US20140345933A1 - Adjustable plaster ring cover - Google Patents
Adjustable plaster ring cover Download PDFInfo
- Publication number
- US20140345933A1 US20140345933A1 US14/219,643 US201414219643A US2014345933A1 US 20140345933 A1 US20140345933 A1 US 20140345933A1 US 201414219643 A US201414219643 A US 201414219643A US 2014345933 A1 US2014345933 A1 US 2014345933A1
- Authority
- US
- United States
- Prior art keywords
- electrical
- box
- wiring
- wiring module
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011505 plaster Substances 0.000 title claims abstract description 54
- 238000009826 distribution Methods 0.000 claims abstract description 25
- 238000009429 electrical wiring Methods 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 7
- 238000012360 testing method Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 7
- 210000002105 tongue Anatomy 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000012207 thread-locking agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R9/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
- H01R9/22—Bases, e.g. strip, block, panel
- H01R9/24—Terminal blocks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/081—Bases, casings or covers
- H02G3/083—Inlets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/502—Bases; Cases composed of different pieces
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/12—Distribution boxes; Connection or junction boxes for flush mounting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/14—Fastening of cover or lid to box
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/16—Distribution boxes; Connection or junction boxes structurally associated with support for line-connecting terminals within the box
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G3/00—Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
- H02G3/02—Details
- H02G3/08—Distribution boxes; Connection or junction boxes
- H02G3/18—Distribution boxes; Connection or junction boxes providing line outlets
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/0004—Casings, cabinets or drawers for electric apparatus comprising several parts forming a closed casing
- H05K5/0008—Casings, cabinets or drawers for electric apparatus comprising several parts forming a closed casing assembled by screws
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0204—Mounting supporting structures on the outside of casings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49174—Assembling terminal to elongated conductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/5313—Means to assemble electrical device
- Y10T29/532—Conductor
Definitions
- a power distribution system may comprise an electrical box, a plaster ring and an electrical device, such as an outlet or switch.
- an electrical box During a roughing phase of construction, electrical boxes with attached plaster rings are mounted to wall studs at predetermined locations. A journeyman electrician routes power cables through building framing to the appropriate box. Then power cables are fed through openings in the rear or sides of the boxes and folded back inside. During a trim phase, electrical devices are mounted to the plaster rings.
- a pre-wired power distribution system advantageously combines installation flexibility, convenience and verifiability.
- a combination electrical box, plaster ring, one or more electrical devices installed in the plaster ring and one or more pre-wired grounds between the electrical box and the electrical device or devices provides for a pre-tested ground path.
- the electrical device is a wiring module configured to accept any of various functional modules.
- the pre-wired ground also functions as a lanyard between the electrical device and the electrical box, allowing the plaster ring to be pivoted to, and supported in, an open position to provide hands-free connection of power wires to the electrical device. This feature is particularly useful for wiring gang electrical boxes housing multiple electrical devices.
- a ground bus bar mounted to the electrical box provides further flexibility by accommodating multiple grounds for power cables routed to the electrical box.
- an electrical box, a plaster ring and wiring module or other electrical device or devices may be manufactured, assembled, distributed and/or installed as a pre-wired power distribution component, by itself or in combination with an adjustable mount.
- FIGS. 1A-B are perspective views of a pre-wired power distribution system in an open position and a closed position, respectively;
- FIG. 2 is a perspective view of a pre-wired power distribution system embodiment having a writing module with external push wire connectors;
- FIG. 3 is a perspective view of a pre-wired power distribution system embodiment having a wiring module with internal push wire connectors;
- FIG. 4A is a front perspective view of an embodiment of a wiring module with internal push wire connectors
- FIG. 4B is a rear perspective view of the wiring module of FIG. 4A ;
- FIG. 5 is a perspective view of a pre-wired power distribution system embodiment having a box-mounted ground bus bar;
- FIG. 6 is a front view of a modular integrated wiring system utilizing various embodiments of a universal electrical wiring component
- FIG. 7 is a front perspective exploded view of a universal electrical wiring component having modular electrical devices combined with an adjustable, modular mount;
- FIG. 8 is a front perspective view of a floor bracket electrical wiring component
- FIG. 9 is a front perspective view of a stud bracket electrical wiring component
- FIG. 10 is a front perspective view of a box bracket electrical wiring component
- FIG. 11 is a front perspective view of an extended box bracket electrical wiring component
- FIG. 12 is an exploded perspective view of a junction box assembly
- FIG. 13 is an exploded perspective view of a floor bracket assembly
- FIG. 14 is an exploded perspective view of a stud bracket assembly
- FIG. 15 is an exploded perspective view of a box bracket assembly
- FIG. 16 is an exploded perspective view of an extended BOX bracket assembly
- FIG. 17 is an exploded perspective view of an adjustable plaster ring
- FIG. 18 is a perspective view of a junction box
- FIGS. 19A-D are top, perspective, front and side views, respectively, of a support arm.
- FIGS. 1A-B illustrate a pre-wired power distribution system 100 having an electrical box 120 configured to attach at least one power cable, an adjustable plaster ring 140 , an electrical device 160 mounted to the plaster ring 140 and a ground lanyard 180 pre-wired between the electrical device 160 and the electrical box 120 .
- the electrical box 160 can be any type known in the art.
- the electrical device 160 is a wiring module that is configured to connect to a source of electrical power via a plurality of cables (e.g., hot, neutral, and ground cables).
- the plurality of cables (not shown) are fed through the electrical box 120 and connected to a wiring portion of the wiring module, as disclosed herein.
- the wiring portion of the wiring module is substantially enclosed by the electrical box 120 and the adjustable plaster ring 140 , and is inaccessible to users.
- the wiring module also includes a user-accessible portion that removably accepts a functional module (not shown) that provides a selected electrical power distribution function.
- the functional module may be an outlet receptacle or a switch.
- the user-accessible portion of the wiring module includes shielded connectors, or sockets, that mate with the functional module.
- the shielded connectors help reduce the risk of electrical shock to users when a functional module is not installed in the wiring module.
- the shielded connectors are concealed by a protective cover 161 that protects the connectors from foreign objects, for example, during a rough-in phase of construction.
- the functional module can be installed without accessing the wiring portion of the wiring module or the power cables.
- the electrical device 160 (e.g., a wiring module) is mounted to the adjustable plaster ring 140 .
- the adjustable plaster ring provides for an adjustable distance between the electrical device 160 and the electrical box 120 .
- the adjustable plaster ring may include adjusting screws that can be turned to increase or decrease the distance between the electrical device 160 and the electrical box 120 . In this way, the depth of the electrical device 160 within a wall can be adjusted to result in the desired fit with the wallboard.
- the plaster ring 140 can be releasably attached to the electrical box 120 .
- the plaster ring 140 is movable between an open position FIG. 1A distal the electrical box 120 and a closed position FIG. 1B proximate the electrical box 120 .
- the plaster ring 140 can be releasably attached to the electrical box 120 in the closed position.
- the ground lanyard 180 provides a ground path from the electrical device 160 to the electrical box and mechanically supports the plaster ring in the open position. In some embodiments, however, the ground lanyard 180 does not necessarily support the plaster ring in the open position.
- the ground lanyard 180 is a ground wire connected between a single point ground 222 ( FIG. 2 ) on the electrical box 120 and a ground terminal 252 ( FIG. 2 ) on the electrical device 160 , as described in further detail with respect to FIGS. 2-3 , below.
- the ground lanyard 180 includes multiple ground wires connected between a ground bus bar 450 ( FIG. 4 ) mounted on a multi-gang electrical box 420 ( FIG. 4 ) and the ground terminals 462 ( FIG. 4 ) of multiple electrical devices 460 ( FIG. 4 ) mounted in a multi-gang plaster ring 440 ( FIG. 4 ), as described in further detail with respect to FIG. 4 , below.
- the electrical devices 160 may be wiring modules that are configured to accept various functional modules.
- the electrical box 120 is adapted to utilize various adjustable or fixed stud brackets, and the plaster ring 140 may be adjustable. These aspects facilitate the positioning of the mounted electrical devices during wall installation of the ground wire supporting wiring assembly 100 .
- a pre-wired power distribution system provides a broadly adaptable electrical system component.
- connections between the ground lanyard 180 and the electrical box 120 can be formed using any type of connection known in the art.
- a connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 may comprise an electrical screw terminal or a push-in connector.
- the electrical screw terminal is treated with a threadlocker material once the connection is made to improve the mechanical reliability of the connection.
- the ground lanyard 180 can also be soldered or clamped to the electrical box 120 or the electrical device 160 .
- the connection between the ground lanyard 180 and the electrical box 120 or the electrical device 160 can be made substantially permanent because the wiring module need not be removed to replace an outlet receptacle, switch, or other similar functional module.
- ground lanyard 180 and the electrical device 160 or the electrical box 120 can be made substantially permanent can also allow the connections to be made stronger (allowing the ground lanyard to support the weight of the electrical device 160 and adjustable plaster ring 140 , as described herein) and more reliable, both from a mechanical and an electrical standpoint.
- the pre-wired ground lanyard 180 can be advantageously tested at the manufacturer.
- the ground lanyard 180 is subjected to a mechanical pull test and an electrical continuity test.
- the pull-test has at least a 20 lb. force.
- the mechanical pull test and the electrical continuity test would otherwise be too cumbersome to perform on ground connections installed by an electrician at a worksite.
- these tests can be performed more efficiently than can be done at a worksite.
- these tests can be performed using equipment that is too expensive or bulky to use at a worksite where the ground connection might otherwise be installed.
- the ground lanyard 180 is not pre-wired but is instead configured to be connected upon installation of the electrical device 160 within the electrical box 120 .
- the plaster ring 140 can be supported in an open position ( FIG. 1A ) by the ground lanyard 180 , advantageously allowing an electrician hands-free access to one or more electrical devices 160 so as to wire these devices to power cables routed to the electrical box 120 .
- the plaster ring 140 is moved to a closed position ( FIG. 1B ) and secured to the electrical box 120 .
- Multiple electrical devices 160 can be pre-attached to the plaster ring 140 because doing so does not block access to the electrical box 120 or impede the wiring process.
- the use of a ground bus bar as the electrical box ground junction 184 advantageously allows the ground wiring of one or more power cables to the bus bar without resorting to ad hoc pigtail junctions or the use of the electrical device connectors.
- FIG. 2 illustrates a pre-wired power distribution system embodiment 200 having a wiring module 260 pre-wired with push-wire connectors 250 .
- a ground wire 280 extends between the wiring module 260 and an electrical box 120 .
- the ground wire 280 includes a push-wire connector at some point along its length to be connected to a ground cable fed into the electrical box 120 along with other power distribution cables.
- the ground wire 280 has a first end 282 attached to a ground push-wire connector 252 and a second end 284 secured to a ground attachment point 222 in the interior of the electrical box 120 .
- the ground attachment point 222 is a screw terminal.
- the push-wire connectors 250 are connected to internal crimp wires of the wiring module 260 and adapted to accept power and ground wires from cables (not shown) routed to the electrical box 120 .
- An electrician can easily and quickly attach the power wires to the appropriate push wire connectors 250 while the plaster ring 140 is supported by the ground wire 280 .
- FIG. 3 illustrates another pre-wired power distribution system embodiment 300 having a wiring module 360 with internal push-wire connectors 350 .
- a ground wire 280 extends between the wiring module 360 and an electrical box 120 .
- the ground wire 280 has a first end 282 attached to a ground push-wire connector 352 and a second end 284 secured to a ground attachment point 222 in the interior of the electrical box 120 .
- the push-wire connectors 350 are adapted to accept power and ground wires from cables (not shown) routed to the electrical box 120 .
- FIG. 4A is a front perspective view of an embodiment of a wiring module 460 having internal push-wire connectors 407 .
- the wiring module 460 has a mounting bracket 406 with an aperture 401 to mount the wiring module 460 to an adjustable plaster ring (e.g., 140 ) and an aperture 402 to attach a protective cover (e.g., 161 ) to the wiring module 460 .
- the wiring module 460 also includes shielded connectors 403 for receiving a functional module (e.g., an outlet receptacle functional module or a switch functional module).
- FIG. 4B is a rear perspective view of the wiring module 460 .
- the wiring module 460 includes a screw terminal ground lanyard connection point 452 .
- the ground lanyard connection point is, for example, an internal push-wire connector, a soldered joint, or a clamped joint.
- the wiring module 460 also includes internal push-wire connectors 407 for receiving power cables (e.g., hot, neutral, and ground power cables) routed to an electrical box (e.g., 120 ).
- the internal push-wire connectors 407 can also be used for creating a ground connection between the wiring module 460 and an electrical box (e.g., 120 ).
- the wiring module 460 could be mechanically and electrically coupled to an electrical box via a pre-wired ground lanyard (e.g., 180 ).
- the internal push-wire connectors 407 can be, for example, any type of push-in connector housed wholly or partially within the wiring module 460 for receiving power cables. In some embodiments, the internal push-wire connectors 407 are stab-in connectors.
- the wiring module 460 also includes a tab 405 that covers screw terminals that are in electrical contact with individual ones of the internal push-wire connectors 407 . The screw terminals can be used as an alternative to-the internal push-wire connectors 407 if desired.
- the internal push-wire connectors 407 are particularly advantageous in situations where space within the electrical box 160 is limited or in any other setting where it is desirable to conserve space within the electrical box 160 . This may be true, for example, in relatively shallow walls (e.g., walls measuring less than about 3′′ from the outside edge of a wall stud to the back wall).
- the internal push-wire connectors 407 conserve space within the electrical box 160 (or allow for the usage of a shallower depth electrical box 160 ) because they do not include a length of wire between the wiring module and a connector as is the case for the embodiment illustrated in FIG. 2 having external push-wire connectors 250 . While such external push-wire connectors 250 are desirable under some circumstances, the internal push-wire connectors of FIGS.
- 3-4 can result in space and cost savings due to the elimination of wire joining the connectors (e.g., 250 ) to the wiring module (e.g., 260 ). It should be understood that the wiring module 460 with internal push-wire connectors can be used with or without a pre-wired ground lanyard (e.g., 180 ).
- FIG. 5 illustrates a pre-wired power distribution system embodiment 500 having a 3-gang electrical box 520 , a 3 -gang adjustable plaster ring 540 , a ground bus bar 550 mounted directly to the electrical box 520 , three wiring modules 560 attached to the plaster ring 540 and a multiple wire ground lanyard 580 .
- the ground lanyard 580 extends between the bus bar 550 and ground terminals 562 on each of the wiring modules 560 .
- the bus bar 550 is configured to accept additional ground wires from power cables routed to and from the electrical box 520 .
- the ground lanyard 580 supports the plaster ring 540 in the open position shown, providing a wiring platform for the electrician to wire all three wiring modules 560 as a unit without having to handle and hold each of the wiring modules individually during the wiring process.
- the bus bar 550 is configured to allow the attachment of multiple ground wires 580 so as to provide ground connections for not only wiring modules, but also power cables routed in and out of the electrical box 520 .
- the bus bar 550 has a plurality of sections 552 and individual terminals 551 within each section. In an embodiment, there is one section 552 corresponding to each of the wiring modules 560 and multiple terminals 551 in each section. Each of the sections can be in electrical contact or electrically isolated. In this manner, ground wiring capacity increases with the size and electrical device mounting capacity of the electrical box 520 .
- Each terminal 551 is configured to accept a ground wire 580 from either a wiring module 560 or an attached power cable.
- the bus bar 550 has three sections corresponding to three wiring modules, and each section has four terminals configured to accept up to four ground wires, though other numbers of sections and terminals are also possible.
- the bus bar 550 advantageously eliminates the need for pigtail ground connections or the equivalent use of electrical device terminals.
- the bus bar 550 can be configured for use with external push wire connector wiring modules 260 ( FIG. 2 ), internal push wire connector wiring modules 360 ( FIG. 3 ) or any electrical devices having push-wire, screw terminal or similar wire connectors.
- a pre-wired power distribution system can be configured for any number of electrical devices, including 2-gang, 4-gang, and other many-gang embodiments.
- a pre-wired power distribution system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow.
- One of ordinary skill in art will appreciate many variations and modifications.
- FIG. 6 illustrates a modular integrated wiring system 600 utilizing universal electrical wiring component embodiments 800 - 1100 .
- a floor bracket component 800 , a stud bracket component 900 , a box bracket component 1000 and an extended box bracket 1100 are included, providing adaptability for different electrical power distribution designs.
- Each wiring component 800 - 1100 provides mounting flexibility by adjusting to various wall dimensions, stud configurations, and electrical distribution point locations. Specifically, each component 800 - 1100 has an adjustable depth into the wall, guaranteeing a flush finish with the wall surface at every electrical distribution point.
- the floor bracket component 800 provides an adjustable height.
- the stud bracket component 900 can be positioned at any height and provides an adjustable distance between studs.
- the box bracket component 1000 can be positioned at any height, and the extended box bracket component 1100 can be positioned at any height and at various locations between studs. Further, each wiring component 800 - 1100 accommodates a variety of functional modules, including various outlets, switches, GFCI devices, and motion detectors to name few. Advantageously, the color of the functional modules and even some functionality can be readily changed at anytime without rewiring, as described below.
- the resulting modular integrated wiring system 600 has the labor saving advantages of prefabrication with the design and installation flexibility of individually configured and wired components.
- a universal electrical wiring component combining modular electrical devices and an adjustable, modular mount is described with respect to FIG. 7 , below.
- a floor bracket component 800 is described in further detail with respect to FIG. 8 , below.
- a stud bracket component 900 is described in further detail with respect to FIG. 9 , below.
- a box bracket component 900 is described in further detail with respect to FIG. 9 , below, and an extended box bracket component 1100 is described in further detail with respect to FIG. 11 , below.
- Adjustable mounts are described in detail with respect to FIGS. 12-16 , below.
- FIG. 7 further illustrates a universal electrical wiring component 700 having an adjustable mount 705 combined with a wiring module 701 .
- the adjustable mount 705 includes a bracket 707 and a box assembly 1200 .
- the bracket 707 can be, for example, a vertically adjustable floor bracket 1300 ( FIG. 13 ), a horizontally adjustable stud bracket 1400 ( FIG. 14 ), a box bracket 1500 ( FIG. 15 ), or an extended box bracket 1600 ( FIG. 16 ).
- the box assembly 1200 is mounted to the bracket 707 and the wiring module 701 is mounted in the box assembly 1200 .
- the wiring module 701 may be a regular wiring module 710 or a GFCI wiring module 720 .
- the adjustable mount 705 is configured to position the wiring module 701 at any of various locations within a building wall.
- the wiring module 701 is configured to connect to a source of electrical power and to removably accept a functional module 703 .
- the combination of adjustable mount and wiring module form a universal electrical wiring component that can implement a variety of electrical distribution points of an electrical system.
- a universal electrical wiring component can accept various outlet modules 750 - 760 and can be adjusted to implement a wall outlet.
- a universal electrical wiring component can accept various switch modules 740 and can be adjusted to implement a switch outlet.
- a universal electrical wiring component 200 may be, for example, a floor bracket component 800 ( FIG. 8 ), a stud bracket component 900 ( FIG. 9 ), a box bracket component 1000 ( FIG. 10 ) or an extended box bracket component 1100 ( FIG. 11 ).
- a cover 704 may be used to protect a wiring module 701 from damage prior to functional module installation.
- FIG. 8 illustrates a floor bracket component 800 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a floor bracket 1300 .
- the floor bracket 1300 provides the wiring module 701 an adjustable height from the floor and the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.
- FIG. 9 illustrates a stud bracket component 900 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a stud bracket 1400 .
- the stud bracket 1400 provides the wiring module 701 an adjustable distance between studs and the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.
- FIG. 10 illustrates a box bracket component 1000 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and a box bracket 1500 .
- the box bracket 1500 allows positioning of the wiring module 701 along a vertical stud.
- the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.
- FIG. 11 illustrates an extended box bracket component 1100 having a wiring module 701 and an adjustable mount comprising a box assembly 1200 and an extended box bracket 1600 .
- the extended box bracket 1600 allows vertical positioning of the wiring module 701 along a stud and horizontal positioning between studs.
- the box assembly 1200 provides the wiring module 701 an adjustable distance from the box assembly 1200 for a flush position with a wall surface.
- FIG. 12 illustrates a box assembly 1200 having a junction box 1800 , an adjustable plaster ring 1700 and a support arm 1900 .
- the plaster ring 1700 removably attaches to the junction box 1800 and a wiring module 701 ( FIG. 7 ) attaches to the plaster ring 1700 .
- the plaster ring provides the wiring module 701 ( FIG. 7 ) with an adjustable distance from the junction box 1800 , as described in detail with respect to FIG. 17 .
- the junction box 1800 advantageously has an attached ground wire that can be quickly connected to a wiring module 701 ( FIG. 7 ).
- the plaster ring 1700 has slotted fastener apertures so that the plaster ring 1700 along with an attached wiring module can be removed from, and reattached to, the junction box 1800 by merely loosening and tightening, respectively, the fasteners.
- the support arm 1900 attaches to the back of the junction box to provide support against an inside wall surface, as described in further detail with respect to FIGS. 19A-D , below.
- FIG. 13 illustrates a floor bracket 1300 having an open front 1301 and ruled sides 1310 .
- the floor bracket 1300 has tabs 1320 for attaching the bracket 1300 to one or both of a floor joist or a wall stud.
- Side grooves 1330 allow fasteners to attach the junction box 1800 at an adjustable height from the floor.
- Conduit supports 1340 are adapted for attachment to conduits running to the junction box 1800 .
- the plaster ring 1700 is attached to the box 1800 through the open front 1301 so that the plaster ring 1700 can be removed from the box 1800 without removing the box 1800 from the bracket 1300 .
- FIG. 14 illustrates a stud bracket 1400 having a horizontal bar 1401 and ends 1403 .
- the ends 1403 are folded perpendicularly to the bar 1401 and adapted to secure the bracket 1400 horizontally between wall studs.
- the bar 1401 has grooves 1410 and a slot 1420 that extend horizontally to proximate both ends 1403 of the bracket 1400 .
- the grooves 1410 are adapted to slideably retain corresponding box tongues 1812 ( FIG. 18 ).
- the slot 1420 is centered between the grooves 1410 and accommodates a fastener that secures the junction box 1800 to the bracket 1400 while allowing the box to slideably adjust in position along the bar 1401 .
- the plaster ring 1700 is attached to the box 1800 and can be removed from the box 1800 without removing the box 1800 from the bracket 1400 .
- FIG. 15 illustrates a box bracket 1500 having a stud mounting face 1501 and a box mounting face 1503 .
- the stud mounting face 1501 is disposed perpendicular to the box mounting face 1503 and is adapted to fasten to a wall stud. Either side of the junction box 1800 attaches to the box mounting face 1503 .
- the box mounting face 1503 has a keyhole slots 1511 allowing the junction box 1800 to fasten and unfasten to the bracket 1500 without removing the fasteners 1520 .
- the stud mounting face 1501 has a plurality of mounting holes 1610 to accommodate fasteners that allow the junction box 1800 to be positioned along a stud.
- FIG. 16 illustrates an extended box bracket 1600 having an extended stud mounting face 1601 and a box mounting face 1603 .
- the box mounting face 1603 is disposed perpendicular to the extended stud mounting face 1601 and is adapted to fasten to the junction box 1800 .
- the extended stud mounting face 1601 is adapted to fasten to a wall stud.
- the extended stud mounting face 1601 has a plurality of mounting holes 1610 spaced along the length of the bracket 1600 to accommodate fasteners that allows the junction box 1800 to be position vertically along a stud and horizontally between studs.
- FIG. 17 further illustrates an adjustable plaster ring 1700 having a base ring 1710 , an insert ring 1720 and adjusting screws 1730 .
- the insert ring 1720 is slideably retained by the base ring 1710 and secured to the base ring 1710 by the adjusting screws 1730 .
- the insert ring 1720 is adapted to mount a wiring module and to adjust the wiring module position relative to the base ring 1710 in response to turning of the screws 1730 .
- the base ring 1710 has keyhole slots 1714 adapted to accommodate fasteners that attach the plaster ring 1700 to a junction box.
- the keyhole slot 1714 allows the plaster ring 1700 to fasten and unfasten to the junction box without removing the fasteners.
- FIG. 18 further illustrates a junction box 1800 having a ground wire 1810 , a tongue 1812 and knockouts 1814 .
- the ground wire 1810 being pre-wired to the box, advantageously saves a fabrication step on the job site. Further, the ground wire 1810 is configured to insert into a push-wire connector on a pre-wired wiring module, providing a plug-in function module with a path to ground.
- the tongue 1812 stabilizes the box within a groove on a stud bracket, if used.
- the knockouts 1814 provide attachment points for power cable conduits.
- FIGS. 19A-D further illustrate a support arm 1900 adapted to attach to a back face of the junction box 1800 ( FIG. 18 ) and provide support against an inside wall surface.
- the support arm 1900 has an attachment section 1901 and a support section 1902 extending generally perpendicularly from one end of the attachment section 1901 .
- the attachment section is generally planar having an inside face 1904 that is disposed against the junction box 1800 and an opposite outside face 1905 that is disposed distal the junction box 1800 .
- the support section 1902 has a support face 1907 that is disposed against an inside wall surface.
- the attachment section 1901 has an adjustment slot 1910 , a fastener hole 1920 , and a plurality of bending slots 1930 distributed along and extending perpendicularly across the adjustment slot 1910 .
- the attachment section 1901 is configured to bend along one of the bending slots 1930 so as to provide a variable length support extending generally normal to the junction box back face.
- the support arm 1900 is held to the box 1800 with a fastener that is slideable along the adjustment slot 1910 , providing an adjustable support arm position.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Connection Or Junction Boxes (AREA)
Abstract
A power distribution system has an electrical box configured to attach a power cable, a plaster ring releasably mounted to the box and one or more electrical devices installed into the ring. A pre-wired ground extends from a first end physically and electrically connected to a ground terminal on the electrical device. The plaster ring is movable between a closed position proximate the box and an open position distal the box. The pre-wired ground is configured as a lanyard so as to support the plaster ring as a wiring platform in the open position for connecting wires between the power cable and the electrical device or devices.
Description
- Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.
- Wiring modules and corresponding functional modules are described in U.S. Pat. No. 6,884,111 entitled Safety Module Electrical Distribution System, issued Apr. 26, 2005; U.S. Pat. No. 6,341,981 entitled Safety Electrical Outlet And Switch System, issued Jan. 29, 2002; and U.S. Pat. No. 6,894,221 entitled Safety Outlet Module, issued May 17, 2005. Modular electrical devices, electrical boxes and adjustable mounts are described in U.S. patent application Ser. No. 10/924,555 entitled Universal Electrical Wiring Component, filed Aug. 24, 2004. A wiring support platform is described in U.S. patent application Ser. No. 11/108,005 entitled Hinged Wiring Assembly, filed Apr. 16, 2005. All of the above-referenced patents and patent applications are hereby incorporated herein by reference.
- A power distribution system may comprise an electrical box, a plaster ring and an electrical device, such as an outlet or switch. During a roughing phase of construction, electrical boxes with attached plaster rings are mounted to wall studs at predetermined locations. A journeyman electrician routes power cables through building framing to the appropriate box. Then power cables are fed through openings in the rear or sides of the boxes and folded back inside. During a trim phase, electrical devices are mounted to the plaster rings.
- Conventional electrical distribution systems consist of either prefabricated components customized for particular electrical distribution points within a building or individual components that must be planned for, ordered, allocated to building locations and then attached together and wired during installation at each electrical distribution point. Further, it is impractical to test each wired installation for conformance to construction standards.
- A pre-wired power distribution system, in contrast, advantageously combines installation flexibility, convenience and verifiability. A combination electrical box, plaster ring, one or more electrical devices installed in the plaster ring and one or more pre-wired grounds between the electrical box and the electrical device or devices provides for a pre-tested ground path. In an embodiment, the electrical device is a wiring module configured to accept any of various functional modules. The pre-wired ground also functions as a lanyard between the electrical device and the electrical box, allowing the plaster ring to be pivoted to, and supported in, an open position to provide hands-free connection of power wires to the electrical device. This feature is particularly useful for wiring gang electrical boxes housing multiple electrical devices. In an embodiment, a ground bus bar mounted to the electrical box provides further flexibility by accommodating multiple grounds for power cables routed to the electrical box. In this manner, an electrical box, a plaster ring and wiring module or other electrical device or devices may be manufactured, assembled, distributed and/or installed as a pre-wired power distribution component, by itself or in combination with an adjustable mount.
-
FIGS. 1A-B are perspective views of a pre-wired power distribution system in an open position and a closed position, respectively; -
FIG. 2 is a perspective view of a pre-wired power distribution system embodiment having a writing module with external push wire connectors; -
FIG. 3 is a perspective view of a pre-wired power distribution system embodiment having a wiring module with internal push wire connectors; -
FIG. 4A is a front perspective view of an embodiment of a wiring module with internal push wire connectors; -
FIG. 4B is a rear perspective view of the wiring module ofFIG. 4A ; and -
FIG. 5 is a perspective view of a pre-wired power distribution system embodiment having a box-mounted ground bus bar; -
FIG. 6 is a front view of a modular integrated wiring system utilizing various embodiments of a universal electrical wiring component; -
FIG. 7 is a front perspective exploded view of a universal electrical wiring component having modular electrical devices combined with an adjustable, modular mount; -
FIG. 8 is a front perspective view of a floor bracket electrical wiring component; -
FIG. 9 is a front perspective view of a stud bracket electrical wiring component; -
FIG. 10 is a front perspective view of a box bracket electrical wiring component; -
FIG. 11 is a front perspective view of an extended box bracket electrical wiring component; -
FIG. 12 is an exploded perspective view of a junction box assembly; -
FIG. 13 is an exploded perspective view of a floor bracket assembly; -
FIG. 14 is an exploded perspective view of a stud bracket assembly; -
FIG. 15 is an exploded perspective view of a box bracket assembly; -
FIG. 16 is an exploded perspective view of an extended BOX bracket assembly; -
FIG. 17 is an exploded perspective view of an adjustable plaster ring; -
FIG. 18 is a perspective view of a junction box; and -
FIGS. 19A-D are top, perspective, front and side views, respectively, of a support arm. -
FIGS. 1A-B illustrate a pre-wiredpower distribution system 100 having anelectrical box 120 configured to attach at least one power cable, anadjustable plaster ring 140, anelectrical device 160 mounted to theplaster ring 140 and a ground lanyard 180 pre-wired between theelectrical device 160 and theelectrical box 120. Theelectrical box 160 can be any type known in the art. - In some embodiments, the
electrical device 160 is a wiring module that is configured to connect to a source of electrical power via a plurality of cables (e.g., hot, neutral, and ground cables). The plurality of cables (not shown) are fed through theelectrical box 120 and connected to a wiring portion of the wiring module, as disclosed herein. In some embodiments, once the wiring module is connected to power cables and fully installed within theelectrical box 120, the wiring portion of the wiring module is substantially enclosed by theelectrical box 120 and theadjustable plaster ring 140, and is inaccessible to users. The wiring module also includes a user-accessible portion that removably accepts a functional module (not shown) that provides a selected electrical power distribution function. For example, the functional module may be an outlet receptacle or a switch. The user-accessible portion of the wiring module includes shielded connectors, or sockets, that mate with the functional module. The shielded connectors help reduce the risk of electrical shock to users when a functional module is not installed in the wiring module. InFIG. 1B , the shielded connectors are concealed by aprotective cover 161 that protects the connectors from foreign objects, for example, during a rough-in phase of construction. The functional module can be installed without accessing the wiring portion of the wiring module or the power cables. - In some embodiments, the electrical device 160 (e.g., a wiring module) is mounted to the
adjustable plaster ring 140. The adjustable plaster ring provides for an adjustable distance between theelectrical device 160 and theelectrical box 120. For example, the adjustable plaster ring may include adjusting screws that can be turned to increase or decrease the distance between theelectrical device 160 and theelectrical box 120. In this way, the depth of theelectrical device 160 within a wall can be adjusted to result in the desired fit with the wallboard. - One
lanyard end 182 is connected to abox ground junction 122 and anotherlanyard end 184 is connected to an electrical device terminal 162. Theplaster ring 140 can be releasably attached to theelectrical box 120. Theplaster ring 140 is movable between an open positionFIG. 1A distal theelectrical box 120 and a closed positionFIG. 1B proximate theelectrical box 120. Theplaster ring 140 can be releasably attached to theelectrical box 120 in the closed position. The ground lanyard 180 provides a ground path from theelectrical device 160 to the electrical box and mechanically supports the plaster ring in the open position. In some embodiments, however, the ground lanyard 180 does not necessarily support the plaster ring in the open position. - In an embodiment, the ground lanyard 180 is a ground wire connected between a single point ground 222 (
FIG. 2 ) on theelectrical box 120 and a ground terminal 252 (FIG. 2 ) on theelectrical device 160, as described in further detail with respect toFIGS. 2-3 , below. In another embodiment, the ground lanyard 180 includes multiple ground wires connected between a ground bus bar 450 (FIG. 4 ) mounted on a multi-gang electrical box 420 (FIG. 4 ) and the ground terminals 462 (FIG. 4 ) of multiple electrical devices 460 (FIG. 4 ) mounted in a multi-gang plaster ring 440 (FIG. 4 ), as described in further detail with respect toFIG. 4 , below. As described herein, theelectrical devices 160 may be wiring modules that are configured to accept various functional modules. Theelectrical box 120 is adapted to utilize various adjustable or fixed stud brackets, and theplaster ring 140 may be adjustable. These aspects facilitate the positioning of the mounted electrical devices during wall installation of the ground wire supportingwiring assembly 100. With this combination of features, a pre-wired power distribution system provides a broadly adaptable electrical system component. - The connections between the ground lanyard 180 and the
electrical box 120 can be formed using any type of connection known in the art. For example, a connection between the ground lanyard 180 and theelectrical box 120 or theelectrical device 160 may comprise an electrical screw terminal or a push-in connector. In some embodiments, the electrical screw terminal is treated with a threadlocker material once the connection is made to improve the mechanical reliability of the connection. The ground lanyard 180 can also be soldered or clamped to theelectrical box 120 or theelectrical device 160. Advantageously, in cases where theelectrical device 160 is a wiring module, the connection between the ground lanyard 180 and theelectrical box 120 or theelectrical device 160 can be made substantially permanent because the wiring module need not be removed to replace an outlet receptacle, switch, or other similar functional module. In contrast, it would generally be undesirable to form a permanent ground connection between a conventional outlet receptacle or switch and anelectrical box 120 because doing so may prevent the replacement of the conventional outlet receptacle or switch. The fact that the connections between the ground lanyard 180 and theelectrical device 160 or theelectrical box 120 can be made substantially permanent can also allow the connections to be made stronger (allowing the ground lanyard to support the weight of theelectrical device 160 andadjustable plaster ring 140, as described herein) and more reliable, both from a mechanical and an electrical standpoint. - The pre-wired ground lanyard 180 can be advantageously tested at the manufacturer. In an embodiment, the ground lanyard 180 is subjected to a mechanical pull test and an electrical continuity test. In a particular embodiment, the pull-test has at least a 20 lb. force. The mechanical pull test and the electrical continuity test would otherwise be too cumbersome to perform on ground connections installed by an electrician at a worksite. However, since the ground connection between the
electrical device 160 and theelectrical box 120 is installed at the manufacturer, these tests can be performed more efficiently than can be done at a worksite. Moreover, these tests can be performed using equipment that is too expensive or bulky to use at a worksite where the ground connection might otherwise be installed. In some embodiments, however, the ground lanyard 180 is not pre-wired but is instead configured to be connected upon installation of theelectrical device 160 within theelectrical box 120. - Since the ground connection between the
electrical device 160 and theelectrical box 120 acts as a pull-tested lanyard 180, theplaster ring 140 can be supported in an open position (FIG. 1A ) by the ground lanyard 180, advantageously allowing an electrician hands-free access to one or moreelectrical devices 160 so as to wire these devices to power cables routed to theelectrical box 120. Upon wiring completion, theplaster ring 140 is moved to a closed position (FIG. 1B ) and secured to theelectrical box 120. Multipleelectrical devices 160 can be pre-attached to theplaster ring 140 because doing so does not block access to theelectrical box 120 or impede the wiring process. Further, the use of a ground bus bar as the electricalbox ground junction 184 advantageously allows the ground wiring of one or more power cables to the bus bar without resorting to ad hoc pigtail junctions or the use of the electrical device connectors. -
FIG. 2 illustrates a pre-wired powerdistribution system embodiment 200 having awiring module 260 pre-wired with push-wire connectors 250. Aground wire 280 extends between thewiring module 260 and anelectrical box 120. In some embodiments, theground wire 280 includes a push-wire connector at some point along its length to be connected to a ground cable fed into theelectrical box 120 along with other power distribution cables. Theground wire 280 has a first end 282 attached to a ground push-wire connector 252 and asecond end 284 secured to aground attachment point 222 in the interior of theelectrical box 120. In some embodiments, theground attachment point 222 is a screw terminal. The push-wire connectors 250 are connected to internal crimp wires of thewiring module 260 and adapted to accept power and ground wires from cables (not shown) routed to theelectrical box 120. An electrician can easily and quickly attach the power wires to the appropriatepush wire connectors 250 while theplaster ring 140 is supported by theground wire 280. -
FIG. 3 illustrates another pre-wired powerdistribution system embodiment 300 having awiring module 360 with internal push-wire connectors 350. Aground wire 280 extends between thewiring module 360 and anelectrical box 120. Theground wire 280 has a first end 282 attached to a ground push-wire connector 352 and asecond end 284 secured to aground attachment point 222 in the interior of theelectrical box 120. The push-wire connectors 350 are adapted to accept power and ground wires from cables (not shown) routed to theelectrical box 120. -
FIG. 4A is a front perspective view of an embodiment of awiring module 460 having internal push-wire connectors 407. Thewiring module 460 has a mountingbracket 406 with anaperture 401 to mount thewiring module 460 to an adjustable plaster ring (e.g., 140) and anaperture 402 to attach a protective cover (e.g., 161) to thewiring module 460. Thewiring module 460 also includes shieldedconnectors 403 for receiving a functional module (e.g., an outlet receptacle functional module or a switch functional module). -
FIG. 4B is a rear perspective view of thewiring module 460. Thewiring module 460 includes a screw terminal groundlanyard connection point 452. In other embodiments, the ground lanyard connection point is, for example, an internal push-wire connector, a soldered joint, or a clamped joint. Thewiring module 460 also includes internal push-wire connectors 407 for receiving power cables (e.g., hot, neutral, and ground power cables) routed to an electrical box (e.g., 120). The internal push-wire connectors 407 can also be used for creating a ground connection between thewiring module 460 and an electrical box (e.g., 120). For example, thewiring module 460 could be mechanically and electrically coupled to an electrical box via a pre-wired ground lanyard (e.g., 180). The internal push-wire connectors 407 can be, for example, any type of push-in connector housed wholly or partially within thewiring module 460 for receiving power cables. In some embodiments, the internal push-wire connectors 407 are stab-in connectors. Thewiring module 460 also includes atab 405 that covers screw terminals that are in electrical contact with individual ones of the internal push-wire connectors 407. The screw terminals can be used as an alternative to-the internal push-wire connectors 407 if desired. - The internal push-
wire connectors 407 are particularly advantageous in situations where space within theelectrical box 160 is limited or in any other setting where it is desirable to conserve space within theelectrical box 160. This may be true, for example, in relatively shallow walls (e.g., walls measuring less than about 3″ from the outside edge of a wall stud to the back wall). The internal push-wire connectors 407 conserve space within the electrical box 160 (or allow for the usage of a shallower depth electrical box 160) because they do not include a length of wire between the wiring module and a connector as is the case for the embodiment illustrated inFIG. 2 having external push-wire connectors 250. While such external push-wire connectors 250 are desirable under some circumstances, the internal push-wire connectors ofFIGS. 3-4 can result in space and cost savings due to the elimination of wire joining the connectors (e.g., 250) to the wiring module (e.g., 260). It should be understood that thewiring module 460 with internal push-wire connectors can be used with or without a pre-wired ground lanyard (e.g., 180). -
FIG. 5 illustrates a pre-wired powerdistribution system embodiment 500 having a 3-gangelectrical box 520, a 3-gang adjustable plaster ring 540, aground bus bar 550 mounted directly to theelectrical box 520, threewiring modules 560 attached to the plaster ring 540 and a multiplewire ground lanyard 580. Theground lanyard 580 extends between thebus bar 550 andground terminals 562 on each of thewiring modules 560. Thebus bar 550 is configured to accept additional ground wires from power cables routed to and from theelectrical box 520. As such, theground lanyard 580 supports the plaster ring 540 in the open position shown, providing a wiring platform for the electrician to wire all threewiring modules 560 as a unit without having to handle and hold each of the wiring modules individually during the wiring process. - Advantageously, the
bus bar 550 is configured to allow the attachment ofmultiple ground wires 580 so as to provide ground connections for not only wiring modules, but also power cables routed in and out of theelectrical box 520. Thebus bar 550 has a plurality ofsections 552 andindividual terminals 551 within each section. In an embodiment, there is onesection 552 corresponding to each of thewiring modules 560 andmultiple terminals 551 in each section. Each of the sections can be in electrical contact or electrically isolated. In this manner, ground wiring capacity increases with the size and electrical device mounting capacity of theelectrical box 520. Each terminal 551 is configured to accept aground wire 580 from either awiring module 560 or an attached power cable. In a 3-gang embodiment, thebus bar 550 has three sections corresponding to three wiring modules, and each section has four terminals configured to accept up to four ground wires, though other numbers of sections and terminals are also possible. Thebus bar 550 advantageously eliminates the need for pigtail ground connections or the equivalent use of electrical device terminals. Thebus bar 550 can be configured for use with external push wire connector wiring modules 260 (FIG. 2 ), internal push wire connector wiring modules 360 (FIG. 3 ) or any electrical devices having push-wire, screw terminal or similar wire connectors. - Although described and illustrated herein with respect to 1- and 3-gang embodiments, a pre-wired power distribution system can be configured for any number of electrical devices, including 2-gang, 4-gang, and other many-gang embodiments. A pre-wired power distribution system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.
-
FIG. 6 illustrates a modularintegrated wiring system 600 utilizing universal electrical wiring component embodiments 800-1100. Afloor bracket component 800, astud bracket component 900, abox bracket component 1000 and anextended box bracket 1100 are included, providing adaptability for different electrical power distribution designs. Each wiring component 800-1100 provides mounting flexibility by adjusting to various wall dimensions, stud configurations, and electrical distribution point locations. Specifically, each component 800-1100 has an adjustable depth into the wall, guaranteeing a flush finish with the wall surface at every electrical distribution point. In addition, thefloor bracket component 800 provides an adjustable height. Thestud bracket component 900 can be positioned at any height and provides an adjustable distance between studs. Thebox bracket component 1000 can be positioned at any height, and the extendedbox bracket component 1100 can be positioned at any height and at various locations between studs. Further, each wiring component 800-1100 accommodates a variety of functional modules, including various outlets, switches, GFCI devices, and motion detectors to name few. Advantageously, the color of the functional modules and even some functionality can be readily changed at anytime without rewiring, as described below. The resulting modularintegrated wiring system 600 has the labor saving advantages of prefabrication with the design and installation flexibility of individually configured and wired components. - A universal electrical wiring component combining modular electrical devices and an adjustable, modular mount is described with respect to
FIG. 7 , below. Afloor bracket component 800 is described in further detail with respect toFIG. 8 , below. Astud bracket component 900 is described in further detail with respect toFIG. 9 , below. Abox bracket component 900 is described in further detail with respect toFIG. 9 , below, and an extendedbox bracket component 1100 is described in further detail with respect toFIG. 11 , below. Adjustable mounts are described in detail with respect toFIGS. 12-16 , below. -
FIG. 7 further illustrates a universalelectrical wiring component 700 having anadjustable mount 705 combined with awiring module 701. Theadjustable mount 705 includes abracket 707 and abox assembly 1200. Thebracket 707 can be, for example, a vertically adjustable floor bracket 1300 (FIG. 13 ), a horizontally adjustable stud bracket 1400 (FIG. 14 ), a box bracket 1500 (FIG. 15 ), or an extended box bracket 1600 (FIG. 16 ). Thebox assembly 1200 is mounted to thebracket 707 and thewiring module 701 is mounted in thebox assembly 1200. Thewiring module 701 may be aregular wiring module 710 or aGFCI wiring module 720. Theadjustable mount 705 is configured to position thewiring module 701 at any of various locations within a building wall. Thewiring module 701 is configured to connect to a source of electrical power and to removably accept afunctional module 703. Advantageously, the combination of adjustable mount and wiring module form a universal electrical wiring component that can implement a variety of electrical distribution points of an electrical system. For example, a universal electrical wiring component can accept various outlet modules 750-760 and can be adjusted to implement a wall outlet. As another example, a universal electrical wiring component can acceptvarious switch modules 740 and can be adjusted to implement a switch outlet. A universalelectrical wiring component 200 may be, for example, a floor bracket component 800 (FIG. 8 ), a stud bracket component 900 (FIG. 9 ), a box bracket component 1000 (FIG. 10 ) or an extended box bracket component 1100 (FIG. 11 ). Acover 704 may be used to protect awiring module 701 from damage prior to functional module installation. -
FIG. 8 illustrates afloor bracket component 800 having awiring module 701 and an adjustable mount comprising abox assembly 1200 and afloor bracket 1300. In this embodiment, thefloor bracket 1300 provides thewiring module 701 an adjustable height from the floor and thebox assembly 1200 provides thewiring module 701 an adjustable distance from thebox assembly 1200 for a flush position with a wall surface. -
FIG. 9 illustrates astud bracket component 900 having awiring module 701 and an adjustable mount comprising abox assembly 1200 and astud bracket 1400. In this embodiment, thestud bracket 1400 provides thewiring module 701 an adjustable distance between studs and thebox assembly 1200 provides thewiring module 701 an adjustable distance from thebox assembly 1200 for a flush position with a wall surface. -
FIG. 10 illustrates abox bracket component 1000 having awiring module 701 and an adjustable mount comprising abox assembly 1200 and abox bracket 1500. In this embodiment, thebox bracket 1500 allows positioning of thewiring module 701 along a vertical stud. Also, thebox assembly 1200 provides thewiring module 701 an adjustable distance from thebox assembly 1200 for a flush position with a wall surface. -
FIG. 11 illustrates an extendedbox bracket component 1100 having awiring module 701 and an adjustable mount comprising abox assembly 1200 and anextended box bracket 1600. In this embodiment, theextended box bracket 1600 allows vertical positioning of thewiring module 701 along a stud and horizontal positioning between studs. Also, thebox assembly 1200 provides thewiring module 701 an adjustable distance from thebox assembly 1200 for a flush position with a wall surface. -
FIG. 12 illustrates abox assembly 1200 having ajunction box 1800, anadjustable plaster ring 1700 and asupport arm 1900. Theplaster ring 1700 removably attaches to thejunction box 1800 and a wiring module 701 (FIG. 7 ) attaches to theplaster ring 1700. The plaster ring provides the wiring module 701 (FIG. 7 ) with an adjustable distance from thejunction box 1800, as described in detail with respect toFIG. 17 . Thejunction box 1800 advantageously has an attached ground wire that can be quickly connected to a wiring module 701 (FIG. 7 ). Theplaster ring 1700 has slotted fastener apertures so that theplaster ring 1700 along with an attached wiring module can be removed from, and reattached to, thejunction box 1800 by merely loosening and tightening, respectively, the fasteners. Thesupport arm 1900 attaches to the back of the junction box to provide support against an inside wall surface, as described in further detail with respect toFIGS. 19A-D , below. -
FIG. 13 illustrates afloor bracket 1300 having anopen front 1301 and ruledsides 1310. Thefloor bracket 1300 hastabs 1320 for attaching thebracket 1300 to one or both of a floor joist or a wall stud.Side grooves 1330 allow fasteners to attach thejunction box 1800 at an adjustable height from the floor. Conduit supports 1340 are adapted for attachment to conduits running to thejunction box 1800. Theplaster ring 1700 is attached to thebox 1800 through theopen front 1301 so that theplaster ring 1700 can be removed from thebox 1800 without removing thebox 1800 from thebracket 1300. -
FIG. 14 illustrates astud bracket 1400 having ahorizontal bar 1401 and ends 1403. The ends 1403 are folded perpendicularly to thebar 1401 and adapted to secure thebracket 1400 horizontally between wall studs. Thebar 1401 hasgrooves 1410 and aslot 1420 that extend horizontally to proximate both ends 1403 of thebracket 1400. Thegrooves 1410 are adapted to slideably retain corresponding box tongues 1812 (FIG. 18 ). Theslot 1420 is centered between thegrooves 1410 and accommodates a fastener that secures thejunction box 1800 to thebracket 1400 while allowing the box to slideably adjust in position along thebar 1401. Theplaster ring 1700 is attached to thebox 1800 and can be removed from thebox 1800 without removing thebox 1800 from thebracket 1400. -
FIG. 15 illustrates abox bracket 1500 having astud mounting face 1501 and abox mounting face 1503. Thestud mounting face 1501 is disposed perpendicular to thebox mounting face 1503 and is adapted to fasten to a wall stud. Either side of thejunction box 1800 attaches to thebox mounting face 1503. Thebox mounting face 1503 has akeyhole slots 1511 allowing thejunction box 1800 to fasten and unfasten to thebracket 1500 without removing thefasteners 1520. Thestud mounting face 1501 has a plurality of mountingholes 1610 to accommodate fasteners that allow thejunction box 1800 to be positioned along a stud. -
FIG. 16 illustrates an extendedbox bracket 1600 having an extended stud mounting face 1601 and abox mounting face 1603. Thebox mounting face 1603 is disposed perpendicular to the extended stud mounting face 1601 and is adapted to fasten to thejunction box 1800. The extended stud mounting face 1601 is adapted to fasten to a wall stud. The extended stud mounting face 1601 has a plurality of mountingholes 1610 spaced along the length of thebracket 1600 to accommodate fasteners that allows thejunction box 1800 to be position vertically along a stud and horizontally between studs. -
FIG. 17 further illustrates anadjustable plaster ring 1700 having abase ring 1710, aninsert ring 1720 and adjustingscrews 1730. Theinsert ring 1720 is slideably retained by thebase ring 1710 and secured to thebase ring 1710 by the adjusting screws 1730. Theinsert ring 1720 is adapted to mount a wiring module and to adjust the wiring module position relative to thebase ring 1710 in response to turning of thescrews 1730. Thebase ring 1710 haskeyhole slots 1714 adapted to accommodate fasteners that attach theplaster ring 1700 to a junction box. Thekeyhole slot 1714 allows theplaster ring 1700 to fasten and unfasten to the junction box without removing the fasteners. -
FIG. 18 further illustrates ajunction box 1800 having aground wire 1810, atongue 1812 andknockouts 1814. Theground wire 1810, being pre-wired to the box, advantageously saves a fabrication step on the job site. Further, theground wire 1810 is configured to insert into a push-wire connector on a pre-wired wiring module, providing a plug-in function module with a path to ground. Thetongue 1812 stabilizes the box within a groove on a stud bracket, if used. Theknockouts 1814 provide attachment points for power cable conduits. -
FIGS. 19A-D further illustrate asupport arm 1900 adapted to attach to a back face of the junction box 1800 (FIG. 18 ) and provide support against an inside wall surface. In particular, thesupport arm 1900 has anattachment section 1901 and asupport section 1902 extending generally perpendicularly from one end of theattachment section 1901. The attachment section is generally planar having aninside face 1904 that is disposed against thejunction box 1800 and an oppositeoutside face 1905 that is disposed distal thejunction box 1800. Thesupport section 1902 has asupport face 1907 that is disposed against an inside wall surface. Theattachment section 1901 has anadjustment slot 1910, afastener hole 1920, and a plurality of bendingslots 1930 distributed along and extending perpendicularly across theadjustment slot 1910. Theattachment section 1901 is configured to bend along one of the bendingslots 1930 so as to provide a variable length support extending generally normal to the junction box back face. Thesupport arm 1900 is held to thebox 1800 with a fastener that is slideable along theadjustment slot 1910, providing an adjustable support arm position. - A universal electrical wiring component has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.
Claims (20)
1. An apparatus for use in an electrical distribution system, the apparatus comprising:
an electrical box configured to accept at least one electrical power cable;
a plaster ring configured to be mounted to the electrical box, wherein the plaster ring has an open front face that provides access to an interior of the electrical box;
an electrical wiring module within the interior of the electrical box, the electrical wiring module including one or more conductors that couple the electrical wiring module to one or more of the power cables, the electrical wiring module further including one or more connectors to electrically couple to a functional module;
a first cover configured to protect one of more of the connectors on the wiring module; and
a second cover configured to substantially cover the open front face of the plaster ring.
2. The apparatus of claim 1 , wherein at least one of the wiring module conductors is electrically connected to the electrical box.
3. The apparatus of claim 2 , wherein the wiring module conductors are configured with wire connectors.
4. The apparatus of claim 1 , wherein the second cover is attached to the plaster ring with one or more screws.
5. The apparatus of claim 4 , wherein the second cover includes a plate.
6. The apparatus of claim 1 , where one of the first and second covers is flexible.
7. The apparatus of claim 1 , wherein the first cover is flexible and the second cover is hard.
8. The apparatus of claim 1 , further comprising mounting brackets configured to mount the apparatus to ensure the center of the functional module when coupled with the wiring module will be between 12 and 20 inches from the floor.
9. The apparatus of claim 1 , further comprising mounting brackets configured to mount the apparatus to a construction stud allowing the box to be moved to a variety of positions vertically on the stud or to move the apparatus horizontally between two studs on a wall, ceiling or floor.
10. The apparatus of claim 1 , wherein the electrical box is configured to be mounted to a hard surface or within a hard surface.
11. The apparatus of claim 1 , wherein the first cover must be removed to electrically couple a functional module with the wiring module.
12. The apparatus of claim 1 , wherein the second cover protects must be removed to electrically connect the functional module.
13. The apparatus of claim 1 , wherein the second cover protects the wiring module, the first cover and one or more of the conductors.
14. The apparatus of claim 1 , further comprising a functional module.
15. An electrical apparatus manufacturing method comprising:
placing one or more electrical wiring modules within an interior of an electrical box, each electrical wiring module including one or more fixed conductors that couple the electrical wiring module to one or more power cables, the electrical wiring module further including one or more connectors disposed thereon that are configured to electrically couple to a functional module;
mounting a plaster ring to the electrical box wherein the plaster ring includes an open front face that provides access to the interior of the electrical box; and
mounting a hard protective cover to the plaster ring.
16. The electrical apparatus manufacturing method of claim 15 , wherein the plaster ring is removeably mounted with two or more screws.
17. The electrical wiring method of claim 9 , wherein the hard protective cover is attached with two or more screws.
18. The electrical apparatus manufacturing method of claim 15 , further comprising: respectively mounting a functional module to each wiring module.
19. The electrical apparatus manufacturing method of claim 9 , wherein at least one of the wiring modules fixed conductors is connected to the electrical box with a screw or wire connector.
20. The electrical apparatus manufacturing method of claim 9 , wherein at lease one conductor from each of the wiring modules is connected to the electrical box via a wire connector or screw.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/219,643 US20140345933A1 (en) | 2006-07-29 | 2014-03-19 | Adjustable plaster ring cover |
US14/630,319 US20150236490A1 (en) | 2006-07-29 | 2015-02-24 | Adjustable plaster ring cover |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83396606P | 2006-07-29 | 2006-07-29 | |
US11/829,796 US20080053698A1 (en) | 2006-07-29 | 2007-07-27 | Pre-wired power distribution system |
US12/176,828 US7718893B2 (en) | 2006-07-29 | 2008-07-21 | Adjustable plaster ring cover |
US12/778,886 US20100218969A1 (en) | 2006-07-29 | 2010-05-12 | Adjustable plaster ring cover |
US13/405,042 US20120247803A1 (en) | 2006-07-29 | 2012-02-24 | Adjustable plaster ring cover |
US14/219,643 US20140345933A1 (en) | 2006-07-29 | 2014-03-19 | Adjustable plaster ring cover |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/405,042 Continuation US20120247803A1 (en) | 2006-07-29 | 2012-02-24 | Adjustable plaster ring cover |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/630,319 Continuation US20150236490A1 (en) | 2006-07-29 | 2015-02-24 | Adjustable plaster ring cover |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140345933A1 true US20140345933A1 (en) | 2014-11-27 |
Family
ID=39149937
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/829,796 Abandoned US20080053698A1 (en) | 2006-07-29 | 2007-07-27 | Pre-wired power distribution system |
US12/176,828 Expired - Fee Related US7718893B2 (en) | 2006-07-29 | 2008-07-21 | Adjustable plaster ring cover |
US12/176,980 Abandoned US20090021895A1 (en) | 2006-07-29 | 2008-07-21 | Adjustable plaster ring with attached clip |
US12/778,886 Abandoned US20100218969A1 (en) | 2006-07-29 | 2010-05-12 | Adjustable plaster ring cover |
US13/405,042 Abandoned US20120247803A1 (en) | 2006-07-29 | 2012-02-24 | Adjustable plaster ring cover |
US14/219,643 Abandoned US20140345933A1 (en) | 2006-07-29 | 2014-03-19 | Adjustable plaster ring cover |
US14/630,319 Abandoned US20150236490A1 (en) | 2006-07-29 | 2015-02-24 | Adjustable plaster ring cover |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/829,796 Abandoned US20080053698A1 (en) | 2006-07-29 | 2007-07-27 | Pre-wired power distribution system |
US12/176,828 Expired - Fee Related US7718893B2 (en) | 2006-07-29 | 2008-07-21 | Adjustable plaster ring cover |
US12/176,980 Abandoned US20090021895A1 (en) | 2006-07-29 | 2008-07-21 | Adjustable plaster ring with attached clip |
US12/778,886 Abandoned US20100218969A1 (en) | 2006-07-29 | 2010-05-12 | Adjustable plaster ring cover |
US13/405,042 Abandoned US20120247803A1 (en) | 2006-07-29 | 2012-02-24 | Adjustable plaster ring cover |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/630,319 Abandoned US20150236490A1 (en) | 2006-07-29 | 2015-02-24 | Adjustable plaster ring cover |
Country Status (1)
Country | Link |
---|---|
US (7) | US20080053698A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112217165A (en) * | 2020-08-25 | 2021-01-12 | 衡阳和众信息技术有限责任公司 | Junction box for network engineering |
US11557888B2 (en) | 2019-02-14 | 2023-01-17 | Erico International Corporation | Adjustable depth electrical wall mount ring |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367121B1 (en) | 2000-01-05 | 2008-05-06 | Protectconnect | Electrical wiring method |
AU2003248564A1 (en) | 2002-05-23 | 2003-12-12 | Protectconnect, Inc. | Safety module electrical distribution system |
US7780470B2 (en) | 2003-10-07 | 2010-08-24 | Pass & Seymour, Inc. | Plug tail lighting switch and control system |
US7312396B1 (en) | 2004-03-13 | 2007-12-25 | Protectconnect, Inc. | Universal electrical wiring component |
US20080053698A1 (en) * | 2006-07-29 | 2008-03-06 | Steve Purves | Pre-wired power distribution system |
US7847200B2 (en) * | 2006-09-07 | 2010-12-07 | Siemens Industry, Inc. | Devices, systems, and/or methods for electrically coupling a high voltage electric motor |
US20090065248A1 (en) * | 2007-09-07 | 2009-03-12 | Bill Finley | Devices, systems, and/or methods for electrically coupling an electric motor |
US8072736B2 (en) * | 2008-07-28 | 2011-12-06 | Tyco Electronics Brasil Ltda | Movable electrical power distribution assembly |
US8681479B2 (en) | 2009-05-29 | 2014-03-25 | Rosendin Electric, Inc. | Various methods and apparatuses for an integrated power distribution platform |
US9398717B2 (en) | 2009-05-29 | 2016-07-19 | Rosendin Electric, Inc. | Modular power skid assembled with different electrical cabinets and components mounted on the skid |
US8338706B2 (en) * | 2009-07-09 | 2012-12-25 | Thomas & Betts International, Inc. | Protective cover |
US9819167B2 (en) | 2009-09-04 | 2017-11-14 | Cantex, Inc. | Electrical accessories and associated methods of use and manufacture |
DE102009047435A1 (en) * | 2009-12-03 | 2011-06-09 | Robert Bosch Gmbh | Method for generating control signals |
US8669471B2 (en) | 2010-09-14 | 2014-03-11 | Southwire Company | Electrical accessories and associated methods of use and manufacture |
US8789256B2 (en) | 2010-09-14 | 2014-07-29 | Southwire Company, Llc | Folded electrical junction boxes and associated methods of use and manufacture |
US8575484B1 (en) | 2010-09-14 | 2013-11-05 | Cooper Technologies Company | Adjustable-depth ring assembly and method of installation |
US20120181055A1 (en) * | 2011-01-13 | 2012-07-19 | Mr. William Harrison Holton, III | High Volume Cover |
WO2013023305A1 (en) * | 2011-08-18 | 2013-02-21 | Harman Rodney J | Termination collar for air duct |
US8598454B2 (en) | 2011-12-15 | 2013-12-03 | Erico International Corporation | Electrical box with fitting flanges, and method of use |
US9627868B2 (en) | 2012-01-10 | 2017-04-18 | Erico International Corporation | Backless electrical box and method of making |
WO2013177117A1 (en) * | 2012-05-22 | 2013-11-28 | Erico International Corporation | Electrical box |
US9397491B2 (en) | 2012-10-15 | 2016-07-19 | Erico International Corporation | Electrical box mounting bracket with rails |
FR3000312B1 (en) * | 2012-12-20 | 2017-02-03 | Legrand France | ELECTRICAL BOX FOR ELECTRICAL EQUIPMENT |
US10080301B2 (en) * | 2013-10-17 | 2018-09-18 | Cree, Inc. | High voltage power chip module |
US9431798B2 (en) | 2014-09-17 | 2016-08-30 | Rosendin Electric, Inc. | Various methods and apparatuses for a low profile integrated power distribution platform |
US10256614B2 (en) | 2014-12-16 | 2019-04-09 | Hubbell Incorporated | Adjustable mud ring assemblies |
US9793697B1 (en) * | 2015-04-15 | 2017-10-17 | Michael Colao | Junction box and plug-ins |
WO2017040869A1 (en) * | 2015-09-01 | 2017-03-09 | Fisher Chad C | Electrical junction box cover and related assemblies and methods for completing electrical installations |
US9839146B2 (en) | 2015-10-20 | 2017-12-05 | Cree, Inc. | High voltage power module |
US10971904B2 (en) | 2016-10-19 | 2021-04-06 | Southwire Company, Llc | Junction box with universal fitment articulating cover |
US10120678B2 (en) * | 2016-11-15 | 2018-11-06 | Dell Products, L.P. | Firmware update control mechanism using organizational groups |
US10263403B2 (en) | 2017-02-17 | 2019-04-16 | Hubbell Incorporated | Adjustable mud ring assembly |
US10461482B1 (en) | 2017-06-06 | 2019-10-29 | Robert Perry | Electrically-charged outlet |
US11146030B2 (en) * | 2017-07-24 | 2021-10-12 | Sapient Industries, Inc. | Techniques for integrating wireless functionality in a power outlet |
US11050231B2 (en) | 2017-11-02 | 2021-06-29 | Panduit Corp. | Access ports for electrical enclosures |
US10955096B1 (en) * | 2018-01-23 | 2021-03-23 | The Light Source, Inc. | Electrical connector pipe adapted for structural applications |
US20190386420A1 (en) * | 2018-06-18 | 2019-12-19 | Monty McDonald | Coaxial Cable Protector |
US10994966B2 (en) * | 2018-06-25 | 2021-05-04 | Otis Elevator Company | Fixture plate and housing |
CA3054215A1 (en) | 2018-09-06 | 2020-03-06 | Eaton Intelligent Power Limited | Quick connect |
USD908632S1 (en) | 2018-09-17 | 2021-01-26 | Cree Fayetteville, Inc. | Power module |
JP6820303B2 (en) * | 2018-10-29 | 2021-01-27 | 矢崎総業株式会社 | Electrical junction box and its ground connection structure |
CN109524805A (en) * | 2018-12-07 | 2019-03-26 | 国家电网公司 | A kind of antidetonation terminal block convenient for being isolated and being shorted ground connection |
US11183825B2 (en) | 2019-04-15 | 2021-11-23 | Marty Guthmiller | Systems and methods for installing flush mounted electrical devices |
USD933020S1 (en) | 2019-04-15 | 2021-10-12 | Marty Guthmiller | Flush mount electrical box assembly |
US10777984B1 (en) * | 2019-06-03 | 2020-09-15 | Richard M. Elbert | Pre-wired junction box with quick-connect clip electrical wire connectors |
USD938920S1 (en) * | 2020-01-15 | 2021-12-21 | BookerLab, LLC | Power and audio adapter box |
US11915675B2 (en) * | 2020-01-15 | 2024-02-27 | BookerLab, LLC | Communications system, retrofit cabling kit, and retrofit connector interface |
USD947788S1 (en) * | 2020-01-15 | 2022-04-05 | BookerLab, LLC | Power and audio adapter box |
USD957348S1 (en) * | 2020-06-17 | 2022-07-12 | Comemso GmbH | Electric outlet |
US12074418B2 (en) | 2020-07-06 | 2024-08-27 | Hubbell Incorporated | Round adjustable mud ring assembly |
US11777294B2 (en) | 2020-07-06 | 2023-10-03 | Hubbell Incorporated | Multi-gang adjustable mud ring assemblies |
US11005247B1 (en) | 2020-11-11 | 2021-05-11 | JPoint Innovation LLC | Junction box interface chassis and pluggable modular devices |
EP4002617A1 (en) * | 2020-11-13 | 2022-05-25 | Eaton Intelligent Power Limited | Adjustable-depth ring assembly and method of installation |
Family Cites Families (222)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US723866A (en) * | 1902-07-19 | 1903-03-31 | Hart Mfg Co | Electric switch. |
US776855A (en) | 1904-07-30 | 1904-12-06 | Hart Mfg Co | Electric switch. |
US1171914A (en) * | 1906-08-13 | 1916-02-15 | Gen Electric | Receptacle and plug. |
US949123A (en) * | 1907-07-25 | 1910-02-15 | Ida S Rosenheim | Electric switch. |
US1328224A (en) * | 1915-04-01 | 1920-01-13 | Benjamin Electric Mfg Co | Receptacle |
US1758126A (en) * | 1925-04-16 | 1930-05-13 | Peterson Abdel John | Outlet locator |
US1956196A (en) * | 1931-04-25 | 1934-04-24 | Harry E Korab | Shield for outlet boxes |
US2163201A (en) * | 1936-03-13 | 1939-06-20 | Kalencik Paul | Analyzer plug |
US2189251A (en) * | 1938-08-16 | 1940-02-06 | Gordon W Potter | Plug connector |
US2397688A (en) * | 1944-04-12 | 1946-04-02 | Stephen B Osinski | Electric outlet box |
US2433917A (en) * | 1944-07-15 | 1948-01-06 | Mccartney William James | Outlet box and plug-in connections therefor |
US2447597A (en) * | 1945-08-28 | 1948-08-24 | Charles H Reed | Self-locking electric outlet and plug |
US2477803A (en) * | 1946-06-25 | 1949-08-02 | Clarence A Huber | Electrical outlet safety device |
US2524701A (en) * | 1949-08-03 | 1950-10-03 | Charles T Grill | Combination electric plug and socket |
US2908743A (en) | 1956-11-30 | 1959-10-13 | Robert T Premoshis | Electrical outlet |
US3087984A (en) * | 1957-08-19 | 1963-04-30 | Waranch Myer | Wiring ficture and forming board |
US2969518A (en) * | 1959-11-12 | 1961-01-24 | Saul I Slater | Duplex plug receptacle |
BE630394A (en) | 1962-04-27 | |||
US3189077A (en) * | 1962-08-07 | 1965-06-15 | Jr Julian G Willis | Retaining clip for headed fasteners |
US3317881A (en) * | 1966-04-18 | 1967-05-02 | John C Setecka | Safety device for electrical receptacles |
US3467941A (en) | 1966-11-03 | 1969-09-16 | Gen Electric | Duplex socket contact with breakoff tab |
US3510822A (en) * | 1967-08-03 | 1970-05-05 | Edmund M Patterson | Electrical connectors |
US3489985A (en) * | 1967-10-30 | 1970-01-13 | Gen Electric | Contiguous cam contact for convenience outlet |
SE371735B (en) * | 1968-03-06 | 1974-11-25 | Elektroverken I Gaevle Ab | |
US3609647A (en) | 1968-12-19 | 1971-09-28 | Angelo Castellano | Electrical receptacle |
US3588786A (en) * | 1969-11-10 | 1971-06-28 | Joseph A Alfiero | Connector for terminal strips |
US3732524A (en) * | 1970-11-25 | 1973-05-08 | Woodhead Inc Daniel | Electrical receptacle with safety cover |
US3710287A (en) * | 1971-07-01 | 1973-01-09 | W Eckert | Insulated plug |
US3716651A (en) * | 1971-07-14 | 1973-02-13 | A Werner | Minimum wire box and device adapters |
SE388507B (en) * | 1973-06-20 | 1976-10-04 | D Dekanic | WALL OUTLET |
US3868161A (en) * | 1973-10-01 | 1975-02-25 | Amp Inc | Electrical component |
US3879101A (en) * | 1973-12-04 | 1975-04-22 | George T Mckissic | Electric Plug-In Module |
US4165443A (en) | 1975-07-24 | 1979-08-21 | Figart Earl C | Power distribution system |
US3972498A (en) | 1975-07-30 | 1976-08-03 | Eaton Corporation | Device for attaching electrical boxes to metal studs |
US4117258A (en) | 1976-05-21 | 1978-09-26 | Benjamin Shanker | Modular electric light switch assembly |
US4148536A (en) * | 1976-11-22 | 1979-04-10 | Petropoulsos Nikolaostzakos J | Safety electrical receptacle |
US4105884A (en) * | 1977-04-04 | 1978-08-08 | Damsky Arnold M | Electrical toggle switch lever extender |
US4103125A (en) | 1977-04-15 | 1978-07-25 | Louis Marrero | Modular electrical switch/outlet assembly |
US4166934A (en) | 1978-08-15 | 1979-09-04 | Louis Marrero | Modular electrical switch/outlet assembly |
US4196521A (en) * | 1978-09-15 | 1980-04-08 | Continental Scale Corporation | Height measuring device |
US4179175A (en) | 1978-10-02 | 1979-12-18 | Farnworth Ivan A | Safety socket |
US4230386A (en) | 1979-01-12 | 1980-10-28 | Farnworth Ivan A | Self locking safety socket |
CA1137608A (en) * | 1979-05-23 | 1982-12-14 | Joseph S. Maheu | Electrical box |
US4427864A (en) * | 1979-07-30 | 1984-01-24 | Oster Stanley M | Electrical outlet switch |
DE3173478D1 (en) * | 1980-12-03 | 1986-02-20 | Wkr Limited | Electrical socket connectors |
US4343411A (en) | 1981-03-02 | 1982-08-10 | Chesnut Ronald D | Electrical box cover |
US4403824A (en) | 1981-03-02 | 1983-09-13 | The Scott & Fetzer Company | Plug connector and receptacle |
US4372634A (en) * | 1981-03-04 | 1983-02-08 | Amp Incorporated | Tilt latch zero insertion force connector assembly |
US4399922A (en) * | 1981-09-14 | 1983-08-23 | Larry Horsley | Outlet box mounting |
US4445739A (en) * | 1982-05-04 | 1984-05-01 | Wooten Norman W | Male plug with automatic prong cover |
US4485282A (en) | 1983-01-28 | 1984-11-27 | Lee Long River | Plug-in type of safety wall switch and wall outlet |
CA1231426A (en) | 1983-08-04 | 1988-01-12 | Richard D. Taylor | Dielectric junction box with quick connect wire terminals |
GB8403294D0 (en) | 1984-02-08 | 1984-03-14 | Rumble C S J | Electrical connectors |
GB2156985B (en) * | 1984-04-02 | 1987-06-24 | Teltec Electronic Equip | Apparatus for measuring movable part-structures, eg blood vessels, within a living body |
JPS6135571A (en) * | 1984-07-27 | 1986-02-20 | Hitachi Ltd | Photoelectric transducer |
US4612412A (en) | 1984-08-02 | 1986-09-16 | Brand-Rex Company | Electrical outlet box assembly |
US4599485A (en) | 1984-12-21 | 1986-07-08 | Smolik Robert A | Electrical receptacle box assembly |
US4607906A (en) | 1984-12-24 | 1986-08-26 | Eagle Electric Mfg. Co., Inc. | Panel-mounted duplex electrical receptacle and power terminal strip |
US4617613A (en) * | 1985-01-22 | 1986-10-14 | Rice Keith Q | Illuminated electrical outlet cover plate |
US4605270A (en) * | 1985-01-22 | 1986-08-12 | Nejdeh Aslizadeh | Cover for electrical outlet |
US4585902A (en) * | 1985-02-08 | 1986-04-29 | Eagle Electric Mfg. Co., Inc. | Push-in electrical wire connector |
US4634015A (en) * | 1985-07-15 | 1987-01-06 | Taylor Jerald M | Adjustable electric outlet box |
US4600258A (en) | 1985-07-23 | 1986-07-15 | Andrew Hu | Security socket |
US4808127A (en) * | 1985-10-18 | 1989-02-28 | Arbus, Inc. | Connector assembly |
EP0228490A1 (en) * | 1985-12-24 | 1987-07-15 | Sumitomo Wiring Systems, Ltd. | Slow blow fuse |
US4664457A (en) * | 1986-01-08 | 1987-05-12 | Suchy Leonard J | Outlet assembly for built in vacuum systems |
US4640564A (en) * | 1986-03-04 | 1987-02-03 | Hill Joe W | Electrical outlet faceplate with locking closures |
US4842551A (en) | 1986-07-11 | 1989-06-27 | Heimann Anthony J | Modular connector assembly for electrical utility box |
US4747506A (en) * | 1987-02-06 | 1988-05-31 | Stuchlik Iii Charles F | Adjustable outlet box mounting assembly |
US4722693A (en) * | 1987-03-30 | 1988-02-02 | Friedhelm Rose | Safety shutters for electrical receptacles |
USD308045S (en) * | 1987-05-06 | 1990-05-22 | Prescolite Inc. | Combined face plate and control operators for an electrical switch or similar articles |
US4873469A (en) | 1987-05-21 | 1989-10-10 | Pittway Corporation | Infrared actuated control switch assembly |
US4750890A (en) * | 1987-06-18 | 1988-06-14 | The J. M. Ney Company | Test socket for an integrated circuit package |
US4780088A (en) | 1987-08-17 | 1988-10-25 | Means Eugene E | Connecting plug for electrical switches and receptacles |
US4798916A (en) * | 1987-08-28 | 1989-01-17 | Engel Stephen M | Safety plate for electrical outlet |
US4784614A (en) | 1987-09-30 | 1988-11-15 | Thomas & Betts Corporation | Components having means for keyed interconnectability |
US5098046A (en) * | 1987-11-09 | 1992-03-24 | Webb Ronald D | Electrical junction box mounting bracket device and method |
US4988840A (en) * | 1988-02-23 | 1991-01-29 | Lightolier, Inc. | Control switch |
US4880950A (en) * | 1988-02-23 | 1989-11-14 | Lightolier, Inc. | Control switch |
USD316250S (en) * | 1988-03-28 | 1991-04-16 | Nicolet Plastique Ltd. | Combined wall plate and switch |
US4871893A (en) * | 1988-07-29 | 1989-10-03 | Lightolier, Inc. | Slide control switch |
US4914265A (en) * | 1988-08-03 | 1990-04-03 | Nicolet Plastique Ltee | Exterior cover for an electrical socket or switch |
USD310814S (en) * | 1988-08-11 | 1990-09-25 | Leviton Manufacturing Co., Inc. | Combined sound activated switch and cover plate |
US4907711A (en) * | 1988-11-04 | 1990-03-13 | Stuchlik Iii Charles F | Outlet box covers with location indicators for wall covering |
US5003128A (en) * | 1988-11-08 | 1991-03-26 | Yvan Grondin | Electrical switch and outlets protecting cover for painting |
CA2005294C (en) * | 1988-12-14 | 1994-11-15 | Raymond S. Laughlin | Box support |
CA1291509C (en) * | 1989-01-17 | 1991-10-29 | Mario Primeau | Switch cover |
CA2008173A1 (en) * | 1989-01-19 | 1990-07-19 | Peter Hogarth | Integrated outlet for communications and closed loop electrical power |
US5209444A (en) * | 1989-01-26 | 1993-05-11 | B-Line Systems, Inc. | Support for an electrical box |
US4967990A (en) | 1989-01-26 | 1990-11-06 | B-Line Systems, Inc. | Support for an electrical box |
US5012043A (en) * | 1989-02-21 | 1991-04-30 | Seymour Michael R | Adjustable outlet box assembly and method of application |
US5042673A (en) | 1989-06-22 | 1991-08-27 | Mcshane William J | Electric box extension |
US5092787A (en) * | 1989-08-16 | 1992-03-03 | Amp Incorporated | Power distribution for modular furniture units |
US4952164A (en) | 1989-08-16 | 1990-08-28 | Amp Incorporated | Plug-in outlet unit for modular furniture power distribution system |
US5030119A (en) | 1989-09-27 | 1991-07-09 | Safe Care Products, Inc. | Safety plug |
US5002501A (en) * | 1989-10-02 | 1991-03-26 | Raychem Corporation | Electrical plug |
US5004432A (en) * | 1989-10-02 | 1991-04-02 | Raychem Corporation | Electrical connector |
US4998343A (en) * | 1989-12-12 | 1991-03-12 | Costello Clifford T | Electrical wiring method and apparatus |
USD341125S (en) * | 1990-07-30 | 1993-11-09 | Building Technology Associates | Interfacing portion of an electrical connector |
US5142199A (en) * | 1990-11-29 | 1992-08-25 | Novitas, Inc. | Energy efficient infrared light switch and method of making same |
US5178555A (en) * | 1991-10-02 | 1993-01-12 | Amp Incorporated | Installation of junction boxes along a raceway |
US5285014A (en) * | 1991-12-11 | 1994-02-08 | Gayland Gilchrist | Paint shield for electrical outlets and switches |
US5399806A (en) * | 1992-02-21 | 1995-03-21 | Olson; Richard A. | Modular electrical wiring system |
US5245507A (en) * | 1992-04-17 | 1993-09-14 | Pro-Mark, Inc. | Weather resistant container for timer components of an irrigation system |
US5516068A (en) * | 1992-07-31 | 1996-05-14 | Rice; Frank | Device support bracket |
US5415564A (en) * | 1992-09-14 | 1995-05-16 | Winter; Craig | Junction box for quick release mounting of electrical circuit components |
US5297973A (en) * | 1992-09-15 | 1994-03-29 | Gorman Michael P | Safety electrical connection apparatus |
US5330137A (en) | 1993-01-04 | 1994-07-19 | Oliva John H | Apparatus and method for mounting an electrical box between studs in a wall |
US5342993A (en) * | 1993-01-04 | 1994-08-30 | Siems Steven L | Weather-proof floor outlet and method |
US5466164A (en) * | 1993-03-09 | 1995-11-14 | Sumitomo Wiring Systems, Ltd. | Connector having a protective hood |
US5448011A (en) | 1993-04-08 | 1995-09-05 | Erico International Corporation | Low voltage mounting plate and method of installation |
US5503565A (en) * | 1993-07-14 | 1996-04-02 | Mccoy; Phillip A. | Receptacle assembly |
US5289934A (en) * | 1993-09-02 | 1994-03-01 | Smith Benjamin H | Adjustable mounting assembly for electrical outlet box |
US5500487A (en) * | 1993-10-12 | 1996-03-19 | Commonwealth Of Puerto Rico | Modular pull-out assembly |
JP2900215B2 (en) * | 1993-11-10 | 1999-06-02 | 矢崎総業株式会社 | Electronic unit guide structure |
DE69408405T2 (en) * | 1993-11-11 | 1998-08-20 | Nissin Electric Co Ltd | Plasma CVD method and device |
TW255989B (en) * | 1994-02-24 | 1995-09-01 | Asian Micro Sources Inc | Collapsible prong plug device for battery charger |
US5486121A (en) * | 1994-07-07 | 1996-01-23 | The Whitaker Corporation | Electrical connector assembly |
US5488121A (en) * | 1994-10-31 | 1996-01-30 | Siltech Inc. | Di-guerbet esters |
US5807139A (en) | 1994-11-04 | 1998-09-15 | The Siemon Company | Surface mount multimedia outlet |
US5551884A (en) | 1995-01-25 | 1996-09-03 | Burkhart, Sr.; Steven A. | Locking electrical outlet |
US5639991A (en) | 1995-02-28 | 1997-06-17 | Schuette; Gail D. | Utility box insert |
US5526952A (en) * | 1995-03-20 | 1996-06-18 | Green; Robert L. | Protective covers for electrical outlet boxes |
US5785551A (en) | 1995-03-28 | 1998-07-28 | Libby; Robert A. | Quick connect electrical box |
US5613874A (en) * | 1995-05-05 | 1997-03-25 | Ortronics Inc. | Snap-in designation strip for modular information management oulet |
US5599199A (en) * | 1995-05-10 | 1997-02-04 | Osram Sylvania Inc. | Positive latch connector |
USD380452S (en) * | 1995-07-13 | 1997-07-01 | The Watt Stopper | Wall-mounted switch |
US5741153A (en) * | 1995-07-27 | 1998-04-21 | Ortronics, Inc. | Modular connectors including terminated rear connector designation for insulation displacement connectors |
US5608196A (en) * | 1995-09-08 | 1997-03-04 | The Whitaker Corporation | Normally closed dimmer switch contact assembly separated by rocker actuator interposed insulation plate |
US5625531A (en) * | 1995-10-25 | 1997-04-29 | General Electric Company | Motor control center pilot devices bracket |
USD384643S (en) * | 1995-11-14 | 1997-10-07 | Nellcor Puritan Bennett Incorporated | Sensor connector |
US5786551A (en) * | 1995-11-30 | 1998-07-28 | Otis Elevator Company | Closed loop fuzzy logic controller for elevator dispatching |
CA2192704C (en) * | 1995-12-11 | 2005-11-01 | Norman R. Byrne | Electrical interconnection assembly |
US6311229B1 (en) | 1996-06-04 | 2001-10-30 | Elsag International N.V. | Color coding identification system for a block I/O system |
US5773757A (en) | 1996-08-12 | 1998-06-30 | Pembroke Properties, Inc. | Retractable electrical power cord apparatus |
US5927667A (en) * | 1996-09-27 | 1999-07-27 | Hubbell Incorporated | Electrical box mounting bracket |
US5775935A (en) | 1996-12-18 | 1998-07-07 | Computer Data Exchange, Inc. | System and method for connecting color coded cables to a device |
USD399495S (en) * | 1997-06-24 | 1998-10-13 | Bp Holdings, Llc | Switch plate with voice recorder |
US5885088A (en) * | 1997-07-14 | 1999-03-23 | Molex Incorporated | Electrical connector assembly with polarization means |
US5925850A (en) | 1997-09-05 | 1999-07-20 | Park; Mike K. | Electrical outlet, switch and junction boxs |
US5980279A (en) * | 1997-09-25 | 1999-11-09 | Nienkamper Furniture & Accessories Inc. | Recessed electrical receptacle and work surface |
US5906497A (en) * | 1997-12-12 | 1999-05-25 | Hewlett Packard Company | Processor retention frame and extraction device |
US5931325A (en) | 1998-02-20 | 1999-08-03 | Filipov; Stefan Dimitrov | Adjustable mudring for conventional electrical outlet box |
US6465735B2 (en) | 1998-02-24 | 2002-10-15 | Lindy Lawrence May | Modular electrical system |
US7501817B1 (en) * | 1998-03-03 | 2009-03-10 | Schlumberger Technology Corporation | Method and apparatus for generating an axisymmetric magnetic field |
US6029581A (en) * | 1998-04-23 | 2000-02-29 | Lucent Technologies, Inc. | Pivotable work table |
US5998747A (en) | 1998-05-05 | 1999-12-07 | Kelso; Francis Fredrick | Switch plate assembly |
USD415472S (en) * | 1998-05-05 | 1999-10-19 | Francis Fredrick Kelso | Toggle/dimmer switch plate |
CA2242215C (en) | 1998-06-30 | 2002-05-07 | Thomas & Betts International, Inc. | Fully adjustable electrical receptacle housing |
USD430114S (en) * | 1998-10-01 | 2000-08-29 | Bp Holdings, Llc. | Switch plate with voice recorder |
US6098939A (en) | 1999-01-11 | 2000-08-08 | He; Ping | Electrical junction box supporting bracket |
DE19964150A1 (en) | 1999-01-25 | 2000-09-07 | Weidmueller Interface | Encoding device for encoding electrical device has journals and bushes with polygonal or circular shapes aligned according to code system that engage when components are joined |
CN2381040Y (en) | 1999-06-30 | 2000-05-31 | 刘志军 | Multipurpose safety power-supply connection device |
JP2001057723A (en) * | 1999-08-10 | 2001-02-27 | Yazaki Corp | Electronic unit mounting structure to electronic connection box |
US6259351B1 (en) | 1999-10-01 | 2001-07-10 | Pass & Seymour, Inc. | Toggle and slide dimmer switch |
US6201187B1 (en) * | 1999-10-01 | 2001-03-13 | Theodore B. Burbine | Pre-wired universal junction block |
US6420653B1 (en) | 1999-12-06 | 2002-07-16 | Michael Shotey | Base for electrical outlet and related method |
US6341981B1 (en) * | 2000-01-05 | 2002-01-29 | Michael P. Gorman | Safety electrical outlet and switch system |
US6231358B1 (en) * | 2000-01-06 | 2001-05-15 | Angelo Fan Brace Licensing, L.L.C. | Electrical plug and receptacle having safety features |
US6617511B2 (en) | 2000-01-07 | 2003-09-09 | James Douglas Schultz | Prewired electrical apparatus having quick connect components |
US6979212B1 (en) * | 2000-01-14 | 2005-12-27 | Protect Connect | Safety electrical plug |
US6309248B1 (en) | 2000-01-27 | 2001-10-30 | Leviton Manufacturing Co., Inc. | Modular GFCI receptacle |
US6392140B1 (en) * | 2000-04-28 | 2002-05-21 | General Electric Company | Hinged pilot device door and bracket assembly |
US6441304B1 (en) | 2000-05-05 | 2002-08-27 | The Wiremold Company | Electrical outlet assembly |
US6730845B1 (en) * | 2000-05-18 | 2004-05-04 | General Electric Company | Electric component box with removable cover |
WO2001092825A1 (en) | 2000-05-31 | 2001-12-06 | Unova Ip Corp. | Method and device for calibrating rotary axis |
US7442874B2 (en) * | 2000-06-08 | 2008-10-28 | Compagnone Jr Carlo | Temporary protective cover for an electrical box |
US6686540B2 (en) * | 2000-06-08 | 2004-02-03 | Carlo Compagnone, Jr. | Temporary protective cover for an electrical box |
US6867370B2 (en) * | 2000-06-08 | 2005-03-15 | Carlo Compagnone, Jr. | Temporary protective cover for an electrical box |
US6484979B1 (en) | 2000-07-21 | 2002-11-26 | Lewis B. Medlin, Jr. | Adjustable electrical box support |
US6435903B1 (en) * | 2000-10-19 | 2002-08-20 | Eric L. Nelson | Electrical outlet fixture recessible in a housing |
TW491425U (en) * | 2000-12-21 | 2002-06-11 | Hon Hai Prec Ind Co Ltd | Electrical connector assembly with a device for preventing erroneous insertion |
US6461189B1 (en) | 2000-12-21 | 2002-10-08 | Compaq Information Technologies Group, L.P. | Connector map |
USD461775S1 (en) * | 2001-04-12 | 2002-08-20 | Lyall Assemblies, Inc. | Switch adapter |
US6803521B2 (en) | 2001-04-25 | 2004-10-12 | Illini Electrical Sales, Inc. | Floor stand having parallel uprights of adjustable lengths, for electrical box having plaster ring |
US6590155B2 (en) | 2001-04-25 | 2003-07-08 | Paul A. Vrame | Floor stand for mounting electrical box and for supporting conduit |
JP2002334756A (en) | 2001-05-09 | 2002-11-22 | Nichido Kogyo Kk | Receptacle |
US6850159B1 (en) * | 2001-05-15 | 2005-02-01 | Brian P. Platner | Self-powered long-life occupancy sensors and sensor circuits |
US6492591B1 (en) | 2001-06-11 | 2002-12-10 | Kimball International, Inc. | Movable electrical and data services module |
USD472883S1 (en) * | 2001-09-10 | 2003-04-08 | Delta Systems, Inc. | Terminal configuration of a three pole plunger switch |
US6830477B2 (en) | 2001-10-19 | 2004-12-14 | Pulizzi Engineering Inc. | Nema-type AC power outlet connectors |
US6653566B2 (en) | 2002-01-28 | 2003-11-25 | Pw Industries, Inc. | Covers for outlet boxes |
US20040048507A1 (en) * | 2002-03-05 | 2004-03-11 | George Hage | Quick-release sensor assembly and method |
US6718674B2 (en) * | 2002-03-21 | 2004-04-13 | Panduit Corp. | Apparatus and system for identification labeling |
US20030178218A1 (en) | 2002-03-22 | 2003-09-25 | Taymac Corporation | Outlet cover |
US20030189043A1 (en) | 2002-04-04 | 2003-10-09 | Wegner Wesley Gene | Electrical box extension |
US6820760B2 (en) | 2002-04-04 | 2004-11-23 | Wesley Gene Wegner | Electrical box extension |
US6871827B2 (en) | 2002-05-03 | 2005-03-29 | Pw Industries, Inc. | Universal electrical outlet box mounting bracket |
US6774307B2 (en) * | 2002-05-07 | 2004-08-10 | Applied Technology And Solutions | Through-wall electrical system |
US8261926B2 (en) * | 2002-05-14 | 2012-09-11 | Bradley Frank H | Kit for temporally protecting electrical box |
AU2003248564A1 (en) * | 2002-05-23 | 2003-12-12 | Protectconnect, Inc. | Safety module electrical distribution system |
US6805567B2 (en) | 2002-08-06 | 2004-10-19 | Pent Products, Inc. | Power distribution system |
US6923663B2 (en) | 2002-09-17 | 2005-08-02 | Leviton Manufacturing Co., Inc. | Triplex receptacle |
US7198523B2 (en) | 2002-11-01 | 2007-04-03 | Lutron Electronics Co., Inc. | Receptacle and plug therefor |
US6747206B1 (en) | 2002-12-03 | 2004-06-08 | Genlyte Thomas Group Llc | Junction box and ballast module assembly |
US6642450B1 (en) * | 2002-12-06 | 2003-11-04 | Feng-Shen Hsiao | Wall outlet assembly |
US6700062B1 (en) * | 2003-01-10 | 2004-03-02 | Philip Brown Allen, Jr. | Device for providing access to electrical connections to enclosure |
US7036782B2 (en) * | 2003-01-22 | 2006-05-02 | Team Manufacturing, Inc. | Electrical box mounting brackets |
US6840785B2 (en) * | 2003-03-07 | 2005-01-11 | Thomas & Betts International, Inc. | Cover assembly for an electrical box |
US6765146B1 (en) | 2003-03-14 | 2004-07-20 | Fabworks, Llc | Adjustable floor bracket article and method |
US6906260B2 (en) * | 2003-03-24 | 2005-06-14 | Mark S. Grendahl | Protective cover plate |
US7653733B2 (en) * | 2003-06-05 | 2010-01-26 | Siemens Communications, Inc. | Method and apparatus for facilitating granting of a permission regarding a stored element |
US6908334B2 (en) | 2003-07-02 | 2005-06-21 | Pei-Chin Huang | Interlining panel structure for multiple socket |
US7271335B2 (en) * | 2003-09-29 | 2007-09-18 | Thomas & Betts International, Inc. | Combination mounting bracket and adapter plate for mounting electrical boxes |
US20050176278A1 (en) | 2003-12-31 | 2005-08-11 | Cheatham James F. | Sliding clip electrical connection box mounting bracket |
US7071414B2 (en) | 2004-01-16 | 2006-07-04 | Kim Kyung T | Cover plate for electrical outlets and switches |
US7312396B1 (en) | 2004-03-13 | 2007-12-25 | Protectconnect, Inc. | Universal electrical wiring component |
US6956169B1 (en) | 2004-03-17 | 2005-10-18 | Taymac Corporation | Flush-mount in-use cover for electrical outlet |
US6875922B1 (en) * | 2004-04-22 | 2005-04-05 | Pw Industries, Inc. | Position adjustable outlet box system |
US7273392B2 (en) | 2004-07-29 | 2007-09-25 | Dan Fields | Universal electrical module |
US6986676B1 (en) * | 2004-07-29 | 2006-01-17 | James Tronolone | Multi-channel high definition video interconnect |
US20060021780A1 (en) * | 2004-08-02 | 2006-02-02 | Hill Douglas C | Temporary outlet cover |
US7400239B2 (en) * | 2004-09-03 | 2008-07-15 | Simply Automated, Incorporated | Universal control apparatus and methods |
US6967284B1 (en) | 2004-09-20 | 2005-11-22 | Arlington Industries, Inc. | Electrical box mounting assembly |
US7321120B1 (en) * | 2004-11-26 | 2008-01-22 | Protectconnect, Inc. | Motion detector module |
US7083466B1 (en) * | 2005-05-06 | 2006-08-01 | Wayming Hwang | Cover of wiring box for use in telecommunication line |
US7390965B2 (en) * | 2005-11-17 | 2008-06-24 | Daniel Hartwig | Temporary covers for electrical boxes |
US7495170B2 (en) * | 2006-06-16 | 2009-02-24 | Thomas & Betts International, Inc. | Adjustable device cover |
US20080053698A1 (en) * | 2006-07-29 | 2008-03-06 | Steve Purves | Pre-wired power distribution system |
US7468486B2 (en) * | 2006-08-10 | 2008-12-23 | Frank Shaochong Yan | Adjustable mud ring system |
US7323638B1 (en) * | 2006-09-13 | 2008-01-29 | Pass & Seymour, Inc. | Wall box receptacle with modular plug-in device |
US7357652B1 (en) * | 2006-10-27 | 2008-04-15 | Leviton Manufacturing Company, Inc. | Modular wiring system with locking elements |
-
2007
- 2007-07-27 US US11/829,796 patent/US20080053698A1/en not_active Abandoned
-
2008
- 2008-07-21 US US12/176,828 patent/US7718893B2/en not_active Expired - Fee Related
- 2008-07-21 US US12/176,980 patent/US20090021895A1/en not_active Abandoned
-
2010
- 2010-05-12 US US12/778,886 patent/US20100218969A1/en not_active Abandoned
-
2012
- 2012-02-24 US US13/405,042 patent/US20120247803A1/en not_active Abandoned
-
2014
- 2014-03-19 US US14/219,643 patent/US20140345933A1/en not_active Abandoned
-
2015
- 2015-02-24 US US14/630,319 patent/US20150236490A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11557888B2 (en) | 2019-02-14 | 2023-01-17 | Erico International Corporation | Adjustable depth electrical wall mount ring |
CN112217165A (en) * | 2020-08-25 | 2021-01-12 | 衡阳和众信息技术有限责任公司 | Junction box for network engineering |
Also Published As
Publication number | Publication date |
---|---|
US20090021895A1 (en) | 2009-01-22 |
US7718893B2 (en) | 2010-05-18 |
US20090020306A1 (en) | 2009-01-22 |
US20100218969A1 (en) | 2010-09-02 |
US20120247803A1 (en) | 2012-10-04 |
US20150236490A1 (en) | 2015-08-20 |
US20080053698A1 (en) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7718893B2 (en) | Adjustable plaster ring cover | |
USRE45430E1 (en) | Universal electrical wiring component | |
US6207895B1 (en) | Device box for wall mounted communications apparatus | |
US5285009A (en) | Electrical floor box | |
CN101971447B (en) | Field rephaseable modular metering device | |
US6777611B2 (en) | Switch/power drop unit for modular wiring system | |
EP1430581B1 (en) | Adapter for mounting a faceplate of a first style on to an electrical outlet cavity of a second style | |
US20100000756A1 (en) | Electrical outlet box having high and low voltage compartments | |
US5861576A (en) | Cable raceway cable exit box | |
TW200937766A (en) | Pre-terminated outlet assembly for raceway systems | |
US7804026B2 (en) | Enclosure for wiring devices | |
US20200220293A1 (en) | Modular Electrical Connector Unit | |
US4720953A (en) | Partition with built-in floor-cable riser | |
JPH0287920A (en) | Wiring system for power below carpet, and adaptor | |
CA2243735A1 (en) | Connecting accessory for fluorescent lamps | |
US11984714B1 (en) | Pass through junction box device | |
JP3222557B2 (en) | Wiring device | |
JPH0913553A (en) | Wall panel device | |
JPH0317550Y2 (en) | ||
US9941648B2 (en) | Angle bracket system with integral ground attachment | |
WO2021024089A1 (en) | Multiple socket | |
JP3468071B2 (en) | Wiring system for raised floor | |
TW202324866A (en) | Wiring duct fixing tool | |
JP2022122307A (en) | Transmission cable support structure | |
JP2010022144A (en) | Wiring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |