011-04-12 2017-05-16 Novo Nordisk A/S GLP-1 double-acylated derivatives
WO2012150503A2 (en) 2011-05-03 2012-11-08 Zealand Pharma A/S Glu-glp-1 dual agonist signaling-selective compounds
EP2707713A2 (en) 2011-05-10 2014-03-19 Zealand Pharma A/S Glu-glp-1 dual agonist signaling-selective compounds
JP5914641B2 (en) 2011-06-10 2016-05-11 ベイジン・ハンミ・ファーマシューティカル・カンパニー・リミテッドBeijing Hanmi Pharmaceutical Co., Ltd. Glucose-dependent insulinotropic polypeptide analogs, pharmaceutical compositions and uses thereof
KR20140070612A (en) 2011-09-23 2014-06-10 노보 노르디스크 에이/에스 Novel glucagon analogues
AP2014007797A0 (en) 2011-12-23 2014-07-31 Boehringer Ingelheim Int Glucagon analogues
TR201802689T4 (en) 2012-05-03 2018-03-21 Zealand Pharma As Glucagon-like peptide-2 (glp-2) analogs.
AR090937A1 (en) 2012-05-03 2014-12-17 Zealand Pharma As GIP-GLP-1 DUAL AGONIST COMPOUNDS AND METHODS FOR USE
CN109456400A (en) 2012-07-23 2019-03-12 西兰制药公司 Glucagon analogue
TWI608013B (en) * 2012-09-17 2017-12-11 西蘭製藥公司 Glucagon analogues
US9988429B2 (en) 2013-10-17 2018-06-05 Zealand Pharma A/S Glucagon analogues
PT3057984T (en) 2013-10-17 2018-10-24 Boehringer Ingelheim Int Acylated glucagon analogues
CN105849122B (en) 2013-11-06 2021-04-30 西兰制药公司 GIP-GLP-1 dual agonist compounds and methods
WO2015124612A1 (en) 2014-02-18 2015-08-27 Novo Nordisk A/S Stable glucagon analogues and use for treatment of hypoglycaemia
US10336802B2 (en) 2015-04-16 2019-07-02 Zealand Pharma A/S Acylated glucagon analogue

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10004786B2 (en) 2009-07-13 2018-06-26 Zealand Pharma A/S Acylated glucagon analogues
US9649362B2 (en) 2010-04-27 2017-05-16 Zealand Pharma A/S Peptide conjugates of GLP-1 receptor agonists and gastrin and their use
US10406207B2 (en) 2010-04-27 2019-09-10 Zealand Pharma A/S Peptide conjugates of GLP-1 receptor agonists and gastrin and their use
US9403894B2 (en) 2010-06-23 2016-08-02 Zealand Pharma A/S Glucagon analogues
US9169310B2 (en) 2010-06-24 2015-10-27 Zealand Pharma A/S Glucagon analogues
US9861706B2 (en) 2011-11-03 2018-01-09 Zealand Pharma A/S GLP-1 receptor agonist peptide gastrin conjugates
US9259477B2 (en) 2011-11-03 2016-02-16 Zealand Pharma A/S GLP-1 receptor agonist peptide gastrin conjugates
US10100097B2 (en) 2012-05-03 2018-10-16 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
US11795204B2 (en) 2012-07-23 2023-10-24 Zealand Pharma A/S Glucagon analogues
US10442847B2 (en) 2012-07-23 2019-10-15 Zealand Pharma A/S Glucagon analogues
US9975939B2 (en) 2012-09-17 2018-05-22 Zealand Pharma A/S Glucagon analogues
US9180169B2 (en) 2012-09-17 2015-11-10 Zealand Pharma A/S Glucagon analogues
US10253081B2 (en) 2012-09-17 2019-04-09 Zealand Pharma A/S Glucagon analogues
US9988429B2 (en) 2013-10-17 2018-06-05 Zealand Pharma A/S Glucagon analogues
US11091528B2 (en) 2013-10-17 2021-08-17 Zealand Pharma A/S Acylated glucagon analogues
US11034747B2 (en) 2013-10-17 2021-06-15 Zealand Pharma A/S Glucagon analogues and methods of use
US11884713B2 (en) 2013-10-17 2024-01-30 Zealand Pharma A/S Acylated glucagon analogues
US10457714B2 (en) 2013-10-17 2019-10-29 Zealand Pharma A/S Acylated glucagon analogues
US11111285B2 (en) 2013-11-06 2021-09-07 Zealand Pharma A/S Glucagon-GLP-1-GIP triple agonist compounds
US10093713B2 (en) 2013-11-06 2018-10-09 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
US10131702B2 (en) 2013-11-06 2018-11-20 Zealand Pharma A/S Glucagon-GLP-1-GIP triple agonist compounds
US11008375B2 (en) 2013-11-06 2021-05-18 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
US11001619B2 (en) 2014-10-29 2021-05-11 Zealand Pharma A/S GIP agonist compounds and methods
US11814417B2 (en) 2014-10-29 2023-11-14 Zealand Pharma A/S GIP agonist compounds and methods
US10253078B2 (en) 2014-10-29 2019-04-09 Zealand Pharma A/S GIP agonist compounds and methods
US11274136B2 (en) 2015-04-16 2022-03-15 Zealand Pharma A/S Acylated glucagon analogue
US10336802B2 (en) 2015-04-16 2019-07-02 Zealand Pharma A/S Acylated glucagon analogue
US9884093B2 (en) 2015-10-26 2018-02-06 Eli Lilly And Company Glucagon receptor agonists
US9764004B2 (en) 2015-10-26 2017-09-19 Eli Lilly And Company Glucagon receptor agonists
US10905745B2 (en) 2016-12-09 2021-02-02 Zealand Pharma A/S Acylated GLP-1/GLP-2 dual agonists
US11395847B2 (en) 2016-12-09 2022-07-26 Zealand Pharma A/S Acylated GLP-1/GLP-2 dual agonists
US20200138966A1 (en) * 2017-01-27 2020-05-07 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Bifunctional small peptide for autoimmune diabetes
WO2018140857A3 (en) * 2017-01-27 2018-09-20 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Bifunctional small peptide for autoimmune diabetes
US11485766B2 (en) * 2018-04-05 2022-11-01 Sun Pharmaceutical Industries Limited GLP-1 analogues
US11866477B2 (en) 2018-04-05 2024-01-09 Sun Pharmaceutical Industries Limited GLP-1 analogues
US11873328B2 (en) 2018-04-05 2024-01-16 Sun Pharmaceutical Industries Limited GLP-1 analogues
US11744873B2 (en) 2021-01-20 2023-09-05 Viking Therapeutics, Inc. Compositions and methods for the treatment of metabolic and liver disorders

Also Published As

Publication number Publication date
CA2926314A1 (en) 2015-04-23
RS57632B1 (en) 2018-11-30
ES2688708T3 (en) 2018-11-06
US20220073583A1 (en) 2022-03-10
AU2014336098A1 (en) 2016-04-21
PH12016500675A1 (en) 2016-05-30
UA122767C2 (en) 2021-01-06
PH12016500675B1 (en) 2016-05-30
TW201605887A (en) 2016-02-16
SA516370967B1 (en) 2018-12-24
AR098065A1 (en) 2016-04-27
JP2016538831A (en) 2016-12-15
MY176022A (en) 2020-07-21
NZ718490A (en) 2020-10-30
AP2016009212A0 (en) 2016-05-31
KR102569036B1 (en) 2023-08-23
KR20160068961A (en) 2016-06-15
IL244795B (en) 2020-01-30
JP6538665B2 (en) 2019-07-03
MX2016004461A (en) 2017-03-03
WO2015055801A1 (en) 2015-04-23
BR112016008115A2 (en) 2017-08-01
CN105745222A (en) 2016-07-06
MX368436B (en) 2019-10-03
LT3057984T (en) 2018-12-27
TWI666220B (en) 2019-07-21
CL2016000873A1 (en) 2016-11-04
US20180141990A1 (en) 2018-05-24
IL244795A0 (en) 2016-04-21
US10457714B2 (en) 2019-10-29
US11091528B2 (en) 2021-08-17
CY1121462T1 (en) 2020-05-29
KR20220040496A (en) 2022-03-30
HRP20181505T1 (en) 2018-11-02
EP3057984A1 (en) 2016-08-24
PE20160683A1 (en) 2016-07-21
EA201690494A1 (en) 2016-09-30
DK3057984T3 (en) 2018-10-08
HK1221965A1 (en) 2017-06-16
SG11201602965WA (en) 2016-05-30
US20200157168A1 (en) 2020-05-21
US9896495B2 (en) 2018-02-20
HUE039616T2 (en) 2019-01-28
AU2014336098B2 (en) 2018-05-10
SI3057984T1 (en) 2018-10-30
BR112016008115B1 (en) 2024-03-12
KR102394515B1 (en) 2022-05-09
US11884713B2 (en) 2024-01-30
PT3057984T (en) 2018-10-24
EP3057984B1 (en) 2018-07-11
CA2926314C (en) 2023-08-29
EA034322B1 (en) 2020-01-28
PL3057984T3 (en) 2018-12-31

Similar Documents

Publication Publication Date Title
US11884713B2 (en) Acylated glucagon analogues
US11034747B2 (en) Glucagon analogues and methods of use
US10253081B2 (en) Glucagon analogues
US20160347813A1 (en) Glucagon analogues
US20240141010A1 (en) Acylated glucagon analogues
NZ718490B2 (en) Acylated glucagon analogues

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZEALAND PHARMA A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RIBER, DITTE;TOLBORG, JAKOB LIND;SIGNING DATES FROM 20140313 TO 20140321;REEL/FRAME:036228/0320

Owner name: BI RESEARCH ITALIA S.A.S. DI BI IT S.R.L, ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMPRECHT, DIETER WOLFGANG;REEL/FRAME:036228/0901

Effective date: 20140410

Owner name: BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG., GERMAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RIST, WOLFGANG;REEL/FRAME:036228/0593

Effective date: 20140411

Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BI RESEARCH ITALIA S.A.S. DI BI IT S.R.L;REEL/FRAME:036229/0628

Effective date: 20140516

Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG.;REEL/FRAME:036228/0710

Effective date: 20140414

Owner name: ZEALAND PHARMA A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOEHRINGER INGELHEIM INTERNATIONAL GMBH;REEL/FRAME:036229/0821

Effective date: 20150423

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: ZEALAND PHARMA A/S, DENMARK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ZOOLANDER SA LLC;REEL/FRAME:063624/0547

Effective date: 20230509