US20150019587A1 - Method for analyzing demographic data - Google Patents

Method for analyzing demographic data Download PDF

Info

Publication number
US20150019587A1
US20150019587A1 US14/502,517 US201414502517A US2015019587A1 US 20150019587 A1 US20150019587 A1 US 20150019587A1 US 201414502517 A US201414502517 A US 201414502517A US 2015019587 A1 US2015019587 A1 US 2015019587A1
Authority
US
United States
Prior art keywords
computer
implemented method
geographic areas
location
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/502,517
Inventor
Andrew Schiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOCATION Inc GROUP CORP
Original Assignee
LOCATION Inc GROUP CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/329,179 external-priority patent/US7043501B2/en
Application filed by LOCATION Inc GROUP CORP filed Critical LOCATION Inc GROUP CORP
Priority to US14/502,517 priority Critical patent/US20150019587A1/en
Assigned to LOCATION INC. GROUP CORPORATION reassignment LOCATION INC. GROUP CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHILLER, ANDREW
Publication of US20150019587A1 publication Critical patent/US20150019587A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • G06F17/30241
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/912Applications of a database
    • Y10S707/918Location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/912Applications of a database
    • Y10S707/918Location
    • Y10S707/919Geographic

Definitions

  • the present invention relates to a system for analyzing and comparing demographic and other data related to identifiable geographic areas to evaluate their similarity or dissimilarity. More specifically, this invention relates to a new system for calculating numeric values that are related to identifiable characteristics for a specific area of the country based on that area's demographic and other information and comparing it to similarly generated numbers for another area of the country to determine the relative similarity or differences.
  • a forty-page inventor's disclosure is attached which illustrates the present invention.
  • the other difficulty is that the data that is available is primarily numeric making searching difficult. Before a user could search the data to arrive at a useful result, the user would have to have a thorough understanding of the rating system or systems used in the database.
  • a system that automatically analyzes and compares the data available in the database to produce a result based on user selected input and desired characteristics.
  • the present invention provides both for a system of analyzing the available data and a method of automatically comparing the data to arrive at a listing of comparable geographic areas based on the users desired characteristics.
  • the first aspect of the present invention is the utilization of known statistical and mathematical functions using Principal Components Analysis to produce factors followed by squared Euclidean distance calculated on these resulting factors. This mathematical function is applied to compare large amounts of demographic, crime, school and geographic data for identifiable locations all across America relative to each other. The result of this unique mathematical function provides a quantitative value for each pair of locations that are compared providing a matrix containing a quantitative measure of dissimilarity for each compared set of locations in America.
  • the method first compares the numbers related to the first chosen characteristic of each geographic area of interest, calculates their difference and squares it. The method then repeats this calculation on the second chosen characteristic and adds the result to the result of the first calculation. This process is repeated using each of the identifiable characteristics related to the given geographic areas.
  • This aggregate number is then placed in a matrix in the location identified by the intersection of the row containing the first geographic area of interest and the column containing the second area of interest. The larger the accumulated value between any two intersecting rows and columns in this matrix, the more dissimilar those two locations are based on all of the factors used to describe the locations. Small numeric values between any two locations in the matrix means those locations are quite similar to each other based on all of the factors used to describe the locations.
  • the present invention provides a system for the development of quantitative measures of similarity between all locations in America.
  • the second component of the present invention is the use of key word descriptors that provide a verbal expression describing features and characteristics of locations, where each key word is related to and associated with the quantitative values provided in an underlying data base that reflect local conditions in particular geographic areas.
  • This component allows users of the application to select verbal, natural language descriptors in the form of these key words to easily relate to and identify characteristics that they find desirable about a geographic location and instruct the application of the present invention to find locations that most closely match the chosen characteristics.
  • Using key words that correspond to identifiable quantitative values to describe locations creates an interface that allows the users never to have to think in quantitative terms, while still requesting a list of locations that have the characteristics that they want.
  • the application of the present invention automatically converts the key words to quantitative values and performs an average absolute difference calculation to compute a value corresponding to the selected set of keywords and calculate the overall level of similarity between the key words a user chooses, and real locations that exist.
  • the final component of the application of the present invention is the ability of the user to choose a location they presently find desirable and view the set of key words that are associated with that location.
  • the user can then modify the set of key words by selecting or unselecting key words that describe the location and adding or subtracting key words that they either like or dislike, resulting in a modified set of key words.
  • This new set of key words can then be used as a new set of search criteria to find locations that best match these newly selected key words. This allows a user to find locations that are comparable to an existing location that they like, but with, for example, less crime, better schools, or less expensive housing.
  • the application automatically calculates the average absolute difference between all of the data base values using the value for the original location, in combination with the newly modified keywords selected by the user.
  • the present invention therefore as described above provides both for the underlying method of analysis of the demographical and location data the various means of user interface provided in the application and the process whereby the application is used by a user to provide meaningful analysis and produce ordered search results based on characteristics of the locations in relation to user selected search criteria.
  • the first distinctive component is the utilization of known statistical and mathematical functions (Principal Components Analysis followed by squared Euclidean distance calculated on the resulting factors) applied to large amounts of demographic, crime, school, and geographic data for locations all across America.
  • the result of this unique combination is the creation of a matrix containing a quantitative measure of dissimilarity for all locations in America. The larger the value between any two intersecting rows and columns in this matrix, means those locations are more dissimilar based on all of the factors used to describe the locations. Small numeric values between any two locations in the matrix means those locations are quite similar to each other based on all of the factors used to describe the locations. Thus, this approach allows the development of quantitative measures of similarity between all locations in America.
  • the second distinctive component of this application is the use of key words that describe features and characteristics of locations, where each key word is linked to quantitative values in an underlying data base, values that reflect local conditions.
  • This unique approach allows users of the application to select these easy to understand key words to choose what characteristics they wish to have in a location, and then ask the application to automatically find locations that most closely match those chosen characteristics.
  • Using key words that describe locations linked to quantitative values in a data base means users never have to think in quantitative terms, but can still request to find those locations that have characteristics they want.
  • the third distinctive component of this application is the use of an average absolute difference calculation to compute the match level between any or a set of key words a user chooses, and real locations that exist.
  • the fourth distinctive component of this application is the ability of the user to choose a location they like, and then select or unselect key words that describe the location, resulting in the modification of the location descriptors and, thus, a new set of search criteria to use to find locations that best match these modified criteria.
  • This allows a user to find locations just like a location they like, but with, for example, less crime, better schools, or less expensive housing.
  • To find best matching locations to these modified criteria average absolute difference is calculated between all of the data base values for the original location, in combination with the new modifications selected by the user.
  • the user first chooses a method to find the best location for him.
  • the user has chosen to match an existing neighborhood that the user likes.
  • the user specifies the location he likes by typing in any address in that location as shown in FIG. 2 .
  • the user specifies the area in which to search for locations that best match the location the user likes ( FIG. 3 ).
  • the search the user requested above is automatically completed by the system by searching a data base with the following structure:
  • Values between any two intersecting rows and columns represent the dissimilarity between the two locations labeled on the axes. Larger numbers denote larger difference. Smaller numbers denote smaller difference. Zero denotes either identity (the intersecting row and column represent the same location) or that two different locations are identical. To conduct the search the user specified above, only those locations within five miles of downtown Boston would be included, and then those locations with the smallest numbers between them and the location for which the user chose to find a match would be shown to the user as the ordered result of the user's search, and would be displayed to the user as shown in FIG. 4 .
  • Step 1 Data are collected for nearly 200 characteristics for each location (in this case, census tract) in America.
  • Step 2 a factor analysis using Principal components as the extraction method is performed on the data (formula shown in A). This rids the raw data of multicolinearity, and simultaneously serves to standardize all values.
  • the estimated specific variances are provided by the diagonal elements of the matrix.
  • Step 3 The number of factors extracted is set to capture 95% of the total variance contained in the original data.
  • Step 4 The extracted factors are saved in the data base, thus there are factor scores for each census tract for every factor.
  • Step 5 The saved factors scores for every census tract in America are input to the formula in B to calculate a dissimilarity matrix containing all census tracts.
  • dissimilarity matrix shows a mathematical calculation of the similarity or dissimilarity of every census tract in America, to every other census tract in America.
  • the same match levels described FIG. 4 are used to develop a map of the census tracts in the specified search area, colored to the match level. Notice that the best five matches are labeled, and in this case, all fall in the northern portion of the search area.
  • the user can then click on any of the matching locations to learn what characteristics about each location are the best and worst matches to the location for which comparison is being drawn. For example, Table 2 below compares categorized characteristics (e.g., cost of housing or school quality) of the selected census tract to categorized characteristics of the census tract for which matches were requested.
  • Table 3 which can be selected by the user, is a continuation of the breakdown of the categories of characteristics, and how well they match the census tract for which matches were sought. These calculations for matches by category are based on the average absolute difference between rank percent values for all characteristics in each category. This calculation is explained on the next slide.
  • Step 1 Rank percent scores are calculated for each characteristic, as shown in C, and saved in the data base.
  • ties are assigned the highest value, and the first rank is assigned a value of 0. This serves to curve the values for each characteristic, such that the rank percent values show the percentage of census tracts in America that are better matches to that specific characteristic than the current census tract (e.g., a rank percent score of 10.5 means that 10.5 percent of the census tracts in America had higher scores for that characteristic than the current census tract).
  • N is the total number of cases (census tracts).
  • Step 2 The average absolute difference between any category of characteristics (e.g., types of housing) for any two census tracts is calculated on demand, as shown in D. Only the characteristics within each category are included for this calculation (e.g., for types of housing this would be the average absolute difference in rank percent scores between two compared census tracts for these categories: detached single family homes, small apartment buildings, big apartment buildings, townhouses or other attached homes, and mobile homes). As the value inflates for this category, the match for housing type between the two census tracts is shown to be less good. Lastly, the results of the calculation in D are subtracted from 100, so a value of 10 becomes a 90% match. See the previous slide for an example.
  • D The average absolute difference between any category of characteristics (e.g., types of housing) for any two census tracts is calculated on demand, as shown in D. Only the characteristics within each category are included for this calculation (e.g., for types of housing this would be the average absolute difference in rank percent scores between two compared census tracts for these categories: detached single family
  • M cc Z match level for characteristic category Z
  • X ik value of rank percent score k for census tract l
  • n the number of k characteristics in characteristic category Z.
  • a second distinctive feature of this unique application is the use of key words to allow the user to select characteristics of his or her ideal location, without having to specify numeric values for any, because each of the key words is linked to an underlying data base of numeric values.
  • FIGS. 8-13 show the unique use of key words describing characteristics of locations in America, key words that can be selected, and are linked to a large numeric data base.
  • key words This use of key words is the second distinctive component of this application. As illustrated in preceding slides, these key words describe features and characteristics of locations, where each key word is linked to quantitative values in an underlying data base. This unique approach allows users of the application to select these easy to understand key words to choose what characteristics they wish to have in a location, and then ask the application to find and order locations that most closely match those chosen characteristics.
  • FIGS. 14-16 is an illustration and description of how matches are determined between combinations of selected key words, and real locations.
  • the user simply wants to find a location with historic, large homes. He or she selects those two key words and hits submit ( FIG. 15 ). The user then chooses the search area, from which best matches will be drawn, and hits submit ( FIG. 16 ).
  • Best matching locations are automatically calculated as follows, based on the two key words selected:
  • Step 1 Rank percent scores are calculated for each characteristic, as shown in E, and saved in the data base ahead of time. When the user requests a query, these values are already to go.
  • N is the total number of cases (census tracts).
  • rank percent scores are assigned the highest value, and the first rank is assigned a value of 0. This serves to curve the values for each characteristic, such that the rank percent values show the percentage of census tracts in America that are better matches to that specific characteristic than the current census tract (e.g., a rank percent score of 10.5 means that 10.5 percent of the census tracts in America had higher scores for that characteristic than the current census tract).
  • Step 2 The average absolute difference between the best rank percent score possible for each selected key word and the rank percent score for each of these same key words for every census tract in the search area is calculated. **A zero is always the best rank percent score possible, because this means that zero percent of the census tracts in America have a better score for that key word. This calculation is shown in F. Lastly, the results of the calculation in F are subtracted from 100, so a value of 10 is represented as a 90% match.
  • M kw z a location's average match level to the best score possible for all selected key words
  • X jk value of the rank percent score for key word k for location l
  • X kk the lowest possible value for key word k (always zero)
  • n the number of k key words selected.
  • the user has chosen historic homes, and large homes. The user then chose to search within five miles of Newport, R.I. Matches were calculated as described and arc presented on the screen as shown in FIG. 17 , and the two top matching locations to the selected set of key words are shown here. As can be seen, the best matching location is an 82% match to the selected key words. As described above, the user can then click on the locations to find out which key words best and least matched. As shown in FIG. 18 , the selected location in Newport, R.I.
  • Table 3 In on embodiment as shown in Table 3 are listed in descending order the actual percentages of buildings in each class, while the matches are based on the percentages of census tracts in America that have fewer percentages of the types of buildings the user wishes to have in a location.
  • the left hand column shows the user what to expect in the locator (Newport, R.I., neighborhood #9), and the match level shows how this census tract falls relative to other census tracts in America in regards to the characteristics chosen by the user (historic homes and large homes).
  • Another characteristic of this new product is the ability given to the user to select a location they like, and then modify some characteristics of it by selecting or unselecting key words in a list, so that the location is more to the users liking. Then the modified version (modified search criteria) is quantitatively compared against real locations in a user-defined search area to automatically find and rank order best matches.
  • FIG. 19 The screen display and selection of this feature is shown in FIG. 19 .
  • the user first selects a location that he or she likes, but wishes were slightly different ( FIG. 20 ).
  • the user is then presented with a scrollable page and asked to add or subtract words to modify the location as they wish.
  • FIGS. 21-25 show how this location—39 Wildrose Avenue, Worcester, Mass., is currently described, and all the things the user could chose to modify it.
  • the user is then presented with a screen display as shown in FIG.
  • the search area includes the original location.
  • Search results are delivered as shown in FIGS. 28 and 29 .
  • the user sees that she wanted a location like 39 Wildrose Avenue in Worcester, yet modified to have top-quality public schools and a low crime rate. And, that the area to search for matches is within 15 miles of Worcester.
  • the results are presented with match levels.
  • the second best match in the search area is the original, unmodified neighborhood itself. The best match is a location in Holden, Mass.
  • M mod a location's match level to the combination of both the modified and unmodified key word values for which we are searching for matches
  • X ik value of the rank percent score for key word k for location l
  • X kk the user selected value for the rank percent score for modified key word k (if a check box is used, than the value will be zero, for drop-down boxes, the value can be anything the user chooses)
  • n the sum of the number of k key words modified *2, and the number of k key words unmodified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Data Mining & Analysis (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

A computer implemented method of generating an ordered list of geographical locations having similarities in preselected categories relative to a first geographical location.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 11/331,262, filed Jan. 11, 2006, which is a continuation of U.S. Pat. No. 7,043,501, issued May 9, 2006, which claims priority from provisional patent application No. 60/342,285, filed on Dec. 21, 2001. The priority of this prior application is expressly claimed and its disclosure is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a system for analyzing and comparing demographic and other data related to identifiable geographic areas to evaluate their similarity or dissimilarity. More specifically, this invention relates to a new system for calculating numeric values that are related to identifiable characteristics for a specific area of the country based on that area's demographic and other information and comparing it to similarly generated numbers for another area of the country to determine the relative similarity or differences. A forty-page inventor's disclosure is attached which illustrates the present invention.
  • Currently, a broad range of data regarding the character of particular areas of the country is available for public access. The data however is in raw form. Data describing the demographics, crime rates, educational quality, housing characteristics, employment opportunities, climates and geographic data is all available for review. The difficulty is that none of the data is presented in a manner that facilitates accurate and easy comparison between selected geographic areas that can incorporate multiple characteristics regarding each area. Although many services attempt to provide comparison information, the accuracy provided by these systems is questionable. For example, it a person wished to find several cities that had similar characteristics and qualities to the town in which they currently live, they would have to first find the city in which they are interested and subsequently search all of the data manually to find cities having similar data sets.
  • The other difficulty is that the data that is available is primarily numeric making searching difficult. Before a user could search the data to arrive at a useful result, the user would have to have a thorough understanding of the rating system or systems used in the database.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention a system is provided that automatically analyzes and compares the data available in the database to produce a result based on user selected input and desired characteristics. The present invention provides both for a system of analyzing the available data and a method of automatically comparing the data to arrive at a listing of comparable geographic areas based on the users desired characteristics. The first aspect of the present invention is the utilization of known statistical and mathematical functions using Principal Components Analysis to produce factors followed by squared Euclidean distance calculated on these resulting factors. This mathematical function is applied to compare large amounts of demographic, crime, school and geographic data for identifiable locations all across America relative to each other. The result of this unique mathematical function provides a quantitative value for each pair of locations that are compared providing a matrix containing a quantitative measure of dissimilarity for each compared set of locations in America.
  • The method first compares the numbers related to the first chosen characteristic of each geographic area of interest, calculates their difference and squares it. The method then repeats this calculation on the second chosen characteristic and adds the result to the result of the first calculation. This process is repeated using each of the identifiable characteristics related to the given geographic areas. This aggregate number is then placed in a matrix in the location identified by the intersection of the row containing the first geographic area of interest and the column containing the second area of interest. The larger the accumulated value between any two intersecting rows and columns in this matrix, the more dissimilar those two locations are based on all of the factors used to describe the locations. Small numeric values between any two locations in the matrix means those locations are quite similar to each other based on all of the factors used to describe the locations. Thus, the present invention provides a system for the development of quantitative measures of similarity between all locations in America.
  • The second component of the present invention is the use of key word descriptors that provide a verbal expression describing features and characteristics of locations, where each key word is related to and associated with the quantitative values provided in an underlying data base that reflect local conditions in particular geographic areas. This component allows users of the application to select verbal, natural language descriptors in the form of these key words to easily relate to and identify characteristics that they find desirable about a geographic location and instruct the application of the present invention to find locations that most closely match the chosen characteristics. Using key words that correspond to identifiable quantitative values to describe locations creates an interface that allows the users never to have to think in quantitative terms, while still requesting a list of locations that have the characteristics that they want. Once the user selects the key words that correspond to the characteristics that they find desirable, the application of the present invention automatically converts the key words to quantitative values and performs an average absolute difference calculation to compute a value corresponding to the selected set of keywords and calculate the overall level of similarity between the key words a user chooses, and real locations that exist.
  • The final component of the application of the present invention is the ability of the user to choose a location they presently find desirable and view the set of key words that are associated with that location. The user can then modify the set of key words by selecting or unselecting key words that describe the location and adding or subtracting key words that they either like or dislike, resulting in a modified set of key words. This new set of key words can then be used as a new set of search criteria to find locations that best match these newly selected key words. This allows a user to find locations that are comparable to an existing location that they like, but with, for example, less crime, better schools, or less expensive housing. Again, as stated above, once the set of keywords is provided by the user, the application automatically calculates the average absolute difference between all of the data base values using the value for the original location, in combination with the newly modified keywords selected by the user.
  • The present invention therefore as described above provides both for the underlying method of analysis of the demographical and location data the various means of user interface provided in the application and the process whereby the application is used by a user to provide meaningful analysis and produce ordered search results based on characteristics of the locations in relation to user selected search criteria.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the drawings, the invention will be described in greater detail,
  • The first distinctive component is the utilization of known statistical and mathematical functions (Principal Components Analysis followed by squared Euclidean distance calculated on the resulting factors) applied to large amounts of demographic, crime, school, and geographic data for locations all across America. The result of this unique combination is the creation of a matrix containing a quantitative measure of dissimilarity for all locations in America. The larger the value between any two intersecting rows and columns in this matrix, means those locations are more dissimilar based on all of the factors used to describe the locations. Small numeric values between any two locations in the matrix means those locations are quite similar to each other based on all of the factors used to describe the locations. Thus, this approach allows the development of quantitative measures of similarity between all locations in America.
  • The second distinctive component of this application is the use of key words that describe features and characteristics of locations, where each key word is linked to quantitative values in an underlying data base, values that reflect local conditions. This unique approach allows users of the application to select these easy to understand key words to choose what characteristics they wish to have in a location, and then ask the application to automatically find locations that most closely match those chosen characteristics. Using key words that describe locations linked to quantitative values in a data base means users never have to think in quantitative terms, but can still request to find those locations that have characteristics they want.
  • The third distinctive component of this application is the use of an average absolute difference calculation to compute the match level between any or a set of key words a user chooses, and real locations that exist.
  • The fourth distinctive component of this application is the ability of the user to choose a location they like, and then select or unselect key words that describe the location, resulting in the modification of the location descriptors and, thus, a new set of search criteria to use to find locations that best match these modified criteria. This allows a user to find locations just like a location they like, but with, for example, less crime, better schools, or less expensive housing. To find best matching locations to these modified criteria, average absolute difference is calculated between all of the data base values for the original location, in combination with the new modifications selected by the user. Each of these four unique characteristics is further described below.
  • Referring to FIG. 1, the user first chooses a method to find the best location for him. In the illustrated case, the user has chosen to match an existing neighborhood that the user likes. Next, the user specifies the location he likes by typing in any address in that location as shown in FIG. 2. Next, the user specifies the area in which to search for locations that best match the location the user likes (FIG. 3).
  • The search the user requested above is automatically completed by the system by searching a data base with the following structure:
  • TABLE 1
    Example dissimilarity matrix.
    Location 1 Location 2 Location 3 Location 4
    Location 1 0 38 2 109
    Location 2 0 11 6
    Location 3 0 1
    Location 4 0
  • Values between any two intersecting rows and columns represent the dissimilarity between the two locations labeled on the axes. Larger numbers denote larger difference. Smaller numbers denote smaller difference. Zero denotes either identity (the intersecting row and column represent the same location) or that two different locations are identical. To conduct the search the user specified above, only those locations within five miles of downtown Boston would be included, and then those locations with the smallest numbers between them and the location for which the user chose to find a match would be shown to the user as the ordered result of the user's search, and would be displayed to the user as shown in FIG. 4.
  • The dissimilarity values between locations, like in the example matrix shown in Table 1 are calculated as follows:
  • TABLE 1
    Example dissimilarity matrix.
    Location 1 Location 2 Location 3 Location 4
    Location 1 0 38 2 109
    Location 2 0 11 6
    Location 3 0 1
    Location 4 0
  • Step 1 Data are collected for nearly 200 characteristics for each location (in this case, census tract) in America.
  • Step 2. a factor analysis using Principal components as the extraction method is performed on the data (formula shown in A). This rids the raw data of multicolinearity, and simultaneously serves to standardize all values.
      • A. The principal component factor analysis of the correlation matrix R is specified in terms of its eigenvalue-eigenvector pairs,
  • ( Ω Ω ? λ 1 ) , ( Ω Ω λ 2 λ 2 ) , , ( Ω Ω λ N λ N ) , where Ω λ 1 Ω λ 2 Ω ? . ? indicates text missing or illegible when filed
  • And where m<p is the number of common factors, and p is the total number of original variables (in this case 26 sustainable development indicators).
  • The estimated specific variances are provided by the diagonal elements of the matrix.
      • R-{tilde over (L)} {tilde over (L)}′, such that
  • ψ ~ = [ ψ ~ 1 0 0 0 ψ ~ 2 0 0 0 ? ] with ? = ? - ? ? indicates text missing or illegible when filed
  • for ith variable, jth factor.
      • Communalities are estimated as {tilde over (h)}i={tilde over (l)}i1 2 +{tilde over (l)} i2 2 + . . . +{tilde over (l)} lm 2
  • Step 3. The number of factors extracted is set to capture 95% of the total variance contained in the original data.
  • Step 4. The extracted factors are saved in the data base, thus there are factor scores for each census tract for every factor.
  • Step 5. The saved factors scores for every census tract in America are input to the formula in B to calculate a dissimilarity matrix containing all census tracts.
  • This results in a “distance” matrix or dissimilarity matrix showing a mathematical calculation of the similarity or dissimilarity of every census tract in America, to every other census tract in America.
      • B. A dissimilarity matrix for the census tracts is calculated based on squared Euclidean distance across factor values for each of the census tracts in America, such that:
  • d ij = k ( x ik - x jk ) 2
  • where d=distance, and xik=value of factor k for census tract i.
  • What is unique here is the application of first the factor analysis, and then the squared Euclidean distance measure to resultant factors that are composed of geographic, school, crime, and demographic data describing locations in America, such that a true measure of similarity between all included locations is derived. That this is applied to geographic location to find similarity is unique, it should not be limited to the notion of census tracts only. The result of this unique combination of statistics and mathematics to this type of data is a way for people to specify a location they like, and then automatically search the database to find best matching locations in any part of the country in which the user has an interest, resulting in an automatically generated ordered list of the best matching locations. It is this combination of known elements that is the first unique element in this product.
  • Searching the database for best matching locations within 5 miles of Boston, yields these results shown in FIG. 4 for matches to 39 Wildrose Avenue, Worcester, Massachusetts. Match levels shown in percentages are approximations of the level of match to the census tract for which matches are sought, based on a universal distribution of the data.
  • Referring to FIG. 5, in another aspect of the invention the same match levels described FIG. 4 are used to develop a map of the census tracts in the specified search area, colored to the match level. Notice that the best five matches are labeled, and in this case, all fall in the northern portion of the search area. Referring to FIG. 6, the user can then click on any of the matching locations to learn what characteristics about each location are the best and worst matches to the location for which comparison is being drawn. For example, Table 2 below compares categorized characteristics (e.g., cost of housing or school quality) of the selected census tract to categorized characteristics of the census tract for which matches were requested. This allows the user to see at a glance what the characteristics are of the matching census tract, and also to learn which characteristics are the best and worst matches between the two census tracts. Here we see that cost is quite similar (90%) match), but that public school quality and crime rate are quite dissimilar (60% match for each).
  • TABLE 2
    Neighborhood comparison table
    Malden, MA neighborhood #8 Worcester, MA neighborhood #8
    Neighborhood Cost 90%
    High Cost High Cost
    Relative to the Nation Relative to the Nation
    Medium Cost Low Cost
    Relative to MA Relative to MA
    Public Schools 60%
    School quality: 7 (10 is best) School quality: 3 (10 is best)
    Crime Rate 60%
    Crime rate: 8 (10 is least crime) Crime rate: 4 (10 is least crime)
  • Table 3 below, which can be selected by the user, is a continuation of the breakdown of the categories of characteristics, and how well they match the census tract for which matches were sought. These calculations for matches by category are based on the average absolute difference between rank percent values for all characteristics in each category. This calculation is explained on the next slide.
  • TABLE 3
    Neighborhood Look & Feel
    The Buildings
    Age 72%
    Mostly established, but not old. Some well Mostly well established older homes. Some
    established older homes. Some historic established, but not old. Some historic
    homes. Some newer homes homes. Some newer homes.
    Size 6%
    Mostly small dwellings. Some medium- Mostly medium-sized dwellings. Some
    sized dwellings. Some large dwellings small dwellings. Some large dwellings.
    Type 81%
    Mostly small apartment buildings. Some Mostly complexes/high rise apartments.
    complexes/high rise apartments. Some Some small apartment buildings. Some
    rowhouses & attached homes. Some single- single-family homes. Some rowhouses &
    family homes. attached homes.
    Ownership 46%
    Mostly renters Mixed owners & renters
  • Overall matches for one census tract to the other are calculated as set forth previously. However, matches for different categories of characteristics within the census tracts—to show the user what elements of the census tracts are the best and worst matches to the census tract the user wishes to match—such as age or type of homes—are based on the average absolute difference between rank percent values for each characteristic in any category. This approach and calculation are outlined below.
  • Step 1. Rank percent scores are calculated for each characteristic, as shown in C, and saved in the data base.
  • For ranking, ties are assigned the highest value, and the first rank is assigned a value of 0. This serves to curve the values for each characteristic, such that the rank percent values show the percentage of census tracts in America that are better matches to that specific characteristic than the current census tract (e.g., a rank percent score of 10.5 means that 10.5 percent of the census tracts in America had higher scores for that characteristic than the current census tract).
      • C. Rank percent=(k/N)*100
  • Where k is assigned rank from 1 . . . N, and N is the total number of cases (census tracts).
  • Step 2. The average absolute difference between any category of characteristics (e.g., types of housing) for any two census tracts is calculated on demand, as shown in D. Only the characteristics within each category are included for this calculation (e.g., for types of housing this would be the average absolute difference in rank percent scores between two compared census tracts for these categories: detached single family homes, small apartment buildings, big apartment buildings, townhouses or other attached homes, and mobile homes). As the value inflates for this category, the match for housing type between the two census tracts is shown to be less good. Lastly, the results of the calculation in D are subtracted from 100, so a value of 10 becomes a 90% match. See the previous slide for an example.
  • D . MccZ = MccZ = k ABS ( x ik - x jk ) / n
  • where MccZ=match level for characteristic category Z, Xik=value of rank percent score k for census tract l, and n=the number of k characteristics in characteristic category Z.
  • Turning now to FIG. 7, a second distinctive feature of this unique application is the use of key words to allow the user to select characteristics of his or her ideal location, without having to specify numeric values for any, because each of the key words is linked to an underlying data base of numeric values.
  • FIGS. 8-13 show the unique use of key words describing characteristics of locations in America, key words that can be selected, and are linked to a large numeric data base.
  • This use of key words is the second distinctive component of this application. As illustrated in preceding slides, these key words describe features and characteristics of locations, where each key word is linked to quantitative values in an underlying data base. This unique approach allows users of the application to select these easy to understand key words to choose what characteristics they wish to have in a location, and then ask the application to find and order locations that most closely match those chosen characteristics.
  • Using key words that describe locations linked to quantitative values in a data base means users never have to think in quantitative terms, but can still request to find those locations that have characteristics they want. It is a revolutionary and simple way for users to find the locations that best match their own personal criteria. This is a unique application of key words to geographic, demographic, school, and crime information to describe and find best matching geographic locations.
  • In another aspect of the invention, FIGS. 14-16 below is an illustration and description of how matches are determined between combinations of selected key words, and real locations. In this illustration, the user simply wants to find a location with historic, large homes. He or she selects those two key words and hits submit (FIG. 15). The user then chooses the search area, from which best matches will be drawn, and hits submit (FIG. 16).
  • Best matching locations are automatically calculated as follows, based on the two key words selected:
  • Step 1. Rank percent scores are calculated for each characteristic, as shown in E, and saved in the data base ahead of time. When the user requests a query, these values are already to go.
      • E. Rank percent=(k/N)*100
  • Where k is assigned rank from 1 . . . N, and N is the total number of cases (census tracts).
  • To calculate rank percent scores, ties are assigned the highest value, and the first rank is assigned a value of 0. This serves to curve the values for each characteristic, such that the rank percent values show the percentage of census tracts in America that are better matches to that specific characteristic than the current census tract (e.g., a rank percent score of 10.5 means that 10.5 percent of the census tracts in America had higher scores for that characteristic than the current census tract).
  • Step 2. The average absolute difference between the best rank percent score possible for each selected key word and the rank percent score for each of these same key words for every census tract in the search area is calculated. **A zero is always the best rank percent score possible, because this means that zero percent of the census tracts in America have a better score for that key word. This calculation is shown in F. Lastly, the results of the calculation in F are subtracted from 100, so a value of 10 is represented as a 90% match.
  • F . MkwZ = k ( x ik - x jk ) / n
  • where Mkwz=a location's average match level to the best score possible for all selected key words, Xjk=value of the rank percent score for key word k for location l, Xkk=the lowest possible value for key word k (always zero), and n=the number of k key words selected.
  • In this example, the user has chosen historic homes, and large homes. The user then chose to search within five miles of Newport, R.I. Matches were calculated as described and arc presented on the screen as shown in FIG. 17, and the two top matching locations to the selected set of key words are shown here. As can be seen, the best matching location is an 82% match to the selected key words. As described above, the user can then click on the locations to find out which key words best and least matched. As shown in FIG. 18, the selected location in Newport, R.I. was an 83% match to the key word “historic homes,” and an 82% match to the key word “large dwellings.” This means that this location has a greater proportion of homes characterized as historic than 83% of the census tracts in America, and this location has a greater proportion of large homes than 82% of the census tracts in America.
  • In on embodiment as shown in Table 3 are listed in descending order the actual percentages of buildings in each class, while the matches are based on the percentages of census tracts in America that have fewer percentages of the types of buildings the user wishes to have in a location. Thus, the left hand column shows the user what to expect in the locator (Newport, R.I., neighborhood #9), and the match level shows how this census tract falls relative to other census tracts in America in regards to the characteristics chosen by the user (historic homes and large homes).
  • TABLE 3
    Neighborhood comparison table
    Newport, RI, neighborhood #9 The key words you selected:
    Neighborhood Look & Feel
    The Buildings
    Age 83%
    Mostly established, but not old. Some well Historic homes
    established older homes. Some historic
    homes. Some newer homes
    Size
    82%
    Mostly medium-sized dwellings. Some Large dwellings
    small dwellings. Some large dwellings
  • Another characteristic of this new product is the ability given to the user to select a location they like, and then modify some characteristics of it by selecting or unselecting key words in a list, so that the location is more to the users liking. Then the modified version (modified search criteria) is quantitatively compared against real locations in a user-defined search area to automatically find and rank order best matches.
  • For example, if a user loves a location, but wishes it were less expensive, or had better schools, the user can select key words to specify just those changes while leaving everything else about the location the same, and then the user can search for locations that match this modified set of criteria. The screen display and selection of this feature is shown in FIG. 19. The user first selects a location that he or she likes, but wishes were slightly different (FIG. 20). The user is then presented with a scrollable page and asked to add or subtract words to modify the location as they wish. FIGS. 21-25 show how this location—39 Wildrose Avenue, Worcester, Mass., is currently described, and all the things the user could chose to modify it. The user is then presented with a screen display as shown in FIG. 26, and in this example has chosen to modify the desired location to have top-quality public schools, and very low crime. Everything else the user wishes to remain the same. The user then selects a search area and hits submit as shown in FIG. 27. In this example, the search area includes the original location.
  • Search results are delivered as shown in FIGS. 28 and 29. Here, the user sees that she wanted a location like 39 Wildrose Avenue in Worcester, yet modified to have top-quality public schools and a low crime rate. And, that the area to search for matches is within 15 miles of Worcester. Here, the results are presented with match levels. One can see that the second best match in the search area is the original, unmodified neighborhood itself. The best match is a location in Holden, Mass.
  • The unique calculation used to match modified locations is performed as follows. The essence of the calculation in G is described here:
  • M mod = ( ( k ( ? - x jk ) * 2 + ( k ABS ( ? - x jk ) ) ) / n ? indicates text missing or illegible when filed
  • where Mmod=a location's match level to the combination of both the modified and unmodified key word values for which we are searching for matches, Xik=value of the rank percent score for key word k for location l, Xkk=the user selected value for the rank percent score for modified key word k (if a check box is used, than the value will be zero, for drop-down boxes, the value can be anything the user chooses), and n=the sum of the number of k key words modified *2, and the number of k key words unmodified.
  • The absolute difference is summed between rank percent scores for each unmodified characteristic of the location to match, and each location in the user-specified search area. This summed difference between each compared location is saved. This summed difference is then added to the summed absolute difference for the rank percent scores the user has modified. These modified scores, however, are first multiplied by 2 to increase their relative importance because the user purposefully wants to change them. Then, these two absolute difference values are summed, and divided by the number of modified key words (on this instance 2), plus the number of key words unmodified (=n). This value is then subtracted from 100 to give a match level where 0=no match, and 100=a perfect match.
  • Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the present application, the present invention may be practiced otherwise than as specifically described.

Claims (27)

1-7. (canceled)
8. A computer-implemented method comprising:
receiving, at a computer system, a request to identify one or more unspecified geographic areas based on one or more characteristics of geographic areas;
comparing the one or more characteristics with data that is associated with a plurality of candidate geographic areas, wherein the data indicates whether or degrees to which the plurality of candidate geographic areas have the one or more characteristics;
selecting, by the computer system, one or more geographic areas from among the plurality of candidate geographic areas based on the comparison of the one or more characteristics with the data; and
providing, by the computer system and in response to receiving the request, information that identifies the one or more geographic areas.
9. The computer-implemented method of claim 8, wherein:
the one or more characteristics are designated by a user through a user interface that is presented on a client computing device, and
information identifying the one or more characteristics is received as part of the request.
10. The computer-implemented method of claim 9, further comprising:
providing, to the client computing device for presentation in the user interface, categories of characteristics from which the one or more characteristics are designated by the user, wherein each of the categories are presented in the user interface with an initial default setting that is different from the one or more characteristics that the user has designated to be included as part of the request.
11. The computer-implemented method of claim 8, further comprising:
receiving, at the computer system, information that identifies a particular geographic area or location;
selecting, using data that is associated with the particular geographic area or location, characteristics of the particular geographic area or location; and
providing, to a client computing device, at least a portion of the characteristics of the particular geographic area or location in a manner such that the portion of the characteristics are presented and modifiable in a user interface on the client computing device,
wherein the request is received in response to providing the at least a portion of the characteristics to the client computing device,
wherein the one or more characteristics for the request are different from the portion of the characteristics that are provided to the client computing device.
12. The computer-implemented method of claim 8, wherein:
the request includes information that identifies a particular geographic area or location from which the one or more characteristics are to be derived so that the one or more unspecified geographic areas that are identified bear at least a threshold similarity to the particular geographic area or location,
the method further comprises:
selecting, using data that is associated with the particular geographic area or location, the one or more characteristics of the particular geographic area or location, and
the one or more geographic areas that are selected and provided have at least the threshold level of similarity to the particular geographic area or location.
13. The computer-implemented method of claim 8, wherein at least one of the one or more characteristics is related to schools.
14. The computer-implemented method of claim 8, wherein at least one of the one or more characteristics is related to one or more of: home prices and home sizes.
15. The computer-implemented method of claim 8, wherein at least one of the one or more characteristics is related to density of residents including, at least, urban, suburban, and rural densities.
16. The computer-implemented method of claim 8, wherein at least one of the one or more characteristics is related to crime.
17. The computer-implemented method of claim 8, wherein at least one of the one or more characteristics is related to one or more of: education levels of residents, ages of residents, professions of residents, lifestyles of residents, and income levels of residents.
18. The computer-implemented method of claim 8, wherein the plurality of candidate geographic areas each include residents and a plurality of distinct dwellings in which the residents live.
19. The computer-implemented method of claim 8, wherein the plurality of candidate geographic areas comprise neighborhoods.
20. The computer-implemented method of claim 8, wherein the plurality of candidate geographic areas include one or more of: zip codes and cities.
21. The computer-implemented method of claim 8, wherein:
the request further specifies a search area within which the one or more geographic locations are to be identified, and
the method further comprises:
identifying the plurality of candidate geographic areas based on the search area.
22. The computer-implemented method of claim 21, wherein the search area comprises a state.
23. The computer-implemented method of claim 21, wherein the search area comprises a city.
24. The computer-implemented method of claim 21, wherein the search area comprises an area that has (i) a center area or point that is a particular geographic area or location and (ii) a perimeter that is a specified distance from the center area or point.
25. The computer-implemented method of claim 21, wherein the search area is based on a geographic area is depicted in a map that is displayed on a client computing device from which the request is received.
26. The computer-implemented method of claim 8, wherein the one or more characteristics are related to residing in geographic areas.
27. A computer system comprising:
one or more computing devices that each include one or more processors and memory;
one or more interfaces that are programmed to receive a request to identify one or more unspecified geographic areas based on one or more characteristics of geographic areas; and
a geographic area identifier that is programmed to:
compare the one or more characteristics with data that is associated with a plurality of candidate geographic areas, wherein the data indicates whether or degrees to which the plurality of candidate geographic areas have the one or more characteristics, and
select one or more geographic areas from among the plurality of candidate geographic areas based on the comparison of the one or more characteristics with the data, and
provide, in response to receiving the request, information that identifies the one or more geographic areas.
28. A computer-implemented method comprising:
displaying, by a client computing device, a user interface that includes user input features;
receiving, at a client computing device, user input through the user input features that designates one or more characteristics of geographic areas that are related to residing in geographic areas;
transmitting, by the client computing device and in response to receiving the user input, a request to identify one or more unspecified geographic areas based on the one or more characteristics;
receiving, in response to transmitting the request, information that identifies one or more geographic areas; and
displaying, by the client computing device, the information that identifies the one or more geographic areas.
29. The computer-implemented method of claim 8, wherein the plurality of candidate geographic areas is defined by one or more predefined boundaries.
30. The computer-implemented method of claim 29, wherein the one or more predefined boundaries are based on named geographic areas.
31. The computer-implemented method of claim 13, wherein the at least one of the one or more characteristics is related to school quality.
32. The computer-implemented method of claim 28, wherein:
the information further includes matching information that identifies how well each of the one or more geographic areas match the one or more characteristics input by the user, and
the one or more geographic areas and the matching information are depicted on one or more maps that are displayed by the client computing device.
33. The computer-implemented method of claim 28, wherein the information is displayed in one or more lists.
US14/502,517 2001-12-21 2014-09-30 Method for analyzing demographic data Abandoned US20150019587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/502,517 US20150019587A1 (en) 2001-12-21 2014-09-30 Method for analyzing demographic data

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US34228501P 2001-12-21 2001-12-21
US10/329,179 US7043501B2 (en) 2001-12-21 2002-12-23 Method for analyzing demographic data
US11/331,262 US7680859B2 (en) 2001-12-21 2006-01-11 Method for analyzing demographic data
US12/720,817 US8849808B2 (en) 2001-12-21 2010-03-10 Method for analyzing demographic data
US14/480,252 US20150019536A1 (en) 2001-12-21 2014-09-08 Method for analyzing demographic data
US14/502,517 US20150019587A1 (en) 2001-12-21 2014-09-30 Method for analyzing demographic data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/480,252 Continuation US20150019536A1 (en) 2001-12-21 2014-09-08 Method for analyzing demographic data

Publications (1)

Publication Number Publication Date
US20150019587A1 true US20150019587A1 (en) 2015-01-15

Family

ID=46328288

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/331,262 Expired - Lifetime US7680859B2 (en) 2001-12-21 2006-01-11 Method for analyzing demographic data
US12/720,817 Expired - Lifetime US8849808B2 (en) 2001-12-21 2010-03-10 Method for analyzing demographic data
US14/480,252 Abandoned US20150019536A1 (en) 2001-12-21 2014-09-08 Method for analyzing demographic data
US14/502,517 Abandoned US20150019587A1 (en) 2001-12-21 2014-09-30 Method for analyzing demographic data

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/331,262 Expired - Lifetime US7680859B2 (en) 2001-12-21 2006-01-11 Method for analyzing demographic data
US12/720,817 Expired - Lifetime US8849808B2 (en) 2001-12-21 2010-03-10 Method for analyzing demographic data
US14/480,252 Abandoned US20150019536A1 (en) 2001-12-21 2014-09-08 Method for analyzing demographic data

Country Status (1)

Country Link
US (4) US7680859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334580B1 (en) 2021-05-04 2022-05-17 Nefeli Group LLC System and method for dynamically sorting geographic locations according to users' specific preferences and importance to the user

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US9875492B2 (en) * 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US7680859B2 (en) 2001-12-21 2010-03-16 Location Inc. Group Corporation a Massachusetts corporation Method for analyzing demographic data
US7707039B2 (en) 2004-02-15 2010-04-27 Exbiblio B.V. Automatic modification of web pages
US8442331B2 (en) 2004-02-15 2013-05-14 Google Inc. Capturing text from rendered documents using supplemental information
US7812860B2 (en) 2004-04-01 2010-10-12 Exbiblio B.V. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US10635723B2 (en) 2004-02-15 2020-04-28 Google Llc Search engines and systems with handheld document data capture devices
US20060041484A1 (en) 2004-04-01 2006-02-23 King Martin T Methods and systems for initiating application processes by data capture from rendered documents
US8521772B2 (en) 2004-02-15 2013-08-27 Google Inc. Document enhancement system and method
US8799303B2 (en) 2004-02-15 2014-08-05 Google Inc. Establishing an interactive environment for rendered documents
US9008447B2 (en) 2004-04-01 2015-04-14 Google Inc. Method and system for character recognition
US20070300142A1 (en) 2005-04-01 2007-12-27 King Martin T Contextual dynamic advertising based upon captured rendered text
US9143638B2 (en) 2004-04-01 2015-09-22 Google Inc. Data capture from rendered documents using handheld device
US20080313172A1 (en) 2004-12-03 2008-12-18 King Martin T Determining actions involving captured information and electronic content associated with rendered documents
US8146156B2 (en) 2004-04-01 2012-03-27 Google Inc. Archive of text captures from rendered documents
US8793162B2 (en) 2004-04-01 2014-07-29 Google Inc. Adding information or functionality to a rendered document via association with an electronic counterpart
US7894670B2 (en) 2004-04-01 2011-02-22 Exbiblio B.V. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US8621349B2 (en) 2004-04-01 2013-12-31 Google Inc. Publishing techniques for adding value to a rendered document
US9116890B2 (en) 2004-04-01 2015-08-25 Google Inc. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US7990556B2 (en) 2004-12-03 2011-08-02 Google Inc. Association of a portable scanner with input/output and storage devices
US8713418B2 (en) 2004-04-12 2014-04-29 Google Inc. Adding value to a rendered document
US8620083B2 (en) 2004-12-03 2013-12-31 Google Inc. Method and system for character recognition
US8874504B2 (en) 2004-12-03 2014-10-28 Google Inc. Processing techniques for visual capture data from a rendered document
US9460346B2 (en) 2004-04-19 2016-10-04 Google Inc. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US8489624B2 (en) 2004-05-17 2013-07-16 Google, Inc. Processing techniques for text capture from a rendered document
US8346620B2 (en) 2004-07-19 2013-01-01 Google Inc. Automatic modification of web pages
US9459622B2 (en) 2007-01-12 2016-10-04 Legalforce, Inc. Driverless vehicle commerce network and community
US9098545B2 (en) 2007-07-10 2015-08-04 Raj Abhyanker Hot news neighborhood banter in a geo-spatial social network
US9037516B2 (en) 2006-03-17 2015-05-19 Fatdoor, Inc. Direct mailing in a geo-spatial environment
US9373149B2 (en) 2006-03-17 2016-06-21 Fatdoor, Inc. Autonomous neighborhood vehicle commerce network and community
US9002754B2 (en) 2006-03-17 2015-04-07 Fatdoor, Inc. Campaign in a geo-spatial environment
US8965409B2 (en) 2006-03-17 2015-02-24 Fatdoor, Inc. User-generated community publication in an online neighborhood social network
US9064288B2 (en) 2006-03-17 2015-06-23 Fatdoor, Inc. Government structures and neighborhood leads in a geo-spatial environment
US9070101B2 (en) 2007-01-12 2015-06-30 Fatdoor, Inc. Peer-to-peer neighborhood delivery multi-copter and method
EP2067119A2 (en) 2006-09-08 2009-06-10 Exbiblio B.V. Optical scanners, such as hand-held optical scanners
US8863245B1 (en) 2006-10-19 2014-10-14 Fatdoor, Inc. Nextdoor neighborhood social network method, apparatus, and system
US7877393B2 (en) * 2007-07-19 2011-01-25 Oracle America, Inc. Method and system for accessing a file system
US8015144B2 (en) 2008-02-26 2011-09-06 Microsoft Corporation Learning transportation modes from raw GPS data
US8972177B2 (en) * 2008-02-26 2015-03-03 Microsoft Technology Licensing, Llc System for logging life experiences using geographic cues
US7966306B2 (en) * 2008-02-29 2011-06-21 Nokia Corporation Method, system, and apparatus for location-aware search
US8966121B2 (en) 2008-03-03 2015-02-24 Microsoft Corporation Client-side management of domain name information
JP5509666B2 (en) * 2008-05-08 2014-06-04 日本電気株式会社 Radio wave propagation characteristic estimation support system, radio wave propagation characteristic estimation support method, and radio wave propagation characteristic estimation support apparatus
US9646025B2 (en) * 2008-05-27 2017-05-09 Qualcomm Incorporated Method and apparatus for aggregating and presenting data associated with geographic locations
US8645243B1 (en) * 2008-10-15 2014-02-04 United Services Automobile Association (Usaa) Systems and methods for a retirement location advisor
US9063226B2 (en) 2009-01-14 2015-06-23 Microsoft Technology Licensing, Llc Detecting spatial outliers in a location entity dataset
WO2010096191A2 (en) * 2009-02-18 2010-08-26 Exbiblio B.V. Automatically capturing information, such as capturing information using a document-aware device
CN102349087B (en) 2009-03-12 2015-05-06 谷歌公司 Automatically providing content associated with captured information, such as information captured in real-time
US8447066B2 (en) 2009-03-12 2013-05-21 Google Inc. Performing actions based on capturing information from rendered documents, such as documents under copyright
US8275649B2 (en) * 2009-09-18 2012-09-25 Microsoft Corporation Mining life pattern based on location history
US9009177B2 (en) 2009-09-25 2015-04-14 Microsoft Corporation Recommending points of interests in a region
US9081799B2 (en) 2009-12-04 2015-07-14 Google Inc. Using gestalt information to identify locations in printed information
US9323784B2 (en) 2009-12-09 2016-04-26 Google Inc. Image search using text-based elements within the contents of images
US8612134B2 (en) * 2010-02-23 2013-12-17 Microsoft Corporation Mining correlation between locations using location history
US9261376B2 (en) * 2010-02-24 2016-02-16 Microsoft Technology Licensing, Llc Route computation based on route-oriented vehicle trajectories
US10288433B2 (en) * 2010-02-25 2019-05-14 Microsoft Technology Licensing, Llc Map-matching for low-sampling-rate GPS trajectories
US8719198B2 (en) 2010-05-04 2014-05-06 Microsoft Corporation Collaborative location and activity recommendations
US9593957B2 (en) 2010-06-04 2017-03-14 Microsoft Technology Licensing, Llc Searching similar trajectories by locations
US8732219B1 (en) 2010-08-25 2014-05-20 United Services Automobile Association (Usaa) Method and system for determining correlated geographic areas
US20120259792A1 (en) * 2011-04-06 2012-10-11 International Business Machines Corporation Automatic detection of different types of changes in a business process
US9177069B1 (en) 2011-05-19 2015-11-03 Google Inc. Determining labels from similar geographic features
US8533215B2 (en) 2011-05-30 2013-09-10 Microsoft Corporation Geo-targeted data collection or other action
US8943047B1 (en) * 2011-09-09 2015-01-27 Intuit Inc. Data aggregation for qualifying a partner candidate
US9754226B2 (en) 2011-12-13 2017-09-05 Microsoft Technology Licensing, Llc Urban computing of route-oriented vehicles
US20130166188A1 (en) 2011-12-21 2013-06-27 Microsoft Corporation Determine Spatiotemporal Causal Interactions In Data
CA2895773A1 (en) * 2012-12-22 2014-06-26 Mmodal Ip Llc User interface for predictive model generation
US9934513B2 (en) 2013-12-31 2018-04-03 Statebook International Inc. GIS data appliance for identifying and comparing data associated with geographic regions
US9439367B2 (en) 2014-02-07 2016-09-13 Arthi Abhyanker Network enabled gardening with a remotely controllable positioning extension
US9457901B2 (en) 2014-04-22 2016-10-04 Fatdoor, Inc. Quadcopter with a printable payload extension system and method
US9004396B1 (en) 2014-04-24 2015-04-14 Fatdoor, Inc. Skyteboard quadcopter and method
US9022324B1 (en) 2014-05-05 2015-05-05 Fatdoor, Inc. Coordination of aerial vehicles through a central server
US9971985B2 (en) 2014-06-20 2018-05-15 Raj Abhyanker Train based community
US9441981B2 (en) 2014-06-20 2016-09-13 Fatdoor, Inc. Variable bus stops across a bus route in a regional transportation network
US9451020B2 (en) 2014-07-18 2016-09-20 Legalforce, Inc. Distributed communication of independent autonomous vehicles to provide redundancy and performance
US20160292752A1 (en) * 2015-04-02 2016-10-06 Fannie Mae Assessing quality of a location with respect to its proximity to amenities
US10594796B2 (en) * 2016-02-09 2020-03-17 Qualcomm Incorporated Extending an IoT control interface from an IoT controller to a user device as part of a video media stream of a wireless media presentation session
US20180330325A1 (en) 2017-05-12 2018-11-15 Zippy Inc. Method for indicating delivery location and software for same
US20190147071A1 (en) * 2017-11-13 2019-05-16 Will Shapiro Methods and systems for algorithmically comparing geographical areas using artificial intelligence techniques
US11094135B1 (en) 2021-03-05 2021-08-17 Flyreel, Inc. Automated measurement of interior spaces through guided modeling of dimensions

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US594040A (en) * 1897-11-23 Crochet hook or needle
US5948040A (en) * 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
US5680305A (en) * 1995-02-16 1997-10-21 Apgar, Iv; Mahlon System and method for evaluating real estate
US5731978A (en) * 1995-06-07 1998-03-24 Zexel Corporation Method and apparatus for enhancing vehicle navigation through recognition of geographical region types
US6178406B1 (en) * 1995-08-25 2001-01-23 General Electric Company Method for estimating the value of real property
US5911131A (en) * 1995-12-20 1999-06-08 Vig; Tommy Computer aided calculation, appraisal and valuation of works of art
AU7674996A (en) * 1995-10-31 1997-05-22 Herz, Frederick S.M. System for customized electronic identification of desirable objects
US6671404B1 (en) * 1997-02-14 2003-12-30 Hewlett-Packard Development Company, L.P. Method and apparatus for recognizing patterns
US6487495B1 (en) * 2000-06-02 2002-11-26 Navigation Technologies Corporation Navigation applications using related location-referenced keywords
US7974930B2 (en) * 2000-07-26 2011-07-05 Pierce-Eislen, Inc. Method and system for providing real estate information
WO2002019216A2 (en) * 2000-08-28 2002-03-07 Isdi.Net, Llc Value your home
US6553310B1 (en) * 2000-11-14 2003-04-22 Hewlett-Packard Company Method of and apparatus for topologically based retrieval of information
US7016866B1 (en) * 2000-11-28 2006-03-21 Accenture Sdn. Bhd. System and method for assisting the buying and selling of property
US6879960B2 (en) * 2000-12-01 2005-04-12 Claritas, Inc. Method and system for using customer preferences in real time to customize a commercial transaction
US6985902B2 (en) * 2001-02-05 2006-01-10 Threewide.Com, Inc. Method, system and apparatus for creating and accessing a hierarchical database in a format optimally suited to real estate listings
WO2002069262A1 (en) * 2001-02-28 2002-09-06 Pts Corporation Dynamic chain-based thresholding
US7346519B2 (en) * 2001-04-10 2008-03-18 Metropolitan Regional Information Systems, Inc Method and system for MRIS platinum database
US7082365B2 (en) * 2001-08-16 2006-07-25 Networks In Motion, Inc. Point of interest spatial rating search method and system
US7680859B2 (en) 2001-12-21 2010-03-16 Location Inc. Group Corporation a Massachusetts corporation Method for analyzing demographic data
US7043501B2 (en) 2001-12-21 2006-05-09 Andrew Schiller Method for analyzing demographic data
US20040030631A1 (en) * 2002-01-11 2004-02-12 Eric Brown Systems and methods for facilitating real estate transactions
US7421422B1 (en) * 2002-04-08 2008-09-02 Wsi Corporation Method for graphical interaction with geographic databases for interactive broadcast presentation
US20040006559A1 (en) * 2002-05-29 2004-01-08 Gange David M. System, apparatus, and method for user tunable and selectable searching of a database using a weigthted quantized feature vector
US20040005449A1 (en) * 2002-07-05 2004-01-08 Kabushiki Kaisha Kobe Seiko Sho Foamed resin laminate sound insulation board and method for manufacturing the same
US9105061B2 (en) * 2004-06-16 2015-08-11 Redfin Corporation Online marketplace for real estate transactions
US20060190279A1 (en) * 2005-02-24 2006-08-24 Brent Heflin System and method for marketing and managing real property
US20070100644A1 (en) * 2005-10-27 2007-05-03 Keillor R D Consumer-initiated marketing for real-estate connected products

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Crowston, Kevin et al. "Real Estate War in Cyberspace: An Emerging Electronic Market?" Available through Syracuse University on 1-1-1999, pages 1-10. *
Crowston, Kevin et al. "Real Estate War in Cyberspace: An Emerging Electronic Market?" Published in Electronic Markets: Volume 9, Issue 1 - 2. 1999. Pages 1 - 10. *
ESRI, "GIS and Location Services on the Web." Published at spatialnews.geocomm.com/whitepapers/gis_and_location.pdf on June 15, 2000, pages 1 - 7. *
ESRI. "GIS and Location Services on the Web." Published at spatialnews.geocomm.com/whitepapers/gis_and_location.pdf on June 15, 2000. Pages 1 - 7. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11334580B1 (en) 2021-05-04 2022-05-17 Nefeli Group LLC System and method for dynamically sorting geographic locations according to users' specific preferences and importance to the user

Also Published As

Publication number Publication date
US8849808B2 (en) 2014-09-30
US20080016051A1 (en) 2008-01-17
US7680859B2 (en) 2010-03-16
US20100185620A1 (en) 2010-07-22
US20150019536A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US20150019587A1 (en) Method for analyzing demographic data
US7043501B2 (en) Method for analyzing demographic data
Louviere et al. An introduction to the application of (case 1) best–worst scaling in marketing research
US7783617B2 (en) Personals advertisement affinities in a networked computer system
US7797188B2 (en) Method and system for optimizing business location selection
US8650141B2 (en) System and method of segmenting and tagging entities based on profile matching using a multi-media survey
US7774227B2 (en) Method and system utilizing online analytical processing (OLAP) for making predictions about business locations
Charles Residential Segregation in Los Angeles
US20140379689A1 (en) Framework for Suggesting Search Terms
CN106874439A (en) A kind of method and system for searching for house property information
CN112214670A (en) Online course recommendation method and device, electronic equipment and storage medium
Mikkonen et al. Readers' search strategies for accessing books in public libraries
AU2010200719A1 (en) Matching tools for use in attribute-based performance systems
Wessel et al. Revaluating urban space through tweets: An analysis of Twitter-based mobile food vendors and online communication
Hodge et al. Assessing the quality and prestige of disciplinary social work journals: A national study of faculty perceptions
US20010032200A1 (en) Method and apparatus for providing continuously updated information about an item
JP2017010270A (en) Article information presentation system, article information presentation method, corresponding information presentation system, and corresponding information presentation method
Leister et al. Organizational self-perception and environmental image measurement
WO2001098919A1 (en) Locating information in a network based on user&#39;s evaluation
Yu Geographic information systems in library reference services: development and challenge
Romero A citation analysis of scholarly journals in communication studies
JP4891706B2 (en) Personal knowledge disclosure device
JP6918161B1 (en) Analytical equipment and analytical method
Novotny et al. Geographical information systems and the new landscape of political technologies
Baldassarre et al. The Bradley–Terry Regression Trunk approach for Modeling Preference Data with Small Trees

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOCATION INC. GROUP CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHILLER, ANDREW;REEL/FRAME:034225/0586

Effective date: 20130109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION