US20150044020A1 - Method for avoiding pump surges in a compressor - Google Patents

Method for avoiding pump surges in a compressor Download PDF

Info

Publication number
US20150044020A1
US20150044020A1 US14/376,426 US201214376426A US2015044020A1 US 20150044020 A1 US20150044020 A1 US 20150044020A1 US 201214376426 A US201214376426 A US 201214376426A US 2015044020 A1 US2015044020 A1 US 2015044020A1
Authority
US
United States
Prior art keywords
compressor
sensors
parameters
fluid
rotational noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/376,426
Other languages
English (en)
Inventor
Claus Grewe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREWE, CLAUS
Publication of US20150044020A1 publication Critical patent/US20150044020A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Definitions

  • the invention relates to a method for avoiding pump surges in a compressor, in which a plurality of parameters of the compressor are monitored during the operation and a desired value range for the plurality of parameters is predetermined, wherein a reaction that counteracts the pump surge is triggered if a number of parameters from the desired value range are exceeded or fallen below. It further relates to a compressor and a fluid-flow machine having a compressor and a control device which, on the data input side, is connected to a plurality of sensors which are designed to detect parameters during the operation.
  • Compressors in particular gas turbines, tend to pump under specific operating conditions. If the back pressure in the direction of flow becomes too high, then the compressor can no longer deliver air and the flow direction reverses locally or even completely. During the local reverse flow, some of the air is caught in the compressor and rotates with the vanes. One speaks of a rotating separation of the flow (rotating stall). On the other hand, in the case of what is known as compressor pumping (deep surge), the medium flows back completely and a violent surge counter to the thrust direction occurs.
  • the compressor characteristic map in which typically the pressure ratio between entry and final pressure is illustrated as plotted against the delivery volume, is divided by the pump limit into a stable and an unstable range. Pumping occurs when the operating points of the compressor get into the unstable range as a result of a reduction in the delivery volume (throughput) or as a result of a rise in the final pressure (delivery level).
  • a pump limit margin which, during operation under design conditions, is sufficiently far removed from the pump limit is defined.
  • the pump limit Under real conditions, such as with a decreasing mains frequency, high ambient temperatures and/or atmospheric humidities, low heat values of the fuels, but also as a result of ageing of, soiling of or damage to the compressor, it is possible for the pump limit to reach or even fall below the operating characteristic curve. This then leads to the immediate pumping of the compressor.
  • one or more sensors equipped as differential pressure switches are frequently installed and, as soon as the flow through the compressor is interrupted during pumping, fall below a specific limiting value and cause the immediate shutdown of the gas turbine by closing the fuel valves.
  • the pump protection pressure switches do not detect any approach to the pump limit but prevent only the repeated pumping of the compressor and, possibly, the mechanical damage to the compressor as a result of the immediate interruption to the fuel supply.
  • a compressor pressure ratio limiting controller is therefore frequently also employed.
  • a controller of this type considers parameters of the compressor (pressure ratio, mains frequency, pre-rotation vane position and ambient conditions such as temperature and atmospheric humidity) and compares these with permissible values from a compressor-specific pump limit characteristic map. If the current operating point approaches the pump limit, that is to say when a predefined desired value range is exceeded or fallen below, a reaction counteracting the pump surge is triggered.
  • the invention is therefore based on an object of specifying a method for avoiding pump surges in a compressor, a compressor and a fluid-flow machine which, even at a comparatively high operational performance, reliably prevent pumping of the compressor.
  • this object is achieved, according to aspects of the invention, by the plurality of parameters comprising a parameter assigned to the rotational noise of the compressor.
  • aspects of the invention are based on the consideration that, for reliable avoidance of pump surges, even at a relatively high operational performance of the fluid-flow machine, there should be no recourse exclusively to previously defined characteristic maps and controllable operating variables but instead current measured variables suitable for the preventative detection of an imminent pump surge should be used.
  • Predictive detection would be possible if, by means of appropriate measurements, an approach to the pump limit in the form of the rotating stall, i.e. the rotating flow separation, could already be detected.
  • a flow separation of this type generates vibrations in the compressor stages, which lead to increased pressure pulsations and further vibrations.
  • the measured parameter assigned to the rotational noise of the compressor is advantageously a vibration amplitude and/or frequency of a component of the fluid-flow machine. This is because the pressure pulsations are also transmitted to the components of the fluid-flow machine.
  • the rotational noise can be determined via the mechanical vibrations of appropriate components of the gas turbine.
  • the sensors and transmitters suitable for the purpose are insensitive to the aforementioned operating conditions and are therefore longer-lasting.
  • the component provided with the appropriate sensors is the shaft and/or the housing of the turbine and/or of the compressor.
  • the rotational noise can be determined particularly well, in particular with regard to an imminent approach to the pump limit.
  • the parameters used further comprise the shaft rotational speed, the compressor final pressure and/or the pre-rotation vane position.
  • the predictive detection of the pumping can be improved further, since the rotational noise can be determined particularly well with the aid of these additional parameters, for example by using specific evaluation algorithms in a computer specifically provided for the measurement.
  • the reaction counteracting the pump search comprises a reduction in the desired value of the turbine outlet temperature and/or a reduction in the fuel mass flow.
  • the consequence of reducing the desired value of the turbine outlet temperature is that the adjustable pre-rotation vanes of the compressor are opened.
  • the margin from the pump limit increases.
  • the compressor pressure and therefore the compressor pressure ratio is reduced as quickly as possible.
  • air can be removed, for example via the anti-icing valve of the compressor at the compressor end. In an improving manner, the air removal via the anti-icing valve can then be introduced at the compressor inlet again. As a result, the compressor pressure ratio is likewise reduced.
  • a fluid-flow machine having a compressor and a control device is designed to carry out the method described.
  • the object is achieved in that one of the sensors is designed to detect a parameter assigned to the rotational noise of the compressor.
  • the respective sensor is advantageously a vibration sensor.
  • This is advantageously configured as a vibrometer.
  • vibrometers which measure accelerations on a piezoelectric basis, such as, for example, the piezoelectric accelerometer CA 901 from the Meggitt company. This is particularly long-lasting and robust with respect to high temperatures, soiling and during compressor washing.
  • the respective sensor is assigned to the shaft and/or the housing of the turbine and/or of the compressor.
  • appropriate sensors are advantageously fitted at multiple points on the circumference of the compressor, ideally in holes for radial measurement equipment on the outside, i.e. not in the flow path.
  • a power plant advantageously comprises a fluid-flow machine as described.
  • the advantages achieved by the invention comprise in particular in the fact that, as a result of the specific measurement of the rotational noise of the compressor of a fluid-flow machine, an approach to the pump limit or a rotating stall can be detected before actual pumping occurs.
  • This can be achieved particularly simply by means of appropriate vibration transmitters which measure pressure changes of rotating compressor rotor blades of a stage.
  • the rotational noise of the compressor can be determined in a control device such as, for example, a computer with specific evaluation algorithms.
  • FIGURE shows, schematically, a section through the upper half of a compressor of a gas turbine.
  • the fluid-flow machine 1 illustrated as an extract in the figure is configured as a gas turbine. Of the gas turbine, only the compressor 2 is shown.
  • the compressor 2 comprises guide vanes 6 fixed to a housing 4 and therefore stationary, which are located in a flow duct 8 between compressor inlet 10 and compressor outlet 12 .
  • the first guide vane 6 in the flow direction of the air is configured as an adjustable pre-rotation vane 14 . As a result, the supply of air into the flow duct 8 can be regulated and throttled.
  • rotor blades 18 are respectively arranged on a shaft 16 .
  • the rotor blades 18 and the guide vanes 6 , 14 are respectively arranged in the manner of stars in rings in the flow duct 8 .
  • a ring of guide vanes 6 , 14 together with the ring of rotor blades 18 following in the flow direction, respectively forms a stage of the compressor 2 .
  • vibration sensors 20 configured as piezoelectric acceleration sensors are arranged in holes for radial measurement equipment, respectively arranged at 90°, which detect mechanical vibrations and therefore permit an image of the rotational noise of the compressor 2 .
  • the rotational noise is determined by means of an evaluation algorithm 22 , which is implemented as software on a control device, for example a computer, not specifically illustrated.
  • Input into the evaluation algorithm besides the vibration data from the vibration sensors 20 , is the data from further corresponding transmitters and sensors. These include the shaft rotational speed, the compressor pressure ratio between compressor inlet 10 and compressor outlet 12 , the pre-rotation vane position, the shaft vibration and the housing vibration on compressor and turbine.
  • the computer sends signals (binary or analog) in order to carry out appropriate reactions which prevent pumping.
  • Reactions comprise the opening of the anti-icing valve 24 , the lowering of the turbine outlet temperature 26 and the reduction in the quantity of fuel 28 . Further measures can also be provided. The reactions can be triggered in accordance with need, depending on the results determined by the evaluation algorithm 22 . For instance, it is possible for only individual reactions from those mentioned above to be carried out or else a plurality thereof. Furthermore, messages can be given to operating personnel 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Turbines (AREA)
US14/376,426 2012-02-09 2012-12-12 Method for avoiding pump surges in a compressor Abandoned US20150044020A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12154644.4 2012-02-09
EP12154644.4A EP2626569A1 (de) 2012-02-09 2012-02-09 Verfahren zur Vermeidung von Pumpstößen in einem Verdichter
PCT/EP2012/075248 WO2013117271A1 (de) 2012-02-09 2012-12-12 VERFAHREN ZUR VERMEIDUNG VON PUMPSTÖßEN IN EINEM VERDICHTER

Publications (1)

Publication Number Publication Date
US20150044020A1 true US20150044020A1 (en) 2015-02-12

Family

ID=47435935

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/376,426 Abandoned US20150044020A1 (en) 2012-02-09 2012-12-12 Method for avoiding pump surges in a compressor

Country Status (5)

Country Link
US (1) US20150044020A1 (ja)
EP (2) EP2626569A1 (ja)
JP (1) JP6005181B2 (ja)
CN (1) CN104114874B (ja)
WO (1) WO2013117271A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754020A (zh) * 2022-04-18 2022-07-15 合肥通用机械研究院有限公司 基于进气噪声特性的压缩机喘振监控系统和监控方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045676A1 (de) * 2015-01-13 2016-07-20 Siemens Aktiengesellschaft Verfahren zur Vermeidung eines rotierenden Strömungsabrisses
CN109458324A (zh) * 2018-10-31 2019-03-12 重庆美的通用制冷设备有限公司 压缩机喘振识别方法、装置及系统
CN111120360A (zh) * 2019-12-22 2020-05-08 云南瑞斯德机械有限公司 一种减少离心式压缩机喘振现象且自动调节流量的结构及方法
TWI773107B (zh) * 2021-01-29 2022-08-01 復盛股份有限公司 喘振偵測方法及壓縮裝置
CN113945029B (zh) * 2021-10-19 2023-04-25 青岛海尔空调电子有限公司 用于控制冷媒循环系统的方法、装置及冷媒循环系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594665A (en) * 1992-08-10 1997-01-14 Dow Deutschland Inc. Process and device for monitoring and for controlling of a compressor
US6092029A (en) * 1998-02-19 2000-07-18 Bently Nevada Corporation Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
US20040068387A1 (en) * 2002-10-04 2004-04-08 Pierino Bonanni Method and system for detecting precursors to compressor stall and surge
US7282873B2 (en) * 2004-11-16 2007-10-16 Lenovo (Singapore) Pte. Ltd. Mutual active cancellation of fan noise and vibration
US7905702B2 (en) * 2007-03-23 2011-03-15 Johnson Controls Technology Company Method for detecting rotating stall in a compressor
US20110247418A1 (en) * 2010-04-08 2011-10-13 General Electric Company System and method for monitoring a compressor
US8074499B2 (en) * 2009-12-22 2011-12-13 General Electric Company Method and system for detecting a crack on a turbomachine blade
US8091862B2 (en) * 2006-09-29 2012-01-10 Sikorsky Aircraft Corporation Butterfly valves having sleeve inserts

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822443A (en) * 1955-03-24 1959-10-28 United Aircraft Corp Fuel control systems for gas turbine engines
US4399548A (en) * 1981-04-13 1983-08-16 Castleberry Kimberly N Compressor surge counter
JP4705732B2 (ja) * 2000-05-25 2011-06-22 本田技研工業株式会社 航空機用ガスタービン・エンジンのサージ検出装置
DE10152026A1 (de) * 2001-10-23 2004-02-19 Mtu Aero Engines Gmbh Warnung vor Pumpgrenze oder Schaufelschaden bei einer Turbomaschine
US20060283190A1 (en) * 2005-06-16 2006-12-21 Pratt & Whitney Canada Corp. Engine status detection with external microphone
NO324581B1 (no) * 2006-01-26 2007-11-26 Dynatrend As Fremgangsmate og anordning for a kunne bestemme nar det forekommer roterende stall i en kompressors turbinblad II
US20090044542A1 (en) * 2007-08-17 2009-02-19 General Electric Company Apparatus and method for monitoring compressor clearance and controlling a gas turbine
US8342793B2 (en) * 2007-08-22 2013-01-01 Cleveland Electric Laboratories Active surge control
CN201575861U (zh) * 2009-02-18 2010-09-08 长沙全程数字机电科技有限公司 一体化振动监测仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594665A (en) * 1992-08-10 1997-01-14 Dow Deutschland Inc. Process and device for monitoring and for controlling of a compressor
US6092029A (en) * 1998-02-19 2000-07-18 Bently Nevada Corporation Method and apparatus for diagnosing and controlling rotating stall and surge in rotating machinery
US20040068387A1 (en) * 2002-10-04 2004-04-08 Pierino Bonanni Method and system for detecting precursors to compressor stall and surge
US7282873B2 (en) * 2004-11-16 2007-10-16 Lenovo (Singapore) Pte. Ltd. Mutual active cancellation of fan noise and vibration
US8091862B2 (en) * 2006-09-29 2012-01-10 Sikorsky Aircraft Corporation Butterfly valves having sleeve inserts
US7905702B2 (en) * 2007-03-23 2011-03-15 Johnson Controls Technology Company Method for detecting rotating stall in a compressor
US8074499B2 (en) * 2009-12-22 2011-12-13 General Electric Company Method and system for detecting a crack on a turbomachine blade
US20110247418A1 (en) * 2010-04-08 2011-10-13 General Electric Company System and method for monitoring a compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754020A (zh) * 2022-04-18 2022-07-15 合肥通用机械研究院有限公司 基于进气噪声特性的压缩机喘振监控系统和监控方法

Also Published As

Publication number Publication date
EP2805058B1 (de) 2016-06-29
CN104114874B (zh) 2016-08-31
WO2013117271A1 (de) 2013-08-15
JP2015511288A (ja) 2015-04-16
EP2805058A1 (de) 2014-11-26
EP2626569A1 (de) 2013-08-14
JP6005181B2 (ja) 2016-10-12
CN104114874A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
US20150044020A1 (en) Method for avoiding pump surges in a compressor
JPH08503757A (ja) 圧縮機を監視し制御するための方法及び装置
US8770913B1 (en) Apparatus and process for rotor creep monitoring
US6438484B1 (en) Method and apparatus for detecting and compensating for compressor surge in a gas turbine using remote monitoring and diagnostics
JP5903223B2 (ja) ブレード監視システム
US9624936B2 (en) Turbocompressor antisurge control by vibration monitoring
JP5898865B2 (ja) エアフォイルの健全性を監視するシステム及び方法
JP5879055B2 (ja) エアフォイルの健全性を監視するシステム及び方法
JPH08503042A (ja) 軸流圧縮機の励振を監視するための方法および装置
JP6334130B2 (ja) ブレードの健康状態を監視するための方法およびシステム
JP2010144727A (ja) ロータブレード健全性を監視するためのシステム及び方法
JP2008544131A (ja) 外部のマイクロホンによるエンジン状態の検知
JP2010025106A (ja) 失速およびサージ検出のシステムおよび方法
KR20150047497A (ko) 가스터빈의 작동을 모니터링하기 위한 방법
US10071820B2 (en) Inclement weather detection for aircraft engines
CN110382878B (zh) 确定用于预测压缩机中不稳定性的指标的方法和装置及其用途
JP5977503B2 (ja) サージ前兆保護システムおよび方法
KR20210033518A (ko) 가스 터빈 연소 섹션의 음향 플래시백 검출
US11913476B2 (en) Compressor system
US9835162B2 (en) Device and method for reliably operating a compressor at the surge limit
JP6071449B2 (ja) 軸流式回転機械の状態監視システム、及び軸流式回転機械
JP5881390B2 (ja) 回転機械
KR100543671B1 (ko) 공간 푸리에 계수를 이용한 압축기 선회 실속 경고 장치 및 방법
KR100543674B1 (ko) 회전하는 파의 에너지를 이용한 압축기 선회 실속 경고 장치 및 방법
PL239694B1 (pl) Sposób monitorowania niestatecznych struktur przepływowych w układzie sprężającym

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREWE, CLAUS;REEL/FRAME:033451/0125

Effective date: 20140707

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION