US20150041101A1 - Outdoor unit of refrigeration apparatus - Google Patents
Outdoor unit of refrigeration apparatus Download PDFInfo
- Publication number
- US20150041101A1 US20150041101A1 US14/369,161 US201214369161A US2015041101A1 US 20150041101 A1 US20150041101 A1 US 20150041101A1 US 201214369161 A US201214369161 A US 201214369161A US 2015041101 A1 US2015041101 A1 US 2015041101A1
- Authority
- US
- United States
- Prior art keywords
- bracket
- aluminum
- outdoor unit
- heat exchanger
- refrigeration apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/16—Arrangement or mounting thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
- F28F1/128—Fins with openings, e.g. louvered fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
- F28F9/002—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0243—Header boxes having a circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/12—Fins with U-shaped slots for laterally inserting conduits
Definitions
- the present invention relates to an outdoor unit of a refrigeration apparatus and particularly an outdoor unit of a refrigeration apparatus equipped with a heat exchanger made of aluminum or aluminum alloy.
- heat exchangers lighter in weight
- aluminum and aluminum alloys have sometimes been used not just for the fins of the heat exchanger but also for the heat transfer tubes and the header collection tubes of the heat exchanger.
- the heat exchanger made of aluminum or aluminum alloy is housed in a casing of an outdoor unit, for example, and because of advantages such as processing ease and cost it is common for a non-aluminum metal different from aluminum or aluminum alloy, such as sheet steel for example, to be used for the casing.
- the section where the bracket made of aluminum or aluminum alloy and the non-aluminum metal contact one another causes corrosion of the bracket made of aluminum or aluminum alloy. Corrosion of the bracket made of aluminum or aluminum alloy triggers problems such as a poor outer appearance and looseness of the attachment of the heat exchanger.
- An outdoor unit of a refrigeration apparatus pertaining to a first aspect of the present invention is an outdoor unit of a refrigeration apparatus comprising a heat exchanger made of aluminum or aluminum alloy, a bracket made of aluminum or aluminum alloy that has a securing portion that is attached directly to the heat exchanger and a fixing portion that has a through hole for fixing the bracket to a structural part made of a non-aluminum metal, and a non-metal component that is interposed between the fixing portion of the bracket and the structural part that are fixed to one another and is for placing both in a non-contact state
- the outdoor unit of the refrigeration apparatus further comprising: an anchoring part made of a non-aluminum metal that has an outer shape that is smaller than the through hole in the fixing portion; and an anchored structure that cooperates with the anchoring part to fasten the fixing portion of the bracket to the structural part via the non-metal component, wherein the non-metal component maintains, in a state in which the anchoring part is passing through the through hole in the fixing portion, a
- the non-metal component here includes a member comprising a polymer material, such as a resin member or a rubber member, and a member comprising a non-metal inorganic material, such as a ceramic member.
- the non-metal component in a state in which the bracket made of aluminum or aluminum alloy is fixed to, and without contacting, the structural part made of a non-aluminum metal via the non-metal component, can maintain the anchoring part, whose outer shape is smaller than the outer shape of the through hole, in a non-contact state relative to the bracket made of aluminum or aluminum alloy. Because the anchoring part made of a non-aluminum metal does not contact the bracket made of aluminum or aluminum alloy, corrosion of the bracket caused by corrosion occurring between the non-aluminum metal and the aluminum metal is prevented.
- An outdoor unit of a refrigeration apparatus pertaining to a second aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the first aspect, further comprising a casing made of a non-aluminum metal for housing the heat exchanger made of aluminum or aluminum alloy, wherein the casing made of a non-aluminum metal is the structural part made of a non-aluminum metal.
- the bracket made of aluminum or aluminum alloy can fix the casing made of a non-aluminum metal via the non-metal component.
- An outdoor unit of a refrigeration apparatus pertaining to a third aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the second aspect, wherein the non-metal component has a sandwiching structure that sandwiches from both sides the fixing portion of the bracket made of aluminum or aluminum alloy, and the anchoring part and the anchored structure fasten together the sandwiching structure of the non-metal component and the fixing portion of the bracket made of aluminum or aluminum alloy.
- the fixing portion of the bracket is fastened in a state in which it is sandwiched by the sandwiching structure of the non-metal component, so the bracket can be strongly fixed by the non-metal component, and the fixing of the heat exchanger can be strengthened.
- An outdoor unit of a refrigeration apparatus pertaining to a fourth aspect of the present invention is the outdoor unit of the refrigeration apparatus of the third aspect, wherein the anchoring part is a male screw made of a non-aluminum metal, and the anchored structure is a nut separate from the structural part and capable of anchoring the male screw, an attachment plate having a screw hole capable of anchoring the male screw, or a female-threaded portion in the non-metal component capable of anchoring the male screw.
- An outdoor unit of a refrigeration apparatus pertaining to a fifth aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the fourth aspect, wherein the screw hole in the attachment plate is burred.
- the screw hole is burred, so the male screw can be tightened in just the attachment plate, and the number of parts can be reduced.
- An outdoor unit of a refrigeration apparatus pertaining to a sixth aspect of the present invention is any of the outdoor units of the refrigeration apparatus of any of the first aspect to the fifth aspect, wherein the bracket made of aluminum or aluminum alloy has a plurality of the fixing portions.
- the fixing of the bracket can be performed at plural places using the plural fixing portions, so the stability of the fixing of the heat exchanger can be improved.
- the fixing of the heat exchanger can be strengthened by the sandwiching structure of the non-metal component, and the effect of preventing the occurrence of problems such as looseness of the attachment of the heat exchanger can be improved.
- the outdoor unit of the refrigeration apparatus pertaining to the fourth aspect can be provided at a low cost because an anchoring part having the necessary strength can be obtained at a low cost.
- the number of parts can be reduced and the manufacturing cost of the outdoor unit can be reduced.
- the fixing of the heat exchanger becomes stable, so problems such as the occurrence of noise resulting from rattling of the heat exchanger can be prevented.
- FIG. 1 is a circuit diagram for describing an overview of the configuration of an air conditioning apparatus pertaining to an embodiment
- FIG. 2 is a perspective view showing the outer appearance of an outdoor unit
- FIG. 3 is a schematic plan view showing the outdoor unit in a state in which a top panel has been removed;
- FIG. 4 is a schematic back view showing the general configuration of an outdoor heat exchanger
- FIG. 5 is a partial sectional view for describing the configuration of the outdoor heat exchanger
- FIG. 6 is an enlarged sectional view for describing the configuration of a heat exchange section of the outdoor heat exchanger
- FIG. 7 is an enlarged side view of a blower chamber-side side panel
- FIG. 8( a ) is a perspective view showing one aspect of a bracket made of aluminum
- FIG. 8( b ) is a plan view of the bracket
- FIG. 8( c ) is a front view of the bracket
- FIG. 8( d ) is a side view of the bracket;
- FIG. 9 is a partially enlarged perspective view showing the bracket brazed to a header collection tube
- FIG. 10( a ) is a perspective view showing another aspect of a bracket made of aluminum
- FIG. 10( b ) is a plan view of the bracket
- FIG. 10( c ) is a front view of the bracket
- FIG. 10( d ) is a side view of the bracket;
- FIG. 11( a ) is a plan view of a resin cover
- FIG. 11( b ) is a front view of the resin cover
- FIG. 11( c ) is a bottom view of the resin cover
- FIG. 12( a ) is a left side view of the resin cover
- FIG. 12( b ) is a hack view of the resin cover
- FIG. 12( c ) is a right side view of the resin cover
- FIG. 13( a ) is a sectional view taken along line I-I of FIG. 12( b ) as seen from the direction of the arrows
- FIG. 13( b ) is a sectional view taken along line II-II of FIG. 12( b ) as seen from the direction of the arrows
- FIG. 13( c ) is a sectional view taken along line III-III of FIG. 12( c ) as seen from the direction of the arrows;
- FIG. 14( a ) is a plan view of an attachment plate
- FIG. 14( b ) is a front view of the attachment plate
- FIG. 15( a ) is a left side view of the attachment plate, and FIG. 15( b ) is a right side view of the attachment plate;
- FIG. 16 is an exploded assembly diagram of the bracket and the resin cover
- FIG. 17 is a perspective view showing a state in which the bracket, the resin cover, and the attachment plate are attached.
- FIG. 18 is a perspective view showing a state of the outdoor unit in which panels of a unit casing other than a bottom panel have been removed.
- FIG. 1 is a circuit diagram showing an overview of an air conditioning apparatus.
- An air conditioning apparatus 1 is configured by an outdoor unit 2 and an indoor unit 3 .
- the air conditioning apparatus 1 is an apparatus used to cool and heat rooms in a building by performing a vapor compression refrigeration cycle operation.
- the air conditioning apparatus 1 is equipped with the outdoor unit 2 that serves as a heat source unit, the indoor unit 3 that serves as a utilization unit, and refrigerant connection tubes 6 and 7 that interconnect the outdoor unit 2 and the indoor unit 3 .
- the refrigeration apparatus has a configuration wherein a compressor 11 , a four-way switching valve 12 , an outdoor heat exchanger 13 , an expansion valve 14 , an indoor heat exchanger 4 , and an accumulator 15 and the like are interconnected by refrigerant tubes.
- the refrigeration apparatus is charged with refrigerant, and a refrigeration cycle operation is performed wherein the refrigerant is compressed, is cooled, has its pressure reduced, is heated and evaporated, and is thereafter compressed again.
- a liquid refrigerant-side stop valve 17 and a gas refrigerant-side stop valve 18 of the outdoor unit 2 that are connected to the refrigerant connection tubes 6 and 7 , respectively, are placed in an open state.
- the four-way switching valve 12 is switched to a state indicated by the solid lines in FIG. 1 , that is, a state in which the discharge side of the compressor 11 is connected to the gas side of the outdoor heat exchanger 13 and in which the suction side of the compressor 11 is connected to the gas side of the indoor heat exchanger 4 via the accumulator 15 , the gas refrigerant-side stop valve 18 , and the refrigerant connection tube 7 .
- the air conditioning apparatus 1 causes the outdoor heat exchanger 13 to function as a condenser of the refrigerant compressed in the compressor 11 and causes the indoor heat exchanger 4 to function as an evaporator of the refrigerant that has been condensed in the outdoor heat exchanger 13 .
- the four-way switching valve 12 is switched to a state indicated by the dashed lines in FIG. 1 , that is, a state in which the discharge side of the compressor 11 is connected to the gas side of the indoor heat exchanger 4 via the gas refrigerant-side stop valve 18 and the refrigerant connection tube 7 and in which the suction side of the compressor 11 is connected to the gas side of the outdoor heat exchanger 13 .
- the air conditioning apparatus 1 causes the indoor heat exchanger 4 to function as a condenser of the refrigerant compressed in the compressor 11 and causes the outdoor heat exchanger 13 to function as an evaporator of the refrigerant that has been condensed in the indoor heat exchanger 4 .
- the indoor unit 3 is installed as a result of being mounted on a wall surface in a room or being embedded in or suspended from a ceiling in a room of a building or the like.
- the indoor unit 3 has the indoor heat exchanger 4 and an indoor fan 5 .
- the indoor heat exchanger 4 is, for example, a cross fin type fin-and-tube heat exchanger configured by heat transfer tubes and numerous fins; during the cooling operation, the indoor heat exchanger 4 functions as an evaporator of the refrigerant to cool the room air, and during the heating operation, the indoor heat exchanger 4 functions as a condenser of the refrigerant to heat the room air.
- the outdoor unit 2 is installed outside a building or the like and is connected to the indoor unit 3 installed in the room via the refrigerant connection tubes 6 and 7 .
- the outdoor unit 2 is equipped with a substantially cuboidal unit casing 20 .
- the outdoor unit 2 has a structure (a so-called trunk structure) in which a blower chamber S 1 and a machine chamber S 2 are formed as a result of the inside space of the unit casing 20 being divided in two by a partition panel 28 extending in the vertical direction.
- the outdoor heat exchanger 13 and an outdoor fan 16 and the like are disposed in the blower chamber S 1 .
- the compressor 11 and the accumulator 15 shown in FIG. 3 and the four-way switching valve 12 , the expansion valve 14 , the liquid refrigerant-side stop valve 17 , and the gas refrigerant-side stop valve 18 and the like not shown in FIG. 3 are disposed in the machine chamber S 2 .
- the unit casing 20 is configured to include a top panel 21 , a bottom panel 22 , a blower chamber-side side panel 23 , a machine chamber-side side panel 24 , a blower chamber-side front panel 25 , and a machine chamber-side front panel 26 .
- the top panel 21 is a panel member made of sheet steel that configures the top surface section of the unit casing 20 .
- the bottom panel 22 is a panel member made of sheet steel that configures the bottom surface section of the unit casing 20 .
- the blower chamber-side side panel 23 is a panel member made of sheet steel that configures the side surface section of the unit casing 20 near the blower chamber S 1 .
- the machine chamber-side side panel 24 is a panel member made of sheet steel that configures part of the side surface section of the unit casing 20 near the machine chamber S 2 and the back surface section of the unit casing 20 near the machine chamber S 2 .
- the blower chamber-side front panel 25 is a panel member made of sheet steel that configures the front surface section of the unit casing 20 in front of the blower chamber S 1 and part of the front surface section of the unit casing 20 in front of the machine chamber S 2 .
- the blower chamber-side front panel 25 and the blower chamber-side side panel 23 may also be integrally formed by pressing and forming a single sheet of sheet steel.
- the outdoor unit 2 is configured to suck outdoor air into the blower chamber S 1 inside the unit casing 20 from the a part of back surface and the side surface of the unit casing 20 and blow out the sucked-in outdoor air from the front surface of the unit casing 20 .
- an air inlet 20 a for the outdoor air sucked into the blower chamber S 1 inside the unit casing 20 is formed between the end portion of the blower chamber-side side panel 23 on the back surface side and the end portion of the machine chamber-side side panel 24 on the blower chamber S 1 side, and an air inlet 20 b for the outdoor air is formed in the blower chamber-side side panel 23 .
- an air outlet 20 c for blowing outside the outdoor air that has been sucked into the blower chamber Si is disposed in the blower chamber-side front panel 25 .
- the front side of the air outlet 20 c is covered by a fan grille 25 a.
- the outdoor heat exchanger 13 is disposed standing in the up and down direction (vertical direction) in the blower chamber S 1 , which is a space covered by the blower chamber-side side panel 23 , the blower chamber-side front panel 25 , the partition panel 28 , and one section of the machine chamber-side side panel 24 .
- the outdoor heat exchanger 13 has an L shape as seen in a plan view and opposes the air inlets 20 a and 20 b.
- the outdoor heat exchanger 13 is a heat exchanger made of aluminum.
- the outdoor heat exchanger 13 made of aluminum is, in order to prevent corrosion, attached by later-described brackets or the like made of aluminum to the unit casing 20 in such a way that the outdoor heat exchanger 13 does not directly contact the top panel 21 , the bottom panel 22 , the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , and the partition panel 28 and the like that are made of sheet steel.
- One end of the outdoor heat exchanger 13 is connected to the four-way switching valve 12 , and the other end of the outdoor heat exchanger 13 is connected to the expansion valve 14 .
- the heat exchanger made of aluminum is configured by heat transfer fins 32 made of aluminum, multi-hole flat tubes 33 made of aluminum, and header collection tubes 34 and 35 made of aluminum.
- the outdoor heat exchanger 13 is equipped with a heat exchange section 31 that causes heat exchange to be performed between the outdoor air and the refrigerant, and the heat exchange section 31 is configured by the numerous heat transfer fins 32 made of aluminum and the numerous multi-hole flat tubes 33 made of aluminum.
- the heat exchange section 31 has an upper heat exchange section 31 a, in which are disposed gas refrigerant multi-hole flat tubes 33 a that are included among the numerous multi-hole flat tubes 33 and are for allowing gas refrigerant or refrigerant in a gas-liquid multi-state to flow through when the outdoor heat exchanger 13 functions as a condenser, and a lower heat exchange section 31 b, in which are connected liquid refrigerant multi-hole flat tubes 33 b that are included among the numerous multi-hole flat tubes 33 and are for allowing the refrigerant in the gas-liquid multi-state or liquid refrigerant to flow through.
- the multi-hole flat tubes 33 function as heat transfer tubes and cause the heat moving between the heat transfer fins 32 and the outdoor air to be exchanged between the refrigerant flowing inside and the heat transfer fins 32 .
- the outdoor heat exchanger 13 is equipped with the header collection tubes 34 and 35 made of aluminum that are disposed one each on both ends of the heat exchange section 31 .
- the header collection tube 34 has a cylindrical pipe structure made of aluminum and has inside spaces 34 a and 34 b partitioned from one another by a baffle 34 c made of aluminum.
- a heat exchanger-side gas tube 38 made of aluminum is connected to the inside space 34 a in the upper portion of the header collection tube 34
- a heat exchanger-side liquid tube 39 made of aluminum is connected to the inside space 34 b in the lower portion of the header collection tube 34 .
- the header collection tube 35 has a cylindrical pipe structure made of aluminum, and inside spaces 35 a, 35 b, 35 c, 35 d, and 35 e are formed in the header collection tube 35 as a result of the inside space of the header collection tube 35 being partitioned by baffles 35 f, 35 g, 35 h, and 35 i made of aluminum.
- the numerous gas refrigerant multi-hole flat tubes 33 a connected to the inside space 34 a in the upper portion of the header collection tube 34 are connected to the three inside spaces 35 a, 35 b, and 35 c of the header collection tube 35 .
- the numerous liquid refrigerant multi-hole flat tubes 33 b connected to the inside space 34 b in the lower portion of the header collection tube 34 are connected to the three inside spaces 35 c, 35 d, and 35 e of the header collection tube 35 .
- the inside space 35 c also fulfills the function of interconnecting part of the inside space in the upper portion of the heat exchange section 31 (the section connected to the inside space 34 a ) and part of the inside space in the lower portion of the heat exchange section 31 (the section connected to the inside space 34 b ).
- the gas refrigerant supplied to the inside space 35 a in the upper portion of the header collection tube 35 by the heat exchanger-side gas tube 38 made of aluminum performs heat exchange in the upper portion of the heat exchange section 31 , some of that refrigerant liquefies so that the refrigerant changes to a gas-liquid multi-state, the refrigerant in the gas-liquid multi-state doubles back in the header collection tube 35 and travels through the lower portion of the heat exchange section 31 where the remaining gas refrigerant liquefies, and the liquid refrigerant exits through the heat exchanger-side liquid tube 39 made of aluminum.
- FIG. 6 is a partially enlarged view showing the cross-sectional structure of the heat exchange section 31 of the outdoor heat exchanger 13 as cut by a plane perpendicular to the lengthwise direction of the multi-hole flat tubes 33 .
- the heat transfer fins 32 are flat plates made of thin aluminum, and plural cutouts 32 a extending in the horizontal direction are formed adjacent to one another in the up and down direction in each of the heat transfer fins 32 .
- the multi-hole flat tubes 33 have upper and lower planar portions serving as heat transfer surfaces and plural inside flow paths 331 through which the refrigerant flows.
- the multi-hole flat tubes 33 which are slightly thicker than the up and down width of the cutouts 32 a, are arranged in plural tiers spaced apart from one another in a state in which the planar portions face up and down (a state in which the side surfaces of the multi-hole flat tubes 33 are arranged opposing one another), and the multi-hole flat tubes 33 are temporarily fixed in a state in which they have been fitted into the cutouts 32 a.
- the heat transfer fins 32 and the multi-hole flat tubes 33 are brazed together in a state in which the multi-hole flat tubes 33 have been fitted into the cutouts 32 a in the heat transfer fins 32 in this way. Furthermore, both ends of each of the multi-hole flat tubes 33 are fitted into and brazed to the header collection tubes 34 and 35 .
- the inside spaces 34 a and 34 b of the header collection tube 34 and the inside spaces 35 a, 35 b, 35 c, 35 d, and 35 e of the header collection tube 35 are connected to the inside flow paths 331 in the multi-hole flat tubes 33 .
- Baffle plates and the like for directing the flow of the refrigerant are disposed in the inside spaces 34 a and 34 b of the header collection tube 34 and the inside spaces 35 a, 35 b, 35 c, 35 d, and 35 e of the header collection tube 35 , but description of details such as these will be omitted.
- FIG. 7 is an enlarged side view of the blower chamber-side side panel 23 .
- Screw holes 23 a and 23 b are formed on the front side of the air inlet 201 ) in the blower chamber-side side panel 23 made of sheet steel.
- Brackets 40 and 50 made of aluminum are fixed to the blower chamber-side side panel 23 by male screws 80 or the like made of iron (see FIG. 16 ) that are screwed into the screw holes 23 a and 23 b, whereby the header collection tube 35 made of aluminum brazed to the brackets 40 and 50 made of aluminum is fixed.
- FIGS. 8( a ) to 8 ( d ) show the bracket 40 made of aluminum for attaching the outdoor heat exchanger 13 to the blower chamber-side side panel 23 .
- FIG. 8( a ) is a perspective view of the bracket 40 made of aluminum
- FIG. 8( b ) is a plan view of the bracket 40
- FIG. 8( c ) is a front view of the bracket 40
- FIG. 8( d ) is a side view of the bracket 40 .
- the bracket 40 is, for example, formed by pressing a single aluminum sheet.
- Two clamping pieces 42 that are attached to the header collection tube 35 of the outdoor heat exchanger 13 extend from a body portion 41 of the bracket 40 .
- the clamping pieces 42 are each formed in a circular arc shape so as to conform to the outer periphery of the cylindrical header collection tube 35 .
- Two attachment pieces 43 extend from the side of the bracket 40 opposite the side with the clamping pieces 42 .
- a through hole 43 a for allowing a screw to pass through when attaching the bracket 40 to the blower chamber-side side panel 23 is disposed in each of the attachment pieces 43 .
- the through holes 43 a are m1 ⁇ n1 elongated holes.
- a sensor retaining portion 44 formed in a concave shape is disposed in the body portion 41 .
- the shape of the sensor retaining portion 44 can be seen as forming a tubular hole 44 a and a slit 44 b.
- the slit 44 b formed on the side opposing the header collection tube 35 is for allowing a temperature sensor retained in the sensor retaining portion 44 to contact the header collection tube 35 .
- FIG. 9 shows a state in which the bracket 40 made of aluminum has been brazed to the header collection tube 35 .
- the brazing of the bracket 40 to the header collection tube 35 is, for example, performed by forming a brazing filler metal on the surface of the header collection tube 35 beforehand and, in a state in which the bracket 40 has been temporarily fastened to the header collection tube 35 , placing everything in a furnace in a state in which the heat transfer fins 32 made of aluminum and the multi-hole flat tubes 33 made of aluminum have been put together as shown in FIGS. 5 and FIG. 6 .
- the bracket 40 is attached to the header collection tube 35 in the area around the inside space 35 a shown in FIG. 5 .
- the inner dimension of a cylindrical hole formed by the sensor retaining portion 44 of the bracket 40 and the header collection tube 35 is formed slightly smaller than the outer dimension of a case 54 of a temperature sensor 19 (see FIG. 9 ). By strongly pressing the temperature sensor 19 into the case 54 , the temperature sensor 19 is fixed in the cylindrical hole.
- FIGS. 10( a ) to 10 ( d ) show the bracket 50 made of aluminum, with FIG. 10( a ) being a perspective view, FIG. 10( b ) being a plan view, FIG. 10( c ) being a front view, and FIG. 10( d ) being a side view.
- the bracket 50 is also, for example, formed by pressing a single aluminum sheet.
- the bracket 50 differs in shape from the bracket 40 but has the same configuration as that of the bracket 40 in that it has a body portion 51 , clamping pieces 52 , and attachment pieces 53 .
- a through hole 53 a is also formed in each of the attachment pieces 53 , but the positions where the through holes 53 a are formed differ from those of the through holes 43 a in the attachment pieces 43 .
- the through holes 53 a are also m1 ⁇ n1 elongated holes.
- fitting counterparts 53 b formed as a result of parts of the end portions of the attachment pieces 53 being cut out are disposed in the attachment pieces 53 .
- the temperature sensor 19 is not attached to the bracket 50 , so a configuration like that of the sensor retaining portion 44 is not formed in the bracket 50 .
- the brackets 40 and 50 are made of aluminum, so if the brackets 40 are brought into direct contact with the blower chamber-side side panel 23 made of sheet steel, corrosion of the brackets 40 and 50 is promoted by the contact between the iron and the aluminum, which are metals with different ionization tendencies. Therefore, the resin cover 60 shown in FIGS. 11( a ) to 11 ( c ), FIGS. 12(a) to 12(c) , and FIGS. 13( a ) to 13 ( c ) is attached to the brackets 40 and 50 , and the brackets 40 and 50 are attached to the blower chamber-side side panel 23 in a state in which the resin cover 60 is interposed between the blower chamber-side side panel 23 and the brackets 40 and 50 .
- FIG. 11( a ) to 11 ( c ) the resin cover 60 shown in FIGS. 11( a ) to 11 ( c ), FIGS. 12(a) to 12(c) , and FIGS. 13( a ) to 13 (
- FIG. 11( a ) is a plan view of the resin cover
- FIG. 11( b ) is a front view of the resin cover
- FIG. 11( c ) is a bottom view of the resin cover
- FIG. 12( a ) is a left side view of the resin cover
- FIG. 12( b ) is a back view of the resin cover
- FIG. 12( c ) is a right side view of the resin cover.
- FIG. 13( a ) is a sectional view taken along line I-I of FIG. 12( b ) as seen from the direction of the arrows
- FIG. 13( b ) is a sectional view taken along line II-II of FIG. 12( b ) as seen from the direction of the arrows
- FIG. 13( c ) is a partially enlarged sectional view taken along line of FIG. 12( c ) as seen from the direction of the arrows.
- the resin covers 60 are used for the two brackets 40 and 50 even though the shapes of the brackets 40 and 50 differ from one another. For that reason, the shape of the resin cover 60 is complex, but the resin cover 60 can, for example, be formed by one-time injection molding.
- a body portion 61 of the resin cover 60 has an insertion portion 62 and an insertion portion 63 for attaching the attachment pieces 43 and 53 of the brackets 40 and 50 .
- the attachment pieces 43 and 53 of which the brackets 40 and 50 have two each, respectively the attachment pieces 43 and 53 whose shapes are the same as one another are inserted into the insertion portion 62 .
- a recess 65 in the front of the body portion 61 has a shape conforming to the shape of the body portion 41 of the bracket 40 and is processed in this shape in order to attach the temperature sensor 19 .
- fitting projections 62 c and 63 c that project from parts of the top surfaces of the insertion portions 62 and 63 are disposed in the insertion portions 62 and 63 .
- the fitting projections 62 c and 63 c fit into the fitting counterparts 43 b and 53 b of the attachment pieces 43 and 53 of the brackets 40 and 50 to thereby define the positional relationship between the brackets 40 and 50 and the resin cover 60 in the front and rear direction.
- the attachment pieces 43 and 53 whose shapes differ from one another between the brackets 40 and 50 are inserted into the insertion portion 63 , whose upper surface, back surface, and right and left side surfaces are enclosed.
- the attachment pieces 43 and 53 whose shapes with respect to the outside differ can be accommodated. Additionally, the right and left side surfaces of the attachment pieces 43 and 53 inserted into the insertion portion 62 and the insertion portion 63 become covered by the resin cover 60 . For this reason, the resin cover 60 becomes interposed between the blower chamber-side side panel 23 positioned on a side surface side of the resin cover 60 and the attachment pieces 43 and 53 , and the brackets 40 and 50 can be fixed to the blower chamber-side side panel 23 without the brackets 40 and 50 made of aluminum directly touching the blower chamber-side side panel 23 .
- An inner wall 62 a and an outer wall 62 b form the right and left side surfaces of the insertion portion 62 .
- Open portions 62 aa and 62 ba are formed in the outer wall 62 b in positions corresponding to the through holes 43 a and 53 a in the attachment pieces 43 and 53 .
- the shape of the overlapping section between the open portion 62 aa and the open portion 62 ba as seen in a side view is a shape that is substantially the same as that of an m1 ⁇ n1 elongated hole of the same size as the through holes 43 a and 53 a but has a further part cut out.
- An inner wall 63 a and an outer wall 63 b form the left and right side surfaces of the insertion portion 63 .
- the positions of the through holes 43 a and 53 a in the attachment pieces 43 and 53 with the different shapes are different, so two open portions 63 ba and 63 bb are formed in the outer wall 63 b.
- Open portions 63 aa and 63 ab that are larger than the open portions 63 ba and 63 bb are also formed in the inner wall 63 a in positions corresponding to the open portions 63 ba and 63 bb.
- Openings passing completely through from the inner walls 62 a and 63 a to the outer walls 62 b and 63 b are formed by the open portion 62 ba, the open portion 62 aa, the open portions 63 ba and 63 bb, and the open portions 63 aa and 63 ab.
- the shape of the overlapping section between the open portion 63 aa and the open portion 63 ba as seen in a side view is a shape that is substantially the same as that of an m1 ⁇ n1 elongated hole of the same size as the through holes 43 a and 53 a but has a further part cut out.
- the shape of the overlapping section between the open portion 63 ab and the open portion 63 bb as seen in a side view is a shape that is the same as that of an m1 ⁇ n1 elongated hole of the same size as the through holes 43 a and 53 a.
- an insertion portion 64 having an opening on the back surface side is formed in the outer wall 62 b.
- a side plate portion 72 of a later-described attachment plate 70 is inserted into the insertion portion 64 . Because the insertion portion 64 is formed inside the outer wall 62 b, a resin partition 63 bc exists between the brackets 40 and 50 made of aluminum inserted into the insertion portion 62 and the attachment plate 70 made of iron inserted into the insertion portion 64 .
- FIGS. 14( a ) and 14 ( b ) and FIGS. 15( a ) and 15 ( b ) show the attachment plate 70 , with FIG. 14( a ) being a plan view, FIG 14 ( b ) being a front view, FIG. 15( a ) being a left side view, and FIG. 15( b ) being a right side view.
- the base portion 71 has a substantially rectangular shape with a recess 71 c in front, The width of the base portion 71 is substantially equal to the distance between the inner walls 62 a and 63 a of the resin cover 60 .
- the attachment plate 70 when the attachment plate 70 is fitted into the resin cover 60 in a state in which a front end portion 71 a of the base portion 71 has been brought into contact with front stoppers 61 a of the body portion 61 of the resin cover 60 , the side plate portion 72 of the attachment plate 70 is inserted into the insertion portion 63 of the resin cover 60 , and the side plate 73 is in contact with and is along the inner wall 63 a of the resin cover 60 .
- a contact portion 73 c of the side plate 73 contacts the area around the back surface side of the insertion portion 64 , and the front end portion 71 a of the base portion 71 contacts the front stoppers 61 a, so that the attachment plate 70 does not shift forward relative to the resin cover 60 .
- the attachment plate 70 does not shift forward in this way, the attachment plate 70 . also does not move toward the rear of the resin cover 60 because a rear end portion 71 b of the base portion 71 contacts a rear stopper 61 b of the body portion 61 of the resin cover 60 .
- Screw holes 72 a and 73 a formed in the side plate portions 72 and 73 coincide, as seen in a side view, with the open portion 62 aa of the inner wall 62 a of the resin cover 60 , the open portions 63 aa and 63 ab of the inner wall 63 a, the open portion 62 ba of the outer wall 62 b, and the open portions 63 ba and 63 bb of the outer wall 63 b.
- the outer dimension of later-described male screws that are screwed into the screw holes 72 a, 73 a, and 73 b is smaller than the inner dimensions of the overlapping section between the open portions 62 aa and 62 ba, the overlapping section between the open portions 63 aa and 63 ab, and the overlapping section between the open portions 63 ba and 63 bb as seen in a side view. Furthermore, the outer dimension of the male screws is smaller than the inner dimension of the through holes 43 a and 53 a in the brackets 40 and 50 made of aluminum.
- the male screws can be fastened to the screw holes 72 a, 73 a, and 73 b in the attachment plate 70 in such a way that the male screws are not brought into contact with the brackets 40 and 50 and the resin cover 60 .
- the screw holes 72 a, 73 a, and 73 b are formed by burring.
- FIG. 16 shows astute of assembly in which the bracket 40 made of aluminum, the resin cover 60 , and the attachment plate 70 made of iron are being fastened with the male screw 80 made of iron to the blower chamber side-side panel 23 made of sheet steel.
- FIG. 17 shows a state in which the bracket 40 made of aluminum, the resin cover 60 , and the attachment plate 70 made of iron have been assembled in a state in which the blower chamber-side side panel 23 has been removed. As shown in FIG. 17 , one of the attachment pieces 43 of the bracket 40 is attached to an air blocking plate 100 .
- the attachment plate 70 made of iron is disposed inside the resin cover 60 in a state in which the attachment plate 70 is separated b the resin cover 60 from the bracket 40 .
- the male screw 80 passing through the through hole 43 a in the bracket 40 and the open portion 63 aa etc, of the resin cover 60 fits into the screw hole 73 b in the attachment plate 70 ,
- brackets 90 made of aluminum, resin covers 92 , and attachment plates 93 made of iron have structures similar to those of the brackets 40 and 50 , the resin cover 60 , and the attachment plate 70 , so description thereof will be omitted.
- the brackets 90 also have two attachment pieces each like the brackets 40 and 50 , but the two attachment pieces are fixed to the machine chamber-side side panel 24 and the partition panel 28 . Because their attachment places are different, the brackets 90 made of aluminum, the resin covers 92 , and the attachment plates 93 made of iron may also have their structures changed from those of the brackets 40 and 50 , the resin cover 60 , and the attachment plate 70 .
- the clamping pieces (a securing portion) as typified by the clamping pieces 42 and 52 of the bracket as typified by the brackets 40 , 50 and 90 made of aluminum is attached directly to the outdoor heat exchanger 13 made of aluminum, and the attachment pieces (a fixing portion) as typified by the attachment pieces 43 and 53 are fixed via the resin cover 60 or 92 to the blower chamber-side side panel 23 (a structural part made of a non-aluminum metal), the machine chamber-side side panel 24 (a structural part made of a non-aluminum metal), or the partition panel 28 made of sheet steel (a structural part made of a non-aluminum metal), so the aluminum and the sheet steel do not contact one another.
- the bracket 40 or 50 made of aluminum is cooperatively fastened by the male screw 80 (an anchoring part) made of iron (made of a non-aluminum metal) and the attachment plate 70 (an anchored structure) made of iron and is fixed to the blower chamber-side side panel 23 made of sheet steel, Furthermore, the bracket 90 made of aluminum is also cooperatively fastened by a male screw (not shown in the drawings) made of iron and the attachment plate 93 (an anchored structure) made of iron and is fixed to the (machine chamber-side side panel 24 and the partition panel 28 made of sheet steel.
- an outer diameter d (outer shape) of the male screw 80 is smaller than the dimension (hole outer shape) of the through hole 43 a or 53 a in the bracket 40 or 50 . That is, there is the relationship: an outer diameter as typified by outer diameter d a hole diameter as typified by hole diameters m 1 , n 1 ,
- the bracket 40 , 50 , or 90 made of aluminum is fastened via the resin cover 60 (a non-metal component) and the resin cover 92 (a non-metal component) to a structural part as typified by the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , and the partition panel 28 , and the bracket 40 , 50 , or 90 made of aluminum is maintained by the resin cover (a non-metal component) as typified by the resin covers 60 and 92 in a non-contact state in which the bracket 40 , 50 , or 90 also does not contact the male screw 80 made of iron (made of a non-a
- the male screw 80 made of iron does not contact the bracket 40 , 50 , or 90 made of aluminum, so corrosion of the brackets caused by corrosion occurring between the iron (a non-aluminum metal) and the aluminum metal is prevented.
- Corrosion in the neighborhoods of the attachment pieces 43 and 53 of the brackets 40 , 50 and 90 made of aluminum for attaching the outdoor heat exchanger 13 made of aluminum can be prevented, and problems such as looseness occurring in the attachment of the outdoor heat exchanger 13 due to such corrosion or the like can be prevented from being triggered.
- the resin cover 60 or 92 is interposed between the attachment pieces 43 or 53 of the bracket 40 , 50 , or 90 and at least one among the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , and the partition panel 28 and maintain both in a non-contact state.
- the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , and the partition panel 28 (examples of a structural part) made of sheet steel (made of a non-aluminum metal) do not contact the bracket as typified by the bracket 40 , 50 , and 90 made of aluminum, so corrosion of the bracket caused by corrosion occurring between the steel (non-aluminum metal) and the aluminum metal is also prevented between the brackets and structural parts.
- resin members such as the resin covers 60 and 92 are taken as an example and described as a non-metal component, but the non-metal component may also be a member comprising a polymer material, such as a rubber member, or a member comprising a non-metal inorganic material, such as a ceramic member.
- the non-metal component here is a member configured by a material that does not promote corrosion between it and aluminum or aluminum alloy as much as a non-aluminum metal.
- the blower chamber-side side panel 23 and the machine chamber-side side panel 24 (examples of a structural part) made of sheet steel (made of a non-aluminum metal) are the unit casing 20 made of sheet steel (a casing made of a non-aluminum metal).
- the bracket 40 , 50 , or 90 made of aluminum is available for fixing via the resin cover 60 to the unit casing 20 , and it becomes easier to make the outdoor unit 2 compact.
- the resin cover 60 has the inner wall 62 a or 63 b and the outer wall 62 b or 63 b (a sandwiching structure) of the insertion portion 62 or 63 for sandwiching from both sides the attachment pieces 43 or 53 (a fixing portion) of the bracket 40 or 50 made of aluminum. Additionally, the male screw 80 (an anchoring part) and the attachment plate 70 (an anchored structure) fasten together the insertion portions 62 and 63 of the resin cover 60 and the attachment pieces 43 or 53 of the bracket 40 or 50 made of aluminum.
- the attachment pieces 43 or 53 of the bracket 40 or 50 is fastened in a state in which they are sandwiched by the inner walls 62 a or 63 b and the outer wall 62 b or 63 b of the resin cover 60 , so the bracket 40 or 50 made of aluminum can be strongly fixed by the resin cover 60 .
- the fixing of the outdoor heat exchanger 13 made of aluminum can be strengthened, and the effect of preventing the occurrence of problems such as looseness of the attachment of the outdoor heat exchanger 13 can be improved.
- the bracket 90 made of aluminum has two attachment pieces like the attachment pieces 43 or 53 of the bracket 40 or 50 made of aluminum.
- the bracket 90 can be fixed at the two places of the machine chamber-side side panel 24 and the partition panel 28 using the two attachment pieces, so the stability of the fixing of the outdoor heat exchanger 13 can be improved, and problems such as the occurrence of noise resulting from rattling of the outdoor heat exchanger 13 can be prevented.
- the male screw 80 made of iron As described above, by fastening with the male screw 80 made of iron and the attachment plate 70 having the screw hole 72 a, 73 a, or 73 b, the positioning of the attachment plate 70 and the resin cover 60 is easy and it becomes easier to handle them. Additionally, by using the male screw 80 made of iron, an anchoring part having the necessary strength can be obtained at a low cost, so the outdoor unit 2 can be provided at a low cost. Furthermore, the male screw 80 can be tightened in just the attachment plate 70 because the screw hole 72 a, 73 a, or 73 b is burred, so the number of parts can be reduced and the manufacturing cost of the outdoor unit 2 can be reduced.
- members made of aluminum were used for the outdoor heat exchanger 13 and so forth, but the members made of aluminum can also be replaced with members made of aluminum alloy; for example, an outdoor heat exchanger made of aluminum alloy can be used instead of the outdoor heat exchanger 13 made of aluminum, and bracket made of aluminum alloy can be used instead of the brackets 40 , 50 , or 90 made of aluminum.
- a molded body of resin was used for the resin cover 60 , but the molded body may also be formed of another material, such as a ceramic or prepreg composite member.
- the attachment plate 70 was used for the anchored structure anchored by the male screw 80
- the anchored structure may also be a nut made of iron and capable of anchoring the male screw 80 or a female-threaded portion made of resin molded in the resin cover 60 and capable of anchoring the male screw 80
- an anchoring member other than a screw and an anchored structure may also be used.
- screw hole may also be formed in the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , or the partition panel 28 , and the male screw 80 may be screwed into the screw hole in the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , or the partition panel 28 to fix the bracket 40 , 50 , or 90 made of aluminum and the resin cover 60 or 92 .
- the screw hole in the blower chamber-side side panel 23 , the machine chamber-side side panel 24 , or the partition panel 28 become an anchored structure.
- Patent Document 1 JP-A No. H7-234088
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
An outdoor unit a refrigeration apparatus includes an aluminum or aluminum alloy heat exchanger, an aluminum or aluminum alloy bracket having a securing portion attached directly to the heat exchanger and a fixing portion with a through hole used to fix the bracket to a non-aluminum metal structural part, a non-metal component interposed between the fixing portion of the bracket and the structural part to create a non-contact state, a non-aluminum metal anchoring part, and an anchored structure cooperating with the anchoring part to fasten a fixing portion of the bracket to the structural part via the non-metal component. The anchoring part has an outer shape smaller than the through hole in the fixing portion. The non-metal component maintains, in astute in which the anchoring part is passing through the through hole in the fixing portion, a non-contact state between the bracket and the anchoring part.
Description
- The present invention relates to an outdoor unit of a refrigeration apparatus and particularly an outdoor unit of a refrigeration apparatus equipped with a heat exchanger made of aluminum or aluminum alloy.
- In recent years, in order to make heat exchangers lighter in weight, aluminum and aluminum alloys have sometimes been used not just for the fins of the heat exchanger but also for the heat transfer tubes and the header collection tubes of the heat exchanger. At the same time, the heat exchanger made of aluminum or aluminum alloy is housed in a casing of an outdoor unit, for example, and because of advantages such as processing ease and cost it is common for a non-aluminum metal different from aluminum or aluminum alloy, such as sheet steel for example, to be used for the casing.
- Direct contact between the non-aluminum metal and the heat exchanger made of aluminum or aluminum alloy leads to corrosion of the heat exchanger. Therefore, as described in patent document 1 (JP-A No. H7-234088) for example, conventionally a bracket made of aluminum or aluminum alloy has been fixed to the header collection tube of the heat exchanger made of aluminum or aluminum alloy, and the heat exchanger has been attached via the bracket made of aluminum or aluminum alloy to a non-aluminum metal of a vehicle body of an automobile, for example.
- However, in this configuration, the section where the bracket made of aluminum or aluminum alloy and the non-aluminum metal contact one another causes corrosion of the bracket made of aluminum or aluminum alloy. Corrosion of the bracket made of aluminum or aluminum alloy triggers problems such as a poor outer appearance and looseness of the attachment of the heat exchanger.
- It is an object of the present invention to prevent corrosion of a bracket made of aluminum or aluminum alloy for attaching a heat exchanger made of aluminum or aluminum alloy.
- An outdoor unit of a refrigeration apparatus pertaining to a first aspect of the present invention is an outdoor unit of a refrigeration apparatus comprising a heat exchanger made of aluminum or aluminum alloy, a bracket made of aluminum or aluminum alloy that has a securing portion that is attached directly to the heat exchanger and a fixing portion that has a through hole for fixing the bracket to a structural part made of a non-aluminum metal, and a non-metal component that is interposed between the fixing portion of the bracket and the structural part that are fixed to one another and is for placing both in a non-contact state, the outdoor unit of the refrigeration apparatus further comprising: an anchoring part made of a non-aluminum metal that has an outer shape that is smaller than the through hole in the fixing portion; and an anchored structure that cooperates with the anchoring part to fasten the fixing portion of the bracket to the structural part via the non-metal component, wherein the non-metal component maintains, in a state in which the anchoring part is passing through the through hole in the fixing portion, a non-contact state between the bracket made of aluminum or aluminum alloy and the anchoring part made of a non-aluminum metal.
- The non-metal component here includes a member comprising a polymer material, such as a resin member or a rubber member, and a member comprising a non-metal inorganic material, such as a ceramic member.
- In the outdoor unit of the refrigeration apparatus pertaining to the first aspect, in a state in which the bracket made of aluminum or aluminum alloy is fixed to, and without contacting, the structural part made of a non-aluminum metal via the non-metal component, the non-metal component can maintain the anchoring part, whose outer shape is smaller than the outer shape of the through hole, in a non-contact state relative to the bracket made of aluminum or aluminum alloy. Because the anchoring part made of a non-aluminum metal does not contact the bracket made of aluminum or aluminum alloy, corrosion of the bracket caused by corrosion occurring between the non-aluminum metal and the aluminum metal is prevented.
- An outdoor unit of a refrigeration apparatus pertaining to a second aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the first aspect, further comprising a casing made of a non-aluminum metal for housing the heat exchanger made of aluminum or aluminum alloy, wherein the casing made of a non-aluminum metal is the structural part made of a non-aluminum metal.
- In the outdoor unit of the refrigeration apparatus pertaining to the second aspect, the bracket made of aluminum or aluminum alloy can fix the casing made of a non-aluminum metal via the non-metal component.
- An outdoor unit of a refrigeration apparatus pertaining to a third aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the second aspect, wherein the non-metal component has a sandwiching structure that sandwiches from both sides the fixing portion of the bracket made of aluminum or aluminum alloy, and the anchoring part and the anchored structure fasten together the sandwiching structure of the non-metal component and the fixing portion of the bracket made of aluminum or aluminum alloy.
- In the outdoor unit of the refrigeration apparatus pertaining to the third aspect, the fixing portion of the bracket is fastened in a state in which it is sandwiched by the sandwiching structure of the non-metal component, so the bracket can be strongly fixed by the non-metal component, and the fixing of the heat exchanger can be strengthened.
- An outdoor unit of a refrigeration apparatus pertaining to a fourth aspect of the present invention is the outdoor unit of the refrigeration apparatus of the third aspect, wherein the anchoring part is a male screw made of a non-aluminum metal, and the anchored structure is a nut separate from the structural part and capable of anchoring the male screw, an attachment plate having a screw hole capable of anchoring the male screw, or a female-threaded portion in the non-metal component capable of anchoring the male screw.
- In the outdoor unit of the refrigeration apparatus pertaining to the fourth aspect, by using the male screw made of a non-aluminum metal, an anchoring part having the necessary strength can be obtained at a low cost.
- An outdoor unit of a refrigeration apparatus pertaining to a fifth aspect of the present invention is the outdoor unit of the refrigeration apparatus pertaining to the fourth aspect, wherein the screw hole in the attachment plate is burred.
- In the outdoor unit of the refrigeration apparatus pertaining to the fifth aspect, the screw hole is burred, so the male screw can be tightened in just the attachment plate, and the number of parts can be reduced.
- An outdoor unit of a refrigeration apparatus pertaining to a sixth aspect of the present invention is any of the outdoor units of the refrigeration apparatus of any of the first aspect to the fifth aspect, wherein the bracket made of aluminum or aluminum alloy has a plurality of the fixing portions.
- In the outdoor unit of the refrigeration apparatus pertaining to the sixth aspect, the fixing of the bracket can be performed at plural places using the plural fixing portions, so the stability of the fixing of the heat exchanger can be improved.
- In the outdoor unit of the refrigeration apparatus pertaining to the first aspect, corrosion of the bracket made of aluminum or aluminum alloy for attaching the heat exchanger made of aluminum or aluminum alloy can be prevented, and problems such as a poor outer appearance and looseness occurring in the attachment of the heat exchanger due to such corrosion or the like can be prevented from being triggered.
- In the outdoor unit of the refrigeration apparatus pertaining to the second aspect, it becomes easier to make the outdoor unit compact.
- In the outdoor unit of the refrigeration apparatus pertaining to the third aspect, the fixing of the heat exchanger can be strengthened by the sandwiching structure of the non-metal component, and the effect of preventing the occurrence of problems such as looseness of the attachment of the heat exchanger can be improved.
- In the outdoor unit of the refrigeration apparatus pertaining to the fourth aspect, the outdoor unit can be provided at a low cost because an anchoring part having the necessary strength can be obtained at a low cost.
- In the outdoor unit of the refrigeration apparatus pertaining to the fifth aspect, the number of parts can be reduced and the manufacturing cost of the outdoor unit can be reduced.
- In the outdoor unit of the refrigeration apparatus pertaining to the sixth aspect, the fixing of the heat exchanger becomes stable, so problems such as the occurrence of noise resulting from rattling of the heat exchanger can be prevented.
-
FIG. 1 is a circuit diagram for describing an overview of the configuration of an air conditioning apparatus pertaining to an embodiment; -
FIG. 2 is a perspective view showing the outer appearance of an outdoor unit; -
FIG. 3 is a schematic plan view showing the outdoor unit in a state in which a top panel has been removed; -
FIG. 4 is a schematic back view showing the general configuration of an outdoor heat exchanger; -
FIG. 5 is a partial sectional view for describing the configuration of the outdoor heat exchanger; -
FIG. 6 is an enlarged sectional view for describing the configuration of a heat exchange section of the outdoor heat exchanger; -
FIG. 7 is an enlarged side view of a blower chamber-side side panel; -
FIG. 8( a) is a perspective view showing one aspect of a bracket made of aluminum,FIG. 8( b) is a plan view of the bracket,FIG. 8( c) is a front view of the bracket, andFIG. 8( d) is a side view of the bracket; -
FIG. 9 is a partially enlarged perspective view showing the bracket brazed to a header collection tube; -
FIG. 10( a) is a perspective view showing another aspect of a bracket made of aluminum,FIG. 10( b) is a plan view of the bracket,FIG. 10( c) is a front view of the bracket, andFIG. 10( d) is a side view of the bracket; -
FIG. 11( a) is a plan view of a resin cover,FIG. 11( b) is a front view of the resin cover, andFIG. 11( c) is a bottom view of the resin cover; -
FIG. 12( a) is a left side view of the resin cover,FIG. 12( b) is a hack view of the resin cover, andFIG. 12( c) is a right side view of the resin cover; -
FIG. 13( a) is a sectional view taken along line I-I ofFIG. 12( b) as seen from the direction of the arrows,FIG. 13( b) is a sectional view taken along line II-II ofFIG. 12( b) as seen from the direction of the arrows, andFIG. 13( c) is a sectional view taken along line III-III ofFIG. 12( c) as seen from the direction of the arrows; -
FIG. 14( a) is a plan view of an attachment plate, andFIG. 14( b) is a front view of the attachment plate; -
FIG. 15( a) is a left side view of the attachment plate, andFIG. 15( b) is a right side view of the attachment plate; -
FIG. 16 is an exploded assembly diagram of the bracket and the resin cover; -
FIG. 17 is a perspective view showing a state in which the bracket, the resin cover, and the attachment plate are attached; and -
FIG. 18 is a perspective view showing a state of the outdoor unit in which panels of a unit casing other than a bottom panel have been removed. - A refrigeration apparatus used in an air conditioning apparatus will be described as a refrigeration apparatus pertaining to an embodiment of the present invention.
FIG. 1 is a circuit diagram showing an overview of an air conditioning apparatus. Anair conditioning apparatus 1 is configured by anoutdoor unit 2 and anindoor unit 3. Theair conditioning apparatus 1 is an apparatus used to cool and heat rooms in a building by performing a vapor compression refrigeration cycle operation. Theair conditioning apparatus 1 is equipped with theoutdoor unit 2 that serves as a heat source unit, theindoor unit 3 that serves as a utilization unit, andrefrigerant connection tubes 6 and 7 that interconnect theoutdoor unit 2 and theindoor unit 3. - In the
air conditioning apparatus 1 configured by connecting theoutdoor unit 2, theindoor unit 3, and therefrigerant connection tubes 6 and 7, the refrigeration apparatus has a configuration wherein acompressor 11, a four-way switching valve 12, anoutdoor heat exchanger 13, anexpansion valve 14, an indoor heat exchanger 4, and anaccumulator 15 and the like are interconnected by refrigerant tubes. The refrigeration apparatus is charged with refrigerant, and a refrigeration cycle operation is performed wherein the refrigerant is compressed, is cooled, has its pressure reduced, is heated and evaporated, and is thereafter compressed again. During operation, a liquid refrigerant-side stop valve 17 and a gas refrigerant-side stop valve 18 of theoutdoor unit 2 that are connected to therefrigerant connection tubes 6 and 7, respectively, are placed in an open state. - During the cooling operation, the four-
way switching valve 12 is switched to a state indicated by the solid lines inFIG. 1 , that is, a state in which the discharge side of thecompressor 11 is connected to the gas side of theoutdoor heat exchanger 13 and in which the suction side of thecompressor 11 is connected to the gas side of the indoor heat exchanger 4 via theaccumulator 15, the gas refrigerant-side stop valve 18, and therefrigerant connection tube 7. In the cooling operation, theair conditioning apparatus 1 causes theoutdoor heat exchanger 13 to function as a condenser of the refrigerant compressed in thecompressor 11 and causes the indoor heat exchanger 4 to function as an evaporator of the refrigerant that has been condensed in theoutdoor heat exchanger 13. - During the heating operation, the four-
way switching valve 12 is switched to a state indicated by the dashed lines inFIG. 1 , that is, a state in which the discharge side of thecompressor 11 is connected to the gas side of the indoor heat exchanger 4 via the gas refrigerant-side stop valve 18 and therefrigerant connection tube 7 and in which the suction side of thecompressor 11 is connected to the gas side of theoutdoor heat exchanger 13. In the heating operation, theair conditioning apparatus 1 causes the indoor heat exchanger 4 to function as a condenser of the refrigerant compressed in thecompressor 11 and causes theoutdoor heat exchanger 13 to function as an evaporator of the refrigerant that has been condensed in the indoor heat exchanger 4. - The
indoor unit 3 is installed as a result of being mounted on a wall surface in a room or being embedded in or suspended from a ceiling in a room of a building or the like. Theindoor unit 3 has the indoor heat exchanger 4 and anindoor fan 5. The indoor heat exchanger 4 is, for example, a cross fin type fin-and-tube heat exchanger configured by heat transfer tubes and numerous fins; during the cooling operation, the indoor heat exchanger 4 functions as an evaporator of the refrigerant to cool the room air, and during the heating operation, the indoor heat exchanger 4 functions as a condenser of the refrigerant to heat the room air. - The
outdoor unit 2 is installed outside a building or the like and is connected to theindoor unit 3 installed in the room via therefrigerant connection tubes 6 and 7. As shown inFIG. 2 andFIG. 3 , theoutdoor unit 2 is equipped with a substantiallycuboidal unit casing 20. As shown inFIG. 3 , theoutdoor unit 2 has a structure (a so-called trunk structure) in which a blower chamber S1 and a machine chamber S2 are formed as a result of the inside space of theunit casing 20 being divided in two by apartition panel 28 extending in the vertical direction. As shown inFIG. 3 , theoutdoor heat exchanger 13 and anoutdoor fan 16 and the like are disposed in the blower chamber S1. Furthermore, thecompressor 11 and theaccumulator 15 shown inFIG. 3 and the four-way switching valve 12, theexpansion valve 14, the liquid refrigerant-side stop valve 17, and the gas refrigerant-side stop valve 18 and the like not shown inFIG. 3 are disposed in the machine chamber S2. - The
unit casing 20 is configured to include atop panel 21, abottom panel 22, a blower chamber-side side panel 23, a machine chamber-side side panel 24, a blower chamber-side front panel 25, and a machine chamber-side front panel 26. Thetop panel 21 is a panel member made of sheet steel that configures the top surface section of theunit casing 20. Thebottom panel 22 is a panel member made of sheet steel that configures the bottom surface section of theunit casing 20. The blower chamber-side side panel 23 is a panel member made of sheet steel that configures the side surface section of theunit casing 20 near the blower chamber S1. The machine chamber-side side panel 24 is a panel member made of sheet steel that configures part of the side surface section of theunit casing 20 near the machine chamber S2 and the back surface section of theunit casing 20 near the machine chamber S2. The blower chamber-side front panel 25 is a panel member made of sheet steel that configures the front surface section of theunit casing 20 in front of the blower chamber S1 and part of the front surface section of theunit casing 20 in front of the machine chamber S2. The blower chamber-side front panel 25 and the blower chamber-side side panel 23 may also be integrally formed by pressing and forming a single sheet of sheet steel. - The
outdoor unit 2 is configured to suck outdoor air into the blower chamber S1 inside the unit casing 20 from the a part of back surface and the side surface of theunit casing 20 and blow out the sucked-in outdoor air from the front surface of theunit casing 20. For that reason, anair inlet 20 a for the outdoor air sucked into the blower chamber S1 inside theunit casing 20 is formed between the end portion of the blower chamber-side side panel 23 on the back surface side and the end portion of the machine chamber-side side panel 24 on the blower chamber S1 side, and anair inlet 20 b for the outdoor air is formed in the blower chamber-side side panel 23. Furthermore, anair outlet 20 c for blowing outside the outdoor air that has been sucked into the blower chamber Si is disposed in the blower chamber-side front panel 25. The front side of theair outlet 20 c is covered by afan grille 25 a. - The
outdoor heat exchanger 13 is disposed standing in the up and down direction (vertical direction) in the blower chamber S1, which is a space covered by the blower chamber-side side panel 23, the blower chamber-side front panel 25, thepartition panel 28, and one section of the machine chamber-side side panel 24. Theoutdoor heat exchanger 13 has an L shape as seen in a plan view and opposes theair inlets outdoor heat exchanger 13 is a heat exchanger made of aluminum. Theoutdoor heat exchanger 13 made of aluminum is, in order to prevent corrosion, attached by later-described brackets or the like made of aluminum to theunit casing 20 in such a way that theoutdoor heat exchanger 13 does not directly contact thetop panel 21, thebottom panel 22, the blower chamber-side side panel 23, the machine chamber-side side panel 24, and thepartition panel 28 and the like that are made of sheet steel. One end of theoutdoor heat exchanger 13 is connected to the four-way switching valve 12, and the other end of theoutdoor heat exchanger 13 is connected to theexpansion valve 14. - Next, the configuration of the
outdoor heat exchanger 13 will be described in detail usingFIG. 4 ,FIG. 5 , andFIG. 6 . The heat exchanger made of aluminum is configured byheat transfer fins 32 made of aluminum, multi-holeflat tubes 33 made of aluminum, andheader collection tubes outdoor heat exchanger 13 is equipped with aheat exchange section 31 that causes heat exchange to be performed between the outdoor air and the refrigerant, and theheat exchange section 31 is configured by the numerousheat transfer fins 32 made of aluminum and the numerous multi-holeflat tubes 33 made of aluminum. Theheat exchange section 31 has an upperheat exchange section 31 a, in which are disposed gas refrigerant multi-holeflat tubes 33 a that are included among the numerous multi-holeflat tubes 33 and are for allowing gas refrigerant or refrigerant in a gas-liquid multi-state to flow through when theoutdoor heat exchanger 13 functions as a condenser, and a lowerheat exchange section 31 b, in which are connected liquid refrigerant multi-holeflat tubes 33 b that are included among the numerous multi-holeflat tubes 33 and are for allowing the refrigerant in the gas-liquid multi-state or liquid refrigerant to flow through. - The multi-hole
flat tubes 33 function as heat transfer tubes and cause the heat moving between theheat transfer fins 32 and the outdoor air to be exchanged between the refrigerant flowing inside and theheat transfer fins 32. - The
outdoor heat exchanger 13 is equipped with theheader collection tubes heat exchange section 31. Theheader collection tube 34 has a cylindrical pipe structure made of aluminum and has insidespaces baffle 34 c made of aluminum. A heat exchanger-side gas tube 38 made of aluminum is connected to theinside space 34 a in the upper portion of theheader collection tube 34, and a heat exchanger-side liquid tube 39 made of aluminum is connected to theinside space 34 b in the lower portion of theheader collection tube 34. - The
header collection tube 35 has a cylindrical pipe structure made of aluminum, and insidespaces header collection tube 35 as a result of the inside space of theheader collection tube 35 being partitioned bybaffles flat tubes 33 a connected to theinside space 34 a in the upper portion of theheader collection tube 34 are connected to the three insidespaces header collection tube 35. - Furthermore, the numerous liquid refrigerant multi-hole
flat tubes 33 b connected to theinside space 34 b in the lower portion of theheader collection tube 34 are connected to the three insidespaces header collection tube 35. - Furthermore, the
inside space 35 a and theinside space 35 e of theheader collection tube 35 are interconnected by aconnection tube 36 made of aluminum, and theinside space 35 b and theinside space 35 d are interconnected by aconnection tube 37 made of aluminum, Theinside space 35 c also fulfills the function of interconnecting part of the inside space in the upper portion of the heat exchange section 31 (the section connected to theinside space 34 a) and part of the inside space in the lower portion of the heat exchange section 31 (the section connected to theinside space 34 b). Because of these configurations, during the cooling operation (when theoutdoor heat exchanger 13 functions as a condenser) for example, the gas refrigerant supplied to theinside space 35 a in the upper portion of theheader collection tube 35 by the heat exchanger-side gas tube 38 made of aluminum performs heat exchange in the upper portion of theheat exchange section 31, some of that refrigerant liquefies so that the refrigerant changes to a gas-liquid multi-state, the refrigerant in the gas-liquid multi-state doubles back in theheader collection tube 35 and travels through the lower portion of theheat exchange section 31 where the remaining gas refrigerant liquefies, and the liquid refrigerant exits through the heat exchanger-side liquid tube 39 made of aluminum. -
FIG. 6 is a partially enlarged view showing the cross-sectional structure of theheat exchange section 31 of theoutdoor heat exchanger 13 as cut by a plane perpendicular to the lengthwise direction of the multi-holeflat tubes 33. Theheat transfer fins 32 are flat plates made of thin aluminum, andplural cutouts 32 a extending in the horizontal direction are formed adjacent to one another in the up and down direction in each of theheat transfer fins 32. The multi-holeflat tubes 33 have upper and lower planar portions serving as heat transfer surfaces and pluralinside flow paths 331 through which the refrigerant flows. The multi-holeflat tubes 33, which are slightly thicker than the up and down width of thecutouts 32 a, are arranged in plural tiers spaced apart from one another in a state in which the planar portions face up and down (a state in which the side surfaces of the multi-holeflat tubes 33 are arranged opposing one another), and the multi-holeflat tubes 33 are temporarily fixed in a state in which they have been fitted into thecutouts 32 a. Theheat transfer fins 32 and the multi-holeflat tubes 33 are brazed together in a state in which the multi-holeflat tubes 33 have been fitted into thecutouts 32 a in theheat transfer fins 32 in this way. Furthermore, both ends of each of the multi-holeflat tubes 33 are fitted into and brazed to theheader collection tubes - The
inside spaces header collection tube 34 and theinside spaces header collection tube 35 are connected to theinside flow paths 331 in the multi-holeflat tubes 33. Baffle plates and the like for directing the flow of the refrigerant are disposed in theinside spaces header collection tube 34 and theinside spaces header collection tube 35, but description of details such as these will be omitted. -
FIG. 7 is an enlarged side view of the blower chamber-side side panel 23. Screw holes 23 a and 23 b are formed on the front side of the air inlet 201) in the blower chamber-side side panel 23 made of sheet steel.Brackets side side panel 23 bymale screws 80 or the like made of iron (seeFIG. 16 ) that are screwed into the screw holes 23 a and 23 b, whereby theheader collection tube 35 made of aluminum brazed to thebrackets -
FIGS. 8( a) to 8(d) show thebracket 40 made of aluminum for attaching theoutdoor heat exchanger 13 to the blower chamber-side side panel 23.FIG. 8( a) is a perspective view of thebracket 40 made of aluminum,FIG. 8( b) is a plan view of thebracket 40,FIG. 8( c) is a front view of thebracket 40, andFIG. 8( d) is a side view of thebracket 40. - The
bracket 40 is, for example, formed by pressing a single aluminum sheet. Two clampingpieces 42 that are attached to theheader collection tube 35 of theoutdoor heat exchanger 13 extend from abody portion 41 of thebracket 40. The clampingpieces 42. are each formed in a circular arc shape so as to conform to the outer periphery of the cylindricalheader collection tube 35. Twoattachment pieces 43 extend from the side of thebracket 40 opposite the side with the clampingpieces 42. A throughhole 43 a for allowing a screw to pass through when attaching thebracket 40 to the blower chamber-side side panel 23 is disposed in each of theattachment pieces 43. The through holes 43 a are m1×n1 elongated holes. In order to position thebracket 40 and aresin cover 60,fitting counterparts 43 b formed as a result of parts of the upper edge end portions of theattachment pieces 43 being cut out are disposed in theattachment pieces 43. Asensor retaining portion 44 formed in a concave shape is disposed in thebody portion 41. The shape of thesensor retaining portion 44 can be seen as forming a tubular hole 44 a and aslit 44 b. Theslit 44 b formed on the side opposing theheader collection tube 35 is for allowing a temperature sensor retained in thesensor retaining portion 44 to contact theheader collection tube 35. -
FIG. 9 shows a state in which thebracket 40 made of aluminum has been brazed to theheader collection tube 35. The brazing of thebracket 40 to theheader collection tube 35 is, for example, performed by forming a brazing filler metal on the surface of theheader collection tube 35 beforehand and, in a state in which thebracket 40 has been temporarily fastened to theheader collection tube 35, placing everything in a furnace in a state in which theheat transfer fins 32 made of aluminum and the multi-holeflat tubes 33 made of aluminum have been put together as shown inFIGS. 5 andFIG. 6 . - The
bracket 40 is attached to theheader collection tube 35 in the area around theinside space 35 a shown inFIG. 5 . The inner dimension of a cylindrical hole formed by thesensor retaining portion 44 of thebracket 40 and theheader collection tube 35 is formed slightly smaller than the outer dimension of a case 54 of a temperature sensor 19 (seeFIG. 9 ). By strongly pressing thetemperature sensor 19 into the case 54, thetemperature sensor 19 is fixed in the cylindrical hole. -
FIGS. 10( a) to 10(d) show thebracket 50 made of aluminum, withFIG. 10( a) being a perspective view,FIG. 10( b) being a plan view,FIG. 10( c) being a front view, andFIG. 10( d) being a side view. Like thebracket 40, thebracket 50 is also, for example, formed by pressing a single aluminum sheet. Thebracket 50 differs in shape from thebracket 40 but has the same configuration as that of thebracket 40 in that it has abody portion 51, clampingpieces 52, andattachment pieces 53. Furthermore, a throughhole 53 a is also formed in each of theattachment pieces 53, but the positions where the throughholes 53 a are formed differ from those of the throughholes 43 a in theattachment pieces 43. The through holes 53 a are also m1×n1 elongated holes. In order to position thebracket 40 and theresin cover 60,fitting counterparts 53 b formed as a result of parts of the end portions of theattachment pieces 53 being cut out are disposed in theattachment pieces 53. Thetemperature sensor 19 is not attached to thebracket 50, so a configuration like that of thesensor retaining portion 44 is not formed in thebracket 50. - The
brackets brackets 40 are brought into direct contact with the blower chamber-side side panel 23 made of sheet steel, corrosion of thebrackets resin cover 60 shown inFIGS. 11( a) to 11(c),FIGS. 12(a) to 12(c) , andFIGS. 13( a) to 13(c) is attached to thebrackets brackets side side panel 23 in a state in which theresin cover 60 is interposed between the blower chamber-side side panel 23 and thebrackets FIG. 11( a) is a plan view of the resin cover,FIG. 11( b) is a front view of the resin cover, andFIG. 11( c) is a bottom view of the resin cover.FIG. 12( a) is a left side view of the resin cover,FIG. 12( b) is a back view of the resin cover, andFIG. 12( c) is a right side view of the resin cover. Furthermore,FIG. 13( a) is a sectional view taken along line I-I ofFIG. 12( b) as seen from the direction of the arrows,FIG. 13( b) is a sectional view taken along line II-II ofFIG. 12( b) as seen from the direction of the arrows, andFIG. 13( c) is a partially enlarged sectional view taken along line ofFIG. 12( c) as seen from the direction of the arrows. - The resin covers 60 are used for the two
brackets brackets resin cover 60 is complex, but theresin cover 60 can, for example, be formed by one-time injection molding. Abody portion 61 of theresin cover 60 has aninsertion portion 62 and aninsertion portion 63 for attaching theattachment pieces brackets attachment pieces brackets attachment pieces insertion portion 62. Arecess 65 in the front of thebody portion 61 has a shape conforming to the shape of thebody portion 41 of thebracket 40 and is processed in this shape in order to attach thetemperature sensor 19. - In order to position the
bracket 40 and theresin cover 60,fitting projections insertion portions insertion portions fitting projections fitting counterparts attachment pieces brackets brackets resin cover 60 in the front and rear direction. Theattachment pieces brackets insertion portion 63, whose upper surface, back surface, and right and left side surfaces are enclosed. By leaving theinsertion portion 63 open in the two places of its front surface and its bottom surface, theattachment pieces attachment pieces insertion portion 62 and theinsertion portion 63 become covered by theresin cover 60. For this reason, theresin cover 60 becomes interposed between the blower chamber-side side panel 23 positioned on a side surface side of theresin cover 60 and theattachment pieces brackets side side panel 23 without thebrackets side side panel 23. - An
inner wall 62 a and anouter wall 62 b form the right and left side surfaces of theinsertion portion 62.Open portions 62 aa and 62 ba are formed in theouter wall 62 b in positions corresponding to the throughholes attachment pieces open portion 62 aa and theopen portion 62 ba as seen in a side view is a shape that is substantially the same as that of an m1×n1 elongated hole of the same size as the throughholes - An
inner wall 63 a and anouter wall 63 b form the left and right side surfaces of theinsertion portion 63. The positions of the throughholes attachment pieces open portions 63 ba and 63 bb are formed in theouter wall 63 b.Open portions 63 aa and 63 ab that are larger than theopen portions 63 ba and 63 bb are also formed in theinner wall 63 a in positions corresponding to theopen portions 63 ba and 63 bb. Openings passing completely through from theinner walls outer walls open portion 62 ba, theopen portion 62 aa, theopen portions 63 ba and 63 bb, and theopen portions 63 aa and 63 ab. The shape of the overlapping section between theopen portion 63 aa and theopen portion 63 ba as seen in a side view is a shape that is substantially the same as that of an m1×n1 elongated hole of the same size as the throughholes open portion 63 ab and theopen portion 63 bb as seen in a side view is a shape that is the same as that of an m1×n1 elongated hole of the same size as the throughholes - Furthermore, looking at
FIG. 12( b), aninsertion portion 64 having an opening on the back surface side is formed in theouter wall 62 b. Aside plate portion 72 of a later-describedattachment plate 70 is inserted into theinsertion portion 64. Because theinsertion portion 64 is formed inside theouter wall 62 b, aresin partition 63 bc exists between thebrackets insertion portion 62 and theattachment plate 70 made of iron inserted into theinsertion portion 64. - An
attachment plate 70 is fated into theresin cover 60 in order for thebrackets resin cover 60 to be fastened with male screws to the blower chamber-side side panel 23.FIGS. 14( a) and 14(b) andFIGS. 15( a) and 15(b) show theattachment plate 70, withFIG. 14( a) being a plan view, FIG 14(b) being a front view,FIG. 15( a) being a left side view, andFIG. 15( b) being a right side view. -
Side plate portions like base portion 71 are formed in theattachment plate 70. Thebase portion 71 has a substantially rectangular shape with arecess 71 c in front, The width of thebase portion 71 is substantially equal to the distance between theinner walls resin cover 60. For that reason, when theattachment plate 70 is fitted into theresin cover 60 in a state in which afront end portion 71 a of thebase portion 71 has been brought into contact withfront stoppers 61 a of thebody portion 61 of theresin cover 60, theside plate portion 72 of theattachment plate 70 is inserted into theinsertion portion 63 of theresin cover 60, and theside plate 73 is in contact with and is along theinner wall 63 a of theresin cover 60. Acontact portion 73 c of theside plate 73 contacts the area around the back surface side of theinsertion portion 64, and thefront end portion 71 a of thebase portion 71 contacts thefront stoppers 61 a, so that theattachment plate 70 does not shift forward relative to theresin cover 60. In a state in which theattachment plate 70 does not shift forward in this way, theattachment plate 70. also does not move toward the rear of theresin cover 60 because arear end portion 71 b of thebase portion 71 contacts arear stopper 61 b of thebody portion 61 of theresin cover 60. - Screw holes 72 a and 73 a formed in the
side plate portions open portion 62 aa of theinner wall 62 a of theresin cover 60, theopen portions 63 aa and 63 ab of theinner wall 63 a, theopen portion 62 ba of theouter wall 62 b, and theopen portions 63 ba and 63 bb of theouter wall 63 b. Moreover, the outer dimension of later-described male screws that are screwed into the screw holes 72 a, 73 a, and 73 b is smaller than the inner dimensions of the overlapping section between theopen portions 62 aa and 62 ba, the overlapping section between theopen portions 63 aa and 63 ab, and the overlapping section between theopen portions 63 ba and 63 bb as seen in a side view. Furthermore, the outer dimension of the male screws is smaller than the inner dimension of the throughholes brackets attachment plate 70 is properly attached to theresin cover 60, the male screws can be fastened to the screw holes 72 a, 73 a, and 73 b in theattachment plate 70 in such a way that the male screws are not brought into contact with thebrackets resin cover 60. The screw holes 72 a, 73 a, and 73 b are formed by burring. - When the
attachment plate 70 is attached to theresin cover 60, upward movement of theattachment plate 70 is suppressed as a result of the top portion of theside plate portion 72 contacting the top surface of theinsertion portion 64. -
FIG. 16 shows astute of assembly in which thebracket 40 made of aluminum, theresin cover 60, and theattachment plate 70 made of iron are being fastened with themale screw 80 made of iron to the blower chamber side-side panel 23 made of sheet steel. Furthermore,FIG. 17 shows a state in which thebracket 40 made of aluminum, theresin cover 60, and theattachment plate 70 made of iron have been assembled in a state in which the blower chamber-side side panel 23 has been removed. As shown inFIG. 17 , one of theattachment pieces 43 of thebracket 40 is attached to anair blocking plate 100. - The
attachment plate 70 made of iron is disposed inside theresin cover 60 in a state in which theattachment plate 70 is separated b theresin cover 60 from thebracket 40. Themale screw 80 passing through the throughhole 43 a in thebracket 40 and theopen portion 63 aa etc, of theresin cover 60 fits into thescrew hole 73 b in theattachment plate 70, - Furthermore, as shown in
FIG. 18 , theheader collection tube 34 of theoutdoor heat exchanger 13 is fixed to the machine chamber-side side panel 24 and thepartition panel 28 bybrackets 90 made of aluminum, resin covers 92, andattachment plates 93 made of iron. Thebrackets 90 made of aluminum, the resin covers 92, and theattachment plates 93 made of iron have structures similar to those of thebrackets resin cover 60, and theattachment plate 70, so description thereof will be omitted. Thebrackets 90 also have two attachment pieces each like thebrackets side side panel 24 and thepartition panel 28. Because their attachment places are different, thebrackets 90 made of aluminum, the resin covers 92, and theattachment plates 93 made of iron may also have their structures changed from those of thebrackets resin cover 60, and theattachment plate 70. - In the
outdoor unit 2, the clamping pieces (a securing portion) as typified by the clampingpieces brackets outdoor heat exchanger 13 made of aluminum, and the attachment pieces (a fixing portion) as typified by theattachment pieces resin cover partition panel 28 made of sheet steel (a structural part made of a non-aluminum metal), so the aluminum and the sheet steel do not contact one another. Thebracket side side panel 23 made of sheet steel, Furthermore, thebracket 90 made of aluminum is also cooperatively fastened by a male screw (not shown in the drawings) made of iron and the attachment plate 93 (an anchored structure) made of iron and is fixed to the (machine chamber-side side panel 24 and thepartition panel 28 made of sheet steel. - However, an outer diameter d (outer shape) of the male screw 80 (an anchoring part) is smaller than the dimension (hole outer shape) of the through
hole bracket bracket side side panel 23, the machine chamber-side side panel 24, and thepartition panel 28, and thebracket bracket male screw 80 made of iron (made of a non-aluminum metal) passing through the throughhole attachment pieces hole attachment pieces 43 and 53). - In this way, the
male screw 80 made of iron does not contact thebracket attachment pieces brackets outdoor heat exchanger 13 made of aluminum can be prevented, and problems such as looseness occurring in the attachment of theoutdoor heat exchanger 13 due to such corrosion or the like can be prevented from being triggered. - Of course, the
resin cover attachment pieces bracket side side panel 23, the machine chamber-side side panel 24, and thepartition panel 28 and maintain both in a non-contact state. For that reason, the blower chamber-side side panel 23, the machine chamber-side side panel 24, and the partition panel 28 (examples of a structural part) made of sheet steel (made of a non-aluminum metal) do not contact the bracket as typified by thebracket - In the above embodiment, resin members such as the resin covers 60 and 92 are taken as an example and described as a non-metal component, but the non-metal component may also be a member comprising a polymer material, such as a rubber member, or a member comprising a non-metal inorganic material, such as a ceramic member. Of course, the non-metal component here is a member configured by a material that does not promote corrosion between it and aluminum or aluminum alloy as much as a non-aluminum metal.
- The blower chamber-
side side panel 23 and the machine chamber-side side panel 24 (examples of a structural part) made of sheet steel (made of a non-aluminum metal) are theunit casing 20 made of sheet steel (a casing made of a non-aluminum metal). Thebracket resin cover 60 to theunit casing 20, and it becomes easier to make theoutdoor unit 2 compact. - The
resin cover 60 has theinner wall outer wall insertion portion attachment pieces 43 or 53 (a fixing portion) of thebracket insertion portions resin cover 60 and theattachment pieces bracket attachment pieces bracket inner walls outer wall resin cover 60, so thebracket resin cover 60. As a result, the fixing of theoutdoor heat exchanger 13 made of aluminum can be strengthened, and the effect of preventing the occurrence of problems such as looseness of the attachment of theoutdoor heat exchanger 13 can be improved. - The
bracket 90 made of aluminum has two attachment pieces like theattachment pieces bracket bracket 90 can be fixed at the two places of the machine chamber-side side panel 24 and thepartition panel 28 using the two attachment pieces, so the stability of the fixing of theoutdoor heat exchanger 13 can be improved, and problems such as the occurrence of noise resulting from rattling of theoutdoor heat exchanger 13 can be prevented. - As described above, by fastening with the
male screw 80 made of iron and theattachment plate 70 having thescrew hole attachment plate 70 and theresin cover 60 is easy and it becomes easier to handle them. Additionally, by using themale screw 80 made of iron, an anchoring part having the necessary strength can be obtained at a low cost, so theoutdoor unit 2 can be provided at a low cost. Furthermore, themale screw 80 can be tightened in just theattachment plate 70 because thescrew hole outdoor unit 2 can be reduced. - In the above embodiment, a case was described where members made of aluminum were used for the
outdoor heat exchanger 13 and so forth, but the members made of aluminum can also be replaced with members made of aluminum alloy; for example, an outdoor heat exchanger made of aluminum alloy can be used instead of theoutdoor heat exchanger 13 made of aluminum, and bracket made of aluminum alloy can be used instead of thebrackets - In the above embodiment, a case was described where iron and steel were used as the non-aluminum metal, but another metal such as copper or copper alloy may also be used.
- In the above embodiment, a molded body of resin was used for the
resin cover 60, but the molded body may also be formed of another material, such as a ceramic or prepreg composite member. - In the above embodiment, a case was described where the
attachment plate 70 was used for the anchored structure anchored by themale screw 80, but the anchored structure may also be a nut made of iron and capable of anchoring themale screw 80 or a female-threaded portion made of resin molded in theresin cover 60 and capable of anchoring themale screw 80, and an anchoring member other than a screw and an anchored structure may also be used. - In the above embodiment, a case was described where the
male screw 80 was attached to the attachment plate 70 (an anchored structure), but instead of the screws hole 72 a, 73 a, or 73 b in theattachment plate 70, screw hole may also be formed in the blower chamber-side side panel 23, the machine chamber-side side panel 24, or thepartition panel 28, and themale screw 80 may be screwed into the screw hole in the blower chamber-side side panel 23, the machine chamber-side side panel 24, or thepartition panel 28 to fix thebracket resin cover side side panel 23, the machine chamber-side side panel 24, or thepartition panel 28 become an anchored structure. -
- 1 Air Conditioning Apparatus
- 2 Outdoor Unit
- 3 Indoor Unit
- 13 Outdoor Heat Exchanger
- 20 Unit Casing
- 34, 35 Header Collection Tubes
- 40, 50, 90 Brackets
- 60, 92 Resin Covers
- 70, 93 Attachment Plates
- Patent Document 1: JP-A No. H7-234088
Claims (10)
1. An outdoor unit (2) of a refrigeration apparatus comprising
a heat exchanger constructed of aluminum or aluminum alloy;
a bracket constructed of aluminum or aluminum alloy, the bracket including a securing portion attached directly to the heat exchanger and a fixing portion having a through hole used to fix the bracket to a structural part constructed of non-aluminum metal;
a non-metal component interposed between the fixing portion of the bracket and the structural part that are fixed to one another such that the fixing portion of the bracket and the structural part are in a non-contact state;
an anchoring part constructed of non-aluminum metal, the anchoring part having an outer shape smaller than the through hole in the fixing portion; and
an anchored structure cooperating with the anchoring part to fasten the fixing portion of the bracket to the structural part via the non-metal component,
the non-metal component maintains, in a state in which the anchoring part is passing through the through hole in the fixing portion, a non-contact state between the bracket and the anchoring part.
2. The outdoor unit of the refrigeration apparatus according to claim 1 , further comprising
a casing constructed of non-aluminum metal, the casing housing the heat exchanger and being the structural part.
3. The outdoor unit of t le refrigeration apparatus according to claim 2 , wherein
the non-metal component has a sandwiching structure that sandwiches sides the fixing portion of the bracket, and
the anchoring part and the anchored structure fasten together the sandwiching structure of the non-metal component and the fixing portion of the bracket.
4. The outdoor unit of the refrigeration apparatus according to claim 3 , wherein
the anchoring part is a male screw constructed of non-aluminum metal, and
the anchored structure is one of
a nut separate from the structural part, the nut being configured to anchor the male screw,
an attachment plate having a screw hole, the attachment plate being configured to anchor the male screw, and
a female-threaded portion in the non-metal component, the female-threaded component being configured to anchor the male screw.
5. The outdoor unit of the refrigeration apparatus according to claim 4 , wherein
the anchored structure is the attachment plate having the screw hole, and the screw hole in the attachment plate is burred.
6. The outdoor unit of the refrigeration apparatus according to claim 1 , wherein
the bracket has a plurality of the fixing portions.
7. The outdoor unit of the refrigeration apparatus according to claim 2 , wherein
the bracket has a plurality of the fixing portions.
8. The outdoor unit of the refrigeration apparatus according to claim 3 , wherein
the bracket has a plurality of the fixing portions.
9. The outdoor unit of the refrigeration apparatus according to claim 4 , wherein
the bracket has a plurality of the fixing portions.
10. The outdoor unit of the refrigeration apparatus according to claim 5 , wherein
the bracket has a plurality of the fixing portions.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-290082 | 2011-12-28 | ||
JP2011290082A JP5263381B2 (en) | 2011-12-28 | 2011-12-28 | Refrigeration unit outdoor unit |
PCT/JP2012/083579 WO2013099908A1 (en) | 2011-12-28 | 2012-12-26 | Outdoor unit for refrigeration apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150041101A1 true US20150041101A1 (en) | 2015-02-12 |
Family
ID=48697392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/369,161 Abandoned US20150041101A1 (en) | 2011-12-28 | 2012-12-26 | Outdoor unit of refrigeration apparatus |
Country Status (9)
Country | Link |
---|---|
US (1) | US20150041101A1 (en) |
EP (1) | EP2799788B1 (en) |
JP (1) | JP5263381B2 (en) |
KR (1) | KR101441283B1 (en) |
CN (1) | CN104024745B (en) |
AU (1) | AU2012361651B2 (en) |
BR (1) | BR112014016010B1 (en) |
ES (1) | ES2641692T3 (en) |
WO (1) | WO2013099908A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120023989A1 (en) * | 2009-03-19 | 2012-02-02 | Daikin Industries, Ltd. | Air conditioning apparatus |
US20180106548A1 (en) * | 2015-04-28 | 2018-04-19 | Thomas Euler-Rolle | Cooler station for connection of a liquid cooler |
US11248856B2 (en) | 2017-03-10 | 2022-02-15 | Daikin Industries, Ltd. | Refrigeration apparatus |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203336731U (en) * | 2013-05-17 | 2013-12-11 | 夏普株式会社 | Outdoor unit of air conditioner |
JP2016011758A (en) * | 2014-06-27 | 2016-01-21 | 日立アプライアンス株式会社 | Outdoor unit of air conditioner and air conditioner |
CN105485791A (en) * | 2016-02-16 | 2016-04-13 | 珠海格力电器股份有限公司 | Air condensing units and off-premises station baffle thereof |
JP6678620B2 (en) * | 2017-04-12 | 2020-04-08 | 日立ジョンソンコントロールズ空調株式会社 | Outdoor unit and refrigeration cycle device |
JP7324684B2 (en) * | 2019-10-28 | 2023-08-10 | 株式会社コロナ | Outdoor unit |
JP2023102026A (en) * | 2022-01-11 | 2023-07-24 | パナソニックIpマネジメント株式会社 | Outdoor unit of air conditioning device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4306615A (en) * | 1980-05-19 | 1981-12-22 | Carrier Corporation | Apparatus for assembling an air conditioning unit including a tube sheet isolator |
US6199622B1 (en) * | 1998-07-30 | 2001-03-13 | Calsonic Kansei Corporation | Connecting structure for connecting radiator and condenser |
US6390180B1 (en) * | 1999-12-10 | 2002-05-21 | Mark W. Olsen | Heat exchanger isolation device |
US6705387B2 (en) * | 2000-09-07 | 2004-03-16 | Denso Corporation | Mounting structure for heat exchanger and duplex heat exchanger |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2913885C2 (en) * | 1979-04-06 | 1984-04-12 | Hunter Douglas Industries B.V., 3008 Rotterdam | Louvre blind with vertically arranged slats |
JPS5922443Y2 (en) * | 1979-04-26 | 1984-07-04 | 株式会社ボッシュオートモーティブ システム | Capacitors for vehicle air conditioners |
JPH0452098Y2 (en) * | 1986-03-31 | 1992-12-08 | ||
JPH07113520B2 (en) * | 1991-08-30 | 1995-12-06 | 昭和アルミニウム株式会社 | Heat exchanger |
JPH07234088A (en) | 1994-02-23 | 1995-09-05 | Calsonic Corp | Heat exchanger of aluminum alloy |
KR0132997B1 (en) * | 1994-08-20 | 1998-04-21 | 김광호 | Outlet machine of airconditioner |
JP2004183906A (en) * | 2002-11-29 | 2004-07-02 | Fujitsu General Ltd | Air conditioner |
JP4479207B2 (en) * | 2003-10-09 | 2010-06-09 | パナソニック株式会社 | Air conditioner outdoor unit |
JP2008151392A (en) * | 2006-12-15 | 2008-07-03 | Daikin Ind Ltd | Positional deviation preventing member, and heat exchanger for air-conditioning unit provided therewith |
JP5401685B2 (en) * | 2008-12-25 | 2014-01-29 | 三菱電機株式会社 | Air conditioner outdoor unit |
JP4388994B1 (en) * | 2008-12-25 | 2009-12-24 | シャープ株式会社 | Heat exchanger |
JP5212244B2 (en) * | 2009-04-21 | 2013-06-19 | 株式会社デンソー | Radiator mounting structure |
JP2011145029A (en) * | 2010-01-18 | 2011-07-28 | Sharp Corp | Air conditioner |
-
2011
- 2011-12-28 JP JP2011290082A patent/JP5263381B2/en active Active
-
2012
- 2012-12-26 WO PCT/JP2012/083579 patent/WO2013099908A1/en active Application Filing
- 2012-12-26 CN CN201280065153.3A patent/CN104024745B/en active Active
- 2012-12-26 EP EP12862960.7A patent/EP2799788B1/en active Active
- 2012-12-26 KR KR1020147020872A patent/KR101441283B1/en active IP Right Grant
- 2012-12-26 AU AU2012361651A patent/AU2012361651B2/en active Active
- 2012-12-26 BR BR112014016010-4A patent/BR112014016010B1/en active IP Right Grant
- 2012-12-26 US US14/369,161 patent/US20150041101A1/en not_active Abandoned
- 2012-12-26 ES ES12862960.7T patent/ES2641692T3/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4306615A (en) * | 1980-05-19 | 1981-12-22 | Carrier Corporation | Apparatus for assembling an air conditioning unit including a tube sheet isolator |
US6199622B1 (en) * | 1998-07-30 | 2001-03-13 | Calsonic Kansei Corporation | Connecting structure for connecting radiator and condenser |
US6390180B1 (en) * | 1999-12-10 | 2002-05-21 | Mark W. Olsen | Heat exchanger isolation device |
US6705387B2 (en) * | 2000-09-07 | 2004-03-16 | Denso Corporation | Mounting structure for heat exchanger and duplex heat exchanger |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120023989A1 (en) * | 2009-03-19 | 2012-02-02 | Daikin Industries, Ltd. | Air conditioning apparatus |
US9335071B2 (en) * | 2009-03-19 | 2016-05-10 | Daikin Industries, Ltd. | Air conditioning apparatus |
US20180106548A1 (en) * | 2015-04-28 | 2018-04-19 | Thomas Euler-Rolle | Cooler station for connection of a liquid cooler |
US11231231B2 (en) * | 2015-04-28 | 2022-01-25 | Thomas Euler-Rolle | Cooler station for connection of a liquid cooler |
US11248856B2 (en) | 2017-03-10 | 2022-02-15 | Daikin Industries, Ltd. | Refrigeration apparatus |
Also Published As
Publication number | Publication date |
---|---|
ES2641692T3 (en) | 2017-11-13 |
JP5263381B2 (en) | 2013-08-14 |
BR112014016010A8 (en) | 2017-07-04 |
JP2013139927A (en) | 2013-07-18 |
KR20140100582A (en) | 2014-08-14 |
KR101441283B1 (en) | 2014-09-17 |
CN104024745A (en) | 2014-09-03 |
AU2012361651A1 (en) | 2014-08-14 |
BR112014016010A2 (en) | 2017-06-13 |
WO2013099908A1 (en) | 2013-07-04 |
EP2799788A4 (en) | 2014-12-24 |
CN104024745B (en) | 2015-04-15 |
AU2012361651B2 (en) | 2014-10-09 |
BR112014016010B1 (en) | 2021-04-20 |
EP2799788B1 (en) | 2017-08-23 |
EP2799788A1 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150041101A1 (en) | Outdoor unit of refrigeration apparatus | |
US20140360222A1 (en) | Outdoor unit of refrigeration apparatus | |
US9447980B2 (en) | Outdoor unit of refrigeration apparatus | |
US10782035B2 (en) | Heat exchanger assembly and outdoor unit of refrigerating apparatus | |
JP4389793B2 (en) | Refrigerant radiator mounting structure | |
JP5963261B2 (en) | Air conditioner | |
KR102058953B1 (en) | Outdoor unit | |
CN214647436U (en) | Parking air conditioner | |
KR20100084402A (en) | Air conditioner | |
US20130105114A1 (en) | Air conditioner | |
WO2018150581A1 (en) | Outdoor unit for air conditioner | |
CN218544638U (en) | Outdoor machine of air conditioner | |
CN217004692U (en) | Indoor machine of air conditioner | |
CN212319862U (en) | Vertical air conditioner and indoor unit thereof | |
CN213901278U (en) | Outdoor machine of air conditioner | |
EP4338989A1 (en) | Air conditioner for railway car | |
JP2015010767A (en) | Outdoor unit of air conditioner | |
KR20070074793A (en) | Air-condition's pipe retainer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIKIN INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSHIKA, KEITAROU;ONO, TAKASHI;ANDOU, HIROKI;AND OTHERS;SIGNING DATES FROM 20130418 TO 20130425;REEL/FRAME:033191/0616 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |