US20140308636A1 - Providing recommendations based on detected stress and a predicted type for an individual - Google Patents

Providing recommendations based on detected stress and a predicted type for an individual Download PDF

Info

Publication number
US20140308636A1
US20140308636A1 US14/133,607 US201314133607A US2014308636A1 US 20140308636 A1 US20140308636 A1 US 20140308636A1 US 201314133607 A US201314133607 A US 201314133607A US 2014308636 A1 US2014308636 A1 US 2014308636A1
Authority
US
United States
Prior art keywords
data
platform
life
lifeotypes
lifeotype
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/133,607
Inventor
John M. Stivoric
Eric Teller
David Andre
John A. Monocello, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JB IP Acquisition LLC
Original Assignee
Bodymedia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/133,607 priority Critical patent/US20140308636A1/en
Application filed by Bodymedia Inc filed Critical Bodymedia Inc
Assigned to BODYMEDIA, INC. reassignment BODYMEDIA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STIVORIC, JOHN M., MONOCELLO, JOHN A., ANDRE, DAVID, TELLER, ERIC
Publication of US20140308636A1 publication Critical patent/US20140308636A1/en
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION LLC, PROJECT PARIS ACQUISITION LLC
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION LLC, PROJECT PARIS ACQUISITION LLC
Assigned to BLACKROCK ADVISORS, LLC reassignment BLACKROCK ADVISORS, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO. 13870843 PREVIOUSLY RECORDED ON REEL 036500 FRAME 0173. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: ALIPH, INC., ALIPHCOM, BODYMEDIA, INC., MACGYVER ACQUISITION, LLC, PROJECT PARIS ACQUISITION LLC
Assigned to JB IP ACQUISITION LLC reassignment JB IP ACQUISITION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPHCOM, LLC, BODYMEDIA, INC.
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JB IP ACQUISITION, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JB IP ACQUISITION, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JAWBONE HEALTH HUB, INC.
Assigned to ALIPHCOM LLC reassignment ALIPHCOM LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BLACKROCK ADVISORS, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JAWBONE HEALTH HUB, INC., JB IP ACQUISITION, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0826Detecting or evaluating apnoea events
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4833Assessment of subject's compliance to treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • A61B5/747Arrangements for interactive communication between patient and care services, e.g. by using a telephone network in case of emergency, i.e. alerting emergency services
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24575Query processing with adaptation to user needs using context
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/38Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/90335Query processing
    • G06F16/90344Query processing by using string matching techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0242Determining effectiveness of advertisements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute
    • G06Q30/0271Personalized advertisement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0277Online advertisement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0027Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0044Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense
    • A61M2021/005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense images, e.g. video
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the invention relates to the field of data informatics, and more specifically to systems and methods for analyzing and parsing information relating to information monitored about subjects, including human lifestyle information.
  • Vast resources have been devoted to the sequencing of the human genetic code and to cataloging the influence of genes and other physiological traits.
  • a major component of health and wellness can be attributed to the interactions of subjects with their environment, including their lifestyles.
  • lifestyle activities such as those related to diet, exercise, sleep habits and the like, affect health and wellness
  • efforts to catalog those effects to date have been limited.
  • the low cost and ready availability of sensors has reduced costs of collecting data.
  • improved data integration and processing methods have allowed for use of existing data sources.
  • this wealth of data has not yet led to a better overall understanding of the influence of particular lifestyles; instead, the wealth of data has overwhelmed existing systems and methods.
  • the invention may include methods and systems involving assembling data from at least one data source into at least one life bit, assembling the at least one life bit into at least one life byte and analyzing the at least one life byte to determine at least one lifeotype.
  • each life byte consists of a plurality of life bits, and life bytes are organized into sequences, each of which can be characterized as a life byte sequence.
  • life byte sequences can be analyzed to identify ones of interest, such as for clinical research, wellness, or the like, such sequences of interest being characterized or expressed as lifeotypes (as described below).
  • At least one data source rendering a life bit may be a body monitor, such as one that includes one or more sensors.
  • body monitors and other systems, devices, and methods that can be used to generate the data rendering life bits and ultimately lifeotype data are described in described in Stivoric et al., U.S. Pat. No. 7,020,508, issued Mar. 28, 2006, entitled Apparatus for Detecting Human Physiological and Contextual Information; Teller et al., pending U.S. patent application Ser. No. 09/595,660, for System for Monitoring Health, Wellness and Fitness; Teller, et al., pending U.S. patent application Ser. No.
  • the data may include physiological data, contextual data and environmental data.
  • the data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • At least one of the assembly and analysis of lifotypes may utilize a wide range of techniques applied to a life byte sequence, a life byte, a life bit, or a lifeotype, in order to yield a prediction, inference, or the like.
  • Such techniques may include, without limitation, iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence.
  • the method may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce.
  • the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map.
  • the method may further comprise determining the numbers and types of life bits and life bytes required to fully determine a lifeotype.
  • the methods and systems disclosed herein may include a method or system involving classifying data concerning a population of individuals into lifeotypes that correspond to certain combinations of aspects of at least one of the human lifestyle, human status and the human condition, such combinations optionally including combinations of life bytes, life byte sequences, life bits, or combinations of other lifeotypes.
  • the method or system may also involve analyzing patterns within and across lifeotypes to draw conclusions, draw inferences, or make predictions about individuals with a certain lifeotype or groups of individuals that share a certain lifeotype.
  • At least one data source may be a body monitor including at least one sensor.
  • the data may include any of the data sources described herein or in documents incorporated by reference herein, including, for example, physiological data, contextual data and environmental data.
  • the data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • the classification process used to identify a lifeotype may utilize a wide range of techniques disclosed herein, in the documents incorporated by reference herein, or known to those of ordinary skill in the art, including, without limitation iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence.
  • the method or system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce.
  • the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map.
  • the more than one life byte may be organized into a life byte sequence.
  • the methods and/or systems disclosed herein may include a system containing a facility for assembling data from at least one data source into at least one life bit, a facility for assembling the at least one life bit into at least one life byte, and a facility for analyzing the at least one life byte, or a sequence of life bytes, to determine at least one lifeotype.
  • At least one data source rendering a life bit may be a body monitor, such as including one or more sensors.
  • the data may include physiological data, contextual data and environmental data.
  • the data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • At least one of the facility for assembly and the facility for analysis of lifotypes may utilize a wide range of techniques applied to a life byte sequence, a life byte, a life bit, or a lifeotype, in order to yield a prediction, inference, or the like.
  • Such techniques may include, without limitation, iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence.
  • the system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce.
  • the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map.
  • the system may also include a facility for determining the numbers and types of life bits and life bytes required to fully determine a lifeotype.
  • the methods and systems disclosed herein may include a system with a facility for classifying data concerning a population of individuals into lifeotypes that correspond to certain combinations of aspects of at least one of the human lifestyle, human status and the human condition, such combinations optionally including combinations of life bytes, life byte sequences, life bits, or combinations of other lifeotypes.
  • the system may also involve analyzing patterns within and across lifeotypes to draw conclusions, draw inferences, or make predictions about individuals with a certain lifeotype or groups of individuals that share a certain lifeotype.
  • At least one data source may be a body monitor including at least one sensor.
  • the data may include any of the data sources described herein or in documents incorporated by reference herein, including, for example, physiological data, contextual data and environmental data.
  • the data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • the data may data related to family history, genes, diagnoses, medical knowledge, polygraphs and the like.
  • the data may be collected over time.
  • the data may be data relevant to a certain measure at various points in time.
  • the facility for classifying data may utilize a wide range of techniques disclosed herein, in the documents incorporated by reference herein, or known to those of ordinary skill in the art, including, without limitation iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence.
  • the system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce.
  • the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map.
  • the more than one life byte may be organized into a life byte sequence.
  • the methods and systems described herein may involve determining at least one lifeotype of at least one individual, analyzing the at least one lifeotype, and delivering content to at least one individual based on the analysis.
  • the content may consist of video, audio, images, text, advertisements, movies, music, music videos, games, ring tones, print media, books, art, fine art and user generated content.
  • the content may be from an Internet site and may be delivered to an individual based on a lifeotype of the individual or the content is from an Internet site and may be recommended for delivery to an individual based on a lifeotype of the individual.
  • the content may be tagged and the tags may facilitate delivery of the content based on at least one lifeotype.
  • the analysis may include consideration of recommendations by at least one other individual with at least one similar lifeotype as the individual to which the content is to be delivered.
  • the version of the content to be delivered may be determined based on the analysis.
  • the less stressful of two versions of content may be selected for delivery based on the analysis.
  • the analysis may consider data from a device worn by the at least one individual or data from a device carried in proximity to the at least one individual.
  • the methods and systems described herein may involve providing a game, determining at least one lifeotype of at least one player of the game, analyzing the at least one lifeotype, and affecting the game play based on the analysis.
  • at least one lifeotype of a player of the game may affect the abilities of the player's character in the game based on the analysis or the outcome of the game based on the analysis.
  • a lifeotype of an individual associated with a healthy state may enable a higher performing character in the game than the character that would be enabled by a less healthy lifeotype.
  • the game may be an online game, a multiplayer game or a massively multiplayer game.
  • the methods and systems may further comprise providing feedback to the at least one player to affect changes in the player's lifeotype.
  • the game play experience of the user may be customized based on the lifeotype of the user.
  • the analysis may consider data from a device worn by the at least one player or data from a device carried in proximity to the at least one player.
  • the methods and systems described herein may involve providing an interactive space, determining at least one lifeotype of at least one individual in the space, analyzing the at least one lifeotype, and modifying at least one attribute of the space based on the analysis.
  • the space may be a meeting room, an auditorium, an interactive gaming environment or an interactive entertainment environment.
  • the attribute of the space that is modified may be selected from the group consisting of: brightness, color, volume, sound, audio, temperature, air quality, pressure, distance between objects, protection from outside, status of entries, status of exits, status of a device, presence of objects and absence of objects.
  • the analysis may consider the proximity of various lifeotypes, changes in various lifeotypes, the compatibility of various lifeotypes, data from a device worn by the at least one individual or data from a device carried in proximity to the at least one individual.
  • the systems and methods may further include providing feedback to the at least one individual.
  • FIG. 1 depicts a hierarchy of data.
  • FIG. 2 depicts a hierarchy of genetics data.
  • FIG. 3 depicts a hierarchy of lifeotype data.
  • FIG. 4 depicts certain spectra of certain lifeotype data sources.
  • FIG. 5 depicts lifeotype data sources.
  • FIG. 6 depicts the Platform.
  • FIG. 7 depicts the scalability of the Platform.
  • FIG. 8 depicts the scalability of lifeotypes.
  • FIG. 9 depicts the types of data that may comprise life bits data.
  • FIG. 10 depicts the types of data that may comprise medical and/or genetic data.
  • FIG. 11 depicts the types of data that may comprise environmental data.
  • FIGS. 12A , 12 B, 12 C and 12 D depict the types of data that may comprise derived data as well as various spectra applicable to sensors, data and/or the Platform.
  • FIG. 13 depicts the relationship among physiological, contextual and environmental data.
  • FIG. 14 depicts a process flow for identifying lifeotypes.
  • FIG. 15 depicts a process flow for analyzing lifeotypes.
  • FIG. 16 depicts a process flow for analyzing lifeotypes.
  • FIG. 17 depicts a lifeotype state diagram.
  • FIG. 18 depicts a lifeotype spider map or the like.
  • FIGS. 19A , 19 B and 19 C depict an embodiment of the architecture of the Platform.
  • FIG. 20 depicts an embodiment of the architecture of the Platform.
  • FIG. 21 depicts an embodiment of the architecture of the Platform using round-robin DNS load balancing.
  • FIG. 22 depicts an embodiment of the architecture of the Platform using cookie or URL-based sessions with a software load balancer.
  • FIGS. 23A and 23B depict an embodiment of the architecture of the Platform using cookie-based sessions with a hardware load balancer.
  • FIGS. 24A and 24B depict a particular embodiment of an analogy between a lifeotype and genetics.
  • FIG. 25 depicts a particular embodiment of a statistical model concerning lifeotypes.
  • FIGS. 26A and 26B depict a particular embodiments of affecting behavior through lifeotypes.
  • FIGS. 27A and 27B depict a particular embodiment of lifeotype information being used for compatibility analysis.
  • FIGS. 28A and 28B depict a particular embodiment of lifeotype information being used for compatibility analysis.
  • FIGS. 29A and 29B depict a particular embodiment of a report.
  • Humankind has sequenced the human genetic code, resulting in the identification of sequences of genes that are related to particular conditions, outcomes or the like. Thus, a certain genotype can be associated with outcomes, allowing the prediction of outcomes for individuals or groups that share that genotype.
  • similar efforts have not been undertaken to sequence data related to the human lifestyle in order to allow the drawing of the same kinds of inferences about individuals or groups that share the same lifestyle.
  • the low cost and ready availability of sensors has reduced costs of collecting data.
  • improved data integration and processing methods have allowed for use of existing data sources. The availability of this wealth of data creates a unique opportunity for data analytics and data processing, which may be used to analyze and parse the wealth of human lifestyle information.
  • data processing and data analytics applied to life bits, life bytes, life byte sequences and lifotypes, may also allow for the creation or identification of new surrogate measures, sensors and vital signs, as well as predictors of certain conditions.
  • the concept of a “lifeotype” encompasses classifying human state data, or other data concerning a population or sub-population of individuals, into “types” that correspond to certain combinations of traits or aspects of human lifestyle, human status and/or human condition.
  • the concept of a lifeotype may also be applied to other organisms. By analyzing patterns within and across the lifeotypes, one can draw conclusions, make inferences, and make predictions about each type that apply to the members of the type or to groups of individuals of that type.
  • the possible types may be composed of combinations of individual data types which may be measured continuously over time or at discrete intervals.
  • bit 0 and byte 0 in FIG. 1 illustrates that it is possible that there are no bits and/or bytes in a particular embodiment. That is, it is possible that the information itself is a byte or that a bit is actionable information, that the information itself is actionable and the like.
  • a life bit may be a bit of data for a trait or aspect at a point in time.
  • a life byte may be a collection of life bits.
  • the bits may be values of certain parameters, with bits of certain types (such as derived from certain data sources, including the ones described herein) being arranged in a predetermined way to form a byte.
  • the byte may be an aggregate of the bits, which may for example, correspond to a particular type of information, such as a type of file, a message, a command, or the like, in the same way that a particular type of life byte may correspond to a particular type of information collected about a human state.
  • the bytes may be sequenced or otherwise combined to form actionable information, such that a higher level system, such as an operating system, application, program, service or the like can take a byte or series of bytes and perform an operation based on the nature of the byte or sequence of bytes and in particular the bits that populate that byte.
  • a higher level system such as an operating system, application, program, service or the like can take a byte or series of bytes and perform an operation based on the nature of the byte or sequence of bytes and in particular the bits that populate that byte.
  • lifeotype may be further understood by analogy to genetics. Genetic information may be organized in base pairs or genetic sequences and in their totality comprise the genotype. Life bits can be thought of as analogous to genes, which are organized according to the sequence of the genotype, but may or may not be expressed in a given individual, or may be expressed to a different extent in a particular individual. Particular genes or sequences of genes that are expressed (including, in some cases, expressed to a particular extent) and that, taken together, are of interest, may be assembled into genotypes, in the same way that life bytes or sequences of life bytes that are of interest may be assembled into lifeotypes.
  • genotypes in turn, through the interaction with the environment in some cases, may present as an overall phenotype, analogous to actionable information.
  • the inclusion of the subscript zeros in FIG. 2 indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • FIG. 3 depicts the organization structure of FIGS. 1 and 2 applied to lifeotypes.
  • the information or genetic sequences may be data, such as any of the data described herein, from any of the sources described herein.
  • the data may be combined, used or accessed to create life bits.
  • the life bits may be combined, used or accessed to create life bytes.
  • a grouping or sequence of lifebytes may form a lifebyte sequence.
  • Lifebytes and/or one or more lifebyte sequences may comprise or be organized into lifeotypes.
  • the amount of information, number of life bits and/or number of life bytes included in a lifeotype may be determined based on many factors, such as user selection or the number of data points required to obtain uniqueness. As in FIGS. 1 and 2 , the inclusion of the subscript zeros indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • the entire range of data collected about an individual may be analogous to the entire genotype of an individual, and particular combinations in the data patterns may be analogous to genes or collections of genes that code for particular traits.
  • a particular lifeotype may code for or represent a particular set of traits.
  • a lifeotype may change over time, including reasons such random change reasons due to therapy, such as behavior modification therapy, reasons due to other changes in an individual's behavior, how the individual interacts with his environment and vice-verse, and due to modifications, or additions to the amount and type of information being collected about an individual.
  • This process may be analogous to gene mutations and gene therapy in genetics.
  • the therapeutics process may be intentional or non-intentional and/or prescribed or self-administered.
  • the pool of data may be less than the total pool of data, which may be analogous to sequencing less than all of the genetic code of an individual in genetics.
  • FIGS. 1 , 2 and 3 it may be possible to move in both directions in the hierarchies depicted in the figures.
  • the data or life bits may be determined from a life byte or lifeotype.
  • FIG. 1 it may be possible to work from actionable information back to information.
  • a life bit may be body positional data, such as sitting or standing.
  • a related life byte may be standing more than sitting. This life byte may contribute to the determination of a lifeotype which may be characterized as one relating to the condition of varicose veins.
  • the data may include financial and transaction data.
  • the related life bits may include certain transactions and financial data. These life bits may be aggregated into a financial status life byte.
  • a particular lifeotype may be that of a depressive.
  • the data on which this lifeotype is based may include survey data, financial data, transaction data, medical data and sensor data.
  • Sensors such as the type described in United States patent applications incorporated herein by reference provide sensed data from which a derivation could be made regarding an individual's activity level, food intake, mood, and interaction with others. All of such sensed data in each patent application incorporated herein by reference is relevant to this and all other embodiments described herein.
  • a relevant life bit may be composed of credit card purchases, and a relevant life byte may reveal that the majority of purchases were online and few were at point of sale terminals, thus revealing that the individual tends to stay in one location.
  • the survey data may result in a life byte that indicates the individual is depressed.
  • the sensor data may show that the individual spends most of his time in one location due to low levels of activity, and that the individual has limited interaction with others. These factors together may be a lifeotype or marker for a depression, analogous to a genetic marker or the genotype of an individual that is depressed.
  • a lifeotype may be a hypertensive, diabetic runner.
  • the data on which this lifeotype is based may include survey data, medical data and sensor data.
  • Certain of the relevant life bytes may include age related information, bone density related information and a diabetic life byte.
  • the values of these life bytes may indicate a high likelihood of hypertension and low bone density.
  • the Platform may suggest additional data that should be collected for further investigation.
  • a sensor may provide many activity life bits, which may indicate an overall active life byte.
  • the Platform may sequence the life bytes to find the lifeotype to be a runner with low bone density, hypertension and diabetes.
  • a particular lifeotype may be that of an active diabetic.
  • This lifeotype may be a 4 byte lifeotype, where life byte 1 is a glucose reading, life byte 2 is a pancreas function measurement of some kind, life byte 3 is total calories consumed in a day and life byte 4 is total calories burned in exercise.
  • Each byte may be composed of several life bits.
  • total calories burned may be determined from life bits including activity level data as determined by sensor data and food intake data as determined from a survey or any of the systems, devices or methods described in the patent application which are incorporated herein by reference.
  • Certain of the life bytes may originate directly from the data, such as glucose readings determined directly from a glucose meter.
  • the resulting life bits and life bytes may be packaged into their own data structures, such as a packet header
  • a lifeotype may be a pattern of behavior and sensed values that indicates that an individual is at a very high risk of becoming diabetic later in life.
  • the lifeotype may be defined by four lifebytes.
  • the first life byte may be composed of sensed health data life bits such as yearly blood pressure readings administered at a doctor's office and extracted from the individual's electronic medical record or personal health record.
  • the second life byte may be residence data revealing that the individual lives in an urban area that is not conducive to year-round exercise and that is characterized by very long commute times.
  • the third life byte may consist of data from a medical record and may indicate that the individual is Mexican-American and that two of the individual's four grandparents were diabetic before they died.
  • the fourth life byte may consist of survey data and may indicate that the individual exercises very vigorously, but only occasionally with a frequency of 1.2 times per week and only for average of 75 minutes each time.
  • a life byte may be that an individual is at a very high risk of becoming diabetic later in life and the life bits may be sensed health data, residence data, medical record data and survey data.
  • the lifeotype may be related to diabetes, hemorrhagic shock or hypertension.
  • the data bits may related to genetic markers, diagnoses, plans for therapy, sensed data regarding physical activity, such as from a wearable device, energy expenditure, nutritional data and the like.
  • a genotype may be conceived of as an encoding of what may happen to a person through the process of developmental biology, similar to a blueprint for a house. This genetic blueprint may also be thought of as the gold-standard for the house, the platonic house, or the default house, based on all of which variation will occur. The genotype may also set the basic rules for how that physical body will function in response to particular kinds of changes to that body. By analogy, this may be like the house having a built in furnace and thermostat and being set to turn on the heat when the thermostat drops below a particular temperature.
  • a genotype may have various levels of abstractions that are useful to understand about the way that encoding (that blueprint) is translated into a physical system or the basic rules of operation of that physical system.
  • a genotype in a human is made up of atoms, but that is often too fine grained a level of detail and is not usually considered a useful way to talk about the genotype.
  • the lowest level of abstraction normally used for a genotype are the base pairs that make it up (“A T C and G”).
  • the state of your body at some point in the future may not entirely be determined by its genetic make up. Genetics may have, over time, only a minority impact on the state of a person's body. The other relevant elements may be the things that happen to a body. A simple illustrative example is as follows: if a car side-swipes a person and breaks the person's leg, the body has changed dramatically and not because of genetics (although genetics may affect the extent of the break, the time to heal and the like).
  • this data collected about a person that corresponds to the series of things that happens to a person or because of a person's choices which determines to a large extent what will happen to a person in the future can be thought of as a lifeotype.
  • a lifeotype may also include or be based on genetics-related information (as bits, bytes, life byte sequences, etc.), as well as any of the other information discussed herein.
  • the human lifeotype may have various levels of abstraction.
  • at the lowest level are all the facts of what happened to a person expressed in their raw “sensed” values.
  • An example is as follows: each key stroke that a person made at his/her computer, each acceleration a person's body experiences as it moves about daily life, a person's heart rate at each minute of the day, and the like.
  • the equivalent to the alleles and their relative importance intron vs.
  • extron may be the notion of a continuum from “derived data” through “patterns of data.” So for example, thinking about many of the sensed values about a person's body not in isolation but taken together in a model of energy expended may be a “derived” lifeotype fact in this particular embodiment. In this particular embodiment, at a higher level of derivation or pattern finding might be that over a period of time energy expenditure is high enough to qualify as an “active person.” And, in this particular embodiment, up at the level, by analogy, of a chromosome for a lifeotype may be the notion of the implication of major patterns of the data of your life upon the future state of your body.
  • FIG. 25 depicts a particular embodiment of a statistical model involving lifeotypes.
  • conditional probabilities may be determined based on lifeotypes.
  • analogies described herein are for illustrative purposes and should not serve to limit the meaning of terms described herein. None of the usages of the terms in the analogies or examples herein are intended to contradict the meaning of any term in this disclosure, but rather as alternate meanings or nuanced meanings of the terms.
  • the data may include continuous or discrete data or any form of data that may be found along this spectrum.
  • the data may be continuous temperature data and/or a discrete measure such as a voltage.
  • the data may include raw or derived data or any form of data that may be found along this spectrum.
  • the raw data may be unprocessed.
  • the derived data may be derived from the raw data, other derived data or a combination of both.
  • the data may be sensed by a body monitor and/or a sensor, which may be stationary, wearable or implantable, or any form that may be found along this spectrum.
  • a stationary sensor may be housed in an item of fitness equipment, such as a treadmill.
  • a wearable sensor may be included as part of an arm band, shirt or shoe.
  • an implantable sensor may be a heart rate sensor implanted near the heart.
  • a lifeotype may or may not be constructed from at least one item of discrete or continuous data, raw or derived data and/or data sensed by a body monitor and/or sensor which may be stationary, wearable or implantable.
  • the inclusion of the subscript zeros in FIG. 5 indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • a lifeotype may be static or dynamic or may exist in a form found along this spectrum. That is, a lifeotype may consist of data that is more static over time or data that is more dynamic over time.
  • a lifeotype may be high resolution or low resolution or may exist in a form along this spectrum. That is, a lifeotype may consist of a variety of life bytes, life bits and data, which would make it a lifeotype of a higher resolution when compared to a lifeotype that is based on relatively few life bytes, life bits and data instances.
  • a static lifeotype and a high resolution lifeotype may respond in similar ways to changes in the data on which each is based.
  • This behavior similarity may be due to a greater number and variety of life bytes, life bits and data instances being involved, so it requires a greater change in the underlying factors and data to produce a change at the lifeotype level.
  • a dynamic lifeotype and a low resolution lifeotype may respond in similar ways to changes in the data on which each is based.
  • This behavior similarity may be due to a lower number and low variety of life bytes, life bits and data instances being involved, so it requires only a change in one or a few values of the underlying factors and data to produce a change at the lifeotype level.
  • a low resolution and/or dynamic lifeotypes may include angry, aroused, tired, fatigued, current spending, location, restless, stressed and the like.
  • a high resolution and/or static lifeotypes or the life byte sequences, life bytes, life bits and/or data upon which they are based, may include depressed, addict, diabetic (type I and II), insomniac, cardiac condition and the like.
  • a high resolution lifeotype may change rapidly over time and a low resolution lifeotype may change more slowly over time. Lifeotypes can be true or representative at specific points or ranges of time in a person's life. Lifeotypes may reflect different time scales.
  • the Platform may be able to determine and/or display the direction of a lifeotype. In this way, the direction of trend of a lifeotype and/or group of lifeotypes can be determined. This information may be useful for identifying and/or predicting changes in high resolution and/or static lifeotypes. In an embodiment, due to the possibly variable nature of a low resolution and/or dynamic lifeotypes, such lifeotypes may be conceived of or reported with a tolerance band based on related trend information and predictions. In another embodiment, the trend information and predictions may be useful in predicting emergencies in connection with low resolution and/or dynamic lifeotypes and disease states in connection with high resolution and/or static lifeotypes.
  • Lifeotype trend information may be useful for treating certain conditions for which certain parameters need to be kept in a certain range.
  • certain lifeotypes of bipolar individuals may need to be kept within a certain range for a certain parameter, such as mood or endorphin levels.
  • Using the trend direction functionality it may be possible to affect the trend as the lifeotype value approaches the boundary of the range.
  • a system for creating, analyzing and making use of lifeotypes may contain various layers, facilities and/or functionalities (the “Platform”).
  • FIG. 6 depicts one particular embodiment of the Platform.
  • the Platform may contain data and/or data sources, a data interface, data processing, life bits, life bit processing, life bytes, life byte processing, life byte sequences, lifeotype data processing, interfaces, lifeotypes, lifeotype systems, applications and/or services, users, data targets, other systems applications and/or services and data administration, including security, logging, conditional access and/or authentication.
  • the data and/or data sources may be any of the data described herein or may be from any of the sources described herein.
  • the data and/or data sources may include data from sensors, user input and/or other sources as described herein.
  • the data and/or data sources may include physiological data, contextual data and/or environmental data as described herein.
  • the data interfaces layer may contain adaptors and/or connectors which allow the Platform to communicate with various disparate data sources.
  • a connector may permit the Platform to obtain patient data from a particular hospital database, such as a patient admission database.
  • the data interfaces layer may be or contain an interface to sources and targets.
  • the data interfaces layer may be based on a push model, pull model or both.
  • the data interfaces layer may include search/filter/cluster functionality.
  • the data processing layer may enable analytics and derivation.
  • the data processing layer may create, generate, identify and/or discover lifebits.
  • the data processing layer may search for patterns in the data to create lifebits.
  • the data processing layer may mine data.
  • the data processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bits.
  • the data processing layer may identify a life bit the knowledge of which may be germane to a particular purpose and may also identify the data that is required to be collected in order to determine that life bit.
  • the data processing layer may analyze life bits and related data.
  • the data processing layer may generate conclusions, predictions and/or recommendations.
  • the data processing layer may identify patterns in the life bits.
  • the data processing layer may sequence the life bits.
  • the data processing layer may generate reports.
  • the data processing layer may auto-publish information, such as reports and studies.
  • the data processing layer may auto-complete forms, such as medical records and insurance forms.
  • the data processing layer may process, organize and manage life bits.
  • the data processing layer may clean and de-duplicate life bits data.
  • the data processing layer may perform extractions, transformations and loads of the life bits data.
  • the data processing layer may convert life bits data to a common format.
  • the data processing layer may aggregate, combine and collect life bits data.
  • the data processing layer may request missing data.
  • the data processing layer may create databases and datamarts of life bits data and/or other data.
  • the data processing layer may associate metadata with the life bits data.
  • the data processing layer may filter and/or apply contextual structures to life bits data.
  • the data processing layer may apply algorithms to life bits data.
  • the data processing layer may enable annotation of, or may auto-annotate, life bits data.
  • the data processing layer may be based on a push model, pull model or both.
  • the data processing layer may process and/or clean data.
  • the data processing layer may allow data from multiple sources to be combined.
  • the data processing layer may organize and manage data.
  • the data processing layer may enable storage and/or retrieval of data.
  • the data processing layer may enable storage and retrieval of information based on or derived from the data.
  • the data processing layer may store and/or retrieve metadata.
  • the data processing layer may read and/or write data and metadata.
  • the data processing layer may enable versioning and/or partitioning.
  • the data processing layer may predict future life bits.
  • the data processing layer may compare a set of life bits to the genotype and determine the degree of presence of other life bits.
  • Life bit(s), as described herein, may be determined directly from the data, from a data interface and/or through data processing.
  • a life bit processing layer may enable analytics and derivation.
  • the life bit processing layer may create, generate, identify and/or discover life bytes.
  • the life bit processing layer may search for and identify patterns in the data to create life bytes.
  • the life bit processing layer may mine data.
  • the life bit processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bytes.
  • the life bit processing layer may identify a life byte the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that life byte.
  • the life bit processing layer may analyze life bits and related data.
  • the life bit processing layer may generate conclusions and/or recommendations.
  • the life bit processing layer may identify patterns in the life bits and life bytes.
  • the life bit processing layer may identify missing information.
  • the life bit processing layer may generate reports.
  • the life bit processing layer may auto-publish information, such as reports and studies.
  • the life bit processing layer may auto-complete forms, such as medical records and insurance forms.
  • the life bit processing layer may process, organize and manage life bits.
  • the life bit processing layer may clean and de-duplicate life bits data.
  • the life bit processing layer may perform extractions, transformations and loads of the life bits and life bytes data.
  • the life bit processing layer may convert life bits and life bytes data to a common format.
  • the life bit processing layer may aggregate, combine and collect life bits and life bytes data.
  • the life bit processing layer may request missing data.
  • the life bit processing layer may create databases and datamarts of life bits, life bytes and/or other data.
  • the life bit processing layer may associate metadata with the life bits and life bytes.
  • the life bit processing layer may filter and/or apply contextual structures to life bits and life bytes data.
  • the life bit processing layer may apply algorithms to life bits and life bytes data.
  • the life bit processing layer may enable annotation of, or may auto-annotate, life bits and life bytes data.
  • the life bit processing layer may be based on a push model, pull model or both.
  • the life bit processing layer may process and/or clean data.
  • the life bit processing layer may allow data from multiple sources to be combined.
  • the life bit processing layer may organize and manage data, such as life bits and life bytes data.
  • the life bit processing layer may aggregate and/or collect data, such as life bits and life bytes data.
  • the life bit processing layer may enable storage and/or retrieval of data, such as life bits and life bytes data.
  • the life bit processing layer may enable storage and/or retrieval of information based on or derived from data, such as life bits and life bytes data.
  • the life bit processing layer may store and/or retrieve metadata.
  • the life bit processing layer may read and/or write data and metadata.
  • the life bit processing layer may enable versioning and/or partitioning.
  • Life byte(s), as described herein, may be determined directly from the data, from a data interface and/or through data processing.
  • a life byte, as described herein, may be a life bit and/or may be determined through life bit processing.
  • a life byte processing layer may sequence life bytes.
  • the life byte processing layer may determine lifeotypes.
  • the life byte processing layer may enable analytics and derivation.
  • the life byte processing layer may create, generate, identify and/or discover life bytes and/or life byte sequences.
  • the life byte processing layer may search for and identify patterns in the data to create life bytes and/or life byte sequences.
  • the life byte processing layer may mine data.
  • the life byte processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bytes and/or life byte sequences.
  • the life byte processing layer may identify a life byte and/or life byte sequence the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that life byte and/or life byte sequence.
  • the life byte processing layer may analyze life bytes and/or life byte sequences and related data.
  • the life byte processing layer may generate conclusions and/or recommendations.
  • the life byte processing layer may identify patterns in the life bytes and/or life byte sequences.
  • the life byte processing layer may generate a genotype of life byte sequences.
  • the life byte processing layer may identify missing information.
  • the life byte processing layer may generate reports.
  • the life byte processing layer may auto-publish information, such as reports and studies.
  • the life byte processing layer may auto-complete forms, such as medical records and insurance forms.
  • the life byte processing layer may process, organize and manage life bytes and/or life byte sequences data.
  • the life byte processing layer may clean and de-duplicate life bytes and/or life byte sequences data.
  • the life byte processing layer may perform extractions, transformations and loads of the life bytes and/or life byte sequences data.
  • the life byte processing layer may convert life bytes and/or life byte sequences data to a common format.
  • the life byte processing layer may aggregate, combine and collect life bytes and/or life byte sequences data.
  • the life byte processing layer may request missing data.
  • the life bit processing layer may create databases and datamarts of life bytes, life byte sequences data and/or other data.
  • the life byte processing layer may associate metadata with the life
  • the life byte processing layer may filter and/or apply contextual structures to life bytes and/or life byte sequences data.
  • the life byte processing layer may apply algorithms to life bytes and/or life byte sequences data.
  • the life byte processing layer may enable annotation of, or may auto-annotate, life bytes and/or life byte sequences data.
  • the life byte processing layer may be based on a push model, pull model or both.
  • the life byte processing layer may process and/or clean data.
  • the life byte processing layer may allow data from multiple sources to be combined.
  • the life byte processing layer may organize and manage data, such as life bytes and/or life byte sequences data.
  • the life byte processing layer may aggregate and/or collect data, such as life bytes and/or life byte sequences data.
  • the life byte processing layer may enable storage and/or retrieval of data, such as life bytes and/or life byte sequences data.
  • the life byte processing layer may enable storage and/or retrieval of information based on or derived from data, such as life bytes and/or life byte sequences data.
  • the life byte processing layer may store and/or retrieve metadata.
  • the life byte processing layer may read and/or write data and metadata.
  • the life byte processing layer may enable versioning and/or partitioning.
  • a life byte sequence may be determined directly from the data, from a data interface and/or through data processing, may be a life bit and/or may be determined through life bit processing, may be a life byte and/or may be determined though life byte processing.
  • a lifeotype data processing layer may identify lifeotypes.
  • the lifeotype data processing layer may enable analytics and derivation.
  • the lifeotype data processing layer may create, generate, identify and/or discover lifeotypes.
  • the lifeotype data processing layer may search for and identify patterns in the data to create lifeotypes.
  • the lifeotype data processing layer may mine data.
  • the lifeotype data processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of lifeotypes.
  • the lifeotype data processing layer may identify a lifeotype the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that lifeotype.
  • the lifeotype data processing layer may analyze life byte sequences, lifeotypes and related data.
  • the lifeotype data processing layer may generate conclusions and/or recommendations.
  • the lifeotype data processing layer may identify patterns in the life byte sequences and/or lifeotypes.
  • the lifeotype data processing layer may generate a “genome” of lifeotypes.
  • the lifeotype data processing layer may identify missing information.
  • the lifeotype data processing layer may generate reports.
  • the lifeotype data processing layer may auto-publish information, such as reports and studies.
  • the lifeotype processing layer may assemble lifeotypes into a “genome”.
  • the lifeotype data processing layer may auto-complete forms, such as medical records and insurance forms.
  • the lifeotype data processing layer may process, organize and manage life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may clean and de-duplicate life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may perform extractions, transformations and loads of the life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may convert life byte sequences and/or lifeotypes data to a common format.
  • the lifeotype data processing layer may aggregate, combine and collect life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may request missing data.
  • the lifeotype data processing layer may create databases and datamarts of life byte sequences, lifeotypes data and/or other data.
  • the lifeotype data processing layer may associate metadata with the life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may filter and/or apply contextual structures to life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may apply algorithms to life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may enable annotation of, or may auto-annotate, life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may be based on a push model, pull model or both.
  • the lifeotype data processing layer may process and/or clean data.
  • the lifeotype data processing layer may allow data from multiple sources to be combined.
  • the lifeotype data processing layer may convert data to a common format.
  • the lifeotype data processing layer may organize and manage data, such as life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may aggregate and/or collect data, such as life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may enable storage and/or retrieval of data, such as life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may enable storage and/or retrieval of information based on or derived from data, such as life byte sequences and/or lifeotypes data.
  • the lifeotype data processing layer may store and/or retrieve metadata.
  • the lifeotype data processing layer may read and/or write data and metadata.
  • the lifeotype data processing layer may enable versioning and/or partitioning.
  • a lifeotype may be determined directly from the data, from a data interface and/or through data processing, may be a life bit and/or may be determined through life bit processing, may be a life byte and/or may be determined though life byte processing, may be a life byte sequence and/or may be determined through lifeotype data processing.
  • the Platform may contain an interface which may be an interface layer or interface facility.
  • the interface may contain a user interface and/or presentation facility.
  • the interface may publish reports, studies, conclusions and/or reports.
  • the interface may automatically complete reporting documents and forms, such as medical records and insurance forms.
  • the interface may auto-publish information, such as reports and studies.
  • the interface may contain adaptors and/or connectors which allow the Platform to communicate and/or interface with other systems, facilities, data sources and the like.
  • the interface may interface with an outside workflow, which may allow the platform to affect, optimize or improve efficiency of the outside workflow.
  • the interface may generate different views of the lifeotype data and/or other data.
  • the interface may filter the lifeotype data and/or other data.
  • the filtering may be done by sorting on a particular life bit, life byte and/or lifeotype, such as a medical condition or a state of activity.
  • the filtering may also be done by sorting for a particular combination or combinations of life bits, life bytes or lifeotypes, such as sorting for all diabetics who are between the ages of 25 and 30 years old, engage in at least 10 hours of physical activity per week and eat more than 3 servings of vegetables per day. Filtering may allow for the identification of subsets of the data, which may be used for further studies.
  • the interface may include an interface to sources and targets.
  • the interface may function as a data clearinghouse.
  • the interface may include and/or be enabled or facilitated by a lifeotype markup language (“LML”).
  • LML may use or permit communication through LML.
  • LML may facilitate the identification, creation, processing, manipulation and use of lifeotypes.
  • LML may be a protocol.
  • LML may be embodied in a header.
  • LML may allow interfaces with other systems, platforms and the like, or may allow interfaces between elements of the Platform.
  • LML may contain tags, which may function as connectors or links.
  • the tags may link to other relevant data, or to data sources or sources of data values used in a particular calculation, derivation or analysis.
  • a tag may link to other data, measured values or information that may be relevant or related, such as information recorded or created around the same time as the other data.
  • a tag may link to information about mood or food consumption.
  • the LML corresponding to an energy expenditure calculation may contain links to data concerning the mood of the subject, food consumed by the subject and/or other medical values recorded at the time.
  • a tag may enable a user to quickly locate or query data that form the basis of other information, derived measures and/or lifeotypes.
  • LML may allow the specification of statements that include information about who the statement is about (at multiple levels of detail); what facts, if any, the statement is about; what patterns, if any, the statement is about; what actions or action sequences the statement is about; what time points or time periods the statement is about; what time points or time periods apply to the facts; any groups, patterns, or actions/action sequences; and the like. Abstraction to different levels of detail may be allowed for various features of LML. Abstraction to different levels of detail may be optional for each statement and certain fields may be optional in respect of a certain statement.
  • LML may utilize XML and may include the ability to have functional links and the like which may perform operations on a lifeotypes database.
  • a user interface may be tailored based on the user's lifeotype.
  • a user interface may contain sliders, pistons or other means to adjust parameters.
  • the user interface may show the effects of changes of certain parameters, such as on other parameters, or on lifeotype, medical conditions and the like.
  • the user interface may show the effects of perturbing the system. Through the user interface it may be possible to tweak one or more sliders or adjust parameters in other ways and see the effect or predicted effect of those adjustments on other values and/or lifeotypes. Parameters that can be adjusted include the parameters in Table 3 of Andre, et al., pending U.S. patent application Ser. No.
  • the user interface may present reports, which may be auto-published, may include a comparison to other members of population and/or a comparison to other members of same or similar lifeotype profiles.
  • a report may contain predictions, such as the probability of breaking a bone, having a stroke, having a major depressive episode and the like and may include recommendations on behavior, medication and the like.
  • the report may include an interface with sliders that allow a user to perturb the recommendations and/or other aspects of the report and see the effects.
  • the Platform may contain users, which may be any of the users, consumers or parties described herein.
  • the Platform may include data targets, which may be any of the databases or data structures described herein, including third party data sources.
  • the Platform may contain a lifeotype systems, applications and/or services layer or facility which may enable any of the systems, methods, apparatuses, applications and/or services described herein.
  • the Platform may also contain other systems, applications and/or services, which may be any of the systems, methods, applications and/or services described herein.
  • the Platform may include a data administration layer, which may prohibit, restrict, enable and/or allow access to the Platform or particular aspects of the Platform based on certain factors.
  • the data administration layer may enable conditional access.
  • access may be restricted by time, log-in location, whether the user is a participant in current study and the like.
  • the data administration layer may enable differential levels of access. In embodiments, certain users may have access to only certain information, functions, data, results and the like.
  • the data administration layer may enable logging, identification, authentication, security and privacy protection.
  • the data administration layer may contain an anonymizer or one or more systems and/or methods by which users can opt-in and/or opt-out of certain aspects of the Platform or uses of information related to them. The opt-in/opt-out decision may be linked to a royalty system as discussed herein.
  • the Platform may be scalable. In this regard, several different Platforms could be linked together or linked Platforms could be separated. Various different lifeotypes or lifeotypes of different people could be linked together or separated. Referring to FIG. 8 , two or more lifeotypes can be linked or aggregated together to create new lifeotypes. In addition, a lifeotype may be separated into two or more lifeotypes.
  • the data discussed herein may be any measurable, describable or quantifiable aspect of the human condition and/or environment.
  • the data may be human state data.
  • the data may be energy expenditure data-energy expenditure data, which may act as a surrogate for vital sign data.
  • the data may fall into one or more general categories of data, including derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, data regarding physiological state, data regarding psychological state, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, relative levels, changes in levels and feedback loop data.
  • the data may be constructed of derived data and a basic parameter to determine an inverse.
  • the data may be constructed of derived data and environmental data.
  • the data may be constructed of derived data and physiological data.
  • the physiological data may include information regarding a disease condition and the progress of the disease (becoming better or worse).
  • the data may also be specific instances of data, such as any variable or field of the Platform.
  • a specific instance of data may be data regarding physiological and/or psychological state.
  • the data may be medical data.
  • the medical data may be diabetes related data (such as glucose level), family histories, patient records, medication, medical conditions, morbidities, psychological data (such as personality type), weight data, height data, cardiac status data, hormone level data (such as for cortisol, insulin, thyroid hormones, HGH, paracrine system hormones and/or endocrine system hormones), data relating to medical conditions (such as type I diabetes, type II diabetes or a particular syndrome), data relating to markers, data relating to seizures, data relating to fainting, metabolic rate data, data relating to physical measurements and/or conditions (such as a weakened heart wall), genetic data (such as data concerning genetic conditions, genetic markers, particular genetic sequences and presence or absence of one or more genotypes and/or phenotypes) and/or data relating to diagnostics.
  • diabetes related data such as glucose
  • the data may be transactional data, such as data concerning goods or services purchased, consumed and/or desired.
  • the transactional data may be from credit or debit card purchases, from third party databases, from manually entered data (such as user entered data), from a purchasing program associated with the Platform, from internet browsing history, from items placed on layaway, from needs anticipated or predicted by the Platform, from a record of online purchases and the like.
  • the transactional data may relate to grocery purchases, usage of different utilities (such as water, hydro, gas and the like) and the like.
  • the transactional data may include predictions based on past data.
  • the data may be measured with sensor-packages monitoring multiple individuals.
  • the data may include environmental data.
  • Environmental data may include data relating to light level (such as for sunlight and/or artificial light), weather, ambient temperature, humidity, wind, air quality, atmospheric conditions, water quality, environmental problems, location and/or nutrition (such as concerning food, beverages, vitamins and/or diet).
  • the data may include contextual and/or situational data.
  • the contextual and/or situational data may relate to social context. In an embodiment, the social context may be out with friends or at home alone.
  • the contextual and/or situational data may relate to life-cycle context. In an embodiment, the life-cycle context may be in college, in the workforce, married with children and the like.
  • the contextual and/or situational data may relate to activity level (such as sedentary or exercising), meditation state, body position, travel (such as in a car, on a plane, on a train, at sea and the like), shopping, entertainment level (such as at a concert, movie and the like), location (such as determined by GPS or triangulation), miles driven as a passenger, miles driven as a driver, where driven, travel destinations, type of work (such as physical labor or deskwork), hours worked, sleeping, resting and/or arguing.
  • activity level such as sedentary or exercising
  • meditation state such as in a car, on a plane, on a train, at sea and the like
  • shopping such as at a concert, movie and the like
  • location such as determined by GPS or triangulation
  • miles driven as a passenger miles driven as a driver
  • type of work such as physical labor or deskwork
  • the data may include personality and/or psychological data.
  • the personality and/or psychological data may include data relating to entertainment choices, mood, amount of time spent reading, books read, topics of material read, authors of material read, amount of fiction read, amount of non-fiction read, amount of time spent watching television and movies, television programs watched, movies watched, topics of television programs watched, topics of movies watched, moods of television programs watched, moods of movies watched, amount of time spend playing games and videogames, games or videogames played, topics of games or videogames played, moods of games or videogames played, skill level of games or videogames played, levels obtained in games or videogames played, activity level determined from games or videogames played (such as for a Nintendo Wii console), amount of time spent on certain websites, language context typed into keyboard, voice stress levels, entertainment choices, leisure choices, choice of sports, choice of active lifestyle versus sedentary lifestyle, estimated mental state data (such as data concerning intentions) and the like.
  • the data may be derived data.
  • the derived data may relate to stress, cortisol level, activity level, energy expenditure, heart rate variability, hydration, pulse oximetry, profusion of small vessels, sleep state, sleep onset, VO2 from energy expenditure, glucose from energy expenditure, pain from energy expenditure, combinations of derived parameters and the like.
  • the data may also include metadata.
  • the metadata may include data regarding when a particular item of data was measured, how the item was measured, where a particular item of data was measured, the context in which the item of data was measured, who measured the item, other related items of data that were measured, the reason the item of data was measured, relationships of the item to other items, related items that were not measured or recorded, other items with which the data item is shared and the like.
  • the metadata may include information regarding how the item of data came to be and how the item of data acts in its natural state. Related items of data may be measured at different times and places, by different methods and for different purposes.
  • the data may include action state information, activity state information, project state information and relationship information, including data between and/or among individuals.
  • Sources of data may include data from a wearable body monitor, from sensors/transducers, from communications technologies, from data integration technologies, from software services (such as feeds and web services), from metadata, from manual entry, from user input, from user interfaces (such as from buttons, dials, sliders, graphical user interfaces and the like), from third party sources, from databases, from surveys, from derived data, from records and transaction histories (such as library records, video rental records, media playlists, receipts, financial statements, credit card statements, bank statements and the like) and the like. Data may also be obtained from non-invasive means and passive or indirect data gathering.
  • a sensor or body monitor may have a specific shape or form, such as an arm band or garment.
  • a sensor or body monitor may be worn in specific locations, such as on the arm or around the waist.
  • a sensor or body monitor may be wearable. Examples of body monitors other systems, devices, and methods that can be used to generate the data rendering life bits and ultimately lifeotype data are described in described in Stivoric et al., U.S. Pat. No. 7,020,508, issued Mar. 28, 2006, entitled Apparatus for Detecting Human Physiological and Contextual Information; Teller et al., pending U.S. patent application Ser. No.
  • the data may be obtained from an apparatus for detecting, monitoring and reporting human status information, comprising a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least a portion of said data streams and generating derived data based on said data indicative of at least a first parameter and said data indicative of at least a second parameter, said derived data used to control said computing device.
  • a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least a portion of said data
  • the data may be obtained from an apparatus for detecting, monitoring and reporting human status information, comprising a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least a portion of said data streams and generating derived data based on said data indicative of at least a first parameter and said data indicative of at least a second parameter, said derived data used to control a device separate from said computing device.
  • a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least
  • the sensor or body monitor may be disposable, semi-durable or durable.
  • the sensor or body monitor may be highly integrated, semi-integrated or disparate.
  • a sensor may be highly integrated into a garment.
  • the sensor or body monitor may be non-invasive, semi-invasive or invasive.
  • the sensor or body monitor may be implanted, wearable or proximal.
  • the data may be obtained from one sensor, two sensors or more than two sensors.
  • the sensor or body monitor may be customized, proprietary or off-the-shelf.
  • the sensor or body monitor may be newly created, a modified existing sensor or body monitor or a previously existing sensor.
  • the sensor or body monitor may be passive, active or a combination of passive and active.
  • the sensor or body monitor may be located in a housing, in communication with a housing or located remotely.
  • the sensor or body monitor may be in remote communication with a central monitoring unit, in direct communication with a central monitoring unit or may be not related to a central monitoring unit.
  • the sensor or body monitor may be utilized in connection with a remote processor, a local processor or without a processor.
  • the sensor or body monitor may be automatic, user augmented, survey augmented or manual.
  • the sensor or body monitor may be direct, proximal or remote.
  • the sensor or body monitor may be in body, on body or off body.
  • the sensing of the sensor or body monitor may be proximal, physiological or contextual.
  • the sensor or body monitor may be located in a housing, in proximal communication with a housing or remote to a housing.
  • the sensor or body monitor may be used in connection with linear algorithms, non-linear algorithms, regression analysis and/or neural networks.
  • the data obtained from the sensor or body monitor may be raw data, direct data, modified data, heavily modified data or processed data.
  • the data sensed by the sensor or body monitor may be physiological data, contextual data and/or environmental data.
  • the sensor or body monitor may be implantable.
  • An implantable sensor or body monitor may be a pacing system, such as a heart pacemaker, cardiac pacemaker and the like.
  • An implantable sensor or body monitor may be a carioverter defibulator.
  • An implantable sensor or body monitor may be a blood pressure flow sensor, which may be MEMS-based.
  • the sensor or body monitor may be a sleep apnea recorder, continuous positive air pressure device, ECG, Holter monitor, glucometer, pulse oximeter, blood pressure monitor, sphygmomanometer, heart rate monitor, chest strap or the like.
  • the sensor or body monitor may be disposable, such as a patch.
  • the sensor or body monitor may be capable of sensing physiological parameters such as glucose and other analytes contained in interstitial fluid.
  • the sensor or body monitor may be may include chemical agents, electrotransport, ultrasound, microproj ections, microneedles, analog or digital weight scale and the like.
  • the sensor or body monitor may be may be included in fitness equipment such as cardio equipment, weight training equipment, scales, sports equipment, entertainment devices in gyms and the like.
  • the sensor or body monitor may be included in consumer electronics, such as MP3 players and phones.
  • the sensor or body monitor may be included in entertainment devices, such as videogame consoles.
  • the sensor or body monitor may be included in GPS units.
  • the sensor or body monitor may be included in home appliances and home automation devices, which may control lighting, temperature, window coverings, security systems and access control, personal assistance, home theater and entertainment, phone systems and the like.
  • the sensor or body monitor may be included in other device automation, such as a car, MP3 player and the like.
  • data may be physiological data, contextual data and/or environmental data.
  • Physiological data may come directly from the body and may be measured in a fairly direct fashion.
  • physiological data may be heart rate, respiration rate or whether an individual is asleep or not asleep.
  • Contextual data may include some connotation of context.
  • Contextual data may be a subset of environmental data, such as temperature near the body.
  • Environmental data may include information about the environment the body is in, such as ambient temperature.
  • the sensor or body monitor may be any one or more physiological sensors, contextual sensors and/or environmental sensors.
  • Other types of contextual, physiological and environmental data are disclosed in pending U.S.
  • the data sensed by the sensor or body monitor may be human status data, analytical status data or physiological status data.
  • the data may be not derived, may be derived, may be a derived third parameter or may be modified by a first or second parameter.
  • the data may be direct, compressed or filtered.
  • the data may be a surrogate or third parameter.
  • the data sensed by the sensor or body monitor may be direct data, surrogate data or a combination of direct and surrogate data.
  • the data may be condition data.
  • the condition may be composed of a number of parameters and may be composed of a number of conditions.
  • the data obtained from the sensor or body monitor may related to a body parameter, body condition and/or body state.
  • the sensor or body monitor may contain or be used in connection with an I/O, which may be on the sensor device or body monitor, proximal or in electronic communication with the sensor device or body monitor or remote to the sensor device or body monitor.
  • the output of the sensor or body monitor may be or may form the basis for a report, index, trend or prediction.
  • Feedback may be provided based on the data sensed by the sensor or body monitor.
  • the feedback may be in the form of a list, coaching or behavior modification.
  • the data may be obtained from a group of individuals waiting for heart transplants.
  • the data may include medical values of the true declining cardiac output of the individuals.
  • the data may also include changes in cardiac output or other body conditions when individuals are moved up or down the waiting list for a new heart.
  • the data may include information regarding which individuals died before a heart was ready for them and the details of each death. This data may relate to life bit and life byte information (such as EE) to find a life byte that changes in a way that will allow for sorting of individuals on the heart transplant waiting list to minimize deaths of people on the list and to maximize the chances of survival after the operation, or other metrics of success.
  • life bit and life byte information such as EE
  • the data may include data relating to, or the platform may analyze a subpopulation composed of, a group of individuals that have some known and unusual outcome, conditions or situation.
  • the condition may be a rare mental disease, such as a split personality.
  • the platform may enable identification of one or more life bytes that cluster this group; that is, separate them from the rest of the population.
  • the group may be individuals with MS and the life byte may be subtle but measurable changes in their activity lengths and patterns relative to their norms in the year just before they are diagnosed with MS.
  • the platform may allow for identification of a group of individuals that have some known and unusual life byte. The platform may then be used to, or may itself, look for what outcomes or situations each individual shares with others from this group. For example, the platform may find that 0.1% of the population exercises more than 4 hours a day every week and yet never exercises more than 1 day a week. The platform may identify characteristics that the people with that lifebyte have in common. For example, the platform may identify that they all die before 60 years of age.
  • the platform may be used to conduct event studies and experiments.
  • the platform may be used to identify a group of individuals that have a certain outcome or characteristic, such as, for example, high stress.
  • the platform may also be used to identify certain other events or interventions that happened to certain subgroups of the group of individuals. In this way that effects of the events or interventions can be studied.
  • the database can be used to determine the effects of the intervention on the group of people, without additional experimentation.
  • the platform may allow a user to form a hypothesis and then examine or watch related groups of individuals in the database to confirm or reject the hypothesis.
  • the hypothesis may be modified over time based on changes in the data, such as the subsequent effects of the events and interventions of interest.
  • the hypothesis may be reinforced, broken down and rebuilt. This may be an iterative process.
  • the platform may be used for predictions.
  • a user may describe or input their life bits, life bytes and other relevant information and the platform may determine lifeotypes or predict health, wealth, happiness outcomes and the like.
  • the predictions may be based on information for individuals with similar life bits, life bytes, lifeotypes and related information.
  • the platform may allow a user to explore the effects of certain changes on lifeotypes and outcomes. For example, the platform may allow a user to answer the following question: if I changed my life bytes in this way, what should I expect in terms of changed health, wealth, happiness and the like?
  • the platform may enable maximization along certain dimensions.
  • the platform may allow a user to “hill climb” to the local maximum that seems like a reasonable set of changed life bytes for a particular person such that it will maximize her health, wealth, happiness and the like.
  • the user may be able to assign various weights to the various outcomes to indicate their relative importance to her.
  • the platform may base the optimization, at least in part, on data relating to other individuals, such as what is a reasonable set of suggestible life byte changes for this person based on other similar people and whether or not similar people have been able to change their lifeotypes in this way.
  • the platform may allow for comparisons.
  • the platform may allow users to compare their life bit, life byte, lifeotype and other information and outcomes to other individuals or groups of individuals, such as similar individuals or groups of similar individuals.
  • the platform may enable a one legged man in the deep South who sleeps poorly and is overweight to compare himself to similar individuals, whether currently existing or based on past data, who are also trying to lose weight.
  • Life bits, life bytes, lifeotypes and/or related information may be used to predict, determine or ascertain other characteristics or preferences of a user or group of users.
  • fife bits, life bytes, lifeotypes and/or related information regarding a user's activity, activity, sleep patterns, body position and motoring times and length may be used as the inputs to predict the movies or books or cars the user will like.
  • the platform may allow for geospatial and visual presentation of life bits, life bytes, lifeotypes and/or related information.
  • a Google-Earth style interface may be used to display life bits, life bytes, lifeotypes and/or related information.
  • the interface may show life bits, life bytes, lifeotypes and/or related information for a particular population or the entire world in a visually appealing and explorable way.
  • the platform may superimpose life bits, life bytes, lifeotypes and/or related information over a 3D globe so that a user can see where people are awake, asleep, active, sedentary, stressed, calm and the like.
  • the platform and life bits, life bytes, lifeotypes and/or related information may be used for financial analysis and/or to predict information that is monetizable.
  • the platform, life bits, life bytes, lifeotypes and/or related information may be used to predict changes in the stock market, or particular securities or groups of securities, based on changes in life bits, life bytes, lifeotypes and/or related information.
  • the life bits, life bytes, lifeotypes and/or related information may be from around the country or a particular region.
  • the platform may aggregate the life bits, life bytes, lifeotypes and/or related information into indexes, such as a “people are getting sadder/pessimistic” and a “people are getting happier/optimistic” index. The platform may then use those indexes or indicators to predict near term and long term trends in the overall market, or a subset of the market. In another embodiment, the platform may enable prediction of individual stock trends from specific changes in life bits, life bytes, lifeotypes and/or related information. For example, if people start jogging more, it may be advisable to stock in running shoe companies, such as Nike. If people start walking more it may be advisable to buy more stock in Weight Watchers.
  • indexes such as a “people are getting sadder/pessimistic” and a “people are getting happier/optimistic” index.
  • the platform may then use those indexes or indicators to predict near term and long term trends in the overall market, or a subset of the market.
  • the platform may enable prediction of individual
  • the platform, life bits, life bytes, lifeotypes and/or related information may be used to predict information relating to sporting events.
  • the information may be useful for betting on sporting events.
  • the platform may allow for aggregation of information across many people connected to the sporting event.
  • the platform may be used for epidemiology applications.
  • life bits, life bytes, lifeotypes and/or related information may be used to predict the onset of a flu outbreak in a city 12 to 24 hours before it is otherwise seen by watching for subtle shifting patterns in life bits, life bytes, lifeotypes and/or related information, such as higher estimated core temperature or lower activity, adjusting for other relevant factors such as location, time of day, weather patterns and the like.
  • the platform may be used to identify patterns of behaviors, life bits, life bytes, lifeotypes and/or related information that lead to a certain outcome, such as a positive outcome. For example, sleeping 9 hours per night and exercising every day before noon may result in weight loss. In an embodiment, this information may be used to create a service business.
  • the platform may be used for data business applications.
  • access to life bits, life bytes, lifeotypes and/or related information may be sold or licensed.
  • life bits, life bytes, lifeotypes and/or related information may be sold.
  • a particular aggregate view of certain life bits, life bytes, lifeotypes and/or related information may be sold to academics for the purpose of conducting outcome studies. This may allow the studies to be performed on a much shorter time scale of a few minutes as opposed to several years.
  • the platform may also allow for identification of groups of interest.
  • the platform may allow for identification of individuals with certain life bits, life bytes, lifeotypes and/or related information of interest.
  • the platform may enable a user to contact those people to seek additional information.
  • the people may be paid or given other consideration to provide the missing or additional information.
  • the platform may allow a user to identify a group of people who take a particular pill, are of a particular ethnicity, and have a particular stress level. The user may want to know the fasting glucose level of these people, but that data is not available. The platform may enable the user to, directly or indirectly, contact all or a portion of these people, or one or more of their representatives, to obtain the fasting glucose level information. The people or their representatives may be paid for the information. The newly obtained information may then be used in other applications.
  • the platform may be used for planning applications.
  • the platform may be used to automate budgeting and city planning.
  • life bits, life bytes, lifeotypes and/or related information may be used to make the determination.
  • the determination may be made on a periodic basis, such as quarterly or annually, and the budget adjusted.
  • the platform may be used for similar applications in the healthcare field.
  • the platform may utilize behavioral census information in connection with the determinations.
  • the platform may be used for social and social networking applications.
  • life bits, life bytes, lifeotypes and/or related information may be used for match making
  • a dating website or company may match people based on life bits, life bytes, lifeotypes and/or related information. For example, a person who goes to bed at 8 pm and wakes at 5 am is likely not to be compatible with someone who goes to be at 2 am regularly.
  • the platform may determine a user's probability of locating a person with a particular lifeotype or range of lifeotypes in a particular location, such as a particular bar, neighborhood, city or country.
  • a dating website or business may use the platform, life bits, life bytes, lifeotypes and/or related information to assess whether a particular city has compatible lifeotypes for a particular person and if so in what quantities. This determination may be used to informing vacationing and relocation decisions. For example, the person may want to vacation in an area in which she has a high chance of meeting someone with a compatible lifeotype.
  • a healthcare professional may summarize, or provide information, including life bits, life bytes, lifeotypes and/or related information, relating to, the types of patients she typically sees or the types of patients she is good at seeing. This information may be aggregated with information obtained from patients, such as ratings, reviews, life bits, life bytes, lifeotypes and/or related information.
  • the platform may enable a user, such as a patient, to choose a healthcare provider based on this information.
  • the platform may allow a patient to choose or recommend to a patient a certain healthcare provider that is good at treating people with the same lifeotype as the patient.
  • the healthcare provider may be any of the healthcare providers described herein, including a doctor, nurse, pharmacist, physical therapist, weight management specialist and the like.
  • the healthcare professional may also be a more general service provider such as a personal trainer, yoga instructor or the like.
  • the healthcare professional may be a an institution or organization, such as a hospital, university, health maintenance organization, dentist office and the like.
  • the platform may enable the study of how certain life bits, life bytes and other information impact and/or effect the evolution of lifeotypes. This information may be used to impact or affect lifeotypes.
  • the impact of a particular television show on a group of lifeotypes over time may be studied. Watching the television show may form a segment of life byte information.
  • the show may be a program about weight loss, such as a contest to lose weight named “The Biggest Loser.” It may be determined that watching the program aids individuals who are between 10 and 45 pounds overweight with weight loss. It may also be determined that watching the program frustrates people who are more than 60 pounds overweight.
  • This information may be used to affect the relevant life bytes and lifeotypes by showing the program or similar programs to certain groups of people, determined based on life bits, life bytes, lifeotypes and/or related information.
  • the process may be consensual, with each person consenting to participation in the program.
  • life bits, life bytes, lifeotypes and/or related information and teaching and learning may be determined.
  • Life bits, life bytes, lifeotypes and/or related information along with the relationships to teaching and learning may be used to separate students into groups subject to different teaching techniques to alter the efficacy of the teaching.
  • life bits, life bytes, lifeotypes and/or related information may be used to alter or optimize a method, system, process, work flow, organizational structure, structure, organization and the like.
  • Life bits, life bytes, lifeotypes and/or related information collected from different people involved in or at different points in the method, system, process, work flow, organizational structure, structure, organization and the like may be used to alter or optimize the method, system, process, work flow, organizational structure, structure, organization and the like.
  • elderly people and the staff at an assisted living facility may be wearing body monitors. Using the monitors it may be possible to determine when an elderly person soils his or her diaper and this information may be collected and aggregates across all of the elderly people. Using the monitors, or by other means, it may be possible to determine the frequency with which the staff changes the soiled diapers. For example, it may be determined that the staff make rounds to change diapers twice per day. The two patterns may be brought together to assess the typical delay between soiling and changing of a diaper and possibly improve the situation by altering the pattern and reducing the delay.
  • life bits, life bytes, lifeotypes and/or related information may be used to tailor the delivery of advertising. For example, a person with a physically fit lifeotype that spends time biking, may have bicycle ads focused at them. In another example, if two women always go walking together they may be good candidates for a women's only gym, such as Curves.
  • life bits, life bytes, lifeotypes and/or related information may be used for career counseling. Life bits, life bytes, lifeotypes and/or related information may be collected in relation to various jobs and careers. Information concerning the satisfaction, ability, performance, happiness and the like of people in certain professions may be collected and linked to life bits, life bytes, lifeotypes and/or related information. This information may be used to generate norms or profiles of certain profession and lifeotypes pairs or groupings which may be used for career counseling.
  • the platform may allow a user to determine which job she should accept in order to maximize her happiness and productivity.
  • life bits, life bytes, lifeotypes and/or related information may be used to model or study transmission of certain diseases and conditions.
  • life bits, life bytes, lifeotypes and/or related information from many people in a particular area may be used to build more detailed models of the transmission of particular disease or condition whose onset is detectable in the life bits, life bytes, lifeotypes and/or related information of the people.
  • the disease or condition may be a cold, flu, infection or the like.
  • lifeotype information may be used for recruiting.
  • a company may determine use life bits, life bytes, lifeotypes and/or related information to determine that people with certain lifeotypes function better at the company and may use this information to inform hiring decisions.
  • a company may use life bits, life bytes, lifeotypes and/or related information to build models of the kinds of lifeotypes that seem to drive retention and success at work in order to try to promote those lifeotypes in the company.
  • life bits, life bytes, lifeotypes and/or related information may be used to monitor and affect morale in a workplace, school, military environment, prison or the like.
  • lifeotypes may be identified and analyzed in a variety of ways.
  • the Platform may identify, generate and create lifeotypes.
  • the analysis layer may identify, generate and create lifeotypes.
  • the following techniques may be used to identify and analyze lifeotypes: iterative optimization, genetic programming, stochastic simulations, model generation and model use (including dynamic probabilistic networks), simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence.
  • the Platform and/or analysis layer may learn.
  • the Platform and/or the analysis layer may determine the number of life bits and life bytes to include in a lifeotype.
  • Feedback loops may identify additional life bits and life bytes, or recommendations for new life bits and life bytes to seek data in connection with.
  • the processes involved may be dynamic.
  • Identifying lifeotypes may involve identifying parameters that may be sensed. This may largely be determined by what is available. Identifying lifeotypes may involve identifying parameters that may be derived. This will be determined at least in part by what is useful for other applications. Identifying lifeotypes may involve identifying patterns in the derived data. In an embodiment, the pattern may be many nights of low sleep as a pattern of “prolonged sleep deprivation.” In an embodiment, the pattern may be many exercise events per week being called an “active person.” In an embodiment, the pattern may be more than 4 hours of exercise per day being identified as an “exercise bulimic.” In an embodiment, the steps for identifying lifeotypes may involve identifying what is it about the world that is desired to be understood or predicted.
  • the next step may be determining if there are patterns in the derived data that can be discovered through human intervention and description, automatic discovery by a computer or both.
  • the relationship of the patterns in the derived data to the topic to be understood may then be assessed. If there is a strong relationship the analysis may be sufficient. If there is not a strong relationship, the analysis may involve determining if there are new derivable parameters that would be of assistance. If the data is available these parameters may be added and the steps repeated. If this data is not available it may be requested or surrogates may be identified. If this can not be done or the raw data is not available, then the question may be asked “what could be added to the raw data pool (i.e.
  • lifeotypes may be created, identified, discovered and the like by a lifeotype discovery module.
  • the lifeotype discovery module may utilize a novelty detector, for example, in the domain where physiological data is collected and a large body of such data exists for many individuals. Any variable that, for some subset of individuals, is statistically outside the norms for the population could be of interest.
  • an infinite number of features may be defined of varying complexity. This continuum can be thought of as starting with single variable reports about an individual (e.g. their average daily physical activity is low) to relative measures (e.g. their average daily physical activity is low for their age) to complex pattern based interactions (e.g. their daily physical activity after a night of poor sleep is high for their age).
  • the Platform may determine which lifeotypes have utility.
  • the lifeotypes selected may be those that have some predictive power with respect to other lifeotypes, as determined by an analysis module.
  • feature discovery may proceed by starting with the simplest single variable features (e.g. total values per day of sleep, energy expenditure, or physical activity and the like) and examining whether statistically significant relationships exist to other measures of interest (e.g. health outcomes, disease states, weight loss, stress level, and the like).
  • the user may set up these different classes of lifeotypes (e.g. input and output) or the Platform may try all pairs. In this example, only features that are sufficiently strongly correlated would become true or saved lifeotypes.
  • Another embodiment would utilize a random walk across pattern space (instead of using an ordered list), utilizing techniques from the stochastic beam search literature, evolutionary computation, simulated annealing, Markov Chain, Monte Carlo and the like.
  • the invention machine in one embodiment, can be constantly searching over the database to find relationships between patterns and outcomes that exceed a given statistical level.
  • a related embodiment allows the human users of the system to “prime” certain patterns to be tested for first and/or serve as starting points for the search.
  • the Platform, analysis layer, sensors, systems and methods may be calibrated, such as by using algorithm to improve another.
  • a GSR measurement can be used to more correctly interpret a heart rate measurement.
  • This process may also allow for calibration of slow changes in a user over time. For example, a user may wear more clothing in the winter than in the summer.
  • Calibration may be done through the use of a training pack and/or calibration pack.
  • the training and/or calibration pack may be a component of an item of fitness equipment.
  • the training pack may contain sensors which may measure heart rate.
  • the data collected by the heart rate sensors may be used to calibrate the algorithm used to determine energy expenditure from other sensors.
  • the heart rate sensors may be more sensitive and a correction algorithm may update or calibrate the determination of energy expenditure.
  • a location pack may provide location and other contextual information, such as, in the car, in the wearer's home gym, and the like.
  • the location and contextual data can be used to calibrate the determination of energy expenditure.
  • Contextual data may also be used to inform or adjust measurements and/or algorithms.
  • a marker may be used for calibration.
  • the Platform and/or analysis layer may analyze and process lifeotypes and related data.
  • the Platform and/or analysis layer may identify lifeotype patterns and/or correlations across different populations, sub-populations, groups or sub-groups or across different lifeotypes, life bits and life bytes. The correlations may be overtime.
  • the Platform and/or analysis layer may classify a population by sex, sexual orientation, race, ethnicity, culture, age, conditions, geographic region, medical conditions, activity levels, participants in a certain game or sport and the like.
  • the Platform and/or analysis layer may identify relevant lifeotypes, life bits, life bytes, parameters, other data and the like.
  • the Platform and/or analysis layer may identify sub-populations in disparate sections of the world which share certain lifeotypes. For example, people in Helsinki and those in a mountain valley region in California may share certain lifeotypes, life bits and life bytes as they both live in a cloudy climate.
  • the Platform and/or analysis layer may identify pattern-inference pairs or groups.
  • the Platform and/or analysis layer may identify that a person who does X dies within Y or a person who does activity V is likely to contract condition W.
  • the pattern-interference pairs may take into account time and/or geography.
  • the Platform may allow for predictions of the future or identification and extension of trends.
  • the Platform may allow a user to determine how making a change in the past would affect a current situation.
  • the Platform and/or analysis layer may allow for self-testing. Platform and/or analysis layer may predict future outcomes for an individual and show likely default outcomes given current lifeotype expression.
  • the Platform and/or analysis layer may allow what-if testing.
  • the Platform and/or analysis layer may utilize probabilities in the prediction of the future. For example, stopping smoking decreases chances of throat cancer and increases the chances of short-term stress.
  • the Platform and/or analysis layer may generate many correlations, conclusions, results, pairs and the like and create a database of them which may be analyzed by the Platform and/or the analysis layer.
  • the Platform and/or analysis layer may publish reports and suggest future studies. Platform and/or analysis layer may make recommendations.
  • the Platform and/or analysis layer may generate treatment programs.
  • the Platform and/or analysis layer may generate sub-populations or sub-groups for certain purposes.
  • the Platform and/or analysis layer may derive data.
  • the Platform and/or analysis layer may utilize iterative optimization.
  • the Platform and/or analysis layer may utilize genetic programming.
  • the Platform and/or analysis layer may utilize feedback loops.
  • the Platform and/or analysis layer may utilize cycling back.
  • the Platform and/or analysis layer may utilize artificial intelligence.
  • the Platform and/or analysis layer may actively search for more information.
  • the Platform and/or analysis layer may make requests of its users. In an embodiment the Platform and/or analysis layer may ask a user to provide three more blood samples.
  • the Platform and/or analysis layer may be mined as an invention machine.
  • the Platform and/or analysis layer may utilize the concepts of an invention machine, such as by being a goal-driven iterative engine searching for solutions.
  • the Platform and/or analysis layer may identify trends in lifeotypes and in information accessed or provided to users.
  • the Platform and/or analysis layer may use a loop to identify additional life bits and life bytes, or recommendations for new life bits and life bytes to seek data in connection with.
  • the Platform and/or analysis layer may discover new life bits, life bytes, derived data, surrogates and the like.
  • the Platform and/or analysis layer may be used for predicting.
  • the Platform and/or analysis layer may be used to predict the success of research programs, success of projects, success of business initiatives, future disease states, stocks to buy and the like.
  • the Platform and/or analysis layer may be used for guided information gathering. Further, the Platform will reveal new types of information that allow for the creation of particular assessment times and protocols. For instance, it may be determined that viewing the continuous sensed data of an individual for 15 minutes upon waking will give insight into whether that person is at risk for heart disease. In this way, the Platform can make specific predictions about individuals from specific sources and types of data, which the Platform itself has determined to be optimal.
  • the analysis may include identifying high value lifeotypes.
  • the Platform may examine a library of lifeotypes as a model of the world with probabilistic outcomes and perform behavior learning using any of a number of techniques to produce an optimal strategy to obtain a desired outcome.
  • the system may analyze the ⁇ particular lifeotype and determine that the most useful (and likely to be successful) strategy would be to cut back on smoking by 50% and eat better, rather than quitting smoking entirely.
  • the system may determine this by considering many different action-strategies, using the stored data to simulate the effects, and searching over the action space to find an optimal policy. Reinforcement learning and the class of program search strategies may also allow the solution of this behavior optimization strategy.
  • Lifeotypes may be based on relative measures. There may be relative lifeotypes, relative life bytes and relative life bits. Changes from a baseline or norm may be recorded in connection with a relative lifeotype, relative life byte and/or relative life bit. Lifeotypes, including relative lifeotypes, may map to a diagnostic measure, such as non-invasive glucose, pulse pressure from heat flux, skin temp, galvanic skin response and the like.
  • the Platform may assist with understanding the lifeotype associated with a particular life byte sequence, set of life bytes and/or set of life bits.
  • the Platform may also assist with determining the life byte sequence, set of life bytes and/or set of life bits associated with a particular lifeotype. This process may be analogous in certain respects to the protein folding problem.
  • the Platform and/or analysis layer may utilize successive measures (e.g. one week recordings 4 times a year) to detect early the signs of a disease, such as heart disease. Coaching and/or human input may be part of the analysis.
  • the Platform and/or analysis layer may view or provide views of slices and/or aggregations of the data. This may generate automatic and accurate population models.
  • the Platform and/or analysis layer may utilize and/or contain databases, disk-based databases, distributed databases, store and forward databases, peer to peer databases and the like.
  • a user may be a medical or scientific user, such as a scientist, researcher, doctor, healthcare professional, healthcare worker, caregiver, academic, educational institution, institution, hospital, other healthcare facilities, patient, an infant, a child, an adolescent, an adult, an elderly person and the like.
  • a user may be a lifestyle user, such as an athlete, personal trainer, gym, fitness club, sports team, youth group and the like.
  • a user may be an entertainment user, such as a gamer, celebrity, fan and the like.
  • a user may be a business user, such as a marketer, advertiser, insurer, actuary, personnel in a health maintenance organization, data business, enterprise software business, financial services business, security business, investment industry business, an administrative user and the like.
  • a user may be someone who is curious.
  • a user may be a policy maker, public health official, epidemiologist, government and the like.
  • a user may be the World Health Organization, National Institutes of Health and the like.
  • a user may be a consumer, employer, workplace, employee and the like.
  • a user may be a community, social network and the like.
  • a user may also be an entity, such as a company, or a computer system, such as a computer system that is making use of the Platform.
  • a user may be a system or method that is making
  • the Platform may be applied in many ways including for medical applications, filtering data, publishing, report generation, policy making, insurance-related applications, search, self-assessment, entertainment, applications relating to interactive spaces, novelty, controlling a device, operating a device, controlling a third parameter, monitoring a workplace, security, marketing, advertising, human resources, military uses, law enforcement, first responders, sports recruiting, analytics, consulting, reviews, content presentation, data integration, data sales, reporting, concierge services, registries, royalty systems, artificial intelligence, sales, product design, therapy, advice, predictions, coaching, comparisons, financial applications, e-commerce, voting, politics, crime scene investigation, forensics, identifying related persons, clinic trials, tagging and the like.
  • lifeotype may also include lifebits, lifebytes and/or lifebyte sequences. Any of the applications of the Platform may be implemented as a system, method, apparatus, application and/or service.
  • the Platform may be utilized for medical applications, such as medical monitoring.
  • the Platform may be used to monitor patients.
  • the patients in an emergency room or in the waiting room of the emergency room may be outfitted with wearable monitors.
  • various lifeotypes of the patients can be ascertained. This information may be used for treatment.
  • Healthcare providers can also monitor changes in the lifeotypes of patients and treat them before they crash.
  • Using the Platform and lifeotype information a healthcare provider may be able to predict when a patient is going to crash and treat the patient before that time.
  • the Platform may be integrated with existing monitoring systems in the emergency room and display lifeotype, life bits, life bytes and lifestyle data along side traditional monitoring systems.
  • the Platform may be used in triage situations.
  • the monitoring method may involve determining a condition of a body, comprising continuously measuring the pulse of the body; continuously measuring the heat flux from the body; inferring from the measurements of the pulse and the heat flux the nature of an activity of the body; and delivering information about the condition of the body that depends on the nature of the activity.
  • the monitoring may be in connection with a monitoring device, such as a sensor device, metabolic halter and the like.
  • the data may be provided to a healthcare professional who may use the data in connection with a patent appointment, such as for a physical.
  • the data may include data regarding energy expenditure, glucose levels and the like.
  • the data may be used in connection with monitoring and managing diabetes.
  • the monitoring may be in connection with a medical trial, such as a pharmaceutical trial or the like.
  • the monitoring may facilitate the collection of data and may result in the collection of a wider and deeper range of data and data that is more objective than data obtained by traditional means.
  • the monitoring device may measure metabolism and data concerning metabolic rate changes may be collected.
  • the monitoring device may measure energy expenditure, heart rate and galvanic skin response and also included a glucometer and accelerometer.
  • the sensors may be non-invasive.
  • the data may be used in connection with diabetes and an algorithm may determine relative levels of glucose based on the data.
  • the glucose levels may be compared to energy expenditure levels to detect any inconsistencies.
  • the data may be collected over time. The result may be the ability to track relative levels of glucose and alert an individual when necessary.
  • the systems and methods may be used in an intensive care unit to track VO2 and energy expenditure.
  • the systems and method may be used to assess whether patients are receiving adequate nutrients.
  • the systems and methods may be used to assess whether patients in a hospital are being over or under fed.
  • the systems and methods may be used in connection with heart transplant patients to measure the strength of the heart overtime.
  • the systems and methods may be used to measure energy expenditure in connection with fiber maloma or fibromyalgia.
  • the systems and methods may be used to monitor or control drug delivery.
  • energy expenditure and another parameter may be used to solve for a missing parameter or assess an inverse relationship on measured parameters.
  • energy expenditure and weight may be used to solve for glucose and heart rate.
  • the systems and methods may be able to determine blood pressure.
  • the systems and methods may adapt, self-calibrate, calibrate based on past data, learn over time, reinforce learning and the like.
  • the Platform may facilitate determining an inverse, causation and/or cumulative relationship.
  • a cumulative condition may be a condition where an individual's condition may be deduced from the individual's behavior over some previous period of time.
  • techniques for determining an inverse, causation and/or cumulative relationship may be used by first-responders (e.g. firefighters, police, soldiers and the like).
  • the wearer of a sensor device may be subject to extreme conditions and if heat flux is too low for too long but skin temperature continues to rise, the wearer is likely to be in danger.
  • the inverse, causation and/or cumulative relationship may be determining why a baby is crying.
  • the factors that may be considered include temperature, heart rate, orientation, activity type, state of sleep, crying and the like.
  • the inverse, causation and/or cumulative relationship may be determining why a patient, such as a patient in an assisted living environment, is not getting well.
  • the inverse, causation and/or cumulative relationship may be determining why a person in an emergency room is crashing.
  • Factors that may be considered include sensor data, data from at least a two sensor array, hunger, temperature, fatigue and the like.
  • the Platform may be used to monitor certain parameters in connection with diabetes.
  • the Platform may monitor energy level and determine glucose levels and provide guidance.
  • the Platform may advise the patient, a doctor, healthcare provider or the like to adjust an insulin pump or to modify energy expenditure via lifestyle changes.
  • the Platform may also consider markers, such as markers relevant to type I diabetes, markers relevant to type II diabetes, genetic markers and the like.
  • the Platform may also monitor weight, cardiac status, vascular effects, perfusion to periphery (such as feet), profusion of small blood vessels and the like.
  • the Platform may also monitor surrogate measure or derive new surrogate measures.
  • the Platform may optimize inputs and outputs, such as by considering time related factors.
  • the Platform may be utilized for medical decision making.
  • the Platform may be used to inform decisions regarding treatment. Medical decisions can be based in whole or in part on lifeotypes and related data.
  • the Platform may allow a user to plot lifeotypes against intraventions. Lifeotypes and related data can be used to assist medical professionals and patients with treatment choice.
  • the Platform may enable identification of prior patients with similar lifeotypes and may enable review of the decision trees for those patients.
  • the Platform may track the decision tree of a particular patient. In this regard, the Platform may help to predict the outcome and likely effects of a treatment plan.
  • the process may be automated and the Platform may derive the advice.
  • Using the Platform a patient may be able to determine which healthcare provider has the most successful treatment and/or rehabilitation record for the patient's lifeotype.
  • the Platform may be able to obtain user ratings from other patients.
  • the Platform may be utilized for medical studies and/or diagnosis.
  • the Platform may be used to better delineate known diseases, conditions and syndromes and to identify new diseases, conditions and syndromes.
  • the Platform may be used to identify new treatments.
  • the Platform may be used for therapy.
  • the Platform may be used to identify groups or cohorts for therapy based on lifeotype. Support groups or clinical trial cohorts may be created based on lifeotype.
  • a patient may be paired or grouped with other individuals who have or are dealing with similar issues or are in a similar state of health.
  • a patient may be paired or grouped with other individuals who have survived a particular condition or disease or who have improved their condition.
  • a user may connect with others or review their data to determine what they did to achieve a particular goal.
  • the Platform may analyze and predict the likelihood that the therapy or treatment will work for another, using lifeotype data.
  • the Platform may be used to determine the efficiency of medical providers.
  • the Platform may be used to determine the efficiency of a particular healthcare professional or of a department or functional unit, such as an emergency room, nursing station, intensive care unit, laboratory, neonatal ward and the like.
  • the Platform may be used to determine and track the success rates and patient ratings of a particular medical provider.
  • the Platform may be used to track treatment success and patient ratings in general.
  • the Platform may be used to deliver content based on lifeotypes and related information.
  • a patient may be provided with personalized healthcare content based on lifeotype and related data.
  • a search may be customized based on lifeotype data.
  • the Platform may allow for the creation of content in real time.
  • the Platform may generate blogs based on lifeotypes and related data. As discussed below, the content may be advertising.
  • the Platform may be utilized for disease management.
  • the Platform may perform lifeotype-based risk calculation in disease management to prevent or manage a disease, such as heart disease.
  • the Platform may be used for drug titration.
  • the Platform may, or enable a user to, preemptively identify disease treatment and prescribe treatment.
  • a person may have a hypertension-related lifeotype.
  • the Platform may determine that exercise may benefit this person based on the lifeotype information.
  • the Platform may provide personalized feedback to the person.
  • the Platform may generate a report.
  • the Platform may assist with modifying the behavior of the person.
  • the Platform may generate a program guide and/or provide a program guide to the person.
  • the Platform may predict blood pressure, disease state, severity or changes in any of the foregoing. The relationship may be cause and effect or inverse/reverse diagnosis.
  • a hypertension marker may serve as a calibrator.
  • Lifeotype information may be used to inform drug delivery.
  • the Platform may be applied to wellness, health, diagnosis, condition management
  • the data described herein and changes to that data including lifeotype data could be used in much the same way as a persons genetic profile is used in pharmacogenomics. For example, an indicidual could be assessed with the systems and devices described herein one time, or at intervals to determine the correct dosage.
  • the Platform may be used in connection with the diagnosis of heart disease by providing a wearable body monitor disposable on the upper arm of a patient; deriving electrocardiogram from sensors associated with the wearable body monitor; comparing the electrocardiogram with at least one electrocardiogram of a member of a healthy population; and based on the comparison, making an assessment as to the probability that the patient has heart disease.
  • the Platform may be used in connection with managing stress by providing a wearable body monitor having at least two sensors for sensing conditions of the body; and deriving an indicator of stress from the data streams of the two sensors.
  • the Platform may be used in connection with supporting care giving by providing a person with a wearable body monitor, the monitor including a plurality of sensors for sensing conditions of the person's body; automatically inferring the nature of the activity of the person from the output of the plurality sensors; and providing a caregiver for the person with information about the activity.
  • the Platform may be used in connection with therapeutic methods by inferring a condition of the wearer of a wearable body monitor from the output of a plurality of sensors that are associated with the wearable body monitor; and based on the inferred condition, recommending a time for the administration of a therapy that is related to the inferred condition.
  • the Platform may be used in connection with patches and disposable sensors that may both sense body conditions and, in a closed loop, possibly without human intervention, administer a therapy which may change the body's state.
  • the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor, that senses the presence of a headache, and that may administer a pain-relief medication through the skin. The determination to administer the medication, determination of the dose and the like may consider lifeotype information.
  • the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the imminence of panic-attack, and that administers a claming agent through the skin.
  • the determination to administer the agent, determination of the dose and the like may consider lifeotype information.
  • the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the presence of stress and that administers a tactile reminder to promote bio-feedback for stress reduction.
  • the determination to administer the feedback, determination of the duration and intensity of the feedback and the like may consider lifeotype information.
  • the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the presence of a heart attack or stroke and that administers a blood thinning medication through the skin.
  • the determination to administer the medication, determination of the dose and the like may consider lifeotype information.
  • a marker may be used in connection with the Platform for medical applications.
  • the marker may be a marker related to the risk of lung cancer, such as consuming vegetables.
  • the marker may be related to certain proteins and indicate information regarding exercise, diabetes, bone density and the like.
  • the marker may be a genetic marker.
  • the marker may take into account environmental factors.
  • a relevant marker may be identified and an individual may be provided with a monitor.
  • the monitor may collect information relevant to the marker.
  • the monitor may assist with administration of a program or regime.
  • the monitor may assess compliance and adjust variables based on the level of compliance.
  • the data collected by the monitor may be provided to a healthcare professional.
  • the healthcare professional may use the data in connection with a physical.
  • the data may indicate a reduction in a condition.
  • the data may be used to provide feedback or to calibrate the system.
  • the system and method may be used in connection with various conditions, such as diabetes, obesity and the like. In the aggregate the system and method may function as a health census for a
  • the Platform may include or function as a data filter.
  • the Platform may enable data to be sorted or viewed based on lifeotypes and related data. Using the Platform, it may be possible to obtain validated results in a particular space for a particular lifeotype, even though that space was not tested directly. In an embodiment, a study on one topic may have had many results relevant to another topic, which is now relevant for another purpose. Using the Platform, the data can be sorted and viewed based on the other topic (with controls if necessary) and conclusions may be drawn about that topic.
  • the Platform may facilitate auto-generation of control groups and datasets for appropriate cross-validation. Using the Platform, it may be possible to identify, based on lifeotype information, data sets that are a subset or cross section of another data set obtained for a different purpose, that may be relevant to other studies.
  • the Platform may be utilized for publishing.
  • the Platform may auto-publish material based on lifeotypes.
  • the material may be reports, results, outcomes, studies and the like.
  • a report may be of the form of FIGS. 29A-29B .
  • the Platform may auto-complete forms, such as medical records, insurance forms and the like.
  • the Platform may publish to a doctor, patient, family, employer, insurer and the like.
  • the Platform may suggest a revised treatment or decision pattern.
  • the Platform may include a publishing engine, which may auto-publish material.
  • the publishing engine may make the determination to publish based on set parameters.
  • a patient may ask a question and if the results are interesting enough then the application may publish the response, such as in the form of a scientific paper, on the internet, making it available to other people.
  • the publication engine may publish material in the following scenario: if 80% of patients with a particular lifeotype choose option A, and 20% of patients with the same lifeotype choose option B, but option B actually produces better results.
  • the publishing rule may be that when the outcome is counter intuitive, the publishing engine is to publish a paper automatically, provided that all correlations are above 0.9 and the sample size is 1000 or more people.
  • the Platform and/or publication engine may utilize correlations, aggregation and statistics.
  • the Platform and/or publication engine may personalize healthcare content based on lifeotype and related data.
  • the Platform and/or publication engine may customize a search for a website based on lifeotype data.
  • the Platform and/or publication engine may create blogs based on lifeotype and related data.
  • the Platform and/or publication engine may create a spatial map of lifeotypes, which may be tied to location, emotions and other information.
  • the Platform may be utilized for policy making.
  • the Platform may be used to study problems and issues with a healthcare system, such as a country, state or provincial healthcare system.
  • the Platform may be used to assist policy makers spending healthcare budgets.
  • the Platform may assist with determination of where to spend insurance money.
  • the Platform may be utilized for insurance-related applications. Actuarial tables, probability tables and mortality tables may be based on lifeotypes.
  • the Platform may be used in connection with insurance sales.
  • the Platform may assist with underwriting insurance policies based on lifeotypes.
  • the Platform may assist with the determination of where to spend insurance money based on lifeotypes.
  • lifeotypes may be used to affect underwriting, insurance pricing, annuity pricing, pricing of defined benefit plans, benefits, determination of coverage, identification of pre-existing conditions and the like.
  • the Platform may form a part of a service of associating lifeotypes with overall life expectancy or with insured conditions.
  • the Platform may be utilized in connection with a search function.
  • Lifeotypes may be used to filter, order and/or cluster search results.
  • the search function may present content based on lifeotypes.
  • the search function may be based on a page rank style analysis of link structures based on lifeotypes.
  • the search functionality may be a search engine which may account for lifeotype.
  • the Platform may be utilized for self-assessment.
  • the Platform may recommend dietary decisions.
  • the Platform may allow a user to review the success of different dietary plans for individuals with similar lifeotypes.
  • the Platform may allow a user to compare the user's own results on different plans.
  • the Platform may allow a user to track what is working for the user and for others based on lifeotype.
  • the Platform may allow for consideration of an Atkins diet and may consider data from a BodyBugg device.
  • the Platform may allow a user to monitor food intake and/or nutrition and assess effects based on lifeotype.
  • the Platform may allow a user to monitor fitness and/or lifestyle choices and assess effects based on lifeotype.
  • the Platform may enable behavior modification based on lifeotype.
  • the Platform may assist a user in training for a goal.
  • the Platform may affect or maximize a user's success with respect to any project.
  • the Platform may assist a user with a dietary regimen by deriving an indication of a calories consumed from the output of a wearable sensing device that includes a pulse meter and a heat flux meter; and wirelessly sending information about calories consumed to a personal digital assistant of the patient.
  • the Platform may assess fitness by providing a wearable body monitor having a pulse sensor and a heat flux sensor; deriving an activity type from the outputs of the pulse sensor and the heat flux sensor; and based on the activity type and the outputs, assessing the fitness level of the wearer.
  • the Platform may be utilized for entertainment-related applications.
  • Social networking may be organized by lifeotype.
  • a social networking website such as myspace.com, may present content and facilitate social networking or create groups based on lifeotype.
  • Internet audio and video such as on Youtube.com or Break.com, may be organized or indexed and/or presented based on lifeotype.
  • Lifeotypes may be used as an index for content, media, entertainment, leisure and the like.
  • the Platform may be used to unite people based on lifeotypes.
  • the Platform may be used for dating applications. Dates may be arranged or introductions may be made based on lifeotype information.
  • the Platform may be used for competition.
  • the Platform may identify groups of competitors based on lifeotypes.
  • the Platform may allow for the operation of a device, such as an entertainment device, based on lifeotype.
  • lifeotypes may be used as tags. In other embodiments, tags may be interpreted based on lifeotypes.
  • lifeotypes may be used in connection with holodeck type applications.
  • lifeotypes may be used in connection with massively multiplayer games.
  • a player's character(s) in a game such as an online, multiplayer or other game, may be affected by the player's lifeotype and actions in the real world. In this way, lifeotypes and related information may restrict, enable or define the character(s). If a player becomes more fit, his character(s) in the game may be able to run faster and jump higher. If a player improves his diet his character(s) may become stronger. If a player's lifeotype changes, similar changes may happen to this character(s) in the game.
  • the Platform may provide a behavior feedback and/or modification program, with virtual or real coaching, to guide an individual towards his character in a game, such as a video game.
  • the Platform may tailor experiences to a user.
  • the Platform may tailor the game and/or experience to the user based on lifeotypes and related information.
  • a user may wear an armband for a week and the system may gather data and calibrate the experience based on the information collected.
  • the Platform may also allow a user to replay experiences of others.
  • the Platform may also enable the virtual courtship of online-sex-partners. In order to win the affections of someone online, a user may be required to “deserve” them in the real-world. This application may be an extension of an adult friend finder application.
  • the Platform and lifeotype information may be used for entertainment with interactive spaces as discussed herein.
  • the Platform and lifeotype information may be used for sports-related application.
  • the participants in a sports or gaming league may be chosen based on lifeotypes and related data.
  • the teams for a sport or game may be chosen based on lifeotypes and related data.
  • Other cohorts or groupings may be chosen based on lifeotypes and related data.
  • Lifeotypes and related data may be used to tag entertainment content by lifeotype. Lifeotypes and related data may be used to censor or scale content. In an embodiment, an individual may be shown a less stressful version of a movie as a result of this lifeotype.
  • his lifeotype may be characterized by a weak circulatory system and a pre-disposition toward heart attacks.
  • Content may be delivered based on lifeotypes and related data.
  • Content may be print media, such as books, news and the like, along with online analogs.
  • Content may also be audio, music, video, games, video games, blogs, podcasts, images, art, fine art and the like.
  • Lifeotypes and related information may be used in connection with or to create interactive spaces.
  • a space may be affected based on the combination of lifeotypes in the space and the proximity of certain lifeotypes.
  • Lifeotypes may function as a filter that affects a certain space or environment. Attributes or features of a space may be modified based on lifeotypes or changes in lifeotypes. Variables of a space which may be modified include brightness, color, volume, sounds, temperature, air quality, pressure, distance between objects (such as furniture), protection from outside, status of entries, status of exits, presence of objects, absence of objects and the like.
  • the lights in a room or section of a room may be dimmed when a person with a lifeotype including susceptibility to migraines enters the room or section of the room.
  • the space may be a buffet in a cafeteria. The buffet may re-configure the food offerings to present sugar free food choices to a person with a diabetic lifeotype.
  • the lights in a space may be dimmed and music may be played or modified if two compatible lifeotypes enter a space.
  • users may be equipped with stress meters and the space may be a meeting room or auditorium and the Platform may provide feedback to a given user or others in the room.
  • Lifeotypes and related information may also be used for novelty purposes.
  • celebrity lifeotypes may be offered for sale or used for comparison purposes.
  • Horoscopes may also be based on lifeotypes and related information.
  • the popularity of lifeotypes may also be presented. A user may be able to see how popular his lifeotype is and may be provided with a list of famous people with the same lifeotype or with compatible or antithetic lifeotypes.
  • Lifeotypes may also be used to impact or control a device or another parameter.
  • a sensor, processor, computing device or the like may be controlled based on lifeotype.
  • a user may have a lifeotype for which the Platform determines another parameter should be measured and the Platform may turn on another sensor to measure that parameter.
  • lifeotypes and related information may trigger an event or control of another device.
  • Lifeotypes and related information may be used for workplace monitoring.
  • a workplace can be monitored or surveyed for lifeotypes and related information.
  • an employer may monitor employees, such as by outfitting each employee with a wearable sensor device, to determine when employees are stressed, and when a breakdown is likely to occur, based on lifeotypes and related data.
  • the military may use lifeotype information to assess and monitor morale and identify potential problems and issues.
  • lifeotype information may be used to assist with monitoring a worker by providing a wearable body monitor, the wearable body monitor including a plurality of sensors and a facility for inferring the nature of the activity of the worker from the outputs of the sensors; and providing a report generating facility for reporting the activities of the worker over a period of time.
  • Lifeotypes and related information may also be applied in security-related applications. Lifeotypes may be used to monitor prisoners, such as to predict a prison uprising. Lifeotypes may also be used to interpret the stress levels of border guards and security guards to predict potential security breaches. Lifeotypes and the Platform may be used for anti-terrorism applications. In another embodiment, the anxiety level of a truck driver, boxer and others may be monitored.
  • Lifeotypes and the Platform may be used for marketing and advertising. Marketing and advertising may be targeted based on lifeotypes and related information. Lifeotypes and related information can be combined with location and contextual data to further customize an advertisement.
  • a marketer or advertiser may determine if a product works or is likely to work for a target person or group based on lifeotypes and related data.
  • a user can verify receipt of an advertisement or marketing message and also determine the target person or group's response to the advertisement or message.
  • the Platform may permit a marketer to determine if the target person laughed at the advertisement.
  • Lifeotypes and related information may be self-reinforcing and may realize network effects. The more lifeotypes and related data that are generated the more valuable the Platform and the information becomes. Once there is a base of data for comparison and the like, more people will want to use the Platform, systems and methods to take advantage of the data.
  • the Platform and lifeotype information may be used for recruiting purposes.
  • the Platform and lifeotype information may be used for human resources related applications.
  • lifeotypes and related data may be used as part of the interview process, for recruiting, determining compensation, workforce management, performance evaluation, retirement planning, determining benefits, planning for succession and the like.
  • the Platform and lifeotypes may also be used in connection with recruiting for the military, law enforcement, fire fighting, paramedics, first responders and the like.
  • the Platform and lifeotypes may also be used to assess morale and for profiling and advancement. Lifeotypes and related information may be used to determine eligibility for certain ranks and missions.
  • the special forces may have certain lifeotype-related entrance criteria.
  • the Platform and lifeotypes may also be used in sports recruiting. In embodiments, the Platform and lifeotypes may also be used to locate and/or draft athletes.
  • Lifeotypes and related information may be purchased and sold. An individual may want to know his lifeotype or learn of changes in his lifeotype, and he may purchase this information. Individuals may also sell their lifeotype information, such as to other individuals, third parties, data warehouses and the like. Lifeotypes may be sold with comparative or interpretive information regarding lifeotypes in general or specific lifeotypes. Lifeotypes may be sold with user manuals or other content regarding one or more lifeotypes. Analytics and consulting may be provided in connection with lifeotypes. In embodiments, analytics and consulting services may be provided in connection with identification and analysis of lifeotypes. Lifeotypes and related information may also be used in connection with content presentation and censoring.
  • a less intense version of a movie or a movie with an altered ending may be presented based on the lifeotype of the viewer.
  • Reviews of content, products, services and the like may also be presented based on lifeotypes. Lifeotypes and related information may be used to sort, filter and present reviews.
  • an average rating of a particular fitness product may be presented to a user, but the rating may consist of an average of only those ratings from individuals with the same lifeotype as the user.
  • the Platform may be integrated with other systems that handle data.
  • the other systems may include medical systems, healthcare systems, entertainment systems, security systems, alarm systems, financial systems, transactional systems, automobile systems, home networks, home theatre systems, wireless networks, workplace information technology systems, airport systems, airline systems, transportation environment systems, systems in recreational environments, such as sports arenas, concert halls and theatres, and the like.
  • Lifeotype data and related data may be sold to data businesses. Lifeotype data and related data may be used for data analysis, data mining, data warehousing and the like.
  • a user may purchase a seat for use of the database.
  • a user may purchase analysis and services in connection with the data.
  • users may purchase tailored datasets for studies. Users may include researches, governments, health care organizations, such as the World Health Organization, National Institutes of Health, the Center for Disease Control and the like, academics, industry, private sector participants, commercial users, individuals and the like.
  • the Platform may include an artificial intelligence engine.
  • the artificial intelligence engine may utilize data or make use of experiences based on lifeotype data, such as by indexing information based on lifeotype.
  • the Platform may generate reports, indexes, predictions and the like.
  • the Platform may generate Dunn and Bradstreet type reports based on lifeotypes.
  • the Dunn and Bradstreet type reports may relate to a company, users of a particular product, fans of a particular show, fans of a particular sports team, audience and the like.
  • the Platform may allow for the identification of related persons based on lifeotypes.
  • Family trees may be built based on lifeotype information. Lifeotypes may evolve overtime and across generations.
  • the Platform may be used to study the evolution of lifeotypes.
  • the evolution of lifeotypes may be studied in relation to genetic evolution information.
  • Lifeotypes and related information may also be used in crime scene investigation and forensics. Lifeotype information may also be registered with a registry. In an embodiment, lifeotype information for criminals in a certain area may be registered with a lifeotype registry maintained by law enforcement.
  • Lifeotypes and related information may form part of a royalty system.
  • a user may receive a payment if he or she chose to opt-in to a lifeotype information sharing program.
  • a person may receive a royalty each time his lifeotype data is accessed.
  • a person may receive a royalty each time his lifeotype data is used in a study.
  • a user may participate in the royalty system on an anonymous basis.
  • a user may choose to opt-in or opt-out of an information sharing program.
  • the system may provide incentives for a user to opt-in.
  • Advertising may be targeted based on lifeotype. Bidding for ad placement may be based on lifeotype. Lifeotype may be used as another demographic, psychographic or the like. Lifeotypes may be used as a way to personalize ads. Lifeotypes and related information may be used for the timing, placement and targeting of ads.
  • an advertisement for an analgesic may be shown on a cell phone as a person is experiencing back ache.
  • the Platform may identify a person as experiencing arousal, then anger and then depression, and delivery a Viagra advertisement to that person.
  • a loyalty or rewards program may be based on lifeotypes. The prizes for which points may be redeemed may be based on lifeotypes.
  • Different lifeotypes may receive different amounts of points as a reward for a purchase, action or the like.
  • a sales pitch may be targeted based on lifeotypes and related information.
  • the lifeotype profiles of customer set may be analyzed. Return on investment may be tied to lifeotype.
  • a product may be designed based on lifeotypes. In an embodiment, multiple versions of a product may be created based on lifeotype and versions for the three most common lifeotypes may be produced.
  • Lifeotypes and related information may be used for therapy related applications. Lifeotypes and related information may be used to target therapy. Therapies may be tailored by lifeotype. The effects of therapies may be assessed based on lifeotypes.
  • the Platform may determine the efficacy of a therapy based on lifeotypes and related information. Recommendations and reviews may be based on lifeotypes and related information. Lifeotypes and related information may be used in connection with the provision of advice.
  • the delivery of advice may be tailored based on lifeotypes. In an embodiment, an open-minded person may receive advice with more recommendations than someone with a more stubborn lifeotype.
  • the content of the advice may be tailored or filtered based on lifeotype information.
  • Marriage advice may be provided based on lifeotypes and related information.
  • Statistics of martial success may be calculated based on lifeotypes and related information. The compatibility of spouses may be reviewed based on lifeotype information.
  • career advice may be provided based on lifeotypes and related information.
  • Recruiting and job seeking advice may be based on lifeotypes and related information.
  • Lifeotypes and related information may be used for generating predictions and coaching.
  • a prediction may be of the status of a particular trait five years in the future and the prediction may be based on lifeotypes.
  • the coaching may be in connection with a goal and/or an activity, such as a sport, hobby, for academics and the like.
  • Lifeotypes and related information may be used for comparisons.
  • the current status of a user may be compared to the status of the user at some time in the past.
  • the Platform may analyze what a user was doing when he performed well in the past and may make suggestions to return the user to his past performance state or to improve on that state.
  • the Platform may also determine what level or status is typical for a user and may inform a user when he is back to normal. In an embodiment, the Platform may determine whether a user has returned to his normal state following an injury and rehabilitation. The Platform may enable comparisons to individuals who have achieved a particular goal. In an embodiment, a basketball player may be compared to Michael Jordan, in terms of lifeotype. The Platform may generate a coaching strategy based on differences in lifeotypes. The Platform may calculate the probability that the basketball player will reach his goal, which may be playing as well as Michael Jordan. The Platform may provide feedback or behavior modification and may include a coaching engine. In an embodiment, coaching may be informed by one or more guidance algorithms.
  • a guidance algorithm may consider derived and/or sensed data, a condition in connection with derived and/or sensed data, an environmental factor in connection with derived and/or sensed data and the like.
  • coaching may include guidance in relation to diagnostic goals, prescriptive goals, alerts, reports, predictions and the like.
  • the coaching engine and/or the Platform may learn via learning algorithms considering data regarding an individual, a population, genetics, evolution, neural nets and the like.
  • the Platform and lifeotypes and related information may be utilized for financial applications.
  • lifeotypes and related information may be used to assess principals and key economic people in a company.
  • the Platform may aggregate lifeotype profiles across populations for analysis.
  • the Platform may identify target markets, business prospects and the like based on lifeotype.
  • the Platform and lifeotypes and related information may be utilized for e-commerce applications.
  • life bits may be obtained from e-commerce transactions.
  • lifeotypes may be used in connection with e-commerce advertising, such as for targeted advertising and product placement.
  • auctions or reverse auctions may be cataloged based on lifeotypes.
  • Portals may also be based on lifeotypes and related information. In an embodiment, a portal may be tailored to a particular lifeotype or group of lifeotypes.
  • the Platform and lifeotypes and related information may be utilized for concierge services.
  • the concierge service may be an “On Star” service based on lifeotypes and related information.
  • the concierge service interface may be wearable with service based on lifeotypes.
  • the concierge service may function as an assistant, guardian angel, protector and the like.
  • Lifeotypes and related information may be included in a registry of lifeotype services. Voting and politics may be informed by lifeotypes and related information. Candidates may be assessed based on lifeotypes and related information.
  • a person of a particular lifeotype such as a very active, outdoor oriented lifeotype, may be well served by voting for a candidate with a similar lifeotype as that person may be more in tune with environmental issues that matter to the person. Recommendations of which candidate to vote for may be generated based on lifeotypes and related information.
  • the Platform may enable automatic exclusions and/or incentives structures based on lifeotypes.
  • a user may not be able to drink, drive, eat in a particular location and the like based on lifeotype.
  • a user may be provided with an incentive to eat at a particular location, such as a health food restaurant. Tax breaks may also be provided based on lifeotypes, such as to encourage good, healthy, lawful and other behavior.
  • the Platform may include one or more user interfaces.
  • the Platform may include a user interface for input of data and selection of parameters and attributes.
  • the Platform may include a user interface for viewing data, processing data, viewing results and the like.
  • the Platform may include a user interface for mapping.
  • Lifeotype information may be superimposed on or presented using a map, such as Google Maps.
  • derived data may be placed on a map so that geographic clusters with similar characteristics or groups of individuals with similar lifeotypes may be located.
  • the mapping may include an indication of demographic and socioeconomic data.
  • the mapping interface enables visualization of lifeotype data, identification of trends and the combination of biology, motion and location.
  • the user interface may enable visualization of data and/or results.
  • the visualization may be two-dimensional, three-dimensional, four-dimensional and/or multi-dimensional, including interactive-type spaces, methods, devices, and systems disclosed in Stivoric et al., pending U.S. patent application Ser. No. 11/582,896 for Devices and Systems for Contextual and Physiological-Based Detection, Monitoring, Reporting, Entertainment, and Control of Other Devices, each of which is incorporated, in its entirety, herein by reference.
  • the user interface may enable presentation of spatial representations of lifeotypes.
  • the user interface may enable presentation of a web of inter-related lifeotypes.
  • the user interface may enable presentation of a lifeotype along with other data concerning the lifeotype.
  • the user interface may display continuous physiological data relating to users who have elected to opt-in to a data sharing program.
  • the continuous physiological data may be shared anonymously or openly. Parts of the continuous physiological data may be selectable.
  • the continuous physiological data may be queried through the user interface.
  • the queries may be freeform, directed or suggested, including near relationship suggestions or hints.
  • the query results may be weighted by their pertinences, popularity, likelihood of success or strength in correlation.
  • the user interface may present lifeotypes and related information using one or more spider map or the like.
  • a spider map or the like may depict life bits, life bytes, lifeotypes and related information, along with relationships among the depicted items.
  • the spider map or the like may depict degrees of relevance and inter-relatedness in terms of color, size (as in FIG. 18 ), depth, distance (such as the distance between items and the degrees of separation of items) and the like. For a particular item, directly related items may be linked to the item with a line, and other items with more degrees of separation may appear smaller, in a darker color, greyed out or the like. As a new item of interest is selected, the spider map or the like may re-center on that new item of interest.
  • the user interface may allow filters and search parameters to be applied to a spider map or the like.
  • the user interface may also be used to highlight and explore certain facts, such as facts that are already known to the user.
  • a user may use the Platform and/or interface to create a visualization of a fact already known to the user.
  • the visualization may help the user to understand the fact and explore the relationship of that fact with other items of data.
  • the Platform may determine a particular lifeotype for a particular user.
  • a user may review the results in the context of a population in the user's area or in another area, such as by superimposing the results on a Google Earth type application.
  • the user may be able to identify clusters of people in the world with similar lifeotypes. For example, the user may determine that a cluster of people with his lifeotype live in Pittsburgh and another cluster live in Oslo.
  • the user interface may allow the user to superimpose other information which may enable the user to identify other trends. For example, the interface may allow the user to superimpose weather data, and the user may determine that Pittsburgh and Oslo have similar sunlight and precipitation patterns.
  • the Platform may also suggest other relevant or explanatory information.
  • the Platform may determine that economic bracket is relevant and may display socioeconomic data on the map in the background.
  • the interface may allow for identification of clusters of people with similar lifeotypes and related data, such as sleeping six hours, similar body mass index and similar economic brackets.
  • the interface may also present near relationships, such as in the form of a spider map or the like. Certain sections of the map may be greyed out or appear in the background.
  • the interface may also suggest other related queries or bring other relevant information to the attention of the user.
  • the interface may allow a user to compare lifeotypes and related information relevant to him or a person or group of interest to norms, others individuals or groups, to the person or subject himself or itself at another point in time, to subsets, to subsets at other points in time.
  • the interface may also allow for the addition of constraints, restrictions, filters and the like, which may be implicit, hidden or explicit.
  • the Platform may be implemented or provided using various architectures, systems and methods.
  • FIGS. 19A through 23B depict several possible embodiments of the Platform.
  • the Platform may include or be implemented using a server and/or server farm.
  • the server may be a rackmount, tower, blade, desktop, portable, handheld and/or wearable server.
  • the server may be a uni-processor or multi-processor server.
  • the server may form a part of a monolithic computer, cluster computer, distributed computer, super computer, shared computing environment or the like.
  • the server may be a Java, .NET or the like middleware server, such as for data storage and retrieval.
  • the server may be characterized by offline learning and optimization, such as through analysis, correlation, prediction and the like.
  • the Platform may be composed of or contain various applications.
  • An application may be compiled or interpreted.
  • An application may be a standalone application, an embedded application, a stored procedure (such as in a database), a library (which may be static or shared) and the like.
  • An application may be a server-side application or a client-side application, such as Ajax.
  • An application may be a mashup, a widget or the like.
  • the Platform may be implemented using a service-oriented architecture. At least one component, facility or layer of the Platform may be accessible as a service, such as a web service, and may be accessible from anywhere in the world.
  • the service oriented architecture may be implemented using REST, RPC, DCOM, CORBA, Web Services, WSDL, BPEL, WS-CDL, WS-Coordination and the like.
  • the Platform may be implemented in a way compatible with or using a Web 2.0 environment.
  • the Platform may be implemented as a Web 2.0 application.
  • the Platform may include Web 2.0 applications.
  • the Platform may enable Web 2.0 applications that emphasize online collaboration and sharing among users.
  • the Platform may be implemented using a network, such as any of the networks described herein.
  • the Platform may be local, shared or a combination of the two.
  • the Platform may be implemented using a local network, a broad network or a combination of the two.
  • the Platform may be local or fully distributed.
  • the Platform may be implemented using a three-tier (or n-tier) architecture.
  • the architecture may include an application server, which may be a J2EE server (such as Tomcat, JOnAS, Servlet, JSP and the like) or may utilize CGI, mod_perl, ASP, .NET and the like.
  • the architecture may include a database server.
  • the database may be a relational database, object database, stream database, flat database, network database, hierarchical database or the like.
  • the Platform may include a database or database facility wherein data units are constructed to represent time based representation of a plurality of derived parameters, such as derived vital signs and the like.
  • the data may be obtained from a body monitor, via data integration or the like.
  • the data may be obtained by a feed or pulled from sources.
  • the data may be obtained by push and/or pull means.
  • the database may be a distributed database, federated database, online database, parallel database, real time database, spatial database, statistical database, time series database or the like.
  • the network associated with the database may be one or more of the following network types: DAS, SAN, NAS, HSM, ILM, SAT, FAN and the like.
  • the architecture may include a transaction processing management system.
  • the architecture may include a web server, such as Apache, IIS and the like.
  • the architecture may include one or more client-side applications.
  • a client-side application may be a standalone application, widget, plug-in, in-browser script (such as Javascript) and the like.
  • the architecture may include a firewall.
  • the firewall may be based on, or include functionality for, port forwarding, SPI, NAT, dynamic DNS, IP tunnel, VPN, DMZ and the like.
  • the architecture may include a load balancer. Referring to FIG. 21 , the architecture may be a round-robin DNS.
  • the architecture may be a cookie or URL-based session with software load balancer. Referring to FIGS. 23A-23B , the architecture may be based on cookie-based sessions with a hardware load balancer.
  • the architecture may include a switch, router, hub or the like, which may be based on VLAN, LAN or the like.
  • the Platform may include a data mining repository, data warehouse or the like.
  • the Platform may include or make use of capabilities for extraction, transformation and loading of data.
  • the Platform may include interfaces to other systems, applications and services.
  • An interface may be provided through an internet, extranet or the like, such as by using CSU, DSU or the like.
  • An interface may be provided in a wired manner, such as through an Ethernet or the like, or in a wireless manner, such as through IrDA, free-space optical communication, cellular, IEEE 802 or the like.
  • An interface may be provided through a personal area network, local area network, metropolitan area network, wide area network and the like. Referring to FIG.
  • interfaces may be provided to various systems and devices, such as implantable monitors, medical treatment devices, disposable monitors, glucose monitors, pulse oximeters, blood pressure monitors, weight scales, heart rate monitors, fitness equipment, entertainment devices, home appliances, GPS devices, SenseWear armbands, personal computer tablet PCs, PDAs, pagers, wireless email devices, Blackberries, Treos, smart phones, cellular phones, SenseWear companions, voice systems, telephony systems, VoIP systems, transcription systems, modems, high speed internet access systems, third party monitors, internal servers, client servers, third party servers and the like.
  • implantable monitors such as implantable monitors, medical treatment devices, disposable monitors, glucose monitors, pulse oximeters, blood pressure monitors, weight scales, heart rate monitors, fitness equipment, entertainment devices, home appliances, GPS devices, SenseWear armbands, personal computer tablet PCs, PDAs, pagers, wireless email devices, Blackberries, Treos, smart phones, cellular phones, SenseWear companion
  • the Platform may include data administration functionality.
  • the Platform may include security, logging, conditional access and authentication functionality.
  • the architecture may include security functionality, such as conditional access, authentication, intrusion detection and prevention and the like.
  • the architecture may include logging functionality.
  • the architecture may include backup and recovery functionality.
  • the backup and recovery functionality may be enabled using magnetic table, hard disk, optical disc, solid state storage and the like.
  • the backup and recovery functionality may be implemented online, off-line or a combination of the two.
  • the backup and recovery functionality may be provided offsite, remotely, onsite or in a combination.
  • the architecture may include means for redundancy and failover. Certain information or aspects of the Platform may be restricted to local use, while others may be fully shared.
  • the Platform may include data facilities.
  • Data may be any of the data described herein.
  • Data may come from any of the sources described herein.
  • Data may be housed in databases, datamarts, data warehouses and the like.
  • the data may be directly supplied, such as directly downloaded, may flow through the internet, may be distributed and the like. Interfaces to data and data sources may include ODBC, JDBC and the like.
  • the Platform may include a central monitoring unit.
  • the Platform may utilize a central monitoring unit, or the central monitoring unit may implement all or a portion of the Platform.
  • the architecture of the platform may enable data processing.
  • the methods or processes described above, and steps thereof, may be realized in hardware, software, or any combination of these suitable for a particular application.
  • the hardware may include a general-purpose computer and/or dedicated computing device.
  • the processes may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable devices, along with internal and/or external memory.
  • the processes may also, or instead, be embodied in an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device or combination of devices that may be configured to process electronic signals.
  • one or more of the processes may be realized as computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software.
  • a structured programming language such as C
  • an object oriented programming language such as C++
  • any other high-level or low-level programming language including assembly languages, hardware description languages, and database programming languages and technologies
  • each method described above and combinations thereof may be embodied in computer executable code that, when executing on one or more computing devices, performs the steps thereof.
  • the methods may be embodied in systems that perform the steps thereof and may be distributed across devices in a number of ways, or all of the functionality may be integrated into a dedicated, standalone device or other hardware.
  • means for performing the steps associated with the processes described above may include any of the hardware and/or software described above. All such permutations and combinations are intended to fall within the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Epidemiology (AREA)
  • Game Theory and Decision Science (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)

Abstract

The methods and systems described herein may involve determining at least one lifeotype of at least one individual, analyzing the at least one lifeotype, and delivering content to at least one individual based on the analysis. The methods and systems described herein may involve providing a game, determining at least one lifeotype of at least one player of the game, analyzing the at least one lifeotype, and affecting the game play based on the analysis. The methods and systems described herein may involve providing an interactive space, determining at least one lifeotype of at least one individual in the space, analyzing the at least one lifeotype, and modifying at least one attribute of the space based on the analysis.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. Ser. No. 12/033,722, filed Feb. 19, 2008 which claims the benefit of the following provisional application, which is hereby incorporated by reference in its entirety:
  • Ser. No. 60/901,952, SYSTEMS AND METHODS FOR UNDERSTANDING AND APPLYING THE PHYSIOLOGICAL AND CONTEXTUAL LIFE PATTERNS OF AN INDIVIDUAL OR SET OF INDIVIDUALS, filed Feb. 16, 2007.
  • BACKGROUND
  • 1. Field
  • The invention relates to the field of data informatics, and more specifically to systems and methods for analyzing and parsing information relating to information monitored about subjects, including human lifestyle information.
  • 2. Description of the Related Art
  • Vast resources have been devoted to the sequencing of the human genetic code and to cataloging the influence of genes and other physiological traits. However, a major component of health and wellness can be attributed to the interactions of subjects with their environment, including their lifestyles. Despite the widely accepted view that lifestyle activities, such as those related to diet, exercise, sleep habits and the like, affect health and wellness, efforts to catalog those effects to date have been limited. A need exists for methods and systems that systematically catalog the effects of various human lifestyles on a wide range of outcomes; that is, a need exists to sequence the human lifestyle. The low cost and ready availability of sensors has reduced costs of collecting data. In addition, improved data integration and processing methods have allowed for use of existing data sources. However, this wealth of data has not yet led to a better overall understanding of the influence of particular lifestyles; instead, the wealth of data has overwhelmed existing systems and methods. A need exists for methods and systems that allow for systematic analysis of lifestyle data.
  • SUMMARY
  • The invention may include methods and systems involving assembling data from at least one data source into at least one life bit, assembling the at least one life bit into at least one life byte and analyzing the at least one life byte to determine at least one lifeotype. In one embodiment, each life byte consists of a plurality of life bits, and life bytes are organized into sequences, each of which can be characterized as a life byte sequence. In turn, life byte sequences can be analyzed to identify ones of interest, such as for clinical research, wellness, or the like, such sequences of interest being characterized or expressed as lifeotypes (as described below).
  • At least one data source rendering a life bit may be a body monitor, such as one that includes one or more sensors. Examples of body monitors and other systems, devices, and methods that can be used to generate the data rendering life bits and ultimately lifeotype data are described in described in Stivoric et al., U.S. Pat. No. 7,020,508, issued Mar. 28, 2006, entitled Apparatus for Detecting Human Physiological and Contextual Information; Teller et al., pending U.S. patent application Ser. No. 09/595,660, for System for Monitoring Health, Wellness and Fitness; Teller, et al., pending U.S. patent application Ser. No. 09/923,181, for System for Monitoring Health, Wellness and Fitness; Teller et al., pending U.S. patent application Ser. No. 10/682,759, for Apparatus for Detecting, Receiving, Deriving and Displaying Human Physiological and Contextual Information; Andre, et al., pending U.S. patent application Ser. No. 10/682,293, for Method and Apparatus for Auto-Journaling of Continuous or Discrete Body States Utilizing Physiological and/or Contextual Parameters; Stivoric, et al., pending U.S. patent application Ser. No. 10/940,889, Stivoric, et al., pending U.S. patent application Ser. No. 10/940,214 for System for Monitoring and Managing Body Weight and Other Physiological Conditions Including Iterative and Personalized Planning, Intervention and Reporting, and Stivoric et al., pending U.S. patent application Ser. No. 11/582,896 for Devices and Systems for Contextual and Physiological-Based Detection, Monitoring, Reporting, Entertainment, and Control of Other Devices, each of which are incorporated, in their entirety, herein by reference.
  • The data may include physiological data, contextual data and environmental data. The data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • In an embodiment, at least one of the assembly and analysis of lifotypes may utilize a wide range of techniques applied to a life byte sequence, a life byte, a life bit, or a lifeotype, in order to yield a prediction, inference, or the like. Such techniques may include, without limitation, iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence. In embodiments, the method may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce. In embodiments, the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map. In embodiments, the method may further comprise determining the numbers and types of life bits and life bytes required to fully determine a lifeotype.
  • The methods and systems disclosed herein may include a method or system involving classifying data concerning a population of individuals into lifeotypes that correspond to certain combinations of aspects of at least one of the human lifestyle, human status and the human condition, such combinations optionally including combinations of life bytes, life byte sequences, life bits, or combinations of other lifeotypes. In an embodiment, the method or system may also involve analyzing patterns within and across lifeotypes to draw conclusions, draw inferences, or make predictions about individuals with a certain lifeotype or groups of individuals that share a certain lifeotype. At least one data source may be a body monitor including at least one sensor. The data may include any of the data sources described herein or in documents incorporated by reference herein, including, for example, physiological data, contextual data and environmental data. The data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • The classification process used to identify a lifeotype may utilize a wide range of techniques disclosed herein, in the documents incorporated by reference herein, or known to those of ordinary skill in the art, including, without limitation iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence. In embodiments, the method or system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce. In embodiments, the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map. In one embodiment, the more than one life byte may be organized into a life byte sequence.
  • The methods and/or systems disclosed herein may include a system containing a facility for assembling data from at least one data source into at least one life bit, a facility for assembling the at least one life bit into at least one life byte, and a facility for analyzing the at least one life byte, or a sequence of life bytes, to determine at least one lifeotype. At least one data source rendering a life bit may be a body monitor, such as including one or more sensors. The data may include physiological data, contextual data and environmental data. The data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
  • In an embodiment, at least one of the facility for assembly and the facility for analysis of lifotypes may utilize a wide range of techniques applied to a life byte sequence, a life byte, a life bit, or a lifeotype, in order to yield a prediction, inference, or the like. Such techniques may include, without limitation, iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence. In embodiments, the system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce. In embodiments, the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map. The system may also include a facility for determining the numbers and types of life bits and life bytes required to fully determine a lifeotype.
  • The methods and systems disclosed herein may include a system with a facility for classifying data concerning a population of individuals into lifeotypes that correspond to certain combinations of aspects of at least one of the human lifestyle, human status and the human condition, such combinations optionally including combinations of life bytes, life byte sequences, life bits, or combinations of other lifeotypes. In an embodiment, the system may also involve analyzing patterns within and across lifeotypes to draw conclusions, draw inferences, or make predictions about individuals with a certain lifeotype or groups of individuals that share a certain lifeotype. At least one data source may be a body monitor including at least one sensor. The data may include any of the data sources described herein or in documents incorporated by reference herein, including, for example, physiological data, contextual data and environmental data. The data may also include derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data. The data may data related to family history, genes, diagnoses, medical knowledge, polygraphs and the like. The data may be collected over time. The data may be data relevant to a certain measure at various points in time.
  • The facility for classifying data may utilize a wide range of techniques disclosed herein, in the documents incorporated by reference herein, or known to those of ordinary skill in the art, including, without limitation iterative optimization, genetic programming, stochastic simulations, model generation, model use, simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence. In embodiments, the system may be applied to medical decision making, disease management, auto-publishing, automatic completion of forms, filtering search results, delivering content, dating, social networking and e-commerce. In embodiments, the at least one lifeotype and any related information may be represented in a spider map or the like or may be superimposed on a map. In one embodiment, the more than one life byte may be organized into a life byte sequence.
  • The methods and systems described herein may involve determining at least one lifeotype of at least one individual, analyzing the at least one lifeotype, and delivering content to at least one individual based on the analysis. In embodiments, the content may consist of video, audio, images, text, advertisements, movies, music, music videos, games, ring tones, print media, books, art, fine art and user generated content. In embodiments, the content may be from an Internet site and may be delivered to an individual based on a lifeotype of the individual or the content is from an Internet site and may be recommended for delivery to an individual based on a lifeotype of the individual.
  • In embodiments, the content may be tagged and the tags may facilitate delivery of the content based on at least one lifeotype. In embodiments, the analysis may include consideration of recommendations by at least one other individual with at least one similar lifeotype as the individual to which the content is to be delivered. In embodiments, the version of the content to be delivered may be determined based on the analysis. In embodiments, the less stressful of two versions of content may be selected for delivery based on the analysis. In embodiments, the analysis may consider data from a device worn by the at least one individual or data from a device carried in proximity to the at least one individual.
  • The methods and systems described herein may involve providing a game, determining at least one lifeotype of at least one player of the game, analyzing the at least one lifeotype, and affecting the game play based on the analysis. In embodiments, at least one lifeotype of a player of the game may affect the abilities of the player's character in the game based on the analysis or the outcome of the game based on the analysis. In embodiments, a lifeotype of an individual associated with a healthy state may enable a higher performing character in the game than the character that would be enabled by a less healthy lifeotype. In embodiments, the game may be an online game, a multiplayer game or a massively multiplayer game. In embodiments, the methods and systems may further comprise providing feedback to the at least one player to affect changes in the player's lifeotype. In embodiments, the game play experience of the user may be customized based on the lifeotype of the user. In embodiments, the analysis may consider data from a device worn by the at least one player or data from a device carried in proximity to the at least one player.
  • The methods and systems described herein may involve providing an interactive space, determining at least one lifeotype of at least one individual in the space, analyzing the at least one lifeotype, and modifying at least one attribute of the space based on the analysis. In an embodiment, the space may be a meeting room, an auditorium, an interactive gaming environment or an interactive entertainment environment. In embodiments, the attribute of the space that is modified may be selected from the group consisting of: brightness, color, volume, sound, audio, temperature, air quality, pressure, distance between objects, protection from outside, status of entries, status of exits, status of a device, presence of objects and absence of objects. In embodiment, the analysis may consider the proximity of various lifeotypes, changes in various lifeotypes, the compatibility of various lifeotypes, data from a device worn by the at least one individual or data from a device carried in proximity to the at least one individual. In embodiments, the systems and methods may further include providing feedback to the at least one individual.
  • These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:
  • FIG. 1 depicts a hierarchy of data.
  • FIG. 2 depicts a hierarchy of genetics data.
  • FIG. 3 depicts a hierarchy of lifeotype data.
  • FIG. 4 depicts certain spectra of certain lifeotype data sources.
  • FIG. 5 depicts lifeotype data sources.
  • FIG. 6 depicts the Platform.
  • FIG. 7 depicts the scalability of the Platform.
  • FIG. 8 depicts the scalability of lifeotypes.
  • FIG. 9 depicts the types of data that may comprise life bits data.
  • FIG. 10 depicts the types of data that may comprise medical and/or genetic data.
  • FIG. 11 depicts the types of data that may comprise environmental data.
  • FIGS. 12A, 12B, 12C and 12D depict the types of data that may comprise derived data as well as various spectra applicable to sensors, data and/or the Platform.
  • FIG. 13 depicts the relationship among physiological, contextual and environmental data.
  • FIG. 14 depicts a process flow for identifying lifeotypes.
  • FIG. 15 depicts a process flow for analyzing lifeotypes.
  • FIG. 16 depicts a process flow for analyzing lifeotypes.
  • FIG. 17 depicts a lifeotype state diagram.
  • FIG. 18 depicts a lifeotype spider map or the like.
  • FIGS. 19A, 19B and 19C depict an embodiment of the architecture of the Platform.
  • FIG. 20 depicts an embodiment of the architecture of the Platform.
  • FIG. 21 depicts an embodiment of the architecture of the Platform using round-robin DNS load balancing.
  • FIG. 22 depicts an embodiment of the architecture of the Platform using cookie or URL-based sessions with a software load balancer.
  • FIGS. 23A and 23B depict an embodiment of the architecture of the Platform using cookie-based sessions with a hardware load balancer.
  • FIGS. 24A and 24B depict a particular embodiment of an analogy between a lifeotype and genetics.
  • FIG. 25 depicts a particular embodiment of a statistical model concerning lifeotypes.
  • FIGS. 26A and 26B depict a particular embodiments of affecting behavior through lifeotypes.
  • FIGS. 27A and 27B depict a particular embodiment of lifeotype information being used for compatibility analysis.
  • FIGS. 28A and 28B depict a particular embodiment of lifeotype information being used for compatibility analysis.
  • FIGS. 29A and 29B depict a particular embodiment of a report.
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENT
  • Humankind has sequenced the human genetic code, resulting in the identification of sequences of genes that are related to particular conditions, outcomes or the like. Thus, a certain genotype can be associated with outcomes, allowing the prediction of outcomes for individuals or groups that share that genotype. However, despite a wealth of information collected about lifestyles, similar efforts have not been undertaken to sequence data related to the human lifestyle in order to allow the drawing of the same kinds of inferences about individuals or groups that share the same lifestyle. The low cost and ready availability of sensors has reduced costs of collecting data. In addition, improved data integration and processing methods have allowed for use of existing data sources. The availability of this wealth of data creates a unique opportunity for data analytics and data processing, which may be used to analyze and parse the wealth of human lifestyle information. Importantly, methods and systems are disclosed herein for organizing data about lifestyles into meaningful sequences of information, allowing analysis and drawing of inferences about the effects of human lifestyles. Among other advantages, data processing and data analytics, applied to life bits, life bytes, life byte sequences and lifotypes, may also allow for the creation or identification of new surrogate measures, sensors and vital signs, as well as predictors of certain conditions.
  • Thus, the concept of a “lifeotype” encompasses classifying human state data, or other data concerning a population or sub-population of individuals, into “types” that correspond to certain combinations of traits or aspects of human lifestyle, human status and/or human condition. In embodiments, the concept of a lifeotype may also be applied to other organisms. By analyzing patterns within and across the lifeotypes, one can draw conclusions, make inferences, and make predictions about each type that apply to the members of the type or to groups of individuals of that type. The possible types may be composed of combinations of individual data types which may be measured continuously over time or at discrete intervals.
  • Referring to FIG. 1, the concept of a lifeotype may be further understood by analogy to bits and bytes of information in the data world. Information may be organized into bits, bits may be organized into bytes, bytes may be organized into sequences, and any of the foregoing may be organized into, or provide, actionable information. Actionable information may be composed of any number, including none, of bits and/or bytes. The inclusion of bit 0 and byte 0 in FIG. 1 illustrates that it is possible that there are no bits and/or bytes in a particular embodiment. That is, it is possible that the information itself is a byte or that a bit is actionable information, that the information itself is actionable and the like.
  • By analogy to the bits and bytes of FIG. 1, a life bit may be a bit of data for a trait or aspect at a point in time. A life byte may be a collection of life bits. In an embodiment, the bits may be values of certain parameters, with bits of certain types (such as derived from certain data sources, including the ones described herein) being arranged in a predetermined way to form a byte. The byte may be an aggregate of the bits, which may for example, correspond to a particular type of information, such as a type of file, a message, a command, or the like, in the same way that a particular type of life byte may correspond to a particular type of information collected about a human state. The bytes may be sequenced or otherwise combined to form actionable information, such that a higher level system, such as an operating system, application, program, service or the like can take a byte or series of bytes and perform an operation based on the nature of the byte or sequence of bytes and in particular the bits that populate that byte.
  • Referring to FIG. 2, the concept of a lifeotype may be further understood by analogy to genetics. Genetic information may be organized in base pairs or genetic sequences and in their totality comprise the genotype. Life bits can be thought of as analogous to genes, which are organized according to the sequence of the genotype, but may or may not be expressed in a given individual, or may be expressed to a different extent in a particular individual. Particular genes or sequences of genes that are expressed (including, in some cases, expressed to a particular extent) and that, taken together, are of interest, may be assembled into genotypes, in the same way that life bytes or sequences of life bytes that are of interest may be assembled into lifeotypes. The genotypes in turn, through the interaction with the environment in some cases, may present as an overall phenotype, analogous to actionable information. As with FIG. 1, the inclusion of the subscript zeros in FIG. 2 indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • FIG. 3 depicts the organization structure of FIGS. 1 and 2 applied to lifeotypes. Referring to FIG. 3, the information or genetic sequences may be data, such as any of the data described herein, from any of the sources described herein. The data may be combined, used or accessed to create life bits. The life bits may be combined, used or accessed to create life bytes. A grouping or sequence of lifebytes may form a lifebyte sequence. Lifebytes and/or one or more lifebyte sequences may comprise or be organized into lifeotypes. The amount of information, number of life bits and/or number of life bytes included in a lifeotype may be determined based on many factors, such as user selection or the number of data points required to obtain uniqueness. As in FIGS. 1 and 2, the inclusion of the subscript zeros indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • The entire range of data collected about an individual may be analogous to the entire genotype of an individual, and particular combinations in the data patterns may be analogous to genes or collections of genes that code for particular traits. As with a particular genotype, a particular lifeotype may code for or represent a particular set of traits. A lifeotype may change over time, including reasons such random change reasons due to therapy, such as behavior modification therapy, reasons due to other changes in an individual's behavior, how the individual interacts with his environment and vice-verse, and due to modifications, or additions to the amount and type of information being collected about an individual. This process may be analogous to gene mutations and gene therapy in genetics. Regarding therapeutics, the therapeutics process may be intentional or non-intentional and/or prescribed or self-administered. The pool of data may be less than the total pool of data, which may be analogous to sequencing less than all of the genetic code of an individual in genetics. Referring again to FIGS. 1, 2 and 3, it may be possible to move in both directions in the hierarchies depicted in the figures. For example, in FIG. 3, the data or life bits may be determined from a life byte or lifeotype. In FIG. 1, it may be possible to work from actionable information back to information.
  • In an embodiment, a life bit may be body positional data, such as sitting or standing. A related life byte may be standing more than sitting. This life byte may contribute to the determination of a lifeotype which may be characterized as one relating to the condition of varicose veins. In another embodiment, the data may include financial and transaction data. The related life bits may include certain transactions and financial data. These life bits may be aggregated into a financial status life byte.
  • In another embodiment, a particular lifeotype may be that of a depressive. The data on which this lifeotype is based may include survey data, financial data, transaction data, medical data and sensor data. Sensors, such as the type described in United States patent applications incorporated herein by reference provide sensed data from which a derivation could be made regarding an individual's activity level, food intake, mood, and interaction with others. All of such sensed data in each patent application incorporated herein by reference is relevant to this and all other embodiments described herein. A relevant life bit may be composed of credit card purchases, and a relevant life byte may reveal that the majority of purchases were online and few were at point of sale terminals, thus revealing that the individual tends to stay in one location. The survey data may result in a life byte that indicates the individual is depressed. The sensor data may show that the individual spends most of his time in one location due to low levels of activity, and that the individual has limited interaction with others. These factors together may be a lifeotype or marker for a depression, analogous to a genetic marker or the genotype of an individual that is depressed.
  • In another embodiment, a lifeotype may be a hypertensive, diabetic runner. The data on which this lifeotype is based may include survey data, medical data and sensor data. Certain of the relevant life bytes may include age related information, bone density related information and a diabetic life byte. The values of these life bytes may indicate a high likelihood of hypertension and low bone density. The Platform may suggest additional data that should be collected for further investigation. A sensor may provide many activity life bits, which may indicate an overall active life byte. The Platform may sequence the life bytes to find the lifeotype to be a runner with low bone density, hypertension and diabetes.
  • In another embodiment, a particular lifeotype may be that of an active diabetic. This lifeotype may be a 4 byte lifeotype, where life byte 1 is a glucose reading, life byte 2 is a pancreas function measurement of some kind, life byte 3 is total calories consumed in a day and life byte 4 is total calories burned in exercise. Each byte may be composed of several life bits. In an embodiment, total calories burned may be determined from life bits including activity level data as determined by sensor data and food intake data as determined from a survey or any of the systems, devices or methods described in the patent application which are incorporated herein by reference. Certain of the life bytes may originate directly from the data, such as glucose readings determined directly from a glucose meter. The resulting life bits and life bytes may be packaged into their own data structures, such as a packet header
  • In an embodiment, a lifeotype may be a pattern of behavior and sensed values that indicates that an individual is at a very high risk of becoming diabetic later in life. In an embodiment, the lifeotype may be defined by four lifebytes. The first life byte may be composed of sensed health data life bits such as yearly blood pressure readings administered at a doctor's office and extracted from the individual's electronic medical record or personal health record. The second life byte may be residence data revealing that the individual lives in an urban area that is not conducive to year-round exercise and that is characterized by very long commute times. The third life byte may consist of data from a medical record and may indicate that the individual is Mexican-American and that two of the individual's four grandparents were diabetic before they died. The fourth life byte may consist of survey data and may indicate that the individual exercises very vigorously, but only occasionally with a frequency of 1.2 times per week and only for average of 75 minutes each time. In an alternative embodiment, a life byte may be that an individual is at a very high risk of becoming diabetic later in life and the life bits may be sensed health data, residence data, medical record data and survey data. In another embodiment, the lifeotype may be related to diabetes, hemorrhagic shock or hypertension. The data bits may related to genetic markers, diagnoses, plans for therapy, sensed data regarding physical activity, such as from a wearable device, energy expenditure, nutritional data and the like.
  • A genotype may be conceived of as an encoding of what may happen to a person through the process of developmental biology, similar to a blueprint for a house. This genetic blueprint may also be thought of as the gold-standard for the house, the platonic house, or the default house, based on all of which variation will occur. The genotype may also set the basic rules for how that physical body will function in response to particular kinds of changes to that body. By analogy, this may be like the house having a built in furnace and thermostat and being set to turn on the heat when the thermostat drops below a particular temperature.
  • A genotype may have various levels of abstractions that are useful to understand about the way that encoding (that blueprint) is translated into a physical system or the basic rules of operation of that physical system. A genotype in a human is made up of atoms, but that is often too fine grained a level of detail and is not usually considered a useful way to talk about the genotype. The lowest level of abstraction normally used for a genotype are the base pairs that make it up (“A T C and G”).
  • The state of your body at some point in the future may not entirely be determined by its genetic make up. Genetics may have, over time, only a minority impact on the state of a person's body. The other relevant elements may be the things that happen to a body. A simple illustrative example is as follows: if a car side-swipes a person and breaks the person's leg, the body has changed dramatically and not because of genetics (although genetics may affect the extent of the break, the time to heal and the like). Similarly, if a person eats too much over a long period of time and becomes obese, this was not a fact solely related to the person's blue print (genotype) but of the complex web of cause and effect interactions that the person has with the world as the person lives his life (although genetics may affect that person's interaction with the world, such as by determining at least in part the effects that food has on the person's body). In one particular embodiment, this data collected about a person that corresponds to the series of things that happens to a person or because of a person's choices which determines to a large extent what will happen to a person in the future can be thought of as a lifeotype. In certain embodiments, a lifeotype may also include or be based on genetics-related information (as bits, bytes, life byte sequences, etc.), as well as any of the other information discussed herein.
  • Referring to FIGS. 24A-24B, in one particular embodiment, like the human genotype, the human lifeotype may have various levels of abstraction. In this particular embodiment, at the lowest level (the equivalent to the base pairs), are all the facts of what happened to a person expressed in their raw “sensed” values. An example is as follows: each key stroke that a person made at his/her computer, each acceleration a person's body experiences as it moves about daily life, a person's heart rate at each minute of the day, and the like. In this particular embodiment, the equivalent to the alleles and their relative importance (intron vs. extron) may be the notion of a continuum from “derived data” through “patterns of data.” So for example, thinking about many of the sensed values about a person's body not in isolation but taken together in a model of energy expended may be a “derived” lifeotype fact in this particular embodiment. In this particular embodiment, at a higher level of derivation or pattern finding might be that over a period of time energy expenditure is high enough to qualify as an “active person.” And, in this particular embodiment, up at the level, by analogy, of a chromosome for a lifeotype may be the notion of the implication of major patterns of the data of your life upon the future state of your body. For example, being an active person makes obesity, diabetes, depression, and heart disease all some what less likely to occur to you. In this particular embodiment, just like gene therapy is an attempt to improve a person's body in the future by changing some of the genetic blue print, an individual could also receive a suggested change to his lifeotype that would tend to improve his body's future state as well. For example, “a person may not be an active person and if he was to exercise an additional 60 minutes per week, raising him into the state of being an active person, he is less likely to develop the following diseases within the next two decades . . . ” This type of suggested action may be an action type, or A-type. FIG. 25 depicts a particular embodiment of a statistical model involving lifeotypes. In this embodiment, conditional probabilities may be determined based on lifeotypes. One skilled in the art will appreciate that the analogies described herein are for illustrative purposes and should not serve to limit the meaning of terms described herein. None of the usages of the terms in the analogies or examples herein are intended to contradict the meaning of any term in this disclosure, but rather as alternate meanings or nuanced meanings of the terms.
  • Referring to FIG. 4, the data may include continuous or discrete data or any form of data that may be found along this spectrum. In an embodiment, the data may be continuous temperature data and/or a discrete measure such as a voltage. The data may include raw or derived data or any form of data that may be found along this spectrum. The raw data may be unprocessed. The derived data may be derived from the raw data, other derived data or a combination of both. The data may be sensed by a body monitor and/or a sensor, which may be stationary, wearable or implantable, or any form that may be found along this spectrum. A stationary sensor may be housed in an item of fitness equipment, such as a treadmill. A wearable sensor may be included as part of an arm band, shirt or shoe. In an embodiment, an implantable sensor may be a heart rate sensor implanted near the heart. Referring to FIG. 5, a lifeotype may or may not be constructed from at least one item of discrete or continuous data, raw or derived data and/or data sensed by a body monitor and/or sensor which may be stationary, wearable or implantable. The inclusion of the subscript zeros in FIG. 5 indicates that a particular level of the hierarchy may be absent in certain embodiments.
  • A lifeotype may be static or dynamic or may exist in a form found along this spectrum. That is, a lifeotype may consist of data that is more static over time or data that is more dynamic over time. A lifeotype may be high resolution or low resolution or may exist in a form along this spectrum. That is, a lifeotype may consist of a variety of life bytes, life bits and data, which would make it a lifeotype of a higher resolution when compared to a lifeotype that is based on relatively few life bytes, life bits and data instances. A static lifeotype and a high resolution lifeotype may respond in similar ways to changes in the data on which each is based. This behavior similarity may be due to a greater number and variety of life bytes, life bits and data instances being involved, so it requires a greater change in the underlying factors and data to produce a change at the lifeotype level. A dynamic lifeotype and a low resolution lifeotype may respond in similar ways to changes in the data on which each is based. This behavior similarity may be due to a lower number and low variety of life bytes, life bits and data instances being involved, so it requires only a change in one or a few values of the underlying factors and data to produce a change at the lifeotype level. In embodiments, a low resolution and/or dynamic lifeotypes, or the life byte sequences, life bytes, life bits and/or data upon which they are based, may include angry, aroused, tired, fatigued, current spending, location, restless, stressed and the like. In embodiments, a high resolution and/or static lifeotypes, or the life byte sequences, life bytes, life bits and/or data upon which they are based, may include depressed, addict, diabetic (type I and II), insomniac, cardiac condition and the like. In certain embodiments a high resolution lifeotype may change rapidly over time and a low resolution lifeotype may change more slowly over time. Lifeotypes can be true or representative at specific points or ranges of time in a person's life. Lifeotypes may reflect different time scales.
  • The Platform may be able to determine and/or display the direction of a lifeotype. In this way, the direction of trend of a lifeotype and/or group of lifeotypes can be determined. This information may be useful for identifying and/or predicting changes in high resolution and/or static lifeotypes. In an embodiment, due to the possibly variable nature of a low resolution and/or dynamic lifeotypes, such lifeotypes may be conceived of or reported with a tolerance band based on related trend information and predictions. In another embodiment, the trend information and predictions may be useful in predicting emergencies in connection with low resolution and/or dynamic lifeotypes and disease states in connection with high resolution and/or static lifeotypes. Lifeotype trend information, including trend directions, may be useful for treating certain conditions for which certain parameters need to be kept in a certain range. In an embodiment, certain lifeotypes of bipolar individuals may need to be kept within a certain range for a certain parameter, such as mood or endorphin levels. Using the trend direction functionality it may be possible to affect the trend as the lifeotype value approaches the boundary of the range.
  • A system for creating, analyzing and making use of lifeotypes may contain various layers, facilities and/or functionalities (the “Platform”).
  • FIG. 6 depicts one particular embodiment of the Platform. The various layers, facilities and/or functionalities may appear in an order or arrangement different from that shown in FIG. 6. Referring to FIG. 6, the Platform may contain data and/or data sources, a data interface, data processing, life bits, life bit processing, life bytes, life byte processing, life byte sequences, lifeotype data processing, interfaces, lifeotypes, lifeotype systems, applications and/or services, users, data targets, other systems applications and/or services and data administration, including security, logging, conditional access and/or authentication.
  • The data and/or data sources may be any of the data described herein or may be from any of the sources described herein. The data and/or data sources may include data from sensors, user input and/or other sources as described herein. The data and/or data sources may include physiological data, contextual data and/or environmental data as described herein.
  • The data interfaces layer may contain adaptors and/or connectors which allow the Platform to communicate with various disparate data sources. In an embodiment, a connector may permit the Platform to obtain patient data from a particular hospital database, such as a patient admission database. The data interfaces layer may be or contain an interface to sources and targets. The data interfaces layer may be based on a push model, pull model or both. The data interfaces layer may include search/filter/cluster functionality.
  • The data processing layer may enable analytics and derivation. The data processing layer may create, generate, identify and/or discover lifebits. The data processing layer may search for patterns in the data to create lifebits. The data processing layer may mine data. The data processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bits. In an embodiment, the data processing layer may identify a life bit the knowledge of which may be germane to a particular purpose and may also identify the data that is required to be collected in order to determine that life bit. The data processing layer may analyze life bits and related data. The data processing layer may generate conclusions, predictions and/or recommendations. The data processing layer may identify patterns in the life bits. The data processing layer may sequence the life bits.
  • The data processing layer may generate reports. The data processing layer may auto-publish information, such as reports and studies. The data processing layer may auto-complete forms, such as medical records and insurance forms. The data processing layer may process, organize and manage life bits. The data processing layer may clean and de-duplicate life bits data. The data processing layer may perform extractions, transformations and loads of the life bits data. The data processing layer may convert life bits data to a common format. The data processing layer may aggregate, combine and collect life bits data. The data processing layer may request missing data. The data processing layer may create databases and datamarts of life bits data and/or other data. The data processing layer may associate metadata with the life bits data.
  • The data processing layer may filter and/or apply contextual structures to life bits data. The data processing layer may apply algorithms to life bits data. The data processing layer may enable annotation of, or may auto-annotate, life bits data. The data processing layer may be based on a push model, pull model or both. The data processing layer may process and/or clean data. The data processing layer may allow data from multiple sources to be combined. The data processing layer may organize and manage data. The data processing layer may enable storage and/or retrieval of data. The data processing layer may enable storage and retrieval of information based on or derived from the data. The data processing layer may store and/or retrieve metadata. The data processing layer may read and/or write data and metadata. The data processing layer may enable versioning and/or partitioning. The data processing layer may predict future life bits. The data processing layer may compare a set of life bits to the genotype and determine the degree of presence of other life bits.
  • Life bit(s), as described herein, may be determined directly from the data, from a data interface and/or through data processing. A life bit processing layer may enable analytics and derivation. The life bit processing layer may create, generate, identify and/or discover life bytes. The life bit processing layer may search for and identify patterns in the data to create life bytes. The life bit processing layer may mine data. The life bit processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bytes. In an embodiment, the life bit processing layer may identify a life byte the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that life byte. The life bit processing layer may analyze life bits and related data. The life bit processing layer may generate conclusions and/or recommendations. The life bit processing layer may identify patterns in the life bits and life bytes. The life bit processing layer may identify missing information.
  • The life bit processing layer may generate reports. The life bit processing layer may auto-publish information, such as reports and studies. The life bit processing layer may auto-complete forms, such as medical records and insurance forms. The life bit processing layer may process, organize and manage life bits. The life bit processing layer may clean and de-duplicate life bits data. The life bit processing layer may perform extractions, transformations and loads of the life bits and life bytes data. The life bit processing layer may convert life bits and life bytes data to a common format. The life bit processing layer may aggregate, combine and collect life bits and life bytes data. The life bit processing layer may request missing data. The life bit processing layer may create databases and datamarts of life bits, life bytes and/or other data. The life bit processing layer may associate metadata with the life bits and life bytes.
  • The life bit processing layer may filter and/or apply contextual structures to life bits and life bytes data. The life bit processing layer may apply algorithms to life bits and life bytes data. The life bit processing layer may enable annotation of, or may auto-annotate, life bits and life bytes data. The life bit processing layer may be based on a push model, pull model or both. The life bit processing layer may process and/or clean data. The life bit processing layer may allow data from multiple sources to be combined. The life bit processing layer may organize and manage data, such as life bits and life bytes data. The life bit processing layer may aggregate and/or collect data, such as life bits and life bytes data. The life bit processing layer may enable storage and/or retrieval of data, such as life bits and life bytes data. The life bit processing layer may enable storage and/or retrieval of information based on or derived from data, such as life bits and life bytes data. The life bit processing layer may store and/or retrieve metadata. The life bit processing layer may read and/or write data and metadata. The life bit processing layer may enable versioning and/or partitioning.
  • Life byte(s), as described herein, may be determined directly from the data, from a data interface and/or through data processing. A life byte, as described herein, may be a life bit and/or may be determined through life bit processing. A life byte processing layer may sequence life bytes. The life byte processing layer may determine lifeotypes. The life byte processing layer may enable analytics and derivation. The life byte processing layer may create, generate, identify and/or discover life bytes and/or life byte sequences. The life byte processing layer may search for and identify patterns in the data to create life bytes and/or life byte sequences. The life byte processing layer may mine data. The life byte processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of life bytes and/or life byte sequences. In an embodiment, the life byte processing layer may identify a life byte and/or life byte sequence the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that life byte and/or life byte sequence. The life byte processing layer may analyze life bytes and/or life byte sequences and related data. The life byte processing layer may generate conclusions and/or recommendations. The life byte processing layer may identify patterns in the life bytes and/or life byte sequences. The life byte processing layer may generate a genotype of life byte sequences. The life byte processing layer may identify missing information.
  • The life byte processing layer may generate reports. The life byte processing layer may auto-publish information, such as reports and studies. The life byte processing layer may auto-complete forms, such as medical records and insurance forms. The life byte processing layer may process, organize and manage life bytes and/or life byte sequences data. The life byte processing layer may clean and de-duplicate life bytes and/or life byte sequences data. The life byte processing layer may perform extractions, transformations and loads of the life bytes and/or life byte sequences data. The life byte processing layer may convert life bytes and/or life byte sequences data to a common format. The life byte processing layer may aggregate, combine and collect life bytes and/or life byte sequences data. The life byte processing layer may request missing data. The life bit processing layer may create databases and datamarts of life bytes, life byte sequences data and/or other data. The life byte processing layer may associate metadata with the life bytes and/or life byte sequences data.
  • The life byte processing layer may filter and/or apply contextual structures to life bytes and/or life byte sequences data. The life byte processing layer may apply algorithms to life bytes and/or life byte sequences data. The life byte processing layer may enable annotation of, or may auto-annotate, life bytes and/or life byte sequences data. The life byte processing layer may be based on a push model, pull model or both. The life byte processing layer may process and/or clean data. The life byte processing layer may allow data from multiple sources to be combined. The life byte processing layer may organize and manage data, such as life bytes and/or life byte sequences data. The life byte processing layer may aggregate and/or collect data, such as life bytes and/or life byte sequences data. The life byte processing layer may enable storage and/or retrieval of data, such as life bytes and/or life byte sequences data. The life byte processing layer may enable storage and/or retrieval of information based on or derived from data, such as life bytes and/or life byte sequences data. The life byte processing layer may store and/or retrieve metadata. The life byte processing layer may read and/or write data and metadata. The life byte processing layer may enable versioning and/or partitioning.
  • A life byte sequence, as described herein, may be determined directly from the data, from a data interface and/or through data processing, may be a life bit and/or may be determined through life bit processing, may be a life byte and/or may be determined though life byte processing. A lifeotype data processing layer may identify lifeotypes. The lifeotype data processing layer may enable analytics and derivation. The lifeotype data processing layer may create, generate, identify and/or discover lifeotypes. The lifeotype data processing layer may search for and identify patterns in the data to create lifeotypes. The lifeotype data processing layer may mine data. The lifeotype data processing layer may identify missing information, which may assist in the creation, generation, identification and/or discovery of lifeotypes. In an embodiment, the lifeotype data processing layer may identify a lifeotype the knowledge of which may be germane to a particular purpose and may also identify the data that are required to be collected for that lifeotype. The lifeotype data processing layer may analyze life byte sequences, lifeotypes and related data. The lifeotype data processing layer may generate conclusions and/or recommendations. The lifeotype data processing layer may identify patterns in the life byte sequences and/or lifeotypes. The lifeotype data processing layer may generate a “genome” of lifeotypes. The lifeotype data processing layer may identify missing information.
  • The lifeotype data processing layer may generate reports. The lifeotype data processing layer may auto-publish information, such as reports and studies. The lifeotype processing layer may assemble lifeotypes into a “genome”. The lifeotype data processing layer may auto-complete forms, such as medical records and insurance forms. The lifeotype data processing layer may process, organize and manage life byte sequences and/or lifeotypes data. The lifeotype data processing layer may clean and de-duplicate life byte sequences and/or lifeotypes data. The lifeotype data processing layer may perform extractions, transformations and loads of the life byte sequences and/or lifeotypes data. The lifeotype data processing layer may convert life byte sequences and/or lifeotypes data to a common format. The lifeotype data processing layer may aggregate, combine and collect life byte sequences and/or lifeotypes data. The lifeotype data processing layer may request missing data. The lifeotype data processing layer may create databases and datamarts of life byte sequences, lifeotypes data and/or other data. The lifeotype data processing layer may associate metadata with the life byte sequences and/or lifeotypes data.
  • The lifeotype data processing layer may filter and/or apply contextual structures to life byte sequences and/or lifeotypes data. The lifeotype data processing layer may apply algorithms to life byte sequences and/or lifeotypes data. The lifeotype data processing layer may enable annotation of, or may auto-annotate, life byte sequences and/or lifeotypes data. The lifeotype data processing layer may be based on a push model, pull model or both. The lifeotype data processing layer may process and/or clean data. The lifeotype data processing layer may allow data from multiple sources to be combined. The lifeotype data processing layer may convert data to a common format. The lifeotype data processing layer may organize and manage data, such as life byte sequences and/or lifeotypes data. The lifeotype data processing layer may aggregate and/or collect data, such as life byte sequences and/or lifeotypes data. The lifeotype data processing layer may enable storage and/or retrieval of data, such as life byte sequences and/or lifeotypes data. The lifeotype data processing layer may enable storage and/or retrieval of information based on or derived from data, such as life byte sequences and/or lifeotypes data. The lifeotype data processing layer may store and/or retrieve metadata. The lifeotype data processing layer may read and/or write data and metadata. The lifeotype data processing layer may enable versioning and/or partitioning.
  • A lifeotype, as described herein, may be determined directly from the data, from a data interface and/or through data processing, may be a life bit and/or may be determined through life bit processing, may be a life byte and/or may be determined though life byte processing, may be a life byte sequence and/or may be determined through lifeotype data processing. The Platform may contain an interface which may be an interface layer or interface facility. The interface may contain a user interface and/or presentation facility. The interface may publish reports, studies, conclusions and/or reports. The interface may automatically complete reporting documents and forms, such as medical records and insurance forms. The interface may auto-publish information, such as reports and studies. The interface may contain adaptors and/or connectors which allow the Platform to communicate and/or interface with other systems, facilities, data sources and the like. The interface may interface with an outside workflow, which may allow the platform to affect, optimize or improve efficiency of the outside workflow.
  • The interface may generate different views of the lifeotype data and/or other data. The interface may filter the lifeotype data and/or other data. The filtering may be done by sorting on a particular life bit, life byte and/or lifeotype, such as a medical condition or a state of activity. The filtering may also be done by sorting for a particular combination or combinations of life bits, life bytes or lifeotypes, such as sorting for all diabetics who are between the ages of 25 and 30 years old, engage in at least 10 hours of physical activity per week and eat more than 3 servings of vegetables per day. Filtering may allow for the identification of subsets of the data, which may be used for further studies. The interface may include an interface to sources and targets. The interface may function as a data clearinghouse.
  • The interface may include and/or be enabled or facilitated by a lifeotype markup language (“LML”). The interface may use or permit communication through LML. LML may facilitate the identification, creation, processing, manipulation and use of lifeotypes. LML may be a protocol. LML may be embodied in a header. LML may allow interfaces with other systems, platforms and the like, or may allow interfaces between elements of the Platform. LML may contain tags, which may function as connectors or links. The tags may link to other relevant data, or to data sources or sources of data values used in a particular calculation, derivation or analysis. A tag may link to other data, measured values or information that may be relevant or related, such as information recorded or created around the same time as the other data. A tag may link to information about mood or food consumption. In an embodiment, the LML corresponding to an energy expenditure calculation may contain links to data concerning the mood of the subject, food consumed by the subject and/or other medical values recorded at the time. A tag may enable a user to quickly locate or query data that form the basis of other information, derived measures and/or lifeotypes.
  • In one embodiment, LML may allow the specification of statements that include information about who the statement is about (at multiple levels of detail); what facts, if any, the statement is about; what patterns, if any, the statement is about; what actions or action sequences the statement is about; what time points or time periods the statement is about; what time points or time periods apply to the facts; any groups, patterns, or actions/action sequences; and the like. Abstraction to different levels of detail may be allowed for various features of LML. Abstraction to different levels of detail may be optional for each statement and certain fields may be optional in respect of a certain statement. In an embodiment, LML may utilize XML and may include the ability to have functional links and the like which may perform operations on a lifeotypes database.
  • A user interface may be tailored based on the user's lifeotype. A user interface may contain sliders, pistons or other means to adjust parameters. The user interface may show the effects of changes of certain parameters, such as on other parameters, or on lifeotype, medical conditions and the like. The user interface may show the effects of perturbing the system. Through the user interface it may be possible to tweak one or more sliders or adjust parameters in other ways and see the effect or predicted effect of those adjustments on other values and/or lifeotypes. Parameters that can be adjusted include the parameters in Table 3 of Andre, et al., pending U.S. patent application Ser. No. 10/682,293, for Method and Apparatus for Auto-Journaling of Continuous or Discrete Body States Utilizing Physiological and/or Contextual Parameters. The paramters disclosed therein apply to all embodiments herein utliziing sensed or measured data. The user interface may present reports, which may be auto-published, may include a comparison to other members of population and/or a comparison to other members of same or similar lifeotype profiles. A report may contain predictions, such as the probability of breaking a bone, having a stroke, having a major depressive episode and the like and may include recommendations on behavior, medication and the like. The report may include an interface with sliders that allow a user to perturb the recommendations and/or other aspects of the report and see the effects.
  • The Platform may contain users, which may be any of the users, consumers or parties described herein. The Platform may include data targets, which may be any of the databases or data structures described herein, including third party data sources. The Platform may contain a lifeotype systems, applications and/or services layer or facility which may enable any of the systems, methods, apparatuses, applications and/or services described herein. The Platform may also contain other systems, applications and/or services, which may be any of the systems, methods, applications and/or services described herein. The Platform may include a data administration layer, which may prohibit, restrict, enable and/or allow access to the Platform or particular aspects of the Platform based on certain factors. The data administration layer may enable conditional access. In an embodiment, access may be restricted by time, log-in location, whether the user is a participant in current study and the like. The data administration layer may enable differential levels of access. In embodiments, certain users may have access to only certain information, functions, data, results and the like. The data administration layer may enable logging, identification, authentication, security and privacy protection. The data administration layer may contain an anonymizer or one or more systems and/or methods by which users can opt-in and/or opt-out of certain aspects of the Platform or uses of information related to them. The opt-in/opt-out decision may be linked to a royalty system as discussed herein.
  • Referring to FIG. 7 and elements 600 1, 600 2, and 600 3 therein, the Platform may be scalable. In this regard, several different Platforms could be linked together or linked Platforms could be separated. Various different lifeotypes or lifeotypes of different people could be linked together or separated. Referring to FIG. 8, two or more lifeotypes can be linked or aggregated together to create new lifeotypes. In addition, a lifeotype may be separated into two or more lifeotypes.
  • The data discussed herein may be any measurable, describable or quantifiable aspect of the human condition and/or environment. The data may be human state data. The data may be energy expenditure data-energy expenditure data, which may act as a surrogate for vital sign data. Referring to FIG. 9, the data may fall into one or more general categories of data, including derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, data regarding physiological state, data regarding psychological state, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, relative levels, changes in levels and feedback loop data. In embodiments, the data may be constructed of derived data and a basic parameter to determine an inverse. In embodiments, the data may be constructed of derived data and environmental data. In embodiments, the data may be constructed of derived data and physiological data. The physiological data may include information regarding a disease condition and the progress of the disease (becoming better or worse).
  • The data may also be specific instances of data, such as any variable or field of the Platform. A specific instance of data may be data regarding physiological and/or psychological state. Referring to FIG. 10, the data may be medical data. The medical data may be diabetes related data (such as glucose level), family histories, patient records, medication, medical conditions, morbidities, psychological data (such as personality type), weight data, height data, cardiac status data, hormone level data (such as for cortisol, insulin, thyroid hormones, HGH, paracrine system hormones and/or endocrine system hormones), data relating to medical conditions (such as type I diabetes, type II diabetes or a particular syndrome), data relating to markers, data relating to seizures, data relating to fainting, metabolic rate data, data relating to physical measurements and/or conditions (such as a weakened heart wall), genetic data (such as data concerning genetic conditions, genetic markers, particular genetic sequences and presence or absence of one or more genotypes and/or phenotypes) and/or data relating to diagnostics.
  • The data may be transactional data, such as data concerning goods or services purchased, consumed and/or desired. The transactional data may be from credit or debit card purchases, from third party databases, from manually entered data (such as user entered data), from a purchasing program associated with the Platform, from internet browsing history, from items placed on layaway, from needs anticipated or predicted by the Platform, from a record of online purchases and the like. The transactional data may relate to grocery purchases, usage of different utilities (such as water, hydro, gas and the like) and the like. The transactional data may include predictions based on past data. The data may be measured with sensor-packages monitoring multiple individuals.
  • Referring to FIG. 11, the data may include environmental data. Environmental data may include data relating to light level (such as for sunlight and/or artificial light), weather, ambient temperature, humidity, wind, air quality, atmospheric conditions, water quality, environmental problems, location and/or nutrition (such as concerning food, beverages, vitamins and/or diet). The data may include contextual and/or situational data. The contextual and/or situational data may relate to social context. In an embodiment, the social context may be out with friends or at home alone. The contextual and/or situational data may relate to life-cycle context. In an embodiment, the life-cycle context may be in college, in the workforce, married with children and the like. The contextual and/or situational data may relate to activity level (such as sedentary or exercising), meditation state, body position, travel (such as in a car, on a plane, on a train, at sea and the like), shopping, entertainment level (such as at a concert, movie and the like), location (such as determined by GPS or triangulation), miles driven as a passenger, miles driven as a driver, where driven, travel destinations, type of work (such as physical labor or deskwork), hours worked, sleeping, resting and/or arguing.
  • The data may include personality and/or psychological data. The personality and/or psychological data may include data relating to entertainment choices, mood, amount of time spent reading, books read, topics of material read, authors of material read, amount of fiction read, amount of non-fiction read, amount of time spent watching television and movies, television programs watched, movies watched, topics of television programs watched, topics of movies watched, moods of television programs watched, moods of movies watched, amount of time spend playing games and videogames, games or videogames played, topics of games or videogames played, moods of games or videogames played, skill level of games or videogames played, levels obtained in games or videogames played, activity level determined from games or videogames played (such as for a Nintendo Wii console), amount of time spent on certain websites, language context typed into keyboard, voice stress levels, entertainment choices, leisure choices, choice of sports, choice of active lifestyle versus sedentary lifestyle, estimated mental state data (such as data concerning intentions) and the like.
  • Referring to FIGS. 12A-12D, the data may be derived data. The derived data may relate to stress, cortisol level, activity level, energy expenditure, heart rate variability, hydration, pulse oximetry, profusion of small vessels, sleep state, sleep onset, VO2 from energy expenditure, glucose from energy expenditure, pain from energy expenditure, combinations of derived parameters and the like.
  • The data may also include metadata. The metadata may include data regarding when a particular item of data was measured, how the item was measured, where a particular item of data was measured, the context in which the item of data was measured, who measured the item, other related items of data that were measured, the reason the item of data was measured, relationships of the item to other items, related items that were not measured or recorded, other items with which the data item is shared and the like. The metadata may include information regarding how the item of data came to be and how the item of data acts in its natural state. Related items of data may be measured at different times and places, by different methods and for different purposes. The data may include action state information, activity state information, project state information and relationship information, including data between and/or among individuals.
  • The data may come from various sources. Sources of data may include data from a wearable body monitor, from sensors/transducers, from communications technologies, from data integration technologies, from software services (such as feeds and web services), from metadata, from manual entry, from user input, from user interfaces (such as from buttons, dials, sliders, graphical user interfaces and the like), from third party sources, from databases, from surveys, from derived data, from records and transaction histories (such as library records, video rental records, media playlists, receipts, financial statements, credit card statements, bank statements and the like) and the like. Data may also be obtained from non-invasive means and passive or indirect data gathering.
  • Data may be obtained from sensors and/or body monitors. A sensor or body monitor may have a specific shape or form, such as an arm band or garment. A sensor or body monitor may be worn in specific locations, such as on the arm or around the waist. A sensor or body monitor may be wearable. Examples of body monitors other systems, devices, and methods that can be used to generate the data rendering life bits and ultimately lifeotype data are described in described in Stivoric et al., U.S. Pat. No. 7,020,508, issued Mar. 28, 2006, entitled Apparatus for Detecting Human Physiological and Contextual Information; Teller et al., pending U.S. patent application Ser. No. 09/595,660, for System for Monitoring Health, Wellness and Fitness; Teller, et al., pending U.S. patent application Ser. No. 09/923,181, for System for Monitoring Health, Wellness and Fitness; Teller et al., pending U.S. patent application Ser. No. 10/682,759, for Apparatus for Detecting, Receiving, Deriving and Displaying Human Physiological and Contextual Information; Andre, et al., pending U.S. patent application Ser. No. 10/682,293, for Method and Apparatus for Auto-Journaling of Continuous or Discrete Body States Utilizing Physiological and/or Contextual Parameters; Stivoric, et al., pending U.S. patent application Ser. No. 10/940,889, Stivoric, et al., pending U.S. patent application Ser. No. 10/940,214 for System for Monitoring and Managing Body Weight and Other Physiological Conditions Including Iterative and Personalized Planning, Intervention and Reporting, and Stivoric et al., pending U.S. patent application Ser. No. 11/582,896 for Devices and Systems for Contextual and Physiological-Based Detection, Monitoring, Reporting, Entertainment, and Control of Other Devices, each of which are incorporated, in their entirety, herein by reference.
  • In an embodiment, the data may be obtained from an apparatus for detecting, monitoring and reporting human status information, comprising a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least a portion of said data streams and generating derived data based on said data indicative of at least a first parameter and said data indicative of at least a second parameter, said derived data used to control said computing device. In an embodiment, the data may be obtained from an apparatus for detecting, monitoring and reporting human status information, comprising a sensor device including at least two sensors selected from the group consisting of physiological sensors and contextual sensors, said sensors each capable of generating a data stream, wherein a first data stream comprises data indicative of at least a first parameter and second data stream comprises data indicative of at least a second parameter of an individual; and a computing device in electronic communication with said sensor device, said computing device receiving at least a portion of said data streams and generating derived data based on said data indicative of at least a first parameter and said data indicative of at least a second parameter, said derived data used to control a device separate from said computing device.
  • Referring to FIGS. 12A-12D, the sensor or body monitor may be disposable, semi-durable or durable. The sensor or body monitor may be highly integrated, semi-integrated or disparate. In an embodiment, a sensor may be highly integrated into a garment. The sensor or body monitor may be non-invasive, semi-invasive or invasive. The sensor or body monitor may be implanted, wearable or proximal. The data may be obtained from one sensor, two sensors or more than two sensors.
  • The sensor or body monitor may be customized, proprietary or off-the-shelf. The sensor or body monitor may be newly created, a modified existing sensor or body monitor or a previously existing sensor. The sensor or body monitor may be passive, active or a combination of passive and active. The sensor or body monitor may be located in a housing, in communication with a housing or located remotely. The sensor or body monitor may be in remote communication with a central monitoring unit, in direct communication with a central monitoring unit or may be not related to a central monitoring unit. The sensor or body monitor may be utilized in connection with a remote processor, a local processor or without a processor. The sensor or body monitor may be automatic, user augmented, survey augmented or manual.
  • The sensor or body monitor may be direct, proximal or remote. The sensor or body monitor may be in body, on body or off body. The sensing of the sensor or body monitor may be proximal, physiological or contextual. The sensor or body monitor may be located in a housing, in proximal communication with a housing or remote to a housing. The sensor or body monitor may be used in connection with linear algorithms, non-linear algorithms, regression analysis and/or neural networks. The data obtained from the sensor or body monitor may be raw data, direct data, modified data, heavily modified data or processed data. The data sensed by the sensor or body monitor may be physiological data, contextual data and/or environmental data.
  • The sensor or body monitor may be implantable. An implantable sensor or body monitor may be a pacing system, such as a heart pacemaker, cardiac pacemaker and the like. An implantable sensor or body monitor may be a carioverter defibulator. An implantable sensor or body monitor may be a blood pressure flow sensor, which may be MEMS-based. The sensor or body monitor may be a sleep apnea recorder, continuous positive air pressure device, ECG, Holter monitor, glucometer, pulse oximeter, blood pressure monitor, sphygmomanometer, heart rate monitor, chest strap or the like. The sensor or body monitor may be disposable, such as a patch. The sensor or body monitor may be capable of sensing physiological parameters such as glucose and other analytes contained in interstitial fluid. The sensor or body monitor may be may include chemical agents, electrotransport, ultrasound, microproj ections, microneedles, analog or digital weight scale and the like. The sensor or body monitor may be may be included in fitness equipment such as cardio equipment, weight training equipment, scales, sports equipment, entertainment devices in gyms and the like. The sensor or body monitor may be included in consumer electronics, such as MP3 players and phones. The sensor or body monitor may be included in entertainment devices, such as videogame consoles. The sensor or body monitor may be included in GPS units. The sensor or body monitor may be included in home appliances and home automation devices, which may control lighting, temperature, window coverings, security systems and access control, personal assistance, home theater and entertainment, phone systems and the like. The sensor or body monitor may be included in other device automation, such as a car, MP3 player and the like.
  • Referring to FIG. 13, data may be physiological data, contextual data and/or environmental data. Physiological data may come directly from the body and may be measured in a fairly direct fashion. In an embodiment, physiological data may be heart rate, respiration rate or whether an individual is asleep or not asleep. Contextual data may include some connotation of context. Contextual data may be a subset of environmental data, such as temperature near the body. Environmental data may include information about the environment the body is in, such as ambient temperature. The sensor or body monitor may be any one or more physiological sensors, contextual sensors and/or environmental sensors. Other types of contextual, physiological and environmental data are disclosed in pending U.S. patent application Ser. No. 11/582,896 for Devices and Systems for Contextual and Physiological-Based Detection, Monitoring, Reporting, Entertainment, and Control of Other Devices, each of which are incorporated, in its entirety, herein by reference.
  • Referring back to FIG. 12A-12D, the data sensed by the sensor or body monitor may be human status data, analytical status data or physiological status data. The data may be not derived, may be derived, may be a derived third parameter or may be modified by a first or second parameter. The data may be direct, compressed or filtered. The data may be a surrogate or third parameter. The data sensed by the sensor or body monitor may be direct data, surrogate data or a combination of direct and surrogate data. The data may be condition data. The condition may be composed of a number of parameters and may be composed of a number of conditions. The data obtained from the sensor or body monitor may related to a body parameter, body condition and/or body state. The sensor or body monitor may contain or be used in connection with an I/O, which may be on the sensor device or body monitor, proximal or in electronic communication with the sensor device or body monitor or remote to the sensor device or body monitor. The output of the sensor or body monitor may be or may form the basis for a report, index, trend or prediction. Feedback may be provided based on the data sensed by the sensor or body monitor. The feedback may be in the form of a list, coaching or behavior modification.
  • In an embodiment, the data may be obtained from a group of individuals waiting for heart transplants. The data may include medical values of the true declining cardiac output of the individuals. The data may also include changes in cardiac output or other body conditions when individuals are moved up or down the waiting list for a new heart. The data may include information regarding which individuals died before a heart was ready for them and the details of each death. This data may relate to life bit and life byte information (such as EE) to find a life byte that changes in a way that will allow for sorting of individuals on the heart transplant waiting list to minimize deaths of people on the list and to maximize the chances of survival after the operation, or other metrics of success.
  • In an embodiment, the data may include data relating to, or the platform may analyze a subpopulation composed of, a group of individuals that have some known and unusual outcome, conditions or situation. For example, the condition may be a rare mental disease, such as a split personality. The platform may enable identification of one or more life bytes that cluster this group; that is, separate them from the rest of the population. In an embodiment, the group may be individuals with MS and the life byte may be subtle but measurable changes in their activity lengths and patterns relative to their norms in the year just before they are diagnosed with MS.
  • In an embodiment, the platform may allow for identification of a group of individuals that have some known and unusual life byte. The platform may then be used to, or may itself, look for what outcomes or situations each individual shares with others from this group. For example, the platform may find that 0.1% of the population exercises more than 4 hours a day every week and yet never exercises more than 1 day a week. The platform may identify characteristics that the people with that lifebyte have in common. For example, the platform may identify that they all die before 60 years of age.
  • The platform may be used to conduct event studies and experiments. In an embodiment, the platform may be used to identify a group of individuals that have a certain outcome or characteristic, such as, for example, high stress. The platform may also be used to identify certain other events or interventions that happened to certain subgroups of the group of individuals. In this way that effects of the events or interventions can be studied. As a result, the database can be used to determine the effects of the intervention on the group of people, without additional experimentation. The platform may allow a user to form a hypothesis and then examine or watch related groups of individuals in the database to confirm or reject the hypothesis. The hypothesis may be modified over time based on changes in the data, such as the subsequent effects of the events and interventions of interest. The hypothesis may be reinforced, broken down and rebuilt. This may be an iterative process.
  • The platform may be used for predictions. In an embodiment, a user may describe or input their life bits, life bytes and other relevant information and the platform may determine lifeotypes or predict health, wealth, happiness outcomes and the like. The predictions may be based on information for individuals with similar life bits, life bytes, lifeotypes and related information. In another embodiment, the platform may allow a user to explore the effects of certain changes on lifeotypes and outcomes. For example, the platform may allow a user to answer the following question: if I changed my life bytes in this way, what should I expect in terms of changed health, wealth, happiness and the like?
  • The platform may enable maximization along certain dimensions. Referring to FIGS. 26A-26B, in an embodiment, the platform may allow a user to “hill climb” to the local maximum that seems like a reasonable set of changed life bytes for a particular person such that it will maximize her health, wealth, happiness and the like. The user may be able to assign various weights to the various outcomes to indicate their relative importance to her. The platform may base the optimization, at least in part, on data relating to other individuals, such as what is a reasonable set of suggestible life byte changes for this person based on other similar people and whether or not similar people have been able to change their lifeotypes in this way.
  • The platform may allow for comparisons. In an embodiment, the platform may allow users to compare their life bit, life byte, lifeotype and other information and outcomes to other individuals or groups of individuals, such as similar individuals or groups of similar individuals. In an embodiment, the platform may enable a one legged man in the deep South who sleeps poorly and is overweight to compare himself to similar individuals, whether currently existing or based on past data, who are also trying to lose weight.
  • Life bits, life bytes, lifeotypes and/or related information may be used to predict, determine or ascertain other characteristics or preferences of a user or group of users. In an embodiment, fife bits, life bytes, lifeotypes and/or related information regarding a user's activity, activity, sleep patterns, body position and motoring times and length may be used as the inputs to predict the movies or books or cars the user will like.
  • The platform may allow for geospatial and visual presentation of life bits, life bytes, lifeotypes and/or related information. In an embodiment, a Google-Earth style interface may be used to display life bits, life bytes, lifeotypes and/or related information. The interface may show life bits, life bytes, lifeotypes and/or related information for a particular population or the entire world in a visually appealing and explorable way. In an embodiment, the platform may superimpose life bits, life bytes, lifeotypes and/or related information over a 3D globe so that a user can see where people are awake, asleep, active, sedentary, stressed, calm and the like.
  • The platform and life bits, life bytes, lifeotypes and/or related information may be used for financial analysis and/or to predict information that is monetizable. In an embodiment, the platform, life bits, life bytes, lifeotypes and/or related information may be used to predict changes in the stock market, or particular securities or groups of securities, based on changes in life bits, life bytes, lifeotypes and/or related information. In an embodiment, the life bits, life bytes, lifeotypes and/or related information may be from around the country or a particular region. In an embodiment, the platform may aggregate the life bits, life bytes, lifeotypes and/or related information into indexes, such as a “people are getting sadder/pessimistic” and a “people are getting happier/optimistic” index. The platform may then use those indexes or indicators to predict near term and long term trends in the overall market, or a subset of the market. In another embodiment, the platform may enable prediction of individual stock trends from specific changes in life bits, life bytes, lifeotypes and/or related information. For example, if people start jogging more, it may be advisable to stock in running shoe companies, such as Nike. If people start walking more it may be advisable to buy more stock in Weight Watchers. In another embodiment, the platform, life bits, life bytes, lifeotypes and/or related information may be used to predict information relating to sporting events. For example, the information may be useful for betting on sporting events. The platform may allow for aggregation of information across many people connected to the sporting event.
  • The platform may be used for epidemiology applications. In an embodiment, the platform, life bits, life bytes, lifeotypes and/or related information may be used to predict the onset of a flu outbreak in a city 12 to 24 hours before it is otherwise seen by watching for subtle shifting patterns in life bits, life bytes, lifeotypes and/or related information, such as higher estimated core temperature or lower activity, adjusting for other relevant factors such as location, time of day, weather patterns and the like. In another embodiment, the platform may be used to identify patterns of behaviors, life bits, life bytes, lifeotypes and/or related information that lead to a certain outcome, such as a positive outcome. For example, sleeping 9 hours per night and exercising every day before noon may result in weight loss. In an embodiment, this information may be used to create a service business.
  • The platform may be used for data business applications. In an embodiment, access to life bits, life bytes, lifeotypes and/or related information may be sold or licensed. In an embodiment life bits, life bytes, lifeotypes and/or related information may be sold. In an embodiment, a particular aggregate view of certain life bits, life bytes, lifeotypes and/or related information may be sold to academics for the purpose of conducting outcome studies. This may allow the studies to be performed on a much shorter time scale of a few minutes as opposed to several years. The platform may also allow for identification of groups of interest. In an embodiment, the platform may allow for identification of individuals with certain life bits, life bytes, lifeotypes and/or related information of interest. The platform may enable a user to contact those people to seek additional information. In embodiments, the people may be paid or given other consideration to provide the missing or additional information. In an embodiment, the platform may allow a user to identify a group of people who take a particular pill, are of a particular ethnicity, and have a particular stress level. The user may want to know the fasting glucose level of these people, but that data is not available. The platform may enable the user to, directly or indirectly, contact all or a portion of these people, or one or more of their representatives, to obtain the fasting glucose level information. The people or their representatives may be paid for the information. The newly obtained information may then be used in other applications.
  • The platform may be used for planning applications. In an embodiment, the platform may be used to automate budgeting and city planning. In an embodiment, instead of giving each state and city money based on how much the state or the American Automobile Association says the roads are utilized, life bits, life bytes, lifeotypes and/or related information may be used to make the determination. The determination may be made on a periodic basis, such as quarterly or annually, and the budget adjusted. The platform may be used for similar applications in the healthcare field. In an embodiment, the platform may utilize behavioral census information in connection with the determinations.
  • The platform may be used for social and social networking applications. In an embodiment, referring to FIG. 27A-27B, life bits, life bytes, lifeotypes and/or related information may be used for match making A dating website or company may match people based on life bits, life bytes, lifeotypes and/or related information. For example, a person who goes to bed at 8 pm and wakes at 5 am is likely not to be compatible with someone who goes to be at 2 am regularly. In another embodiment, referring to FIGS. 28A-28B, the platform may determine a user's probability of locating a person with a particular lifeotype or range of lifeotypes in a particular location, such as a particular bar, neighborhood, city or country. For example, a dating website or business may use the platform, life bits, life bytes, lifeotypes and/or related information to assess whether a particular city has compatible lifeotypes for a particular person and if so in what quantities. This determination may be used to informing vacationing and relocation decisions. For example, the person may want to vacation in an area in which she has a high chance of meeting someone with a compatible lifeotype.
  • In an embodiment, a healthcare professional may summarize, or provide information, including life bits, life bytes, lifeotypes and/or related information, relating to, the types of patients she typically sees or the types of patients she is good at seeing. This information may be aggregated with information obtained from patients, such as ratings, reviews, life bits, life bytes, lifeotypes and/or related information. The platform may enable a user, such as a patient, to choose a healthcare provider based on this information. In an embodiment, the platform may allow a patient to choose or recommend to a patient a certain healthcare provider that is good at treating people with the same lifeotype as the patient. The healthcare provider may be any of the healthcare providers described herein, including a doctor, nurse, pharmacist, physical therapist, weight management specialist and the like. The healthcare professional may also be a more general service provider such as a personal trainer, yoga instructor or the like. In another embodiment, the healthcare professional may be a an institution or organization, such as a hospital, university, health maintenance organization, dentist office and the like.
  • In certain embodiments, the platform may enable the study of how certain life bits, life bytes and other information impact and/or effect the evolution of lifeotypes. This information may be used to impact or affect lifeotypes. In an embodiment, the impact of a particular television show on a group of lifeotypes over time may be studied. Watching the television show may form a segment of life byte information. The show may be a program about weight loss, such as a contest to lose weight named “The Biggest Loser.” It may be determined that watching the program aids individuals who are between 10 and 45 pounds overweight with weight loss. It may also be determined that watching the program frustrates people who are more than 60 pounds overweight. This information may be used to affect the relevant life bytes and lifeotypes by showing the program or similar programs to certain groups of people, determined based on life bits, life bytes, lifeotypes and/or related information. The process may be consensual, with each person consenting to participation in the program.
  • In an embodiment, the relationship between life bits, life bytes, lifeotypes and/or related information and teaching and learning may be determined. Life bits, life bytes, lifeotypes and/or related information along with the relationships to teaching and learning may be used to separate students into groups subject to different teaching techniques to alter the efficacy of the teaching. In an embodiment, life bits, life bytes, lifeotypes and/or related information may be used to alter or optimize a method, system, process, work flow, organizational structure, structure, organization and the like. Life bits, life bytes, lifeotypes and/or related information collected from different people involved in or at different points in the method, system, process, work flow, organizational structure, structure, organization and the like may be used to alter or optimize the method, system, process, work flow, organizational structure, structure, organization and the like. In an embodiment, elderly people and the staff at an assisted living facility may be wearing body monitors. Using the monitors it may be possible to determine when an elderly person soils his or her diaper and this information may be collected and aggregates across all of the elderly people. Using the monitors, or by other means, it may be possible to determine the frequency with which the staff changes the soiled diapers. For example, it may be determined that the staff make rounds to change diapers twice per day. The two patterns may be brought together to assess the typical delay between soiling and changing of a diaper and possibly improve the situation by altering the pattern and reducing the delay.
  • In an embodiment, life bits, life bytes, lifeotypes and/or related information may be used to tailor the delivery of advertising. For example, a person with a physically fit lifeotype that spends time biking, may have bicycle ads focused at them. In another example, if two women always go walking together they may be good candidates for a women's only gym, such as Curves. In an embodiment, life bits, life bytes, lifeotypes and/or related information may be used for career counseling. Life bits, life bytes, lifeotypes and/or related information may be collected in relation to various jobs and careers. Information concerning the satisfaction, ability, performance, happiness and the like of people in certain professions may be collected and linked to life bits, life bytes, lifeotypes and/or related information. This information may be used to generate norms or profiles of certain profession and lifeotypes pairs or groupings which may be used for career counseling. In an embodiment, the platform may allow a user to determine which job she should accept in order to maximize her happiness and productivity.
  • In embodiments, life bits, life bytes, lifeotypes and/or related information may be used to model or study transmission of certain diseases and conditions. In an particular embodiment, life bits, life bytes, lifeotypes and/or related information from many people in a particular area may be used to build more detailed models of the transmission of particular disease or condition whose onset is detectable in the life bits, life bytes, lifeotypes and/or related information of the people. The disease or condition may be a cold, flu, infection or the like.
  • In embodiments, lifeotype information may be used for recruiting. In an embodiment, a company may determine use life bits, life bytes, lifeotypes and/or related information to determine that people with certain lifeotypes function better at the company and may use this information to inform hiring decisions. In embodiments, a company may use life bits, life bytes, lifeotypes and/or related information to build models of the kinds of lifeotypes that seem to drive retention and success at work in order to try to promote those lifeotypes in the company. For example, if it turns out that people who sleep more than 8 hours per day tend not to ever be promoted at a particular company, but those who sleep less than 6 hours per night tend to burn out and quit, and those who fall in the middle stay at the company 90% of the time from year to year and the promotion rate is 35% from year to year, then the company may suggest or require time in bed to be changed from 7 to 9 hours to 6 to 8 hours. In embodiments, life bits, life bytes, lifeotypes and/or related information may be used to monitor and affect morale in a workplace, school, military environment, prison or the like.
  • Referring to FIGS. 14 through 17, lifeotypes may be identified and analyzed in a variety of ways. The Platform may identify, generate and create lifeotypes. The analysis layer may identify, generate and create lifeotypes. The following techniques may be used to identify and analyze lifeotypes: iterative optimization, genetic programming, stochastic simulations, model generation and model use (including dynamic probabilistic networks), simulated annealing, Markov methods, reinforcement learning, partial programming, stochastic beam search, model based search, goal-based search, goal-based methods, feedback loops and artificial intelligence. The Platform and/or analysis layer may learn. The Platform and/or the analysis layer may determine the number of life bits and life bytes to include in a lifeotype. This determination may be based on many factors, such as user selection, optimization of data processing or the number of traits required to obtain uniqueness. Feedback loops may identify additional life bits and life bytes, or recommendations for new life bits and life bytes to seek data in connection with. The processes involved may be dynamic.
  • Identifying lifeotypes may involve identifying parameters that may be sensed. This may largely be determined by what is available. Identifying lifeotypes may involve identifying parameters that may be derived. This will be determined at least in part by what is useful for other applications. Identifying lifeotypes may involve identifying patterns in the derived data. In an embodiment, the pattern may be many nights of low sleep as a pattern of “prolonged sleep deprivation.” In an embodiment, the pattern may be many exercise events per week being called an “active person.” In an embodiment, the pattern may be more than 4 hours of exercise per day being identified as an “exercise bulimic.” In an embodiment, the steps for identifying lifeotypes may involve identifying what is it about the world that is desired to be understood or predicted. For example, information concerning prolonged sleep deprivation. The next step may be determining if there are patterns in the derived data that can be discovered through human intervention and description, automatic discovery by a computer or both. The relationship of the patterns in the derived data to the topic to be understood may then be assessed. If there is a strong relationship the analysis may be sufficient. If there is not a strong relationship, the analysis may involve determining if there are new derivable parameters that would be of assistance. If the data is available these parameters may be added and the steps repeated. If this data is not available it may be requested or surrogates may be identified. If this can not be done or the raw data is not available, then the question may be asked “what could be added to the raw data pool (i.e. what new parameters could be directly sensed or calculated or gathered in some way) such that the analysis can be performed? If such a set of new raw values in would help and could be gathered then either add them or do what it takes (i.e. adding the sensors to new body monitors) so that at some point in the future the data will have these new values and the process can be repeated.
  • In an embodiment, lifeotypes may be created, identified, discovered and the like by a lifeotype discovery module. The lifeotype discovery module may utilize a novelty detector, for example, in the domain where physiological data is collected and a large body of such data exists for many individuals. Any variable that, for some subset of individuals, is statistically outside the norms for the population could be of interest. In an embodiment, for a large dataset, an infinite number of features may be defined of varying complexity. This continuum can be thought of as starting with single variable reports about an individual (e.g. their average daily physical activity is low) to relative measures (e.g. their average daily physical activity is low for their age) to complex pattern based interactions (e.g. their daily physical activity after a night of poor sleep is high for their age). The Platform may determine which lifeotypes have utility. In one embodiment, the lifeotypes selected may be those that have some predictive power with respect to other lifeotypes, as determined by an analysis module.
  • In an embodiment, feature discovery may proceed by starting with the simplest single variable features (e.g. total values per day of sleep, energy expenditure, or physical activity and the like) and examining whether statistically significant relationships exist to other measures of interest (e.g. health outcomes, disease states, weight loss, stress level, and the like). The user may set up these different classes of lifeotypes (e.g. input and output) or the Platform may try all pairs. In this example, only features that are sufficiently strongly correlated would become true or saved lifeotypes. Another embodiment would utilize a random walk across pattern space (instead of using an ordered list), utilizing techniques from the stochastic beam search literature, evolutionary computation, simulated annealing, Markov Chain, Monte Carlo and the like. The invention machine, in one embodiment, can be constantly searching over the database to find relationships between patterns and outcomes that exceed a given statistical level. A related embodiment allows the human users of the system to “prime” certain patterns to be tested for first and/or serve as starting points for the search.
  • The Platform, analysis layer, sensors, systems and methods may be calibrated, such as by using algorithm to improve another. In an embodiment, a GSR measurement can be used to more correctly interpret a heart rate measurement. As a result, even in the absence of the GSR measurement, based on the past GSR data, a more accurate heart rate measurement may be obtained. This process may also allow for calibration of slow changes in a user over time. For example, a user may wear more clothing in the winter than in the summer. Calibration may be done through the use of a training pack and/or calibration pack. The training and/or calibration pack may be a component of an item of fitness equipment. In an embodiment, the training pack may contain sensors which may measure heart rate. The data collected by the heart rate sensors may be used to calibrate the algorithm used to determine energy expenditure from other sensors. The heart rate sensors may be more sensitive and a correction algorithm may update or calibrate the determination of energy expenditure. In an embodiment, a location pack may provide location and other contextual information, such as, in the car, in the wearer's home gym, and the like. The location and contextual data can be used to calibrate the determination of energy expenditure. Contextual data may also be used to inform or adjust measurements and/or algorithms. A marker may be used for calibration.
  • The Platform and/or analysis layer may analyze and process lifeotypes and related data. The Platform and/or analysis layer may identify lifeotype patterns and/or correlations across different populations, sub-populations, groups or sub-groups or across different lifeotypes, life bits and life bytes. The correlations may be overtime. The Platform and/or analysis layer may classify a population by sex, sexual orientation, race, ethnicity, culture, age, conditions, geographic region, medical conditions, activity levels, participants in a certain game or sport and the like. The Platform and/or analysis layer may identify relevant lifeotypes, life bits, life bytes, parameters, other data and the like. In an embodiment, the Platform and/or analysis layer may identify sub-populations in disparate sections of the world which share certain lifeotypes. For example, people in Helsinki and those in a mountain valley region in California may share certain lifeotypes, life bits and life bytes as they both live in a cloudy climate.
  • The Platform and/or analysis layer may identify pattern-inference pairs or groups. In an embodiment, the Platform and/or analysis layer may identify that a person who does X dies within Y or a person who does activity V is likely to contract condition W. The pattern-interference pairs may take into account time and/or geography. The Platform may allow for predictions of the future or identification and extension of trends. The Platform may allow a user to determine how making a change in the past would affect a current situation. The Platform and/or analysis layer may allow for self-testing. Platform and/or analysis layer may predict future outcomes for an individual and show likely default outcomes given current lifeotype expression. The Platform and/or analysis layer may allow what-if testing. The Platform and/or analysis layer may utilize probabilities in the prediction of the future. For example, stopping smoking decreases chances of throat cancer and increases the chances of short-term stress.
  • The Platform and/or analysis layer may generate many correlations, conclusions, results, pairs and the like and create a database of them which may be analyzed by the Platform and/or the analysis layer. The Platform and/or analysis layer may publish reports and suggest future studies. Platform and/or analysis layer may make recommendations. The Platform and/or analysis layer may generate treatment programs. The Platform and/or analysis layer may generate sub-populations or sub-groups for certain purposes. The Platform and/or analysis layer may derive data. The Platform and/or analysis layer may utilize iterative optimization. The Platform and/or analysis layer may utilize genetic programming. The Platform and/or analysis layer may utilize feedback loops. The Platform and/or analysis layer may utilize cycling back. The Platform and/or analysis layer may utilize artificial intelligence. The Platform and/or analysis layer may actively search for more information. The Platform and/or analysis layer may make requests of its users. In an embodiment the Platform and/or analysis layer may ask a user to provide three more blood samples.
  • The Platform and/or analysis layer may be mined as an invention machine. The Platform and/or analysis layer may utilize the concepts of an invention machine, such as by being a goal-driven iterative engine searching for solutions. The Platform and/or analysis layer may identify trends in lifeotypes and in information accessed or provided to users. The Platform and/or analysis layer may use a loop to identify additional life bits and life bytes, or recommendations for new life bits and life bytes to seek data in connection with. The Platform and/or analysis layer may discover new life bits, life bytes, derived data, surrogates and the like. The Platform and/or analysis layer may be used for predicting. In an embodiment the Platform and/or analysis layer may be used to predict the success of research programs, success of projects, success of business initiatives, future disease states, stocks to buy and the like. The Platform and/or analysis layer may be used for guided information gathering. Further, the Platform will reveal new types of information that allow for the creation of particular assessment times and protocols. For instance, it may be determined that viewing the continuous sensed data of an individual for 15 minutes upon waking will give insight into whether that person is at risk for heart disease. In this way, the Platform can make specific predictions about individuals from specific sources and types of data, which the Platform itself has determined to be optimal.
  • In an embodiment, the analysis may include identifying high value lifeotypes. The Platform may examine a library of lifeotypes as a model of the world with probabilistic outcomes and perform behavior learning using any of a number of techniques to produce an optimal strategy to obtain a desired outcome. As an example, for a particular individual (say, a 35-year old smoker who also exercises vigorously three times a week and eats poorly), the system may analyze the\particular lifeotype and determine that the most useful (and likely to be successful) strategy would be to cut back on smoking by 50% and eat better, rather than quitting smoking entirely. The system may determine this by considering many different action-strategies, using the stored data to simulate the effects, and searching over the action space to find an optimal policy. Reinforcement learning and the class of program search strategies may also allow the solution of this behavior optimization strategy.
  • Lifeotypes may be based on relative measures. There may be relative lifeotypes, relative life bytes and relative life bits. Changes from a baseline or norm may be recorded in connection with a relative lifeotype, relative life byte and/or relative life bit. Lifeotypes, including relative lifeotypes, may map to a diagnostic measure, such as non-invasive glucose, pulse pressure from heat flux, skin temp, galvanic skin response and the like. The Platform may assist with understanding the lifeotype associated with a particular life byte sequence, set of life bytes and/or set of life bits. The Platform may also assist with determining the life byte sequence, set of life bytes and/or set of life bits associated with a particular lifeotype. This process may be analogous in certain respects to the protein folding problem. The Platform and/or analysis layer may utilize successive measures (e.g. one week recordings 4 times a year) to detect early the signs of a disease, such as heart disease. Coaching and/or human input may be part of the analysis. The Platform and/or analysis layer may view or provide views of slices and/or aggregations of the data. This may generate automatic and accurate population models. The Platform and/or analysis layer may utilize and/or contain databases, disk-based databases, distributed databases, store and forward databases, peer to peer databases and the like.
  • Many different types of users or groups of users may use the Platform and/or lifeotypes and related concepts. These users or groups of users may be consumers of the Platform and/or lifeotypes and related information. A user may be a medical or scientific user, such as a scientist, researcher, doctor, healthcare professional, healthcare worker, caregiver, academic, educational institution, institution, hospital, other healthcare facilities, patient, an infant, a child, an adolescent, an adult, an elderly person and the like.
  • A user may be a lifestyle user, such as an athlete, personal trainer, gym, fitness club, sports team, youth group and the like. A user may be an entertainment user, such as a gamer, celebrity, fan and the like. A user may be a business user, such as a marketer, advertiser, insurer, actuary, personnel in a health maintenance organization, data business, enterprise software business, financial services business, security business, investment industry business, an administrative user and the like. A user may be someone who is curious. A user may be a policy maker, public health official, epidemiologist, government and the like. A user may be the World Health Organization, National Institutes of Health and the like. A user may be a consumer, employer, workplace, employee and the like. A user may be a community, social network and the like. A user may also be an entity, such as a company, or a computer system, such as a computer system that is making use of the Platform. A user may be a system or method that is making use of the Platform and/or lifeotypes or related information.
  • The Platform may be applied in many ways including for medical applications, filtering data, publishing, report generation, policy making, insurance-related applications, search, self-assessment, entertainment, applications relating to interactive spaces, novelty, controlling a device, operating a device, controlling a third parameter, monitoring a workplace, security, marketing, advertising, human resources, military uses, law enforcement, first responders, sports recruiting, analytics, consulting, reviews, content presentation, data integration, data sales, reporting, concierge services, registries, royalty systems, artificial intelligence, sales, product design, therapy, advice, predictions, coaching, comparisons, financial applications, e-commerce, voting, politics, crime scene investigation, forensics, identifying related persons, clinic trials, tagging and the like. In discussing the application of the Platform, the term lifeotype may also include lifebits, lifebytes and/or lifebyte sequences. Any of the applications of the Platform may be implemented as a system, method, apparatus, application and/or service.
  • The Platform may be utilized for medical applications, such as medical monitoring. In an embodiment, the Platform may be used to monitor patients. The patients in an emergency room or in the waiting room of the emergency room may be outfitted with wearable monitors. Using the monitors, various lifeotypes of the patients can be ascertained. This information may be used for treatment. Healthcare providers can also monitor changes in the lifeotypes of patients and treat them before they crash. Using the Platform and lifeotype information a healthcare provider may be able to predict when a patient is going to crash and treat the patient before that time. The Platform may be integrated with existing monitoring systems in the emergency room and display lifeotype, life bits, life bytes and lifestyle data along side traditional monitoring systems. The Platform may be used in triage situations. Dynamic or low resolutions lifeotypes, as discussed herein, may be more relevant in medical emergency or triage conditions. In an embodiment, the monitoring method may involve determining a condition of a body, comprising continuously measuring the pulse of the body; continuously measuring the heat flux from the body; inferring from the measurements of the pulse and the heat flux the nature of an activity of the body; and delivering information about the condition of the body that depends on the nature of the activity. In an embodiment, the monitoring may be in connection with a monitoring device, such as a sensor device, metabolic halter and the like. The data may be provided to a healthcare professional who may use the data in connection with a patent appointment, such as for a physical. In an embodiment, the data may include data regarding energy expenditure, glucose levels and the like. In an embodiment, the data may be used in connection with monitoring and managing diabetes.
  • In an embodiment, the monitoring may be in connection with a medical trial, such as a pharmaceutical trial or the like. The monitoring may facilitate the collection of data and may result in the collection of a wider and deeper range of data and data that is more objective than data obtained by traditional means. The monitoring device may measure metabolism and data concerning metabolic rate changes may be collected. In another example, the monitoring device may measure energy expenditure, heart rate and galvanic skin response and also included a glucometer and accelerometer. The sensors may be non-invasive. The data may be used in connection with diabetes and an algorithm may determine relative levels of glucose based on the data. The glucose levels may be compared to energy expenditure levels to detect any inconsistencies. The data may be collected over time. The result may be the ability to track relative levels of glucose and alert an individual when necessary. In an embodiment, the systems and methods may be used in an intensive care unit to track VO2 and energy expenditure. In an embodiment, the systems and method may be used to assess whether patients are receiving adequate nutrients. For example, the systems and methods may be used to assess whether patients in a hospital are being over or under fed. In an embodiment, the systems and methods may be used in connection with heart transplant patients to measure the strength of the heart overtime. In an embodiment the systems and methods may be used to measure energy expenditure in connection with fiber maloma or fibromyalgia. In an embodiment, the systems and methods may be used to monitor or control drug delivery. In an embodiment, energy expenditure and another parameter may be used to solve for a missing parameter or assess an inverse relationship on measured parameters. For example, energy expenditure and weight may be used to solve for glucose and heart rate. In another example, with hypertension, a marker and energy expenditure, the systems and methods may be able to determine blood pressure. In embodiments, the systems and methods may adapt, self-calibrate, calibrate based on past data, learn over time, reinforce learning and the like.
  • In an embodiment, the Platform may facilitate determining an inverse, causation and/or cumulative relationship. In an example, a person it may be determined that a person who has not slept in 36 hours and has not eaten in 10 hours, is likely to be fatigued. A cumulative condition may be a condition where an individual's condition may be deduced from the individual's behavior over some previous period of time. In an embodiment, techniques for determining an inverse, causation and/or cumulative relationship may be used by first-responders (e.g. firefighters, police, soldiers and the like). In an example, the wearer of a sensor device may be subject to extreme conditions and if heat flux is too low for too long but skin temperature continues to rise, the wearer is likely to be in danger. In another embodiment, the inverse, causation and/or cumulative relationship may be determining why a baby is crying. The factors that may be considered include temperature, heart rate, orientation, activity type, state of sleep, crying and the like. In another embodiment, the inverse, causation and/or cumulative relationship may be determining why a patient, such as a patient in an assisted living environment, is not getting well. In another embodiment, the inverse, causation and/or cumulative relationship may be determining why a person in an emergency room is crashing. Factors that may be considered include sensor data, data from at least a two sensor array, hunger, temperature, fatigue and the like.
  • In a detailed embodiment, the Platform may be used to monitor certain parameters in connection with diabetes. The Platform may monitor energy level and determine glucose levels and provide guidance. The Platform may advise the patient, a doctor, healthcare provider or the like to adjust an insulin pump or to modify energy expenditure via lifestyle changes. The Platform may also consider markers, such as markers relevant to type I diabetes, markers relevant to type II diabetes, genetic markers and the like. The Platform may also monitor weight, cardiac status, vascular effects, perfusion to periphery (such as feet), profusion of small blood vessels and the like. The Platform may also monitor surrogate measure or derive new surrogate measures. The Platform may optimize inputs and outputs, such as by considering time related factors.
  • The Platform may be utilized for medical decision making. In an embodiment, the Platform may be used to inform decisions regarding treatment. Medical decisions can be based in whole or in part on lifeotypes and related data. The Platform may allow a user to plot lifeotypes against intraventions. Lifeotypes and related data can be used to assist medical professionals and patients with treatment choice. The Platform may enable identification of prior patients with similar lifeotypes and may enable review of the decision trees for those patients. In an embodiment, the Platform may track the decision tree of a particular patient. In this regard, the Platform may help to predict the outcome and likely effects of a treatment plan. The process may be automated and the Platform may derive the advice. Using the Platform a patient may be able to determine which healthcare provider has the most successful treatment and/or rehabilitation record for the patient's lifeotype. Using the Platform the patient may be able to obtain user ratings from other patients.
  • The Platform may be utilized for medical studies and/or diagnosis. The Platform may be used to better delineate known diseases, conditions and syndromes and to identify new diseases, conditions and syndromes. The Platform may be used to identify new treatments. The Platform may be used for therapy. The Platform may be used to identify groups or cohorts for therapy based on lifeotype. Support groups or clinical trial cohorts may be created based on lifeotype. A patient may be paired or grouped with other individuals who have or are dealing with similar issues or are in a similar state of health. A patient may be paired or grouped with other individuals who have survived a particular condition or disease or who have improved their condition. A user may connect with others or review their data to determine what they did to achieve a particular goal. The Platform may analyze and predict the likelihood that the therapy or treatment will work for another, using lifeotype data.
  • The Platform may be used to determine the efficiency of medical providers. The Platform may be used to determine the efficiency of a particular healthcare professional or of a department or functional unit, such as an emergency room, nursing station, intensive care unit, laboratory, neonatal ward and the like. The Platform may be used to determine and track the success rates and patient ratings of a particular medical provider. The Platform may be used to track treatment success and patient ratings in general. The Platform may be used to deliver content based on lifeotypes and related information. In an embodiment, a patient may be provided with personalized healthcare content based on lifeotype and related data. In another embodiment, a search may be customized based on lifeotype data. The Platform may allow for the creation of content in real time. The Platform may generate blogs based on lifeotypes and related data. As discussed below, the content may be advertising.
  • The Platform may be utilized for disease management. The Platform may perform lifeotype-based risk calculation in disease management to prevent or manage a disease, such as heart disease. The Platform may be used for drug titration. The Platform may, or enable a user to, preemptively identify disease treatment and prescribe treatment. In an embodiment, a person may have a hypertension-related lifeotype. The Platform may determine that exercise may benefit this person based on the lifeotype information. The Platform may provide personalized feedback to the person. The Platform may generate a report. The Platform may assist with modifying the behavior of the person. The Platform may generate a program guide and/or provide a program guide to the person. Based on exercise and nutrition, the Platform may predict blood pressure, disease state, severity or changes in any of the foregoing. The relationship may be cause and effect or inverse/reverse diagnosis. A hypertension marker may serve as a calibrator. Lifeotype information may be used to inform drug delivery. The Platform may be applied to wellness, health, diagnosis, condition management and the like.
  • With respect to choosing drugs and dosages, the data described herein and changes to that data including lifeotype data could be used in much the same way as a persons genetic profile is used in pharmacogenomics. For example, an indicidual could be assessed with the systems and devices described herein one time, or at intervals to determine the correct dosage.
  • In an embodiment, the Platform may be used in connection with the diagnosis of heart disease by providing a wearable body monitor disposable on the upper arm of a patient; deriving electrocardiogram from sensors associated with the wearable body monitor; comparing the electrocardiogram with at least one electrocardiogram of a member of a healthy population; and based on the comparison, making an assessment as to the probability that the patient has heart disease. In an embodiment, the Platform may be used in connection with managing stress by providing a wearable body monitor having at least two sensors for sensing conditions of the body; and deriving an indicator of stress from the data streams of the two sensors.
  • In an embodiment, the Platform may be used in connection with supporting care giving by providing a person with a wearable body monitor, the monitor including a plurality of sensors for sensing conditions of the person's body; automatically inferring the nature of the activity of the person from the output of the plurality sensors; and providing a caregiver for the person with information about the activity. In an embodiment, the Platform may be used in connection with therapeutic methods by inferring a condition of the wearer of a wearable body monitor from the output of a plurality of sensors that are associated with the wearable body monitor; and based on the inferred condition, recommending a time for the administration of a therapy that is related to the inferred condition.
  • In an embodiment, the Platform may be used in connection with patches and disposable sensors that may both sense body conditions and, in a closed loop, possibly without human intervention, administer a therapy which may change the body's state. In an embodiment, the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor, that senses the presence of a headache, and that may administer a pain-relief medication through the skin. The determination to administer the medication, determination of the dose and the like may consider lifeotype information. In an embodiment, the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the imminence of panic-attack, and that administers a claming agent through the skin. The determination to administer the agent, determination of the dose and the like may consider lifeotype information. In an embodiment, the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the presence of stress and that administers a tactile reminder to promote bio-feedback for stress reduction. The determination to administer the feedback, determination of the duration and intensity of the feedback and the like may consider lifeotype information. In an embodiment, the Platform may be used in connection with an apparatus worn against the body with at least one sensor, a processor that senses the presence of a heart attack or stroke and that administers a blood thinning medication through the skin. The determination to administer the medication, determination of the dose and the like may consider lifeotype information.
  • In an embodiment, a marker may be used in connection with the Platform for medical applications. The marker may be a marker related to the risk of lung cancer, such as consuming vegetables. The marker may be related to certain proteins and indicate information regarding exercise, diabetes, bone density and the like. The marker may be a genetic marker. The marker may take into account environmental factors. In an embodiment, a relevant marker may be identified and an individual may be provided with a monitor. The monitor may collect information relevant to the marker. The monitor may assist with administration of a program or regime. The monitor may assess compliance and adjust variables based on the level of compliance. The data collected by the monitor may be provided to a healthcare professional. The healthcare professional may use the data in connection with a physical. The data may indicate a reduction in a condition. The data may be used to provide feedback or to calibrate the system. The system and method may be used in connection with various conditions, such as diabetes, obesity and the like. In the aggregate the system and method may function as a health census for a population, group or nation and the like.
  • The Platform may include or function as a data filter. The Platform may enable data to be sorted or viewed based on lifeotypes and related data. Using the Platform, it may be possible to obtain validated results in a particular space for a particular lifeotype, even though that space was not tested directly. In an embodiment, a study on one topic may have had many results relevant to another topic, which is now relevant for another purpose. Using the Platform, the data can be sorted and viewed based on the other topic (with controls if necessary) and conclusions may be drawn about that topic. The Platform may facilitate auto-generation of control groups and datasets for appropriate cross-validation. Using the Platform, it may be possible to identify, based on lifeotype information, data sets that are a subset or cross section of another data set obtained for a different purpose, that may be relevant to other studies.
  • The Platform may be utilized for publishing. In an embodiment, the Platform may auto-publish material based on lifeotypes. The material may be reports, results, outcomes, studies and the like. In an embodiment, a report may be of the form of FIGS. 29A-29B. In an embodiment, the Platform may auto-complete forms, such as medical records, insurance forms and the like. The Platform may publish to a doctor, patient, family, employer, insurer and the like. The Platform may suggest a revised treatment or decision pattern. The Platform may include a publishing engine, which may auto-publish material. The publishing engine may make the determination to publish based on set parameters. In an embodiment, a patient may ask a question and if the results are interesting enough then the application may publish the response, such as in the form of a scientific paper, on the internet, making it available to other people. In an embodiment, the publication engine may publish material in the following scenario: if 80% of patients with a particular lifeotype choose option A, and 20% of patients with the same lifeotype choose option B, but option B actually produces better results. The publishing rule may be that when the outcome is counter intuitive, the publishing engine is to publish a paper automatically, provided that all correlations are above 0.9 and the sample size is 1000 or more people. The Platform and/or publication engine may utilize correlations, aggregation and statistics. The Platform and/or publication engine may personalize healthcare content based on lifeotype and related data. The Platform and/or publication engine may customize a search for a website based on lifeotype data. The Platform and/or publication engine may create blogs based on lifeotype and related data. The Platform and/or publication engine may create a spatial map of lifeotypes, which may be tied to location, emotions and other information.
  • The Platform may be utilized for policy making. In embodiments, the Platform may be used to study problems and issues with a healthcare system, such as a country, state or provincial healthcare system. The Platform may be used to assist policy makers spending healthcare budgets. The Platform may assist with determination of where to spend insurance money. The Platform may be utilized for insurance-related applications. Actuarial tables, probability tables and mortality tables may be based on lifeotypes. The Platform may be used in connection with insurance sales. In embodiments, the Platform may assist with underwriting insurance policies based on lifeotypes. The Platform may assist with the determination of where to spend insurance money based on lifeotypes. Using the Platform, lifeotypes may be used to affect underwriting, insurance pricing, annuity pricing, pricing of defined benefit plans, benefits, determination of coverage, identification of pre-existing conditions and the like. The Platform may form a part of a service of associating lifeotypes with overall life expectancy or with insured conditions.
  • The Platform may be utilized in connection with a search function. Lifeotypes may be used to filter, order and/or cluster search results. The search function may present content based on lifeotypes. The search function may be based on a page rank style analysis of link structures based on lifeotypes. The search functionality may be a search engine which may account for lifeotype.
  • The Platform may be utilized for self-assessment. In an embodiment, the Platform may recommend dietary decisions. The Platform may allow a user to review the success of different dietary plans for individuals with similar lifeotypes. The Platform may allow a user to compare the user's own results on different plans. The Platform may allow a user to track what is working for the user and for others based on lifeotype. The Platform may allow for consideration of an Atkins diet and may consider data from a BodyBugg device. The Platform may allow a user to monitor food intake and/or nutrition and assess effects based on lifeotype. The Platform may allow a user to monitor fitness and/or lifestyle choices and assess effects based on lifeotype. The Platform may enable behavior modification based on lifeotype. The Platform may assist a user in training for a goal. The Platform may affect or maximize a user's success with respect to any project. In an embodiment, the Platform may assist a user with a dietary regimen by deriving an indication of a calories consumed from the output of a wearable sensing device that includes a pulse meter and a heat flux meter; and wirelessly sending information about calories consumed to a personal digital assistant of the patient. In an embodiment, the Platform may assess fitness by providing a wearable body monitor having a pulse sensor and a heat flux sensor; deriving an activity type from the outputs of the pulse sensor and the heat flux sensor; and based on the activity type and the outputs, assessing the fitness level of the wearer.
  • The Platform may be utilized for entertainment-related applications. Social networking may be organized by lifeotype. In an embodiment, a social networking website, such as myspace.com, may present content and facilitate social networking or create groups based on lifeotype. Internet audio and video, such as on Youtube.com or Break.com, may be organized or indexed and/or presented based on lifeotype. Lifeotypes may be used as an index for content, media, entertainment, leisure and the like. The Platform may be used to unite people based on lifeotypes. The Platform may be used for dating applications. Dates may be arranged or introductions may be made based on lifeotype information. The Platform may be used for competition. The Platform may identify groups of competitors based on lifeotypes. The Platform may allow for the operation of a device, such as an entertainment device, based on lifeotype. In certain embodiments, lifeotypes may be used as tags. In other embodiments, tags may be interpreted based on lifeotypes.
  • The Platform may be used for gaming. In an embodiment, lifeotypes may be used in connection with holodeck type applications. In an embodiment, lifeotypes may be used in connection with massively multiplayer games. A player's character(s) in a game, such as an online, multiplayer or other game, may be affected by the player's lifeotype and actions in the real world. In this way, lifeotypes and related information may restrict, enable or define the character(s). If a player becomes more fit, his character(s) in the game may be able to run faster and jump higher. If a player improves his diet his character(s) may become stronger. If a player's lifeotype changes, similar changes may happen to this character(s) in the game. In an embodiment, the Platform may provide a behavior feedback and/or modification program, with virtual or real coaching, to guide an individual towards his character in a game, such as a video game. The Platform may tailor experiences to a user. In an embodiment, the Platform may tailor the game and/or experience to the user based on lifeotypes and related information. In an embodiment, a user may wear an armband for a week and the system may gather data and calibrate the experience based on the information collected. The Platform may also allow a user to replay experiences of others. In an embodiment, the Platform may also enable the virtual courtship of online-sex-partners. In order to win the affections of someone online, a user may be required to “deserve” them in the real-world. This application may be an extension of an adult friend finder application.
  • The Platform and lifeotype information may be used for entertainment with interactive spaces as discussed herein. The Platform and lifeotype information may be used for sports-related application. The participants in a sports or gaming league may be chosen based on lifeotypes and related data. The teams for a sport or game may be chosen based on lifeotypes and related data. Other cohorts or groupings may be chosen based on lifeotypes and related data. Lifeotypes and related data may be used to tag entertainment content by lifeotype. Lifeotypes and related data may be used to censor or scale content. In an embodiment, an individual may be shown a less stressful version of a movie as a result of this lifeotype. For example, his lifeotype may be characterized by a weak circulatory system and a pre-disposition toward heart attacks. Content may be delivered based on lifeotypes and related data. Content may be print media, such as books, news and the like, along with online analogs. Content may also be audio, music, video, games, video games, blogs, podcasts, images, art, fine art and the like.
  • Lifeotypes and related information may be used in connection with or to create interactive spaces. A space may be affected based on the combination of lifeotypes in the space and the proximity of certain lifeotypes. Lifeotypes may function as a filter that affects a certain space or environment. Attributes or features of a space may be modified based on lifeotypes or changes in lifeotypes. Variables of a space which may be modified include brightness, color, volume, sounds, temperature, air quality, pressure, distance between objects (such as furniture), protection from outside, status of entries, status of exits, presence of objects, absence of objects and the like. In an embodiment, the lights in a room or section of a room may be dimmed when a person with a lifeotype including susceptibility to migraines enters the room or section of the room. In another embodiment, the space may be a buffet in a cafeteria. The buffet may re-configure the food offerings to present sugar free food choices to a person with a diabetic lifeotype. In another example, the lights in a space may be dimmed and music may be played or modified if two compatible lifeotypes enter a space. In an embodiment, users may be equipped with stress meters and the space may be a meeting room or auditorium and the Platform may provide feedback to a given user or others in the room.
  • Lifeotypes and related information may also be used for novelty purposes. In an embodiment celebrity lifeotypes may be offered for sale or used for comparison purposes. Horoscopes may also be based on lifeotypes and related information. In another embodiment, the popularity of lifeotypes may also be presented. A user may be able to see how popular his lifeotype is and may be provided with a list of famous people with the same lifeotype or with compatible or antithetic lifeotypes. Lifeotypes may also be used to impact or control a device or another parameter. In an embodiment, a sensor, processor, computing device or the like may be controlled based on lifeotype. A user may have a lifeotype for which the Platform determines another parameter should be measured and the Platform may turn on another sensor to measure that parameter. In an embodiment, lifeotypes and related information may trigger an event or control of another device.
  • Lifeotypes and related information may be used for workplace monitoring. A workplace can be monitored or surveyed for lifeotypes and related information. In an embodiment, an employer may monitor employees, such as by outfitting each employee with a wearable sensor device, to determine when employees are stressed, and when a breakdown is likely to occur, based on lifeotypes and related data. In another embodiment, the military may use lifeotype information to assess and monitor morale and identify potential problems and issues. In embodiment, lifeotype information may be used to assist with monitoring a worker by providing a wearable body monitor, the wearable body monitor including a plurality of sensors and a facility for inferring the nature of the activity of the worker from the outputs of the sensors; and providing a report generating facility for reporting the activities of the worker over a period of time. Lifeotypes and related information may also be applied in security-related applications. Lifeotypes may be used to monitor prisoners, such as to predict a prison uprising. Lifeotypes may also be used to interpret the stress levels of border guards and security guards to predict potential security breaches. Lifeotypes and the Platform may be used for anti-terrorism applications. In another embodiment, the anxiety level of a truck driver, boxer and others may be monitored.
  • Lifeotypes and the Platform may be used for marketing and advertising. Marketing and advertising may be targeted based on lifeotypes and related information. Lifeotypes and related information can be combined with location and contextual data to further customize an advertisement. A marketer or advertiser may determine if a product works or is likely to work for a target person or group based on lifeotypes and related data. Using the Platform and/or sensors or body monitors, a user can verify receipt of an advertisement or marketing message and also determine the target person or group's response to the advertisement or message. In an embodiment, the Platform may permit a marketer to determine if the target person laughed at the advertisement. Lifeotypes and related information may be self-reinforcing and may realize network effects. The more lifeotypes and related data that are generated the more valuable the Platform and the information becomes. Once there is a base of data for comparison and the like, more people will want to use the Platform, systems and methods to take advantage of the data.
  • The Platform and lifeotype information may be used for recruiting purposes. The Platform and lifeotype information may be used for human resources related applications. In an embodiment, lifeotypes and related data may be used as part of the interview process, for recruiting, determining compensation, workforce management, performance evaluation, retirement planning, determining benefits, planning for succession and the like. The Platform and lifeotypes may also be used in connection with recruiting for the military, law enforcement, fire fighting, paramedics, first responders and the like. The Platform and lifeotypes may also be used to assess morale and for profiling and advancement. Lifeotypes and related information may be used to determine eligibility for certain ranks and missions. In an embodiment, the special forces may have certain lifeotype-related entrance criteria. The Platform and lifeotypes may also be used in sports recruiting. In embodiments, the Platform and lifeotypes may also be used to locate and/or draft athletes.
  • Lifeotypes and related information may be purchased and sold. An individual may want to know his lifeotype or learn of changes in his lifeotype, and he may purchase this information. Individuals may also sell their lifeotype information, such as to other individuals, third parties, data warehouses and the like. Lifeotypes may be sold with comparative or interpretive information regarding lifeotypes in general or specific lifeotypes. Lifeotypes may be sold with user manuals or other content regarding one or more lifeotypes. Analytics and consulting may be provided in connection with lifeotypes. In embodiments, analytics and consulting services may be provided in connection with identification and analysis of lifeotypes. Lifeotypes and related information may also be used in connection with content presentation and censoring. In an embodiment, a less intense version of a movie or a movie with an altered ending may be presented based on the lifeotype of the viewer. Reviews of content, products, services and the like may also be presented based on lifeotypes. Lifeotypes and related information may be used to sort, filter and present reviews. In an embodiment, an average rating of a particular fitness product may be presented to a user, but the rating may consist of an average of only those ratings from individuals with the same lifeotype as the user.
  • The Platform may be integrated with other systems that handle data. The other systems may include medical systems, healthcare systems, entertainment systems, security systems, alarm systems, financial systems, transactional systems, automobile systems, home networks, home theatre systems, wireless networks, workplace information technology systems, airport systems, airline systems, transportation environment systems, systems in recreational environments, such as sports arenas, concert halls and theatres, and the like. Lifeotype data and related data may be sold to data businesses. Lifeotype data and related data may be used for data analysis, data mining, data warehousing and the like. In embodiments, a user may purchase a seat for use of the database. In embodiments, a user may purchase analysis and services in connection with the data. In embodiments, users may purchase tailored datasets for studies. Users may include researches, governments, health care organizations, such as the World Health Organization, National Institutes of Health, the Center for Disease Control and the like, academics, industry, private sector participants, commercial users, individuals and the like.
  • The Platform may include an artificial intelligence engine. The artificial intelligence engine may utilize data or make use of experiences based on lifeotype data, such as by indexing information based on lifeotype. The Platform may generate reports, indexes, predictions and the like. The Platform may generate Dunn and Bradstreet type reports based on lifeotypes. The Dunn and Bradstreet type reports may relate to a company, users of a particular product, fans of a particular show, fans of a particular sports team, audience and the like. The Platform may allow for the identification of related persons based on lifeotypes. Family trees may be built based on lifeotype information. Lifeotypes may evolve overtime and across generations. The Platform may be used to study the evolution of lifeotypes. The evolution of lifeotypes may be studied in relation to genetic evolution information. Lifeotypes and related information may also be used in crime scene investigation and forensics. Lifeotype information may also be registered with a registry. In an embodiment, lifeotype information for criminals in a certain area may be registered with a lifeotype registry maintained by law enforcement.
  • Lifeotypes and related information may form part of a royalty system. In an embodiment, a user may receive a payment if he or she chose to opt-in to a lifeotype information sharing program. A person may receive a royalty each time his lifeotype data is accessed. A person may receive a royalty each time his lifeotype data is used in a study. A user may participate in the royalty system on an anonymous basis. A user may choose to opt-in or opt-out of an information sharing program. The system may provide incentives for a user to opt-in.
  • Advertising may be targeted based on lifeotype. Bidding for ad placement may be based on lifeotype. Lifeotype may be used as another demographic, psychographic or the like. Lifeotypes may be used as a way to personalize ads. Lifeotypes and related information may be used for the timing, placement and targeting of ads. In an embodiment, an advertisement for an analgesic may be shown on a cell phone as a person is experiencing back ache. In another embodiment, the Platform may identify a person as experiencing arousal, then anger and then depression, and delivery a Viagra advertisement to that person. A loyalty or rewards program may be based on lifeotypes. The prizes for which points may be redeemed may be based on lifeotypes. Different lifeotypes may receive different amounts of points as a reward for a purchase, action or the like. A sales pitch may be targeted based on lifeotypes and related information. The lifeotype profiles of customer set may be analyzed. Return on investment may be tied to lifeotype. A product may be designed based on lifeotypes. In an embodiment, multiple versions of a product may be created based on lifeotype and versions for the three most common lifeotypes may be produced.
  • Lifeotypes and related information may be used for therapy related applications. Lifeotypes and related information may be used to target therapy. Therapies may be tailored by lifeotype. The effects of therapies may be assessed based on lifeotypes. The Platform may determine the efficacy of a therapy based on lifeotypes and related information. Recommendations and reviews may be based on lifeotypes and related information. Lifeotypes and related information may be used in connection with the provision of advice. The delivery of advice may be tailored based on lifeotypes. In an embodiment, an open-minded person may receive advice with more recommendations than someone with a more stubborn lifeotype. The content of the advice may be tailored or filtered based on lifeotype information. Marriage advice may be provided based on lifeotypes and related information. Statistics of martial success may be calculated based on lifeotypes and related information. The compatibility of spouses may be reviewed based on lifeotype information. Career advice may be provided based on lifeotypes and related information. Recruiting and job seeking advice may be based on lifeotypes and related information.
  • Lifeotypes and related information may be used for generating predictions and coaching. In embodiments, a prediction may be of the status of a particular trait five years in the future and the prediction may be based on lifeotypes. In embodiments, the coaching may be in connection with a goal and/or an activity, such as a sport, hobby, for academics and the like. Lifeotypes and related information may be used for comparisons. In an embodiment, the current status of a user may be compared to the status of the user at some time in the past. The Platform may analyze what a user was doing when he performed well in the past and may make suggestions to return the user to his past performance state or to improve on that state. The Platform may also determine what level or status is typical for a user and may inform a user when he is back to normal. In an embodiment, the Platform may determine whether a user has returned to his normal state following an injury and rehabilitation. The Platform may enable comparisons to individuals who have achieved a particular goal. In an embodiment, a basketball player may be compared to Michael Jordan, in terms of lifeotype. The Platform may generate a coaching strategy based on differences in lifeotypes. The Platform may calculate the probability that the basketball player will reach his goal, which may be playing as well as Michael Jordan. The Platform may provide feedback or behavior modification and may include a coaching engine. In an embodiment, coaching may be informed by one or more guidance algorithms. A guidance algorithm may consider derived and/or sensed data, a condition in connection with derived and/or sensed data, an environmental factor in connection with derived and/or sensed data and the like. In an embodiment, coaching may include guidance in relation to diagnostic goals, prescriptive goals, alerts, reports, predictions and the like. In embodiment, the coaching engine and/or the Platform may learn via learning algorithms considering data regarding an individual, a population, genetics, evolution, neural nets and the like.
  • The Platform and lifeotypes and related information may be utilized for financial applications. In an embodiment, lifeotypes and related information may be used to assess principals and key economic people in a company. The Platform may aggregate lifeotype profiles across populations for analysis. The Platform may identify target markets, business prospects and the like based on lifeotype. The Platform and lifeotypes and related information may be utilized for e-commerce applications. In embodiments, life bits may be obtained from e-commerce transactions. In embodiments, lifeotypes may be used in connection with e-commerce advertising, such as for targeted advertising and product placement. In embodiments, auctions or reverse auctions may be cataloged based on lifeotypes. Portals may also be based on lifeotypes and related information. In an embodiment, a portal may be tailored to a particular lifeotype or group of lifeotypes.
  • The Platform and lifeotypes and related information may be utilized for concierge services. In an embodiment, the concierge service may be an “On Star” service based on lifeotypes and related information. In embodiments, the concierge service interface may be wearable with service based on lifeotypes. In an embodiment, the concierge service may function as an assistant, guardian angel, protector and the like. Lifeotypes and related information may be included in a registry of lifeotype services. Voting and politics may be informed by lifeotypes and related information. Candidates may be assessed based on lifeotypes and related information. In an embodiment, a person of a particular lifeotype, such as a very active, outdoor oriented lifeotype, may be well served by voting for a candidate with a similar lifeotype as that person may be more in tune with environmental issues that matter to the person. Recommendations of which candidate to vote for may be generated based on lifeotypes and related information. The Platform may enable automatic exclusions and/or incentives structures based on lifeotypes. In an embodiment, a user may not be able to drink, drive, eat in a particular location and the like based on lifeotype. In an embodiment, a user may be provided with an incentive to eat at a particular location, such as a health food restaurant. Tax breaks may also be provided based on lifeotypes, such as to encourage good, healthy, lawful and other behavior.
  • The Platform may include one or more user interfaces. The Platform may include a user interface for input of data and selection of parameters and attributes. The Platform may include a user interface for viewing data, processing data, viewing results and the like. The Platform may include a user interface for mapping. Lifeotype information may be superimposed on or presented using a map, such as Google Maps. In an embodiment, derived data may be placed on a map so that geographic clusters with similar characteristics or groups of individuals with similar lifeotypes may be located. The mapping may include an indication of demographic and socioeconomic data. The mapping interface enables visualization of lifeotype data, identification of trends and the combination of biology, motion and location.
  • The user interface may enable visualization of data and/or results. The visualization may be two-dimensional, three-dimensional, four-dimensional and/or multi-dimensional, including interactive-type spaces, methods, devices, and systems disclosed in Stivoric et al., pending U.S. patent application Ser. No. 11/582,896 for Devices and Systems for Contextual and Physiological-Based Detection, Monitoring, Reporting, Entertainment, and Control of Other Devices, each of which is incorporated, in its entirety, herein by reference. The user interface may enable presentation of spatial representations of lifeotypes. The user interface may enable presentation of a web of inter-related lifeotypes. The user interface may enable presentation of a lifeotype along with other data concerning the lifeotype. In an embodiment, the user interface may display continuous physiological data relating to users who have elected to opt-in to a data sharing program. The continuous physiological data may be shared anonymously or openly. Parts of the continuous physiological data may be selectable. The continuous physiological data may be queried through the user interface. The queries may be freeform, directed or suggested, including near relationship suggestions or hints. The query results may be weighted by their pertinences, popularity, likelihood of success or strength in correlation.
  • The user interface may present lifeotypes and related information using one or more spider map or the like. Referring to FIG. 18, a spider map or the like may depict life bits, life bytes, lifeotypes and related information, along with relationships among the depicted items. The spider map or the like may depict degrees of relevance and inter-relatedness in terms of color, size (as in FIG. 18), depth, distance (such as the distance between items and the degrees of separation of items) and the like. For a particular item, directly related items may be linked to the item with a line, and other items with more degrees of separation may appear smaller, in a darker color, greyed out or the like. As a new item of interest is selected, the spider map or the like may re-center on that new item of interest. The user interface may allow filters and search parameters to be applied to a spider map or the like.
  • The user interface may also be used to highlight and explore certain facts, such as facts that are already known to the user. A user may use the Platform and/or interface to create a visualization of a fact already known to the user. The visualization may help the user to understand the fact and explore the relationship of that fact with other items of data.
  • In an embodiment, the Platform may determine a particular lifeotype for a particular user. A user may review the results in the context of a population in the user's area or in another area, such as by superimposing the results on a Google Earth type application. The user may be able to identify clusters of people in the world with similar lifeotypes. For example, the user may determine that a cluster of people with his lifeotype live in Pittsburgh and another cluster live in Oslo. The user interface may allow the user to superimpose other information which may enable the user to identify other trends. For example, the interface may allow the user to superimpose weather data, and the user may determine that Pittsburgh and Oslo have similar sunlight and precipitation patterns. The Platform may also suggest other relevant or explanatory information. In an embodiment, the Platform may determine that economic bracket is relevant and may display socioeconomic data on the map in the background. The interface may allow for identification of clusters of people with similar lifeotypes and related data, such as sleeping six hours, similar body mass index and similar economic brackets. The interface may also present near relationships, such as in the form of a spider map or the like. Certain sections of the map may be greyed out or appear in the background. The interface may also suggest other related queries or bring other relevant information to the attention of the user. The interface may allow a user to compare lifeotypes and related information relevant to him or a person or group of interest to norms, others individuals or groups, to the person or subject himself or itself at another point in time, to subsets, to subsets at other points in time. The interface may also allow for the addition of constraints, restrictions, filters and the like, which may be implicit, hidden or explicit.
  • The Platform may be implemented or provided using various architectures, systems and methods. FIGS. 19A through 23B depict several possible embodiments of the Platform. The Platform may include or be implemented using a server and/or server farm. The server may be a rackmount, tower, blade, desktop, portable, handheld and/or wearable server. The server may be a uni-processor or multi-processor server. The server may form a part of a monolithic computer, cluster computer, distributed computer, super computer, shared computing environment or the like. The server may be a Java, .NET or the like middleware server, such as for data storage and retrieval. The server may be characterized by offline learning and optimization, such as through analysis, correlation, prediction and the like.
  • The Platform may be composed of or contain various applications. An application may be compiled or interpreted. An application may be a standalone application, an embedded application, a stored procedure (such as in a database), a library (which may be static or shared) and the like. An application may be a server-side application or a client-side application, such as Ajax. An application may be a mashup, a widget or the like. The Platform may be implemented using a service-oriented architecture. At least one component, facility or layer of the Platform may be accessible as a service, such as a web service, and may be accessible from anywhere in the world. The service oriented architecture may be implemented using REST, RPC, DCOM, CORBA, Web Services, WSDL, BPEL, WS-CDL, WS-Coordination and the like.
  • The Platform may be implemented in a way compatible with or using a Web 2.0 environment. The Platform may be implemented as a Web 2.0 application. The Platform may include Web 2.0 applications. The Platform may enable Web 2.0 applications that emphasize online collaboration and sharing among users. The Platform may be implemented using a network, such as any of the networks described herein. The Platform may be local, shared or a combination of the two. The Platform may be implemented using a local network, a broad network or a combination of the two. The Platform may be local or fully distributed.
  • The Platform may be implemented using a three-tier (or n-tier) architecture. The architecture may include an application server, which may be a J2EE server (such as Tomcat, JOnAS, Servlet, JSP and the like) or may utilize CGI, mod_perl, ASP, .NET and the like. The architecture may include a database server. The database may be a relational database, object database, stream database, flat database, network database, hierarchical database or the like. The Platform may include a database or database facility wherein data units are constructed to represent time based representation of a plurality of derived parameters, such as derived vital signs and the like. The data may be obtained from a body monitor, via data integration or the like. The data may be obtained by a feed or pulled from sources. The data may be obtained by push and/or pull means. The database may be a distributed database, federated database, online database, parallel database, real time database, spatial database, statistical database, time series database or the like. The network associated with the database may be one or more of the following network types: DAS, SAN, NAS, HSM, ILM, SAT, FAN and the like. The architecture may include a transaction processing management system.
  • The architecture may include a web server, such as Apache, IIS and the like. The architecture may include one or more client-side applications. A client-side application may be a standalone application, widget, plug-in, in-browser script (such as Javascript) and the like. The architecture may include a firewall. The firewall may be based on, or include functionality for, port forwarding, SPI, NAT, dynamic DNS, IP tunnel, VPN, DMZ and the like. The architecture may include a load balancer. Referring to FIG. 21, the architecture may be a round-robin DNS. Referring to FIG. 22, the architecture may be a cookie or URL-based session with software load balancer. Referring to FIGS. 23A-23B, the architecture may be based on cookie-based sessions with a hardware load balancer. The architecture may include a switch, router, hub or the like, which may be based on VLAN, LAN or the like.
  • The Platform may include a data mining repository, data warehouse or the like. The Platform may include or make use of capabilities for extraction, transformation and loading of data. Referring to FIG. 6, the Platform may include interfaces to other systems, applications and services. An interface may be provided through an internet, extranet or the like, such as by using CSU, DSU or the like. An interface may be provided in a wired manner, such as through an Ethernet or the like, or in a wireless manner, such as through IrDA, free-space optical communication, cellular, IEEE 802 or the like. An interface may be provided through a personal area network, local area network, metropolitan area network, wide area network and the like. Referring to FIG. 20, interfaces may be provided to various systems and devices, such as implantable monitors, medical treatment devices, disposable monitors, glucose monitors, pulse oximeters, blood pressure monitors, weight scales, heart rate monitors, fitness equipment, entertainment devices, home appliances, GPS devices, SenseWear armbands, personal computer tablet PCs, PDAs, pagers, wireless email devices, Blackberries, Treos, smart phones, cellular phones, SenseWear companions, voice systems, telephony systems, VoIP systems, transcription systems, modems, high speed internet access systems, third party monitors, internal servers, client servers, third party servers and the like.
  • The Platform may include data administration functionality. Referring to FIG. 6, the Platform may include security, logging, conditional access and authentication functionality. The architecture may include security functionality, such as conditional access, authentication, intrusion detection and prevention and the like. The architecture may include logging functionality. The architecture may include backup and recovery functionality. The backup and recovery functionality may be enabled using magnetic table, hard disk, optical disc, solid state storage and the like. The backup and recovery functionality may be implemented online, off-line or a combination of the two. The backup and recovery functionality may be provided offsite, remotely, onsite or in a combination. The architecture may include means for redundancy and failover. Certain information or aspects of the Platform may be restricted to local use, while others may be fully shared.
  • The Platform may include data facilities. Data may be any of the data described herein. Data may come from any of the sources described herein. Data may be housed in databases, datamarts, data warehouses and the like. The data may be directly supplied, such as directly downloaded, may flow through the internet, may be distributed and the like. Interfaces to data and data sources may include ODBC, JDBC and the like.
  • The Platform may include a central monitoring unit. The Platform may utilize a central monitoring unit, or the central monitoring unit may implement all or a portion of the Platform. The architecture of the platform may enable data processing.
  • The elements depicted in flow charts and block diagrams throughout the figures imply logical boundaries between the elements. However, according to software or hardware engineering practices, the depicted elements and the functions thereof may be implemented as parts of a monolithic software structure, as standalone software modules, or as modules that employ external routines, code, services, and so forth, or any combination of these, and all such implementations are within the scope of the present disclosure. Thus, while the foregoing drawings and description set forth functional aspects of the disclosed systems, no particular arrangement of software for implementing these functional aspects should be inferred from these descriptions unless explicitly stated or otherwise clear from the context.
  • Similarly, it will be appreciated that the various steps identified and described above may be varied, and that the order of steps may be adapted to particular applications of the techniques disclosed herein. All such variations and modifications are intended to fall within the scope of this disclosure. As such, the depiction and/or description of an order for various steps should not be understood to require a particular order of execution for those steps, unless required by a particular application, or explicitly stated, or otherwise clear from the context.
  • The methods or processes described above, and steps thereof, may be realized in hardware, software, or any combination of these suitable for a particular application. The hardware may include a general-purpose computer and/or dedicated computing device. The processes may be realized in one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors or other programmable devices, along with internal and/or external memory. The processes may also, or instead, be embodied in an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device or combination of devices that may be configured to process electronic signals. It will further be appreciated that one or more of the processes may be realized as computer executable code created using a structured programming language such as C, an object oriented programming language such as C++, or any other high-level or low-level programming language (including assembly languages, hardware description languages, and database programming languages and technologies) that may be stored, compiled or interpreted to run on one of the above devices, as well as heterogeneous combinations of processors, processor architectures, or combinations of different hardware and software.
  • Thus, in one aspect, each method described above and combinations thereof may be embodied in computer executable code that, when executing on one or more computing devices, performs the steps thereof. In another aspect, the methods may be embodied in systems that perform the steps thereof and may be distributed across devices in a number of ways, or all of the functionality may be integrated into a dedicated, standalone device or other hardware. In another aspect, means for performing the steps associated with the processes described above may include any of the hardware and/or software described above. All such permutations and combinations are intended to fall within the scope of the present disclosure.
  • While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.
  • All documents referenced herein are hereby incorporated by reference.

Claims (12)

What is claimed is:
1. A computer-system-implemented method, the computer system having at least one programmed processor to implement the method, the method comprising:
continuously collecting data components with respect to an individual from a wearable sensor device; and
collecting another set of data components with respect to the individual from a source separate from the wearable device;
the computer system—
(i) assembling a data structure for the individual that includes at least one component from the collected data components from the wearable sensor device and at least one of said another set of data components;
(ii) determining a type for the individual based on at least one of a match and a similarity between the data components collected for the individual and data components for at least one other individual;
(iii) anticipating that the individual will be under a stress-related state based on at least one of data from the wearable sensor device and the collected another set of data components; and
(iv) based on the anticipated stress-related state, the determined type, and the data collected from the wearable sensor device, providing a recommendation.
2. The method of claim 1, wherein the stress-related state is determined based on the output of a plurality of sensors of the wearable sensor device.
3. The method of claim 1, wherein the stress-related state is at least one of a state of physical stress, a state of psychological stress, a state of fatigue, a state of sleep-related stress, a state of exposure to adverse environmental conditions, a stress-related state related to a relationship, a stress-related state related to a seasonal condition, and a stress-related state related to an individual's history.
4. The method of claim 1, wherein said set of data components from a wearable sensor device is selected from the group consisting of: derived data, analytical status data, contextual data, continuous data, discrete data, time series data, event data, raw data, processed data, metadata, third party data, physiological state data, psychological state data, survey data, medical data, genetic data, environmental data, transactional data, economic data, socioeconomic data, demographic data, psychographic data, sensed data, continuously monitored data, manually entered data, inputted data, continuous data and real-time data.
5. The method of claim 1, wherein at least one data component collected from a wearable sensor device is a data component that is derived from a plurality of sensors that is distinct from the output of any single sensor.
6. The method of claim 1, wherein the recommendation is provided to the individual.
7. The method of claim 1, wherein the recommendation is at least one of activity avoidance, situational avoidance, a meditation exercise, activity suggestion, situational suggestion, and medical treatment plan.
8. The method of claim 7, wherein the medical treatment plan is taking a prescribed medication.
9. The method of claim 1, wherein the anticipation that the individual will be under a stress-related state is further based on stored data indicating when a user has been stressed in the past.
10. The method of claim 1, wherein the recommendation is provided to at least one other individual.
11. The method of claim 10, wherein the recommendation is at least one of, activity avoidance, situational avoidance, suggested activity, suggested situation, conversation avoidance, suggested conversation, and medical treatment plan.
12. The method of claim 1, wherein the stress-related state is at least one of a state of physical stress, a state of psychological stress, a state of fatigue, a state of sleep-related stress, a state of exposure to adverse environmental conditions, a stress-related state related to a relationship, a stress-related state related to a seasonal condition, and a stress-related state related to an individual's history.
US14/133,607 2007-02-16 2013-12-18 Providing recommendations based on detected stress and a predicted type for an individual Abandoned US20140308636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/133,607 US20140308636A1 (en) 2007-02-16 2013-12-18 Providing recommendations based on detected stress and a predicted type for an individual

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90195207P 2007-02-16 2007-02-16
US12/033,722 US20090006457A1 (en) 2007-02-16 2008-02-19 Lifeotypes
US14/133,607 US20140308636A1 (en) 2007-02-16 2013-12-18 Providing recommendations based on detected stress and a predicted type for an individual

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/033,722 Continuation US20090006457A1 (en) 2007-02-16 2008-02-19 Lifeotypes

Publications (1)

Publication Number Publication Date
US20140308636A1 true US20140308636A1 (en) 2014-10-16

Family

ID=39690851

Family Applications (68)

Application Number Title Priority Date Filing Date
US12/033,737 Abandoned US20080320030A1 (en) 2007-02-16 2008-02-19 Lifeotype markup language
US12/033,751 Abandoned US20080319781A1 (en) 2007-02-16 2008-02-19 Assessment and grouping applications of lifeotypes
US12/033,753 Expired - Fee Related US8382590B2 (en) 2007-02-16 2008-02-19 Entertainment, gaming and interactive spaces based on lifeotypes
US12/033,746 Abandoned US20080319786A1 (en) 2007-02-16 2008-02-19 Publishing and insurance applications of lifeotypes
US12/033,741 Abandoned US20080319796A1 (en) 2007-02-16 2008-02-19 Medical applications of lifeotypes
US12/033,766 Abandoned US20080319855A1 (en) 2007-02-16 2008-02-19 Advertising and marketing based on lifeotypes
US12/033,728 Abandoned US20090006458A1 (en) 2007-02-16 2008-02-19 Life bytes
US12/033,722 Abandoned US20090006457A1 (en) 2007-02-16 2008-02-19 Lifeotypes
US12/033,760 Expired - Fee Related US8275635B2 (en) 2007-02-16 2008-02-19 Integration of lifeotypes with devices and systems
US12/033,731 Abandoned US20080320029A1 (en) 2007-02-16 2008-02-19 Lifeotype interfaces
US14/060,082 Abandoned US20140115008A1 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict whether an individual requires assistance from a responder
US14/060,122 Abandoned US20140180993A1 (en) 2007-02-16 2013-10-22 Determining an individuals daily routine
US14/060,004 Abandoned US20140122496A1 (en) 2007-02-16 2013-10-22 Using data from wearable monitors to identify cohorts
US14/060,096 Abandoned US20140188874A1 (en) 2007-02-16 2013-10-22 Using data from a wearable device to determine and present activities for types of individuals
US14/060,047 Abandoned US20140122537A1 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict physiological state
US14/060,072 Expired - Fee Related US9396486B2 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict the mental state of an individual
US14/060,029 Abandoned US20140122536A1 (en) 2007-02-16 2013-10-22 Methods for behavior modification based on data from a wearable device
US14/060,109 Abandoned US20140187873A1 (en) 2007-02-16 2013-10-22 Using lifeotypes to provide disease-related information to individuals
US14/060,092 Abandoned US20140187872A1 (en) 2007-02-16 2013-10-22 Using data from a wearable device to determine, index, and present activities for types of individuals
US14/060,010 Abandoned US20140181108A1 (en) 2007-02-16 2013-10-22 Using data from wearable monitors to identify an individual
US14/081,951 Abandoned US20140222849A1 (en) 2007-02-16 2013-11-15 Adaptation of user-interface based on predicted individual type
US14/081,935 Abandoned US20140310294A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict the individuals type and a suitable therapy regime
US14/081,889 Abandoned US20140180025A1 (en) 2007-02-16 2013-11-15 System and method of predicting the type of individual used with separate applications
US14/081,979 Abandoned US20140310274A1 (en) 2007-02-16 2013-11-15 Using a wearable device to predict an individuals type and response to content
US14/081,406 Expired - Fee Related US9262772B2 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to determine an individuals daily routine
US14/081,972 Abandoned US20140222804A1 (en) 2007-02-16 2013-11-15 Using a wearable device to predict an individuals type and response to content
US14/081,956 Abandoned US20140310284A1 (en) 2007-02-16 2013-11-15 Generation of content based on predicted individual type
US14/081,928 Abandoned US20140222847A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict the individuals type and a suitable therapy regime
US14/081,942 Abandoned US20140222848A1 (en) 2007-02-16 2013-11-15 Adaptation of user-interface based on predicted individual type
US14/081,967 Abandoned US20140222850A1 (en) 2007-02-16 2013-11-15 Generation of content based on predicted individual type
US14/081,901 Abandoned US20140180598A1 (en) 2007-02-16 2013-11-15 Systems and method using an individuals predicted type to diagnose a medical condition
US14/081,880 Abandoned US20140180024A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict an individuals daily routine
US14/081,369 Abandoned US20140180720A1 (en) 2007-02-16 2013-11-15 Data predicting the type of individual used with separate applications
US14/082,188 Abandoned US20140214873A1 (en) 2007-02-16 2013-11-17 Using individuals predicted type to aid in content selection
US14/082,179 Abandoned US20140310295A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,183 Abandoned US20140310223A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,178 Abandoned US20140214903A1 (en) 2007-02-16 2013-11-17 Systems and methods using wearable devices to determine a recommendation for the individual
US14/082,186 Abandoned US20140213938A1 (en) 2007-02-16 2013-11-17 Systems and methods to determine changes in the individuals patterns
US14/082,176 Abandoned US20140214552A1 (en) 2007-02-16 2013-11-17 Systems and methods using transactional data and data from a wearable device to deliver targeted marketing
US14/082,189 Abandoned US20140214874A1 (en) 2007-02-16 2013-11-17 Predicted type and contexts in assessments
US14/082,180 Abandoned US20140310296A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,185 Abandoned US20140309939A1 (en) 2007-02-16 2013-11-17 Systems and methods using an individual's context and type to determine the individuals status
US14/082,190 Abandoned US20140213854A1 (en) 2007-02-16 2013-11-17 Providing recommendations based on the predicted context and type of individual as determined from a wearable device
US14/082,192 Abandoned US20140214836A1 (en) 2007-02-16 2013-11-17 Systems and methods using an individuals predicted type and context for behavioral modification
US14/133,634 Abandoned US20140317135A1 (en) 2007-02-16 2013-12-18 Providing recommendations to individuals based on the individuals type
US14/133,615 Abandoned US20140310275A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual
US14/133,626 Abandoned US20140308639A1 (en) 2007-02-16 2013-12-18 Data from wearable sensor devices to manage educational content
US14/133,625 Abandoned US20140222732A1 (en) 2007-02-16 2013-12-18 Managing educational content based on detected stress state
US14/133,607 Abandoned US20140308636A1 (en) 2007-02-16 2013-12-18 Providing recommendations based on detected stress and a predicted type for an individual
US14/133,620 Abandoned US20140221773A1 (en) 2007-02-16 2013-12-18 Determining a continuous duration that an individual has been in the stress-related state
US14/133,622 Abandoned US20140220525A1 (en) 2007-02-16 2013-12-18 Managing educational content based on detected stress state and an individuals predicted type
US14/133,619 Abandoned US20140310276A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual
US14/133,612 Abandoned US20140310297A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual and the individuals predicted type
US14/133,610 Abandoned US20140309940A1 (en) 2007-02-16 2013-12-18 Determining an individual's mood based on the individual's predicted type and detected data
US14/133,638 Abandoned US20140310298A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device to reduce stress an individuals type and the data collected from a wearable sensor device
US14/133,640 Abandoned US20140222733A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device to reduce stress based on the determined stress-related state
US14/133,641 Abandoned US20140222734A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device based on the inferred state information
US14/137,233 Abandoned US20140222851A1 (en) 2007-02-16 2013-12-20 Systems, methods, and devices to determine relationship compatibility based on predicted types
US14/137,027 Abandoned US20140221730A1 (en) 2007-02-16 2013-12-20 Delivering content based on an individuals predicted type and stress-related state
US14/137,087 Abandoned US20140221775A1 (en) 2007-02-16 2013-12-20 Delivering content based on a determination of stress
US14/137,126 Abandoned US20140221776A1 (en) 2007-02-16 2013-12-20 Systems, methods, and devices for behavioral modification
US14/138,042 Abandoned US20140317042A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices utilizing cumulitive sleep data to predict the health of an individual
US14/138,043 Abandoned US20140317039A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices utilizing cumulative sleep data to predict the health of an individual
US14/138,046 Abandoned US20140316885A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices to deliver targeted content using information about an individuals sleeping habits
US14/139,872 Abandoned US20140222735A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices to determine an individuals mood
US14/139,871 Abandoned US20140310105A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices to determine an individuals mood based on sensed data and the individuals predicted type
US14/139,875 Abandoned US20140344282A1 (en) 2007-02-16 2013-12-24 Systems, methods and devices for determining sleep quality with wearable devices
US14/139,873 Abandoned US20140317119A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices for determining sleep data for groups of individuals

Family Applications Before (48)

Application Number Title Priority Date Filing Date
US12/033,737 Abandoned US20080320030A1 (en) 2007-02-16 2008-02-19 Lifeotype markup language
US12/033,751 Abandoned US20080319781A1 (en) 2007-02-16 2008-02-19 Assessment and grouping applications of lifeotypes
US12/033,753 Expired - Fee Related US8382590B2 (en) 2007-02-16 2008-02-19 Entertainment, gaming and interactive spaces based on lifeotypes
US12/033,746 Abandoned US20080319786A1 (en) 2007-02-16 2008-02-19 Publishing and insurance applications of lifeotypes
US12/033,741 Abandoned US20080319796A1 (en) 2007-02-16 2008-02-19 Medical applications of lifeotypes
US12/033,766 Abandoned US20080319855A1 (en) 2007-02-16 2008-02-19 Advertising and marketing based on lifeotypes
US12/033,728 Abandoned US20090006458A1 (en) 2007-02-16 2008-02-19 Life bytes
US12/033,722 Abandoned US20090006457A1 (en) 2007-02-16 2008-02-19 Lifeotypes
US12/033,760 Expired - Fee Related US8275635B2 (en) 2007-02-16 2008-02-19 Integration of lifeotypes with devices and systems
US12/033,731 Abandoned US20080320029A1 (en) 2007-02-16 2008-02-19 Lifeotype interfaces
US14/060,082 Abandoned US20140115008A1 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict whether an individual requires assistance from a responder
US14/060,122 Abandoned US20140180993A1 (en) 2007-02-16 2013-10-22 Determining an individuals daily routine
US14/060,004 Abandoned US20140122496A1 (en) 2007-02-16 2013-10-22 Using data from wearable monitors to identify cohorts
US14/060,096 Abandoned US20140188874A1 (en) 2007-02-16 2013-10-22 Using data from a wearable device to determine and present activities for types of individuals
US14/060,047 Abandoned US20140122537A1 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict physiological state
US14/060,072 Expired - Fee Related US9396486B2 (en) 2007-02-16 2013-10-22 Using aggregated sensed data of individuals to predict the mental state of an individual
US14/060,029 Abandoned US20140122536A1 (en) 2007-02-16 2013-10-22 Methods for behavior modification based on data from a wearable device
US14/060,109 Abandoned US20140187873A1 (en) 2007-02-16 2013-10-22 Using lifeotypes to provide disease-related information to individuals
US14/060,092 Abandoned US20140187872A1 (en) 2007-02-16 2013-10-22 Using data from a wearable device to determine, index, and present activities for types of individuals
US14/060,010 Abandoned US20140181108A1 (en) 2007-02-16 2013-10-22 Using data from wearable monitors to identify an individual
US14/081,951 Abandoned US20140222849A1 (en) 2007-02-16 2013-11-15 Adaptation of user-interface based on predicted individual type
US14/081,935 Abandoned US20140310294A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict the individuals type and a suitable therapy regime
US14/081,889 Abandoned US20140180025A1 (en) 2007-02-16 2013-11-15 System and method of predicting the type of individual used with separate applications
US14/081,979 Abandoned US20140310274A1 (en) 2007-02-16 2013-11-15 Using a wearable device to predict an individuals type and response to content
US14/081,406 Expired - Fee Related US9262772B2 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to determine an individuals daily routine
US14/081,972 Abandoned US20140222804A1 (en) 2007-02-16 2013-11-15 Using a wearable device to predict an individuals type and response to content
US14/081,956 Abandoned US20140310284A1 (en) 2007-02-16 2013-11-15 Generation of content based on predicted individual type
US14/081,928 Abandoned US20140222847A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict the individuals type and a suitable therapy regime
US14/081,942 Abandoned US20140222848A1 (en) 2007-02-16 2013-11-15 Adaptation of user-interface based on predicted individual type
US14/081,967 Abandoned US20140222850A1 (en) 2007-02-16 2013-11-15 Generation of content based on predicted individual type
US14/081,901 Abandoned US20140180598A1 (en) 2007-02-16 2013-11-15 Systems and method using an individuals predicted type to diagnose a medical condition
US14/081,880 Abandoned US20140180024A1 (en) 2007-02-16 2013-11-15 Systems and methods using a wearable device to predict an individuals daily routine
US14/081,369 Abandoned US20140180720A1 (en) 2007-02-16 2013-11-15 Data predicting the type of individual used with separate applications
US14/082,188 Abandoned US20140214873A1 (en) 2007-02-16 2013-11-17 Using individuals predicted type to aid in content selection
US14/082,179 Abandoned US20140310295A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,183 Abandoned US20140310223A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,178 Abandoned US20140214903A1 (en) 2007-02-16 2013-11-17 Systems and methods using wearable devices to determine a recommendation for the individual
US14/082,186 Abandoned US20140213938A1 (en) 2007-02-16 2013-11-17 Systems and methods to determine changes in the individuals patterns
US14/082,176 Abandoned US20140214552A1 (en) 2007-02-16 2013-11-17 Systems and methods using transactional data and data from a wearable device to deliver targeted marketing
US14/082,189 Abandoned US20140214874A1 (en) 2007-02-16 2013-11-17 Predicted type and contexts in assessments
US14/082,180 Abandoned US20140310296A1 (en) 2007-02-16 2013-11-17 Systems and methods making recommendations based on data from wearable devices
US14/082,185 Abandoned US20140309939A1 (en) 2007-02-16 2013-11-17 Systems and methods using an individual's context and type to determine the individuals status
US14/082,190 Abandoned US20140213854A1 (en) 2007-02-16 2013-11-17 Providing recommendations based on the predicted context and type of individual as determined from a wearable device
US14/082,192 Abandoned US20140214836A1 (en) 2007-02-16 2013-11-17 Systems and methods using an individuals predicted type and context for behavioral modification
US14/133,634 Abandoned US20140317135A1 (en) 2007-02-16 2013-12-18 Providing recommendations to individuals based on the individuals type
US14/133,615 Abandoned US20140310275A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual
US14/133,626 Abandoned US20140308639A1 (en) 2007-02-16 2013-12-18 Data from wearable sensor devices to manage educational content
US14/133,625 Abandoned US20140222732A1 (en) 2007-02-16 2013-12-18 Managing educational content based on detected stress state

Family Applications After (19)

Application Number Title Priority Date Filing Date
US14/133,620 Abandoned US20140221773A1 (en) 2007-02-16 2013-12-18 Determining a continuous duration that an individual has been in the stress-related state
US14/133,622 Abandoned US20140220525A1 (en) 2007-02-16 2013-12-18 Managing educational content based on detected stress state and an individuals predicted type
US14/133,619 Abandoned US20140310276A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual
US14/133,612 Abandoned US20140310297A1 (en) 2007-02-16 2013-12-18 Home automation systems utilizing detected stress data of an individual and the individuals predicted type
US14/133,610 Abandoned US20140309940A1 (en) 2007-02-16 2013-12-18 Determining an individual's mood based on the individual's predicted type and detected data
US14/133,638 Abandoned US20140310298A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device to reduce stress an individuals type and the data collected from a wearable sensor device
US14/133,640 Abandoned US20140222733A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device to reduce stress based on the determined stress-related state
US14/133,641 Abandoned US20140222734A1 (en) 2007-02-16 2013-12-19 Controlling a sensory device based on the inferred state information
US14/137,233 Abandoned US20140222851A1 (en) 2007-02-16 2013-12-20 Systems, methods, and devices to determine relationship compatibility based on predicted types
US14/137,027 Abandoned US20140221730A1 (en) 2007-02-16 2013-12-20 Delivering content based on an individuals predicted type and stress-related state
US14/137,087 Abandoned US20140221775A1 (en) 2007-02-16 2013-12-20 Delivering content based on a determination of stress
US14/137,126 Abandoned US20140221776A1 (en) 2007-02-16 2013-12-20 Systems, methods, and devices for behavioral modification
US14/138,042 Abandoned US20140317042A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices utilizing cumulitive sleep data to predict the health of an individual
US14/138,043 Abandoned US20140317039A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices utilizing cumulative sleep data to predict the health of an individual
US14/138,046 Abandoned US20140316885A1 (en) 2007-02-16 2013-12-21 Systems, methods, and devices to deliver targeted content using information about an individuals sleeping habits
US14/139,872 Abandoned US20140222735A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices to determine an individuals mood
US14/139,871 Abandoned US20140310105A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices to determine an individuals mood based on sensed data and the individuals predicted type
US14/139,875 Abandoned US20140344282A1 (en) 2007-02-16 2013-12-24 Systems, methods and devices for determining sleep quality with wearable devices
US14/139,873 Abandoned US20140317119A1 (en) 2007-02-16 2013-12-24 Systems, methods, and devices for determining sleep data for groups of individuals

Country Status (3)

Country Link
US (68) US20080320030A1 (en)
EP (2) EP2126828A4 (en)
WO (1) WO2008101248A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9861308B2 (en) 2015-06-15 2018-01-09 Medibio Limited Method and system for monitoring stress conditions
US10039485B2 (en) 2015-06-15 2018-08-07 Medibio Limited Method and system for assessing mental state
US20180276345A1 (en) * 2017-03-24 2018-09-27 International Business Machines Corporation System and method to monitor mental health implications of unhealthy behavior and optimize mental and physical health via a mobile device
US20190134463A1 (en) * 2017-11-03 2019-05-09 Lite-On Electronics (Guangzhou) Limited Wearable system, wearable device, cloud server and operating method thereof
US10839302B2 (en) 2015-11-24 2020-11-17 The Research Foundation For The State University Of New York Approximate value iteration with complex returns by bounding
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US11568236B2 (en) 2018-01-25 2023-01-31 The Research Foundation For The State University Of New York Framework and methods of diverse exploration for fast and safe policy improvement

Families Citing this family (382)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US10298735B2 (en) 2001-04-24 2019-05-21 Northwater Intellectual Property Fund L.P. 2 Method and apparatus for dynamic configuration of a multiprocessor health data system
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US20130054317A1 (en) 2011-08-24 2013-02-28 Raj Vasant Abhyanker Geospatially constrained gastronomic bidding
US7841967B1 (en) * 2006-04-26 2010-11-30 Dp Technologies, Inc. Method and apparatus for providing fitness coaching using a mobile device
US8902154B1 (en) 2006-07-11 2014-12-02 Dp Technologies, Inc. Method and apparatus for utilizing motion user interface
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
US20080320030A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Lifeotype markup language
US7753861B1 (en) 2007-04-04 2010-07-13 Dp Technologies, Inc. Chest strap having human activity monitoring device
WO2009009578A2 (en) * 2007-07-09 2009-01-15 Jon Fisse Improved systems and methods related to delivering targeted advertising to consumers
US8555282B1 (en) 2007-07-27 2013-10-08 Dp Technologies, Inc. Optimizing preemptive operating system with motion sensing
US9283476B2 (en) * 2007-08-22 2016-03-15 Microsoft Technology Licensing, Llc Information collection during game play
US8441475B2 (en) * 2007-10-24 2013-05-14 International Business Machines Corporation Arrangements for enhancing multimedia features in a virtual universe
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US8838499B2 (en) * 2008-01-30 2014-09-16 Mastercard International Incorporated Methods and systems for life stage modeling
US20090192876A1 (en) * 2008-01-30 2009-07-30 Sruba De Methods and systems for providing a payment card program directed to empty nesters
US10540712B2 (en) 2008-02-08 2020-01-21 The Pnc Financial Services Group, Inc. User interface with controller for selectively redistributing funds between accounts
WO2009131664A2 (en) 2008-04-21 2009-10-29 Carl Frederick Edman Metabolic energy monitoring system
US8401938B1 (en) 2008-05-12 2013-03-19 The Pnc Financial Services Group, Inc. Transferring funds between parties' financial accounts
US9268454B2 (en) * 2008-05-14 2016-02-23 International Business Machines Corporation Trigger event based data feed of virtual universe data
US8458352B2 (en) * 2008-05-14 2013-06-04 International Business Machines Corporation Creating a virtual universe data feed and distributing the data feed beyond the virtual universe
US8751385B1 (en) 2008-05-15 2014-06-10 The Pnc Financial Services Group, Inc. Financial email
US9192300B2 (en) 2008-05-23 2015-11-24 Invention Science Fund I, Llc Acquisition and particular association of data indicative of an inferred mental state of an authoring user
US9161715B2 (en) 2008-05-23 2015-10-20 Invention Science Fund I, Llc Determination of extent of congruity between observation of authoring user and observation of receiving user
US20090292658A1 (en) * 2008-05-23 2009-11-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Acquisition and particular association of inference data indicative of inferred mental states of authoring users
WO2009153726A1 (en) * 2008-06-20 2009-12-23 Koninklijke Philips Electronics N.V. A system method and computer program product for pedigree analysis
US8996332B2 (en) 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
US20100030620A1 (en) * 2008-06-30 2010-02-04 Myshape, Inc. System and method for networking shops online and offline
US20100056873A1 (en) * 2008-08-27 2010-03-04 Allen Paul G Health-related signaling via wearable items
US8872646B2 (en) 2008-10-08 2014-10-28 Dp Technologies, Inc. Method and system for waking up a device due to motion
US20100099954A1 (en) * 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
US20100146064A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Source apparatus, sink apparatus and method for sharing information thereof
US8965798B1 (en) 2009-01-30 2015-02-24 The Pnc Financial Services Group, Inc. Requesting reimbursement for transactions
US10891037B1 (en) * 2009-01-30 2021-01-12 The Pnc Financial Services Group, Inc. User interfaces and system including same
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
EP3127476A1 (en) 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
JP4960980B2 (en) * 2009-02-27 2012-06-27 株式会社コナミデジタルエンタテインメント GAME DEVICE, GAME DEVICE CONTROL METHOD, AND PROGRAM
WO2010104690A1 (en) 2009-03-13 2010-09-16 Simulmedia, Inc. Method and apparatus for television program promotion
US20100312083A1 (en) * 2009-04-20 2010-12-09 Phil Southerland System for Monitoring Glucose and Measuring Wattage
US8060386B2 (en) * 2009-04-30 2011-11-15 Trustnode, Inc. Persistent sales agent for complex transactions
US8407212B2 (en) 2009-05-20 2013-03-26 Genieo Innovation Ltd. System and method for generation of a customized web page based on user identifiers
US9529437B2 (en) 2009-05-26 2016-12-27 Dp Technologies, Inc. Method and apparatus for a motion state aware device
US20100318424A1 (en) * 2009-06-12 2010-12-16 L2La, Llc System for Correlating Physiological and Environmental Conditions
US8666775B2 (en) * 2009-06-16 2014-03-04 Daniel Paul Francis Business method and system for providing a health security organization for procuring and financing healthcare products and services
US20100324943A1 (en) * 2009-06-19 2010-12-23 Genowledge Llc Genetically predicted life expectancy and life insurance evaluation
US9753994B2 (en) * 2009-06-19 2017-09-05 Optuminsight, Inc. System and method for generation of attribute driven temporal clustering
GB0911981D0 (en) * 2009-07-09 2009-08-19 Movix Uk Ltd Data processing system using geographical locations
US20110087081A1 (en) * 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
KR101645290B1 (en) * 2009-08-26 2016-08-16 삼성전자주식회사 Method and apparatus for providing and sharing comprehensive health information
US8712849B2 (en) * 2009-08-31 2014-04-29 Polar Electro Oy System and method for providing advertising content using a group training system
US20110054936A1 (en) 2009-09-03 2011-03-03 Cerner Innovation, Inc. Patient interactive healing environment
US20110230732A1 (en) * 2009-09-14 2011-09-22 Philometron, Inc. System utilizing physiological monitoring and electronic media for health improvement
US9818164B2 (en) 2009-09-25 2017-11-14 Cerner Innovation, Inc. Facilitating and tracking clinician-assignment status
US20110077469A1 (en) * 2009-09-27 2011-03-31 Blocker Richard A Systems and methods for utilizing prolonged self monitoring in the analysis of chronic ailment treatments
US20110106597A1 (en) * 2009-10-28 2011-05-05 Pushkart, Llc Methods And Systems For Offering Discounts
WO2011063187A2 (en) * 2009-11-19 2011-05-26 Atellis, Inc. Apparatus, method and computer readable medium for simulation integration
US8560479B2 (en) * 2009-11-23 2013-10-15 Keas, Inc. Risk factor coaching engine that determines a user health score
US9779462B2 (en) * 2009-12-17 2017-10-03 Koninklijke Philips N.V. Computer-implemented method of manufacturing a computer-readable storage medium for a remote patient management system
WO2011091059A1 (en) * 2010-01-19 2011-07-28 Masimo Corporation Wellness analysis system
US20110238496A1 (en) * 2010-02-23 2011-09-29 Vishal Gurbuxani Systems and Methods for Generating Data from Mobile Applications and Dynamically Delivering Advertising Based on Generated Data
US20110213703A1 (en) * 2010-02-26 2011-09-01 Bank Of America Corporation Individual customer community hub
US9075910B2 (en) 2010-03-11 2015-07-07 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
KR101698076B1 (en) 2010-03-29 2017-01-19 에릭 제임스 커비 Inception of live events
US8791949B1 (en) 2010-04-06 2014-07-29 The Pnc Financial Services Group, Inc. Investment management marketing tool
US8780115B1 (en) 2010-04-06 2014-07-15 The Pnc Financial Services Group, Inc. Investment management marketing tool
US20110276408A1 (en) * 2010-05-05 2011-11-10 Sara Elizabeth Toole Personality Profile Markers for Targeted Ads as a Method and a System
US9795883B2 (en) 2010-05-25 2017-10-24 International Business Machines Corporation Operational management of multi-media gaming devices
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
US9351654B2 (en) 2010-06-08 2016-05-31 Alivecor, Inc. Two electrode apparatus and methods for twelve lead ECG
US9000910B2 (en) 2010-06-25 2015-04-07 Industrial Scientific Corporation Multi-sense environmental monitoring device and method
US8417614B1 (en) 2010-07-02 2013-04-09 The Pnc Financial Services Group, Inc. Investor personality tool
US8423444B1 (en) 2010-07-02 2013-04-16 The Pnc Financial Services Group, Inc. Investor personality tool
US11475523B1 (en) 2010-07-02 2022-10-18 The Pnc Financial Services Group, Inc. Investor retirement lifestyle planning tool
US11475524B1 (en) 2010-07-02 2022-10-18 The Pnc Financial Services Group, Inc. Investor retirement lifestyle planning tool
KR101890717B1 (en) * 2010-07-20 2018-08-23 삼성전자주식회사 Apparatus and method for operating virtual world using vital information
US20120047026A1 (en) * 2010-08-10 2012-02-23 Victors & Spoils, Inc. System and Method for Recruiting, Analyzing and Promoting Creative Submission
US9043901B2 (en) * 2010-09-01 2015-05-26 Apixio, Inc. Intent-based clustering of medical information
US11544652B2 (en) 2010-09-01 2023-01-03 Apixio, Inc. Systems and methods for enhancing workflow efficiency in a healthcare management system
US11694239B2 (en) 2010-09-01 2023-07-04 Apixio, Inc. Method of optimizing patient-related outcomes
US20130262144A1 (en) 2010-09-01 2013-10-03 Imran N. Chaudhri Systems and Methods for Patient Retention in Network Through Referral Analytics
US11195213B2 (en) 2010-09-01 2021-12-07 Apixio, Inc. Method of optimizing patient-related outcomes
US11610653B2 (en) 2010-09-01 2023-03-21 Apixio, Inc. Systems and methods for improved optical character recognition of health records
US11481411B2 (en) 2010-09-01 2022-10-25 Apixio, Inc. Systems and methods for automated generation classifiers
GB2484268A (en) * 2010-09-16 2012-04-11 Uniloc Usa Inc Psychographic profiling of users of computing devices
US8612477B2 (en) 2010-09-24 2013-12-17 Aol Inc. Systems and methods for customized electronic communications
WO2015179868A2 (en) 2014-05-23 2015-11-26 Dacadoo Ag Automated health data acquisition, processing and communication system
US9208239B2 (en) * 2010-09-29 2015-12-08 Eloy Technology, Llc Method and system for aggregating music in the cloud
US20120089908A1 (en) * 2010-10-07 2012-04-12 Sony Computer Entertainment America, LLC. Leveraging geo-ip information to select default avatar
US8706520B2 (en) * 2010-10-15 2014-04-22 Roche Diagnostics Operations, Inc. Metadata tagging system for a diabetes management system of devices
IL274211B (en) 2010-10-26 2022-08-01 Stanley Victor Campbell Computer-based artificial intelligence (ai) method for performing medical code-based decision making
EP2649585A4 (en) 2010-12-10 2016-07-27 Gail Bronwyn Lese Electronic health record web-based platform
US20120165617A1 (en) * 2010-12-28 2012-06-28 General Electric Company Patient enabled methods, apparatus, and systems for early health and preventive care using wearable sensors
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US8374940B1 (en) 2011-02-28 2013-02-12 The Pnc Financial Services Group, Inc. Wealth allocation analysis tools
US9852470B1 (en) 2011-02-28 2017-12-26 The Pnc Financial Services Group, Inc. Time period analysis tools for wealth management transactions
US8321316B1 (en) 2011-02-28 2012-11-27 The Pnc Financial Services Group, Inc. Income analysis tools for wealth management
US9665908B1 (en) 2011-02-28 2017-05-30 The Pnc Financial Services Group, Inc. Net worth analysis tools
US8782053B2 (en) * 2011-03-06 2014-07-15 Happy Cloud Inc. Data streaming for interactive decision-oriented software applications
EP2683422B1 (en) * 2011-03-07 2019-05-08 Potrero Medical, Inc. Sensing foley catheter
US20120264494A1 (en) * 2011-04-18 2012-10-18 Wells Jeffrey L Internet family history game interacting with databases
US20120264521A1 (en) * 2011-04-18 2012-10-18 Funium, Llc Internet family history game interacting with databases
US10733570B1 (en) 2011-04-19 2020-08-04 The Pnc Financial Services Group, Inc. Facilitating employee career development
AU2012253837A1 (en) 2011-05-06 2013-10-31 Opower, Inc. Method and system for selecting similar consumers
US10331658B2 (en) * 2011-06-03 2019-06-25 Gdial Inc. Systems and methods for atomizing and individuating data as data quanta
US20120320214A1 (en) * 2011-06-06 2012-12-20 Malay Kundu Notification system and methods for use in retail environments
JP5586530B2 (en) * 2011-06-08 2014-09-10 株式会社日立ソリューションズ Information presentation device
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US20120315382A1 (en) 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US20120313746A1 (en) * 2011-06-10 2012-12-13 Aliphcom Device control using sensory input
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20120316458A1 (en) 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
CN108261547A (en) 2011-07-15 2018-07-10 纽斯尔特科学公司 For adjusting the composition of metabolic pathway and method
US9201812B2 (en) 2011-07-25 2015-12-01 Aliphcom Multiple logical representations of audio functions in a wireless audio transmitter that transmits audio data at different data rates
WO2013016007A2 (en) 2011-07-25 2013-01-31 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US10790041B2 (en) 2011-08-17 2020-09-29 23Andme, Inc. Method for analyzing and displaying genetic information between family members
US20130066656A1 (en) * 2011-09-12 2013-03-14 Laura O'Connor Hanson System and method for calculating an insurance premium based on initial consumer information
US9101812B2 (en) 2011-10-25 2015-08-11 Aquimo, Llc Method and system to analyze sports motions using motion sensors of a mobile device
CN104488022B (en) 2011-10-25 2018-08-31 阿奎默有限公司 Method for the physical education for providing Dynamic Customization in response to the action of mobile device
TW201336474A (en) * 2011-12-07 2013-09-16 通路實業集團國際公司 Behavior tracking and modification system
US8706486B1 (en) * 2011-12-20 2014-04-22 Go Daddy Operating Company, LLC Voice data leakage detection and prevention systems
US9339707B2 (en) 2011-12-27 2016-05-17 Aquimo, Llc Using a mobile device with integrated motion sensing for customized golf club fitting
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US10169812B1 (en) 2012-01-20 2019-01-01 The Pnc Financial Services Group, Inc. Providing financial account information to users
US9474970B2 (en) * 2012-01-26 2016-10-25 David H. Kil System and method for processing motion-related sensor data with social mind-body games for health application
US8725590B2 (en) * 2012-02-12 2014-05-13 LookingNew, Inc. Methods and systems for generating customized user plans
US20130275230A1 (en) * 2012-03-05 2013-10-17 Elbrys Networks, Inc. Methods and systems for targeted advertising based on passively collected sensor-detected offline behavior
US9198454B2 (en) 2012-03-08 2015-12-01 Nusirt Sciences, Inc. Compositions, methods, and kits for regulating energy metabolism
US20130268394A1 (en) * 2012-04-10 2013-10-10 Rawllin International Inc. Dynamic recommendations based on psychological types
US9022870B2 (en) 2012-05-02 2015-05-05 Aquimo, Llc Web-based game platform with mobile device motion sensor input
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9582035B2 (en) 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US10772559B2 (en) 2012-06-14 2020-09-15 Medibotics Llc Wearable food consumption monitor
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10796346B2 (en) 2012-06-27 2020-10-06 Opower, Inc. Method and system for unusual usage reporting
US20140046680A1 (en) * 2012-08-10 2014-02-13 Usana Health Sciences, Inc. Online Health Assessment Providing Lifestyle Recommendations
US20140067869A1 (en) 2012-08-30 2014-03-06 Atheer, Inc. Method and apparatus for content association and history tracking in virtual and augmented reality
US9547316B2 (en) 2012-09-07 2017-01-17 Opower, Inc. Thermostat classification method and system
US9633401B2 (en) 2012-10-15 2017-04-25 Opower, Inc. Method to identify heating and cooling system power-demand
WO2014060938A1 (en) * 2012-10-16 2014-04-24 Night-Sense, Ltd Comfortable and personalized monitoring device, system, and method for detecting physiological health risks
WO2014074913A1 (en) 2012-11-08 2014-05-15 Alivecor, Inc. Electrocardiogram signal detection
US9943517B2 (en) 2012-11-13 2018-04-17 Nusirt Sciences, Inc. Compositions and methods for increasing energy metabolism
US20140149148A1 (en) * 2012-11-27 2014-05-29 Terrance Luciani System and method for autonomous insurance selection
US9171048B2 (en) 2012-12-03 2015-10-27 Wellclub, Llc Goal-based content selection and delivery
US9033790B2 (en) * 2012-12-07 2015-05-19 Empire Technology Development Llc Game item auction
JP2014130467A (en) * 2012-12-28 2014-07-10 Sony Corp Information processing device, information processing method, and computer program
US9220430B2 (en) 2013-01-07 2015-12-29 Alivecor, Inc. Methods and systems for electrode placement
US10713726B1 (en) 2013-01-13 2020-07-14 United Services Automobile Association (Usaa) Determining insurance policy modifications using informatic sensor data
US10067516B2 (en) 2013-01-22 2018-09-04 Opower, Inc. Method and system to control thermostat using biofeedback
EP2928364A4 (en) 2013-01-28 2015-11-11 Valencell Inc Physiological monitoring devices having sensing elements decoupled from body motion
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US10593003B2 (en) * 2013-03-14 2020-03-17 Securiport Llc Systems, methods and apparatuses for identifying person of interest
WO2014145927A1 (en) 2013-03-15 2014-09-18 Alivecor, Inc. Systems and methods for processing and analyzing medical data
US20170185715A9 (en) * 2013-03-15 2017-06-29 Douglas K. Smith Federated Collaborative Medical Records System Utilizing Cloud Computing Network and Methods
JP6550370B2 (en) 2013-03-15 2019-07-24 ニューサート サイエンシーズ, インコーポレイテッド Leucine and Nicotinic Acid to Reduce Lipid Levels
US10719797B2 (en) 2013-05-10 2020-07-21 Opower, Inc. Method of tracking and reporting energy performance for businesses
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US10278624B2 (en) * 2013-05-23 2019-05-07 Iphenotype Llc Method and system for maintaining or improving wellness
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CA2913074C (en) 2013-05-30 2023-09-12 Graham H. Creasey Topical neurological stimulation
US10001792B1 (en) 2013-06-12 2018-06-19 Opower, Inc. System and method for determining occupancy schedule for controlling a thermostat
US9727824B2 (en) 2013-06-28 2017-08-08 D-Wave Systems Inc. Systems and methods for quantum processing of data
US9247911B2 (en) 2013-07-10 2016-02-02 Alivecor, Inc. Devices and methods for real-time denoising of electrocardiograms
US9710858B1 (en) 2013-08-16 2017-07-18 United Services Automobile Association (Usaa) Insurance policy alterations using informatic sensor data
US10949923B1 (en) 2013-09-16 2021-03-16 Allstate Insurance Company Home device sensing
US10953317B2 (en) 2013-09-27 2021-03-23 PlayNovation LLC Generating doppelgangers that reflect play personality or intrinsic motivators of a user/subject
US9808709B2 (en) 2013-09-27 2017-11-07 PlayNovation LLC System and methods for biometric detection of play states, intrinsic motivators, play types/patterns and play personalities
US9056256B2 (en) * 2013-09-27 2015-06-16 PlayNovation LLC System and methods for identifying intrinsic motivators, play profiles and play personalities through captured actions in an online environment
US9396643B2 (en) 2013-10-23 2016-07-19 Quanttus, Inc. Biometric authentication
US9420956B2 (en) 2013-12-12 2016-08-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US10885238B1 (en) 2014-01-09 2021-01-05 Opower, Inc. Predicting future indoor air temperature for building
US11087404B1 (en) 2014-01-10 2021-08-10 United Services Automobile Association (Usaa) Electronic sensor management
US11416941B1 (en) 2014-01-10 2022-08-16 United Services Automobile Association (Usaa) Electronic sensor management
US10552911B1 (en) 2014-01-10 2020-02-04 United Services Automobile Association (Usaa) Determining status of building modifications using informatics sensor data
US12100050B1 (en) 2014-01-10 2024-09-24 United Services Automobile Association (Usaa) Electronic sensor management
WO2015107681A1 (en) 2014-01-17 2015-07-23 任天堂株式会社 Information processing system, information processing server, information processing program, and information providing method
WO2015110287A1 (en) * 2014-01-24 2015-07-30 Koninklijke Philips N.V. Apparatus and method for selecting healthcare services
US20160324462A1 (en) 2014-01-31 2016-11-10 Firstbeat Technologies Oy Method and system for providing feedback automatically on physiological measurements to a user
US9852484B1 (en) 2014-02-07 2017-12-26 Opower, Inc. Providing demand response participation
US10037014B2 (en) 2014-02-07 2018-07-31 Opower, Inc. Behavioral demand response dispatch
US9947045B1 (en) 2014-02-07 2018-04-17 Opower, Inc. Selecting participants in a resource conservation program
US10031534B1 (en) 2014-02-07 2018-07-24 Opower, Inc. Providing set point comparison
US10380692B1 (en) 2014-02-21 2019-08-13 Allstate Insurance Company Home device sensing
US10430887B1 (en) 2014-02-21 2019-10-01 Allstate Insurance Company Device sensing
US11847666B1 (en) 2014-02-24 2023-12-19 United Services Automobile Association (Usaa) Determining status of building modifications using informatics sensor data
US10429888B2 (en) 2014-02-25 2019-10-01 Medibotics Llc Wearable computer display devices for the forearm, wrist, and/or hand
EP3110507B1 (en) 2014-02-27 2020-11-18 NuSirt Sciences, Inc. Compositions and methods for the reduction or prevention of hepatic steatosis
US10614525B1 (en) 2014-03-05 2020-04-07 United Services Automobile Association (Usaa) Utilizing credit and informatic data for insurance underwriting purposes
US10467701B1 (en) 2014-03-10 2019-11-05 Allstate Insurance Company Home event detection and processing
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US11406289B2 (en) 2014-03-17 2022-08-09 One Million Metrics Corp. System and method for monitoring safety and productivity of physical tasks
US9833197B1 (en) 2014-03-17 2017-12-05 One Million Metrics Corp. System and method for monitoring safety and productivity of physical tasks
US9835352B2 (en) 2014-03-19 2017-12-05 Opower, Inc. Method for saving energy efficient setpoints
US9866454B2 (en) * 2014-03-25 2018-01-09 Verizon Patent And Licensing Inc. Generating anonymous data from web data
US9727063B1 (en) 2014-04-01 2017-08-08 Opower, Inc. Thermostat set point identification
US20150287333A1 (en) * 2014-04-08 2015-10-08 John Stevens Virtual forensic educational lab activity and real-world kit
US10573415B2 (en) * 2014-04-21 2020-02-25 Medtronic, Inc. System for using patient data combined with database data to predict and report outcomes
US20150298006A1 (en) * 2014-04-22 2015-10-22 Dna Diagnostics Center, Inc. Helix profile system and methods
US10019739B1 (en) 2014-04-25 2018-07-10 Opower, Inc. Energy usage alerts for a climate control device
US10108973B2 (en) 2014-04-25 2018-10-23 Opower, Inc. Providing an energy target for high energy users
US20150317337A1 (en) * 2014-05-05 2015-11-05 General Electric Company Systems and Methods for Identifying and Driving Actionable Insights from Data
US10179064B2 (en) 2014-05-09 2019-01-15 Sleepnea Llc WhipFlash [TM]: wearable environmental control system for predicting and cooling hot flashes
US10171603B2 (en) 2014-05-12 2019-01-01 Opower, Inc. User segmentation to provide motivation to perform a resource saving tip
US9997083B2 (en) * 2014-05-29 2018-06-12 Samsung Electronics Co., Ltd. Context-aware recommendation system for adaptive learning
WO2015191445A1 (en) 2014-06-09 2015-12-17 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US10614724B2 (en) 2014-06-17 2020-04-07 Johnson & Johnson Consumer Inc. Systems and methods for wellness, health, and lifestyle planning, tracking, and maintenance
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10235662B2 (en) 2014-07-01 2019-03-19 Opower, Inc. Unusual usage alerts
US9942232B2 (en) * 2014-07-08 2018-04-10 Verily Life Sciences Llc User control of data de-identification
US10024564B2 (en) 2014-07-15 2018-07-17 Opower, Inc. Thermostat eco-mode
GB201412811D0 (en) * 2014-07-18 2014-09-03 Nu Wellness Ltd Wellness system
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
EP3199100A1 (en) 2014-08-06 2017-08-02 Valencell, Inc. Earbud with a physiological information sensor module
US10410130B1 (en) 2014-08-07 2019-09-10 Opower, Inc. Inferring residential home characteristics based on energy data
US10572889B2 (en) 2014-08-07 2020-02-25 Opower, Inc. Advanced notification to enable usage reduction
US11974847B2 (en) 2014-08-07 2024-05-07 Nintendo Co., Ltd. Information processing system, information processing device, storage medium storing information processing program, and information processing method
US10467249B2 (en) 2014-08-07 2019-11-05 Opower, Inc. Users campaign for peaking energy usage
US9576245B2 (en) 2014-08-22 2017-02-21 O Power, Inc. Identifying electric vehicle owners
US10297163B2 (en) * 2014-08-29 2019-05-21 Accenture Global Services Limited On-demand learning system
JP6630347B2 (en) 2014-09-03 2020-01-15 ナントヘルス,インコーポレーテッド Synthetic genomic variant-based secure transaction devices, systems, and methods
US9953041B2 (en) * 2014-09-12 2018-04-24 Verily Life Sciences Llc Long-term data storage service for wearable device data
US10004883B2 (en) 2014-09-25 2018-06-26 Intel Corporation Contextual activation of pharmaceuticals through wearable devices
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
WO2016061056A1 (en) * 2014-10-13 2016-04-21 Vu Sonny X Systems, devices, and methods for dynamic control
WO2016073035A1 (en) 2014-11-05 2016-05-12 Super League Gaming, Inc. Game system
AU2015342771B2 (en) 2014-11-06 2021-05-06 Ancestryhealth.Com, Llc Predicting health outcomes
AU2015345999A1 (en) * 2014-11-11 2017-06-08 Global Stress Index Pty Ltd A system and a method for generating stress level and stress resilience level information for an individual
KR102319269B1 (en) * 2014-11-11 2021-11-02 글로벌 스트레스 인덱스 피티와이 엘티디 A system and a method for generating a profile of stress levels and stress resilience levels in a population
US10033184B2 (en) 2014-11-13 2018-07-24 Opower, Inc. Demand response device configured to provide comparative consumption information relating to proximate users or consumers
US9916002B2 (en) 2014-11-16 2018-03-13 Eonite Perception Inc. Social applications for augmented reality technologies
WO2016077798A1 (en) 2014-11-16 2016-05-19 Eonite Perception Inc. Systems and methods for augmented reality preparation, processing, and application
US10055892B2 (en) 2014-11-16 2018-08-21 Eonite Perception Inc. Active region determination for head mounted displays
US9691023B2 (en) 2014-11-30 2017-06-27 WiseWear Corporation Exercise behavior prediction
EP3038023A1 (en) 2014-12-23 2016-06-29 Telefonica Digital España, S.L.U. A method, a system and computer program products for assessing the behavioral performance of a user
US20160203217A1 (en) * 2015-01-05 2016-07-14 Saama Technologies Inc. Data analysis using natural language processing to obtain insights relevant to an organization
US11599841B2 (en) 2015-01-05 2023-03-07 Saama Technologies Inc. Data analysis using natural language processing to obtain insights relevant to an organization
US10198483B2 (en) 2015-02-02 2019-02-05 Opower, Inc. Classification engine for identifying business hours
US11093950B2 (en) 2015-02-02 2021-08-17 Opower, Inc. Customer activity score
US10074097B2 (en) 2015-02-03 2018-09-11 Opower, Inc. Classification engine for classifying businesses based on power consumption
US10371861B2 (en) 2015-02-13 2019-08-06 Opower, Inc. Notification techniques for reducing energy usage
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10169827B1 (en) * 2015-03-27 2019-01-01 Intuit Inc. Method and system for adapting a user experience provided through an interactive software system to the content being delivered and the predicted emotional impact on the user of that content
US10387173B1 (en) 2015-03-27 2019-08-20 Intuit Inc. Method and system for using emotional state data to tailor the user experience of an interactive software system
US20160292983A1 (en) * 2015-04-05 2016-10-06 Smilables Inc. Wearable infant monitoring device
JP6498325B2 (en) 2015-05-13 2019-04-10 アライヴコア・インコーポレーテッド Discrepancy monitoring
US10091279B2 (en) 2015-05-27 2018-10-02 FlowJo, LLC Wireless connected laboratory
US10817789B2 (en) 2015-06-09 2020-10-27 Opower, Inc. Determination of optimal energy storage methods at electric customer service points
WO2016207206A1 (en) * 2015-06-25 2016-12-29 Gambro Lundia Ab Medical device system and method having a distributed database
US11116397B2 (en) 2015-07-14 2021-09-14 Welch Allyn, Inc. Method and apparatus for managing sensors
US10368810B2 (en) 2015-07-14 2019-08-06 Welch Allyn, Inc. Method and apparatus for monitoring a functional capacity of an individual
US10332122B1 (en) * 2015-07-27 2019-06-25 Intuit Inc. Obtaining and analyzing user physiological data to determine whether a user would benefit from user support
US9958360B2 (en) 2015-08-05 2018-05-01 Opower, Inc. Energy audit device
US10610144B2 (en) * 2015-08-19 2020-04-07 Palo Alto Research Center Incorporated Interactive remote patient monitoring and condition management intervention system
MX2018002154A (en) 2015-08-21 2018-06-18 Procter & Gamble Feminine pad with barrier cuffs.
US20170065792A1 (en) * 2015-09-03 2017-03-09 Withings Method and System to Optimize Lights and Sounds For Sleep
US10617350B2 (en) 2015-09-14 2020-04-14 Welch Allyn, Inc. Method and apparatus for managing a biological condition
US10564794B2 (en) * 2015-09-15 2020-02-18 Xerox Corporation Method and system for document management considering location, time and social context
US10657224B2 (en) 2015-09-25 2020-05-19 Accenture Global Solutions Limited Monitoring and treatment dosage prediction system
US10698910B2 (en) 2015-10-09 2020-06-30 Micro Focus Llc Generating cohorts using automated weighting and multi-level ranking
US10964421B2 (en) 2015-10-22 2021-03-30 Welch Allyn, Inc. Method and apparatus for delivering a substance to an individual
US10918340B2 (en) 2015-10-22 2021-02-16 Welch Allyn, Inc. Method and apparatus for detecting a biological condition
US10610158B2 (en) 2015-10-23 2020-04-07 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070667A1 (en) * 2015-10-23 2017-04-27 John Cameron Methods and systems for post search modification
CN108348163A (en) * 2015-10-29 2018-07-31 郑丽琼 System and method designed for the mobile platform that digital health management and remote patient monitoring are supported
US10949856B1 (en) * 2015-11-17 2021-03-16 United Services Automobile Association (Usaa) Systems and methods for adaptive learning to replicate peak performance of human decision making
US10559044B2 (en) 2015-11-20 2020-02-11 Opower, Inc. Identification of peak days
EP3380997A4 (en) 2015-11-24 2019-09-11 dacadoo ag Automated health data acquisition, processing and communication system and method
US10963319B2 (en) 2016-01-06 2021-03-30 International Business Machines Corporation Enhancing privacy of sensor data from devices using ephemeral cohorts
US10251610B2 (en) * 2016-01-26 2019-04-09 International Business Machines Corporation Contact tracing analytics
US10172517B2 (en) 2016-02-25 2019-01-08 Samsung Electronics Co., Ltd Image-analysis for assessing heart failure
US11164596B2 (en) 2016-02-25 2021-11-02 Samsung Electronics Co., Ltd. Sensor assisted evaluation of health and rehabilitation
US10420514B2 (en) 2016-02-25 2019-09-24 Samsung Electronics Co., Ltd. Detection of chronotropic incompetence
US10362998B2 (en) 2016-02-25 2019-07-30 Samsung Electronics Co., Ltd. Sensor-based detection of changes in health and ventilation threshold
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
WO2017173012A1 (en) * 2016-03-29 2017-10-05 Alibaba Group Holding Limited Methods, systems, and devices for evaluating a health condition of an internet user
US10533965B2 (en) 2016-04-19 2020-01-14 Industrial Scientific Corporation Combustible gas sensing element with cantilever support
WO2017184702A1 (en) 2016-04-19 2017-10-26 Industrial Scientific Corporation Worker safety system
KR101757398B1 (en) 2016-05-12 2017-07-12 동국대학교 산학협력단 System and method for diagnosing stress causal factor using implicit association test
US9811992B1 (en) 2016-06-06 2017-11-07 Microsoft Technology Licensing, Llc. Caregiver monitoring system
WO2018009890A1 (en) 2016-07-08 2018-01-11 Ontolead, Inc. Relationship analysis utilizing biofeedback information
WO2018009736A1 (en) 2016-07-08 2018-01-11 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
US10973416B2 (en) 2016-08-02 2021-04-13 Welch Allyn, Inc. Method and apparatus for monitoring biological conditions
US10791994B2 (en) 2016-08-04 2020-10-06 Welch Allyn, Inc. Method and apparatus for mitigating behavior adverse to a biological condition
US11017712B2 (en) 2016-08-12 2021-05-25 Intel Corporation Optimized display image rendering
JP7442316B2 (en) * 2016-09-09 2024-03-04 デックスコム・インコーポレーテッド Systems and methods for CGM-based bolus calculators for display and provision to drug delivery devices
US9928660B1 (en) 2016-09-12 2018-03-27 Intel Corporation Hybrid rendering for a wearable display attached to a tethered computer
KR102593690B1 (en) 2016-09-26 2023-10-26 디-웨이브 시스템즈, 인코포레이티드 Systems, methods and apparatus for sampling from a sampling server
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US20200034807A1 (en) * 2016-09-29 2020-01-30 Yaron HERSHCOVICH Method and system for securing transactions in a point of sale
WO2018067588A1 (en) * 2016-10-03 2018-04-12 Mirus Llc Systems and methods for clinical planning and risk management
US20180107962A1 (en) * 2016-10-14 2018-04-19 Microsoft Technology Licensing, Llc Stress and productivity insights based on computerized data
US11250958B2 (en) 2016-10-21 2022-02-15 International Business Machines Corporation Systems and techniques for recommending personalized health care based on demographics
US10716518B2 (en) 2016-11-01 2020-07-21 Microsoft Technology Licensing, Llc Blood pressure estimation by wearable computing device
SG10201609737RA (en) * 2016-11-21 2018-06-28 Mastercard International Inc Generation of a health index for financial product offerings
US11670422B2 (en) 2017-01-13 2023-06-06 Microsoft Technology Licensing, Llc Machine-learning models for predicting decompensation risk
US11256998B2 (en) 2017-01-24 2022-02-22 Intel Corporation Pattern recognition and prediction using a knowledge engine
JP3225990U (en) * 2017-04-19 2020-04-23 ナショナル サイエンス アンド テクノロジー デヴェロップメント エージェンシー A system for recording, analyzing and providing real-time alerts of accident risk or need for assistance based on continuous sensor signals
US20180322253A1 (en) * 2017-05-05 2018-11-08 International Business Machines Corporation Sensor Based Monitoring
US10699247B2 (en) 2017-05-16 2020-06-30 Under Armour, Inc. Systems and methods for providing health task notifications
WO2019012471A1 (en) * 2017-07-12 2019-01-17 Rajlakshmi Borthakur Iot based wearable device, system and method for the measurement of meditation and mindfulness
WO2019040279A1 (en) * 2017-08-22 2019-02-28 Gali Health, Inc. Personalized digital health system using temporal models
US10492725B2 (en) * 2017-10-29 2019-12-03 Orlando Efrain Abreu Oramas Method and system of facilitating monitoring of an individual based on at least one wearable device
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
EP3710960A4 (en) * 2017-11-13 2021-08-18 LifeQ Global Limited Integrated platform for connecting physiological health parameters to models of mortality, life expectancy and lifestyle interventions
WO2019118644A1 (en) 2017-12-14 2019-06-20 D-Wave Systems Inc. Systems and methods for collaborative filtering with variational autoencoders
EP3723604A4 (en) * 2017-12-15 2021-04-21 Somatix Inc. Systems and methods for monitoring user well-being
GB201801137D0 (en) * 2018-01-24 2018-03-07 Fitnessgenes Ltd Generating optimised workout plans using genetic and physiological data
US20210015417A1 (en) * 2018-03-21 2021-01-21 Limbic Limited Emotion data training method and system
CN108806784A (en) * 2018-05-22 2018-11-13 汉中市中心医院 Home telemedicine service system Internet-based
US11631497B2 (en) 2018-05-30 2023-04-18 International Business Machines Corporation Personalized device recommendations for proactive health monitoring and management
US11386346B2 (en) 2018-07-10 2022-07-12 D-Wave Systems Inc. Systems and methods for quantum bayesian networks
EP3824284A4 (en) * 2018-07-16 2022-04-13 The Regents of the University of California Relating complex data
US11260295B2 (en) 2018-07-24 2022-03-01 Super League Gaming, Inc. Cloud-based game streaming
US20200097976A1 (en) * 2018-09-21 2020-03-26 Colin Nickolas Hause Advanced finger biometric purchasing
WO2020064994A1 (en) * 2018-09-27 2020-04-02 Deepmind Technologies Limited Reinforcement learning neural networks grounded in learned visual entities
SG11202104293RA (en) 2018-11-02 2021-05-28 Verona Holdings Sezc A tokenization platform
US10740930B2 (en) 2018-11-07 2020-08-11 Love Good Color LLC Systems and methods for color selection and auditing
US11461644B2 (en) 2018-11-15 2022-10-04 D-Wave Systems Inc. Systems and methods for semantic segmentation
US11468293B2 (en) 2018-12-14 2022-10-11 D-Wave Systems Inc. Simulating and post-processing using a generative adversarial network
WO2020142537A1 (en) * 2018-12-31 2020-07-09 Engauge LLC Surgical media streaming, archiving, and analysis platform
US11900264B2 (en) 2019-02-08 2024-02-13 D-Wave Systems Inc. Systems and methods for hybrid quantum-classical computing
US11625612B2 (en) 2019-02-12 2023-04-11 D-Wave Systems Inc. Systems and methods for domain adaptation
US11998802B2 (en) * 2019-02-19 2024-06-04 Firstbeat Analytics Oy Method and apparatus for assessing acclimatization to environmental conditions and to assess fitness level taking into account the environmental conditions and the level of acclimatization
US10553319B1 (en) * 2019-03-14 2020-02-04 Kpn Innovations, Llc Artificial intelligence systems and methods for vibrant constitutional guidance
US11915827B2 (en) * 2019-03-14 2024-02-27 Kenneth Neumann Methods and systems for classification to prognostic labels
CN109908587B (en) * 2019-03-20 2022-07-15 北京小米移动软件有限公司 Method and device for generating image parameters of reproducible virtual character and storage medium
US20200302825A1 (en) 2019-03-21 2020-09-24 Dan Sachs Automated selection and titration of sensory stimuli to induce a target pattern of autonomic nervous system activity
US11275985B2 (en) * 2019-04-02 2022-03-15 Kpn Innovations, Llc. Artificial intelligence advisory systems and methods for providing health guidance
US11250062B2 (en) * 2019-04-04 2022-02-15 Kpn Innovations Llc Artificial intelligence methods and systems for generation and implementation of alimentary instruction sets
US11392854B2 (en) * 2019-04-29 2022-07-19 Kpn Innovations, Llc. Systems and methods for implementing generated alimentary instruction sets based on vibrant constitutional guidance
US11161011B2 (en) * 2019-04-29 2021-11-02 Kpn Innovations, Llc Methods and systems for an artificial intelligence fitness professional support network for vibrant constitutional guidance
US10846622B2 (en) * 2019-04-29 2020-11-24 Kenneth Neumann Methods and systems for an artificial intelligence support network for behavior modification
US11461664B2 (en) * 2019-05-07 2022-10-04 Kpn Innovations, Llc. Methods and systems for an artificial intelligence alimentary professional support network for vibrant constitutional guidance
US11246187B2 (en) 2019-05-30 2022-02-08 Industrial Scientific Corporation Worker safety system with scan mode
US11200814B2 (en) * 2019-06-03 2021-12-14 Kpn Innovations, Llc Methods and systems for self-fulfillment of a dietary request
US11568351B2 (en) * 2019-06-03 2023-01-31 Kpn Innovations, Llc. Systems and methods for arranging transport of alimentary components
US11205140B2 (en) * 2019-06-03 2021-12-21 Kpn Innovations Llc Methods and systems for self-fulfillment of an alimentary instruction set based on vibrant constitutional guidance
US11042746B2 (en) 2019-06-05 2021-06-22 International Business Machines Corporation Presenting information on object to be observed
WO2020257351A1 (en) * 2019-06-17 2020-12-24 Gideon Health Wearable device operable to detect and/or manage user stress
KR20220025834A (en) 2019-06-26 2022-03-03 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activators with adaptive circuits
US12079714B2 (en) * 2019-07-03 2024-09-03 Kpn Innovations, Llc Methods and systems for an artificial intelligence advisory system for textual analysis
TWI724466B (en) * 2019-07-19 2021-04-11 東帝興實業股份有限公司 Analysis system for sleep quality and health
US11610161B2 (en) * 2019-07-24 2023-03-21 Microsoft Technology Licensing, Llc Skill validation
US11461700B2 (en) * 2019-08-05 2022-10-04 Kpn Innovations, Llc. Methods and systems for using artificial intelligence to analyze user activity data
US10902351B1 (en) * 2019-08-05 2021-01-26 Kpn Innovations, Llc Methods and systems for using artificial intelligence to analyze user activity data
US11929170B2 (en) * 2019-08-22 2024-03-12 Kpn Innovations, Llc Methods and systems for selecting an ameliorative output using artificial intelligence
CA3139963A1 (en) * 2019-09-03 2021-03-11 Aviel COHEN System and methods for monitoring and customizing consumption of herbs
US20210074426A1 (en) * 2019-09-10 2021-03-11 Anuthep Benja-Athon AIR Preemption of Atherosclerotic Diseases
US12027277B1 (en) 2019-12-05 2024-07-02 Evidation Health, Inc. Active learning for wearable health sensor
KR20220115802A (en) 2019-12-16 2022-08-18 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activator with boost charge transfer function
KR102136207B1 (en) * 2019-12-31 2020-07-21 주식회사 클리노믹스 Sytem for providing personalized social contents imformation based on genetic information and method thereof
US12033761B2 (en) 2020-01-30 2024-07-09 Evidation Health, Inc. Sensor-based machine learning in a health prediction environment
WO2022051379A1 (en) * 2020-09-04 2022-03-10 Centerline Holdings, Llc System and method for providing wellness recommendation
EP4256578A1 (en) * 2020-12-01 2023-10-11 Ksana Health, Inc. Systems and methods for automated behavioral activation
LT6841B (en) 2020-12-22 2021-08-25 Vilniaus Gedimino technikos universitetas Individual indoor microclimate control method and its realization system
US12026967B2 (en) 2020-12-31 2024-07-02 Securiport Llc Travel document validation using artificial intelligence and unsupervised learning
US11960599B2 (en) * 2021-02-26 2024-04-16 International Business Machines Corporation Classifying users of a database
WO2022231590A1 (en) * 2021-04-29 2022-11-03 Hewlett-Packard Development Company, L.P. Predicting mental state characteristics of users of wearable devices
US20240233914A1 (en) * 2021-04-29 2024-07-11 Hewlett-Packard Development Company, L.P. Predicting mental state characteristics of users of wearable devices
US11847127B2 (en) 2021-05-12 2023-12-19 Toyota Research Institute, Inc. Device and method for discovering causal patterns
US11907273B2 (en) 2021-06-18 2024-02-20 International Business Machines Corporation Augmenting user responses to queries
CN113612958A (en) * 2021-07-19 2021-11-05 石家庄定盘星软件开发有限公司 Remote new video communication equipment based on Internet of things and use method thereof
CN114492647B (en) * 2022-01-28 2024-06-21 中国银联股份有限公司 Federal graph clustering method and device based on distributed graph embedding and readable storage medium
WO2023150428A1 (en) 2022-02-03 2023-08-10 Evidation Health, Inc. Systems and methods for self-supervised learning based on naturally-occurring patterns of missing data

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913074A (en) * 1973-12-18 1975-10-14 Honeywell Inf Systems Search processing apparatus
US6440066B1 (en) * 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
US20040172290A1 (en) * 2002-07-15 2004-09-02 Samuel Leven Health monitoring device
US20050021679A1 (en) * 2000-02-25 2005-01-27 Alexander Lightman Method and system for data transmission between wearable devices or from wearable devices to portal
US7024369B1 (en) * 2000-05-31 2006-04-04 International Business Machines Corporation Balancing the comprehensive health of a user
US20070004969A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Health monitor
US20090131759A1 (en) * 2003-11-04 2009-05-21 Nathaniel Sims Life sign detection and health state assessment system
US7616110B2 (en) * 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor

Family Cites Families (454)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US648736A (en) * 1899-05-06 1900-05-01 Empire Electrical Machinery Company Automobile truck.
US3870034A (en) * 1973-03-26 1975-03-11 Cyborg Corp Personal galvanic skin response monitoring instrument
US4052979A (en) * 1975-12-04 1977-10-11 Mary Ann Scherr Jewelry and bracelet heartbeat monitor
US4144446A (en) * 1976-02-06 1979-03-13 Sanders Lincoln L Biorhythm calculator
US4151831A (en) 1976-11-15 1979-05-01 Safetime Monitors, Inc. Fertility indicator
US4148304A (en) * 1976-11-29 1979-04-10 Bmd Development Trust Device for measuring ovulation
US4129125A (en) * 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4192000A (en) * 1977-07-14 1980-03-04 Calorie Counter Limited Partnership Electronic calorie counter
IT1162556B (en) 1979-07-06 1987-04-01 Pirelli INDIVIDUAL MICROCLIMATE INDEX METER
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
JPS56118630A (en) * 1980-02-23 1981-09-17 Sharp Corp Electronic clinical thermometer
USRE32758E (en) 1980-05-12 1988-10-04 New Mexico State University Foundation, Inc. Method for remotely monitoring the long term deep body temperature in female mammals
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
AT371326B (en) 1981-06-16 1983-06-27 Wiener Innovationsges MEASURING PROBE FOR MONITORING A CHILD DURING BIRTH
EP0077073B1 (en) 1981-10-13 1989-08-09 Radiometer A/S Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
US4531527A (en) 1982-04-23 1985-07-30 Survival Technology, Inc. Ambulatory monitoring system with real time analysis and telephone transmission
US4509531A (en) * 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
US4608987A (en) 1982-12-03 1986-09-02 Physioventures, Inc. Apparatus for transmitting ECG data
US4557273A (en) 1982-12-27 1985-12-10 Stoller Kenneth P Method and apparatus for detecting ovulation
US4981139A (en) * 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4622979A (en) * 1984-03-02 1986-11-18 Cardiac Monitoring, Inc. User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
US5016213A (en) * 1984-08-20 1991-05-14 Dilts Robert B Method and apparatus for controlling an electrical device using electrodermal response
DE3509503C2 (en) 1985-03-16 1987-02-12 Hermann-Josef Dr. 5300 Bonn Frohn Device for measuring a body parameter
US5040541A (en) 1985-04-01 1991-08-20 Thermonetics Corporation Whole body calorimeter
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US5111818A (en) * 1985-10-08 1992-05-12 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US5007427A (en) 1987-05-07 1991-04-16 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4819860A (en) * 1986-01-09 1989-04-11 Lloyd D. Lillie Wrist-mounted vital functions monitor and emergency locator
US4757453A (en) 1986-03-25 1988-07-12 Nasiff Roger E Body activity monitor using piezoelectric transducers on arms and legs
US4828257A (en) * 1986-05-20 1989-05-09 Powercise International Corporation Electronically controlled exercise system
US4672977A (en) 1986-06-10 1987-06-16 Cherne Industries, Inc. Lung sound cancellation method and apparatus
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US4827943A (en) * 1986-09-23 1989-05-09 Advanced Medical Technologies, Inc. Portable, multi-channel, physiological data monitoring system
US5072458A (en) 1987-05-07 1991-12-17 Capintec, Inc. Vest for use in an ambulatory physiological evaluation system including cardiac monitoring
US4883063A (en) * 1987-05-29 1989-11-28 Electric Power Research Institute, Inc. Personal monitor and process for heat and work stress
GB8726933D0 (en) 1987-11-18 1987-12-23 Cadell T E Telemetry system
DE3802479A1 (en) 1988-01-28 1989-08-10 Uebe Thermometer Gmbh Method and device for determining the ovulation period of humans or animals by means of electric detection of the deviation in body temperature
US4966154A (en) 1988-02-04 1990-10-30 Jonni Cooper Multiple parameter monitoring system for hospital patients
US5179958A (en) * 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US5178155A (en) * 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US5038792A (en) 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US4917108A (en) * 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US6247647B1 (en) 1988-09-19 2001-06-19 Symbol Technologies, Inc. Scan pattern generator convertible between multiple and single line patterns
US4891756A (en) 1988-09-26 1990-01-02 Williams Iii William B Nutritional microcomputer and method
EP0404932A4 (en) 1989-01-13 1993-01-27 The Scott Fetzer Company Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5511553A (en) * 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US4981756A (en) * 1989-03-21 1991-01-01 Vac-Tec Systems, Inc. Method for coated surgical instruments and tools
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5027824A (en) 1989-12-01 1991-07-02 Edmond Dougherty Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances
US5052375A (en) * 1990-02-21 1991-10-01 John G. Stark Instrumented orthopedic restraining device and method of use
US5823975A (en) 1990-02-21 1998-10-20 Stark; John G. Local monitoring system for an instrumented orthopedic restraining device and method therefor
US5929782A (en) * 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
IL94421A (en) * 1990-05-17 1993-04-04 Israel State Accelerometer
WO1992012490A1 (en) 1991-01-11 1992-07-23 Health Innovations, Inc. Method and apparatus to control diet and weight using human behavior modification techniques
US5148002A (en) 1991-03-14 1992-09-15 Kuo David D Multi-functional garment system
US5224479A (en) 1991-06-21 1993-07-06 Topy Enterprises Limited ECG diagnostic pad
US5135311A (en) 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
GB9117015D0 (en) 1991-08-07 1991-09-18 Software Solutions Ltd Operation of computer systems
US5335664A (en) 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5476103A (en) 1991-10-10 1995-12-19 Neurocom International, Inc. Apparatus and method for assessment and biofeedback training of leg coordination and strength skills
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
FI95535C (en) 1991-12-09 1996-02-26 Polar Electro Oy Device for measuring heartbeat
JP3144030B2 (en) * 1992-02-24 2001-03-07 東陶機器株式会社 Health management network system
FI92139C (en) * 1992-02-28 1994-10-10 Matti Myllymaeki Monitoring device for the health condition, which is attached to the wrist
US5305244B2 (en) * 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
US5263491A (en) * 1992-05-12 1993-11-23 William Thornton Ambulatory metabolic monitor
US5491651A (en) * 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
US5285398A (en) * 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
IT1255065B (en) * 1992-05-22 1995-10-17 Rotolo Giuseppe ELECTRODE POSITIONING DEVICE FOR ELECTROCARDIOGRAPHY
EP0600081A4 (en) * 1992-06-22 1995-03-01 Health Risk Management Inc Health care management system.
DK170548B1 (en) * 1992-11-02 1995-10-23 Verner Rasmussen Garment for use in recording electrocardiographic measurements using a monitoring device
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5951300A (en) * 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US5913310A (en) * 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US6968375B1 (en) * 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5960403A (en) * 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5832448A (en) * 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5899855A (en) * 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5879163A (en) * 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US6168563B1 (en) * 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
EP0602459B1 (en) 1992-12-16 1999-11-03 Siemens Medical Systems, Inc. System for monitoring patient location and data
US5455577A (en) * 1993-03-12 1995-10-03 Microsoft Corporation Method and system for data compression
DE69413585T2 (en) * 1993-03-31 1999-04-29 Siemens Medical Systems, Inc., Iselin, N.J. Apparatus and method for providing dual output signals in a telemetry transmitter
US5888172A (en) * 1993-04-26 1999-03-30 Brunswick Corporation Physical exercise video system
US5524618A (en) * 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
DE4329898A1 (en) * 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
FI100941B (en) * 1993-09-14 1998-03-31 Internat Business Innovations Health monitoring device attached to the body
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5523742A (en) * 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5555490A (en) * 1993-12-13 1996-09-10 Key Idea Development, L.L.C. Wearable personal computer system
US5660176A (en) * 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5435315A (en) 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
US5704350A (en) * 1994-03-25 1998-01-06 Nutritec Corporation Nutritional microcomputer and method
US5515865A (en) * 1994-04-22 1996-05-14 The United States Of America As Represented By The Secretary Of The Army Sudden Infant Death Syndrome (SIDS) monitor and stimulator
AU2365695A (en) 1994-04-26 1995-11-16 Raya Systems, Inc. Modular microprocessor-based diagnostic measurement system for psychological conditions
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5652570A (en) * 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5729203A (en) * 1994-06-28 1998-03-17 Colin Corporation Emergency call system
IL110419A (en) 1994-07-24 1997-04-15 Slp Scient Lab Prod Ltd Compositions for disposable bio-medical electrodes
US5908027A (en) 1994-08-22 1999-06-01 Alaris Medical Systems, Inc. Tonometry system for monitoring blood pressure
US5566679A (en) 1994-08-31 1996-10-22 Omniglow Corporation Methods for managing the Reproductive status of an animal using color heat mount detectors
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5827180A (en) * 1994-11-07 1998-10-27 Lifemasters Supported Selfcare Method and apparatus for a personal health network
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US6539336B1 (en) * 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US8280682B2 (en) * 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US5636146A (en) * 1994-11-21 1997-06-03 Phatrat Technology, Inc. Apparatus and methods for determining loft time and speed
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US5559497A (en) 1994-11-28 1996-09-24 Hong; Chia-Ping Body temperature sensing and alarming device
US5697791A (en) 1994-11-29 1997-12-16 Nashner; Lewis M. Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5959611A (en) * 1995-03-06 1999-09-28 Carnegie Mellon University Portable computer system with ergonomic input device
US5617477A (en) * 1995-03-08 1997-04-01 Interval Research Corporation Personal wearable communication system with enhanced low frequency response
US5645068A (en) 1995-03-20 1997-07-08 Bioscan, Inc. Methods and apparatus for ambulatory and non-ambulatory monitoring of physiological data using digital flash storage
US5971597A (en) * 1995-03-29 1999-10-26 Hubbell Corporation Multifunction sensor and network sensor system
US5682618A (en) * 1995-04-03 1997-11-04 Minnesota Mining And Manufacturing Company Viral resistant seam for protective apparel, and method of manufacturing same
AUPN236595A0 (en) 1995-04-11 1995-05-11 Rescare Limited Monitoring of apneic arousals
US5832296A (en) * 1995-04-26 1998-11-03 Interval Research Corp. Wearable context sensitive user interface for interacting with plurality of electronic devices of interest to the user
US5730140A (en) * 1995-04-28 1998-03-24 Fitch; William Tecumseh S. Sonification system using synthesized realistic body sounds modified by other medically-important variables for physiological monitoring
EP0778001B1 (en) 1995-05-12 2004-04-07 Seiko Epson Corporation Apparatus for diagnosing condition of living organism and control unit
US5581238A (en) * 1995-05-12 1996-12-03 Chang; Mei-Hui Pacifier with fever heat alarm device
US6392962B1 (en) * 1995-05-18 2002-05-21 Rmp, Inc. Method of sleep time measurement
US5523730C1 (en) 1995-06-02 2002-01-15 Van Anthony J Zeeland Switch with mangnetically-coupled armature
US5666096A (en) 1995-06-02 1997-09-09 Van Zeeland; Anthony J. Switch with magnetically-coupled armature
US5990772A (en) * 1995-06-02 1999-11-23 Duraswitch Industries, Inc. Pushbutton switch with magnetically coupled armature
US5689702A (en) * 1995-06-07 1997-11-18 Microtec Research, Inc. Flexible data structure layout for data structure including bit-field data members
US5752976A (en) * 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5663703A (en) * 1995-07-12 1997-09-02 Sony Corporation Silent wrist pager with tactile alarm
US6001065A (en) * 1995-08-02 1999-12-14 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
US6183425B1 (en) * 1995-10-13 2001-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for monitoring of daily activity in terms of ground reaction forces
JPH09114955A (en) 1995-10-18 1997-05-02 Seiko Epson Corp Pitch meter
US5738104A (en) * 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US5701894A (en) * 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
US5803915A (en) 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US6059692A (en) * 1996-12-13 2000-05-09 Hickman; Paul L. Apparatus for remote interactive exercise and health equipment
WO1997022295A1 (en) * 1995-12-18 1997-06-26 Seiko Epson Corporation Health care device and exercise supporting device
US5778345A (en) * 1996-01-16 1998-07-07 Mccartney; Michael J. Health data processing system
US20010044588A1 (en) * 1996-02-22 2001-11-22 Mault James R. Monitoring system
US6135107A (en) 1996-03-11 2000-10-24 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US5836300A (en) 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6208900B1 (en) * 1996-03-28 2001-03-27 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
US6030342A (en) 1996-06-12 2000-02-29 Seiko Epson Corporation Device for measuring calorie expenditure and device for measuring body temperature
ATE267034T1 (en) 1996-07-02 2004-06-15 Graber Products Inc ELECTRONIC EXERCISE SYSTEM
US6265978B1 (en) 1996-07-14 2001-07-24 Atlas Researches, Ltd. Method and apparatus for monitoring states of consciousness, drowsiness, distress, and performance
US5741217A (en) * 1996-07-30 1998-04-21 Gero; Jeffrey Biofeedback apparatus
US5989157A (en) * 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
US5719743A (en) * 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
US5884198A (en) * 1996-08-16 1999-03-16 Ericsson, Inc. Body conformal portable radio and method of constructing the same
US5855550A (en) 1996-11-13 1999-01-05 Lai; Joseph Method and system for remotely monitoring multiple medical parameters
US6364834B1 (en) * 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5771001A (en) 1996-11-18 1998-06-23 Cobb; Marlon J. Personal alarm system
US5726631A (en) * 1996-11-26 1998-03-10 Lin; Wen-Juei Structure kick-activated wearable alarm for infants
US6198394B1 (en) * 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6298218B1 (en) 1996-12-18 2001-10-02 Clubcom, Inc. Combined advertising and entertainment system network
US6050950A (en) * 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US20020072911A1 (en) * 1997-01-10 2002-06-13 Ramsey Foundation System and method for interactively tracking a patient in a medical facility
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5868671A (en) * 1997-01-28 1999-02-09 Hewlett-Packard Company Multiple ECG electrode strip
DE19704833A1 (en) * 1997-02-08 1998-08-13 Gruenau Gmbh Chem Fab Fire-resistant opening lock
US6102856A (en) * 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US5865733A (en) * 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US5959529A (en) * 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
EP0969897B1 (en) * 1997-03-17 2010-08-18 Adidas AG Physiologic signs feedback system
US5902250A (en) * 1997-03-31 1999-05-11 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US5857939A (en) 1997-06-05 1999-01-12 Talking Counter, Inc. Exercise device with audible electronic monitor
US6251048B1 (en) 1997-06-05 2001-06-26 Epm Develoment Systems Corporation Electronic exercise monitor
JPH114820A (en) * 1997-06-18 1999-01-12 Ee D K:Kk Health caring device
US5857967A (en) * 1997-07-09 1999-01-12 Hewlett-Packard Company Universally accessible healthcare devices with on the fly generation of HTML files
US5976083A (en) 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US5813766A (en) 1997-08-12 1998-09-29 Chen; Mei-Yen Finger temperature indicating ring
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US6138079A (en) * 1997-08-18 2000-10-24 Putnam; John M. Device for calculating fluid loss from a body during exercise
US5839901A (en) 1997-10-01 1998-11-24 Karkanen; Kip M. Integrated weight loss control method
US5891060A (en) * 1997-10-13 1999-04-06 Kinex Iha Corp. Method for evaluating a human joint
US6139494A (en) 1997-10-15 2000-10-31 Health Informatics Tools Method and apparatus for an integrated clinical tele-informatics system
US5931791A (en) 1997-11-05 1999-08-03 Instromedix, Inc. Medical patient vital signs-monitoring apparatus
IL122875A0 (en) * 1998-01-08 1998-08-16 S L P Ltd An integrated sleep apnea screening system
US6225980B1 (en) 1998-02-06 2001-05-01 Carnegie Mellon University Multi-functional, rotary dial input device for portable computers
US6101407A (en) 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
US6658486B2 (en) * 1998-02-25 2003-12-02 Hewlett-Packard Development Company, L.P. System and method for efficiently blocking event signals associated with an operating system
US6102846A (en) * 1998-02-26 2000-08-15 Eastman Kodak Company System and method of managing a psychological state of an individual using images
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6366871B1 (en) * 1999-03-03 2002-04-02 Card Guard Scientific Survival Ltd. Personal ambulatory cellular health monitor for mobile patient
US6013007A (en) 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US7603286B2 (en) * 1998-05-21 2009-10-13 Sap Ag Demand-model based price image calculation method and computer program therefor
US7860725B2 (en) * 1998-05-26 2010-12-28 Ineedmd.Com, Inc. Method for remote medical consultation and care
EP1082056B1 (en) * 1998-06-03 2007-11-14 Scott Laboratories, Inc. Apparatus for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
IL124900A0 (en) * 1998-06-14 1999-01-26 Tapuz Med Tech Ltd Apron for performing ecg tests and additional examinations
US7854684B1 (en) * 1998-06-24 2010-12-21 Samsung Electronics Co., Ltd. Wearable device
US6190314B1 (en) 1998-07-15 2001-02-20 International Business Machines Corporation Computer input device with biosensors for sensing user emotions
DE19832361A1 (en) 1998-07-20 2000-02-03 Noehte Steffen Body function monitor measures bodily conditions, determines environmental stresses, pauses and computes probabilities, before pronouncing on criticality with high confidence level
US6154668A (en) * 1998-08-06 2000-11-28 Medtronics Inc. Ambulatory recorder having a real time and non-real time processors
US6240323B1 (en) 1998-08-11 2001-05-29 Conmed Corporation Perforated size adjustable biomedical electrode
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6420959B1 (en) 1998-09-18 2002-07-16 Timex Group B.V. Multi-level user interface for a multimode device
AU1198100A (en) * 1998-09-23 2000-04-10 Keith Bridger Physiological sensing device
US6306088B1 (en) * 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US6421656B1 (en) * 1998-10-08 2002-07-16 International Business Machines Corporation Method and apparatus for creating structure indexes for a data base extender
US5912865A (en) 1998-10-19 1999-06-15 U.S.A. Technologies Inc. Watch case with positioning means
US6377162B1 (en) * 1998-11-25 2002-04-23 Ge Medical Systems Global Technology Company, Llc Medical diagnostic field service method and apparatus
US7779015B2 (en) * 1998-12-18 2010-08-17 Microsoft Corporation Logging and analyzing context attributes
US6466232B1 (en) * 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
US7073129B1 (en) * 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6307384B2 (en) * 1999-01-07 2001-10-23 Honeywell International Inc. Micropower capacitance-based proximity sensor
JP4046883B2 (en) * 1999-02-09 2008-02-13 株式会社タニタ Body fat scale and health management system
IL128815A0 (en) 1999-03-03 2000-01-31 S L P Ltd A nocturnal muscle activity monitoring system
US6454707B1 (en) 1999-03-08 2002-09-24 Samuel W. Casscells, III Method and apparatus for predicting mortality in congestive heart failure patients
US6821249B2 (en) * 1999-03-08 2004-11-23 Board Of Regents, The University Of Texas Temperature monitoring of congestive heart failure patients as an indicator of worsening condition
DE19911766A1 (en) 1999-03-16 2000-09-28 Fidelak Michael Method to measure sports medicine and sports specific parameters, e.g. speed, distance, position, pulse or ECG; involves using GPS antenna, sensors for body parameters and evaluation unit
US6302844B1 (en) * 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US7593952B2 (en) * 1999-04-09 2009-09-22 Soll Andrew H Enhanced medical treatment system
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6385473B1 (en) 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6450953B1 (en) 1999-04-15 2002-09-17 Nexan Limited Portable signal transfer unit
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6755783B2 (en) 1999-04-16 2004-06-29 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6675041B2 (en) * 1999-05-18 2004-01-06 Physi-Cal Enterprises Lp Electronic apparatus and method for monitoring net calorie intake
US6069552A (en) * 1999-06-02 2000-05-30 Duraswitch Industries, Inc. Directionally sensitive switch
US6371123B1 (en) * 1999-06-11 2002-04-16 Izex Technology, Inc. System for orthopedic treatment protocol and method of use thereof
JP2003503693A (en) * 1999-06-23 2003-01-28 エリアフ ルビンスタイン、 Heat alarm system
DE19929328A1 (en) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Device for long-term medical monitoring of people
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US6312363B1 (en) * 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
US6463439B1 (en) * 1999-07-15 2002-10-08 American Management Systems, Incorporated System for accessing database tables mapped into memory for high performance data retrieval
US6221011B1 (en) * 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6468222B1 (en) 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US6923763B1 (en) * 1999-08-23 2005-08-02 University Of Virginia Patent Foundation Method and apparatus for predicting the risk of hypoglycemia
US6147618A (en) 1999-09-15 2000-11-14 Ilife Systems, Inc. Apparatus and method for reducing power consumption in physiological condition monitors
US6339720B1 (en) * 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
EP1217942A1 (en) 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US20020062069A1 (en) * 1999-10-08 2002-05-23 Mault James R. System and method of integrated calorie management using interactive television
AU8007600A (en) 1999-10-08 2001-04-23 Healthetech, Inc. Monitoring caloric expenditure rate and caloric diet
JP2004513669A (en) * 1999-10-08 2004-05-13 ヘルセテック インコーポレイテッド Integrated calorie management system
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
FI114282B (en) * 1999-11-05 2004-09-30 Polar Electro Oy Method, Arrangement and Heart Rate Monitor for Heartbeat Detection
US6336903B1 (en) * 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US7490048B2 (en) * 1999-12-18 2009-02-10 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
US7454002B1 (en) 2000-01-03 2008-11-18 Sportbrain, Inc. Integrating personal data capturing functionality into a portable computing device and a wireless communication device
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7676384B2 (en) * 2000-01-18 2010-03-09 Medigenesis, Inc. System and method for the automated presentation of system data to, and interaction with, a computer maintained database
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
ATE419844T1 (en) * 2000-02-10 2009-01-15 Kao Corp USE OF SESQUITERPEN ALCOHOL TO REGULATE THE AUTONOMOUS NERVOUS SYSTEM
US6551251B2 (en) * 2000-02-14 2003-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passive fetal heart monitoring system
US7403972B1 (en) * 2002-04-24 2008-07-22 Ip Venture, Inc. Method and system for enhanced messaging
US6893396B2 (en) * 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
US6383136B1 (en) * 2000-03-06 2002-05-07 Charlyn Jordan Health analysis and forecast of abnormal conditions
US20020054149A1 (en) * 2000-03-10 2002-05-09 Genise Ronald G. System configuration editor with an iconic function sequencer
JP3846844B2 (en) 2000-03-14 2006-11-15 株式会社東芝 Body-mounted life support device
US6305071B1 (en) 2000-03-30 2001-10-23 Duraswitch Industries, Inc. Method for converting a flat panel switch
US6711558B1 (en) * 2000-04-07 2004-03-23 Washington University Associative database scanning and information retrieval
US6610012B2 (en) * 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
EP1296591B1 (en) * 2000-04-17 2018-11-14 Adidas AG Systems for ambulatory monitoring of physiological signs
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6514200B1 (en) * 2000-05-17 2003-02-04 Brava, Llc Patient compliance monitor
US6730024B2 (en) * 2000-05-17 2004-05-04 Brava, Llc Method and apparatus for collecting patient compliance data including processing and display thereof over a computer network
US7860583B2 (en) * 2004-08-25 2010-12-28 Carefusion 303, Inc. System and method for dynamically adjusting patient therapy
US6482158B2 (en) 2000-05-19 2002-11-19 Healthetech, Inc. System and method of ultrasonic mammography
US6712615B2 (en) * 2000-05-22 2004-03-30 Rolf John Martin High-precision cognitive performance test battery suitable for internet and non-internet use
WO2003042780A2 (en) * 2001-11-09 2003-05-22 Gene Logic Inc. System and method for storage and analysis of gene expression data
JP2003533318A (en) * 2000-05-25 2003-11-11 ヘルセテック インコーポレイテッド Physiological monitoring using wrist-mounted devices
US7485095B2 (en) * 2000-05-30 2009-02-03 Vladimir Shusterman Measurement and analysis of trends in physiological and/or health data
US6389308B1 (en) * 2000-05-30 2002-05-14 Vladimir Shusterman System and device for multi-scale analysis and representation of electrocardiographic data
JP2001344352A (en) 2000-05-31 2001-12-14 Toshiba Corp Life assisting device, life assisting method and advertisement information providing method
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
EP1662989B1 (en) * 2000-06-16 2014-09-03 BodyMedia, Inc. System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6699188B2 (en) 2000-06-22 2004-03-02 Guidance Interactive Technologies Interactive reward devices and methods
EP1702560B1 (en) * 2000-06-23 2014-11-19 BodyMedia, Inc. System for monitoring health, wellness and fitness
US20020004727A1 (en) * 2000-07-03 2002-01-10 Knaus William A. Broadband computer-based networked systems for control and management of medical records
ES1046905U (en) * 2000-08-03 2001-02-01 Roy Alejandro Camarero Diaper with wetness detector
JP3425125B2 (en) * 2000-08-10 2003-07-07 タイコエレクトロニクスアンプ株式会社 Socket for BGA package
US6690959B2 (en) 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
AU2001288902A1 (en) * 2000-09-07 2002-03-22 Healthetech, Inc. Portable computing apparatus particularly useful in a weight management program
US6773405B2 (en) * 2000-09-15 2004-08-10 Jacob Fraden Ear temperature monitor and method of temperature measurement
JP2002095637A (en) 2000-09-26 2002-04-02 Kireicom:Kk Portable terminal and electronic device
US6665559B2 (en) * 2000-10-06 2003-12-16 Ge Medical Systems Information Technologies, Inc. Method and apparatus for perioperative assessment of cardiovascular risk
US7139699B2 (en) * 2000-10-06 2006-11-21 Silverman Stephen E Method for analysis of vocal jitter for near-term suicidal risk assessment
US20020133378A1 (en) 2000-10-13 2002-09-19 Mault James R. System and method of integrated calorie management
US6904408B1 (en) * 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
WO2002034331A2 (en) * 2000-10-26 2002-05-02 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
US7711580B1 (en) * 2000-10-31 2010-05-04 Emergingmed.Com System and method for matching patients with clinical trials
ITMI20002358A1 (en) * 2000-10-31 2002-05-01 Flavio Moroni TIENO DERIVATIVES, 2, 3-C | ISOCHINOLIN-3-ONE AS INHIBITORS OF POLY (DP-RIBOSE) POLYMERASE
US20020055857A1 (en) * 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US7330818B1 (en) 2000-11-09 2008-02-12 Lifespan Interactive: Medical Information Management. Llc. Health and life expectancy management system
US7171331B2 (en) * 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US20020169634A1 (en) * 2000-12-26 2002-11-14 Kenzo Nishi Healthcare system, healthcare apparatus, server and healthcare method
US6392515B1 (en) 2000-12-27 2002-05-21 Duraswitch Industries, Inc. Magnetic switch with multi-wide actuator
US20020013717A1 (en) 2000-12-28 2002-01-31 Masahiro Ando Exercise body monitor with functions to verify individual policy holder and wear of the same, and a business model for a discounted insurance premium for policy holder wearing the same
EP1353594B1 (en) * 2000-12-29 2008-10-29 Ares Medical, Inc. Sleep apnea risk evaluation
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
WO2002062070A2 (en) * 2001-02-01 2002-08-08 Siemens Aktiengesellschaft Method for improving the functions of the binary representation of mpeg-7 and other xml-based content descriptions
JP2002224065A (en) 2001-02-07 2002-08-13 Nippon Colin Co Ltd Cardiac sound detecting device and cardiac sound detecting method
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US6584344B2 (en) 2001-02-22 2003-06-24 Polar Electro Oy Method and apparatus for measuring heart rate
US6834436B2 (en) * 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
US6611206B2 (en) * 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US7191183B1 (en) * 2001-04-10 2007-03-13 Rgi Informatics, Llc Analytics and data warehousing infrastructure and services
US6808473B2 (en) 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6635015B2 (en) * 2001-04-20 2003-10-21 The Procter & Gamble Company Body weight management system
US6533731B2 (en) * 2001-05-15 2003-03-18 Lifecheck, Llc Method and apparatus for measuring heat flow
US20060235280A1 (en) * 2001-05-29 2006-10-19 Glenn Vonk Health care management system and method
US6656125B2 (en) 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
KR200244874Y1 (en) 2001-06-01 2001-11-16 이종길 Portable diet monitoring apparatus
US6886978B2 (en) 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
US20030013072A1 (en) 2001-07-03 2003-01-16 Thomas Richard Todd Processor adjustable exercise apparatus
US20030208113A1 (en) * 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
WO2003013335A2 (en) 2001-08-03 2003-02-20 Vega Research Lab, Llc Method and apparatus for determining metabolic factors from an electrocardiogram
US20030040002A1 (en) 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US7461006B2 (en) * 2001-08-29 2008-12-02 Victor Gogolak Method and system for the analysis and association of patient-specific and population-based genomic data with drug safety adverse event data
US20030069510A1 (en) * 2001-10-04 2003-04-10 Semler Herbert J. Disposable vital signs monitor
US7280100B2 (en) * 2001-10-11 2007-10-09 Palm, Inc. Accessory module for handheld devices
US6755795B2 (en) 2001-10-26 2004-06-29 Koninklijke Philips Electronics N.V. Selectively applied wearable medical sensors
US20030083559A1 (en) 2001-10-31 2003-05-01 Thompson David L. Non-contact monitor
US20040064344A1 (en) * 2001-11-20 2004-04-01 Link Ronald J. Method for obtaining dynamic informed consent
US20050101841A9 (en) * 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
US6826568B2 (en) * 2001-12-20 2004-11-30 Microsoft Corporation Methods and system for model matching
US6955542B2 (en) * 2002-01-23 2005-10-18 Aquatech Fitness Corp. System for monitoring repetitive movement
US20030152607A1 (en) * 2002-02-13 2003-08-14 Mault James R. Caloric management system and method with voice recognition
US7353184B2 (en) * 2002-03-07 2008-04-01 Hewlett-Packard Development Company, L.P. Customer-side market segmentation
US20030176797A1 (en) 2002-03-12 2003-09-18 Fernando Anzellini Thrombust; implantable delivery system sensible to self diagnosis of acute myocardial infarction for thrombolysis in the first minutes of chest pain
US6832290B2 (en) * 2002-03-12 2004-12-14 International Business Machines Corporation Method, system, program, and data structures for maintaining metadata in a storage system
US20050226310A1 (en) 2002-03-20 2005-10-13 Sanyo Electric Co., Ltd. Adhesive clinical thermometer pad and temperature measuring pad
US20040030531A1 (en) * 2002-03-28 2004-02-12 Honeywell International Inc. System and method for automated monitoring, recognizing, supporting, and responding to the behavior of an actor
US20030212604A1 (en) * 2002-05-09 2003-11-13 Cullen Andrew A. System and method for enabling and maintaining vendor qualification
US20030220920A1 (en) * 2002-05-24 2003-11-27 Mentor Graphics Corporation Matching database fields in an electronic design automation environment
US8979646B2 (en) * 2002-06-12 2015-03-17 Igt Casino patron tracking and information use
US6817979B2 (en) 2002-06-28 2004-11-16 Nokia Corporation System and method for interacting with a user's virtual physiological model via a mobile terminal
US7020508B2 (en) * 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
JP4975249B2 (en) * 2002-10-09 2012-07-11 ボディーメディア インコーポレイテッド Device for measuring an individual's state parameters using physiological information and / or context parameters
US7244230B2 (en) * 2002-11-08 2007-07-17 Siemens Medical Solutions Usa, Inc. Computer aided diagnostic assistance for medical imaging
WO2004049916A2 (en) * 2002-11-27 2004-06-17 At Home Care Partners, Inc. System for providing at home health care service
US20040122702A1 (en) * 2002-12-18 2004-06-24 Sabol John M. Medical data processing system and method
JP4341243B2 (en) 2002-12-27 2009-10-07 カシオ計算機株式会社 Tape printer and scale used therefor
US7547278B2 (en) * 2002-12-27 2009-06-16 Matsushita Electric Industrial Co., Ltd. Tele-care monitoring device
AU2003303597A1 (en) * 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7290134B2 (en) * 2002-12-31 2007-10-30 Broadcom Corporation Encapsulation mechanism for packet processing
US20040230549A1 (en) 2003-02-03 2004-11-18 Unique Logic And Technology, Inc. Systems and methods for behavioral modification and behavioral task training integrated with biofeedback and cognitive skills training
US7571172B2 (en) * 2003-05-06 2009-08-04 Novell, Inc. Methods, data stores, data structures, and systems for electronic identity aggregation
US7331870B2 (en) * 2003-05-16 2008-02-19 Healing Rhythms, Llc Multiplayer biofeedback interactive gaming environment
US20040250027A1 (en) * 2003-06-04 2004-12-09 Heflinger Kenneth A. Method and system for comparing multiple bytes of data to stored string segments
US20050005873A1 (en) * 2003-06-26 2005-01-13 Pet Qwerks, Inc. Light producing pet toy
US20050004969A1 (en) * 2003-07-03 2005-01-06 Reaction Design, Llc System for information exchange for integration of multiple data sources
EP1690210A2 (en) 2003-07-07 2006-08-16 Metatomix, Inc. Surveillance, monitoring and real-time events platform
US20050099294A1 (en) 2003-08-05 2005-05-12 Bogner James T. System for managing conditions
EP1670547B1 (en) * 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US8002553B2 (en) * 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
EP1677674A4 (en) * 2003-08-20 2009-03-25 Philometron Inc Hydration monitoring
US11033821B2 (en) * 2003-09-02 2021-06-15 Jeffrey D. Mullen Systems and methods for location based games and employment of the same on location enabled devices
BRPI0414345A (en) * 2003-09-12 2006-11-07 Bodymedia Inc method and apparatus for measuring heart-related parameters
FI118753B (en) 2003-10-03 2008-03-14 Suunto Oy Procedures for identifying heartbeats and calculating quantities obtained thereby
FI117654B (en) * 2003-11-20 2006-12-29 Polar Electro Oy Electronic wrist unit
US7041049B1 (en) * 2003-11-21 2006-05-09 First Principles, Inc. Sleep guidance system and related methods
US8589174B2 (en) 2003-12-16 2013-11-19 Adventium Enterprises Activity monitoring
US20050182659A1 (en) * 2004-02-06 2005-08-18 Huttin Christine C. Cost sensitivity decision tool for predicting and/or guiding health care decisions
US7277885B2 (en) * 2004-02-18 2007-10-02 Microsoft Corporation Systems and methods for filter processing using hierarchical data and data structures
US10417298B2 (en) * 2004-12-02 2019-09-17 Insignio Technologies, Inc. Personalized content processing and delivery system and media
US7395113B2 (en) * 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
EP1734858B1 (en) * 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
PL366597A1 (en) * 2004-03-25 2005-10-03 Zbigniew Młynarski Method for aiding catering behaviour as well as appliance and computer program to implement this method
US20050222631A1 (en) * 2004-04-06 2005-10-06 Nirav Dalal Hierarchical data storage and analysis system for implantable medical devices
US20050289469A1 (en) * 2004-06-28 2005-12-29 Chandler Roger D Context tagging apparatus, systems, and methods
WO2006006092A1 (en) * 2004-07-07 2006-01-19 Koninklijke Philips Electronics N. V. Wearable device
US8016667B2 (en) * 2004-07-22 2011-09-13 Igt Remote gaming eligibility system and method using RFID tags
US20060026036A1 (en) * 2004-07-30 2006-02-02 Mahmood Syyed T System and method for simultaneously optimizing the quality of life and controlling health care costs
US8359338B2 (en) * 2004-07-30 2013-01-22 Carefusion 303, Inc. System and method for managing medical databases for patient care devices
US7261691B1 (en) * 2004-08-02 2007-08-28 Kwabena Asomani Personalized emergency medical monitoring and transmission system
US20060031258A1 (en) * 2004-08-06 2006-02-09 Debra Seed System and method for matching traveling companions with traveling acquaintances
US20060036619A1 (en) * 2004-08-09 2006-02-16 Oren Fuerst Method for accessing and analyzing medically related information from multiple sources collected into one or more databases for deriving illness probability and/or for generating alerts for the detection of emergency events relating to disease management including HIV and SARS, and for syndromic surveillance of infectious disease and for predicting risk of adverse events to one or more drugs
US20060047188A1 (en) * 2004-08-27 2006-03-02 Bohan J S Method and system for triage of emergency patients
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US20060089856A1 (en) * 2004-10-21 2006-04-27 Cardiac Pacemakers Integrated pharmaceutical dispensing and patient management monitoring
US20060088160A1 (en) * 2004-10-27 2006-04-27 Lexmark International, Inc. Method and apparatus for generating and printing a security stamp with custom logo on an electrophotographic printer
CN101072535A (en) * 2004-10-29 2007-11-14 杨章民 Body health state monitoring and analysing and automatic feedback method and related garment system
DE602005022927D1 (en) * 2004-11-02 2010-09-23 Medtronic Inc DATA-TRANSMISSION TECHNIQUES IN AN IMPLANTABLE MEDICAL DEVICE
JP4487730B2 (en) * 2004-11-02 2010-06-23 株式会社日立製作所 Life status notification system
US8655832B2 (en) * 2005-01-21 2014-02-18 International Business Machines Corporation Publishing activity tasks in a collaborative environment
US20080040151A1 (en) * 2005-02-01 2008-02-14 Moore James F Uses of managed health care data
US20070106754A1 (en) * 2005-09-10 2007-05-10 Moore James F Security facility for maintaining health care data pools
JP4871298B2 (en) * 2005-02-07 2012-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An apparatus for determining a person's stress level and providing feedback based on the determined stress level.
US20060183980A1 (en) * 2005-02-14 2006-08-17 Chang-Ming Yang Mental and physical health status monitoring, analyze and automatic follow up methods and its application on clothing
CA2599148A1 (en) * 2005-02-22 2006-08-31 Health-Smart Limited Methods and systems for physiological and psycho-physiological monitoring and uses thereof
US8652039B2 (en) * 2005-03-02 2014-02-18 Siemens Medical Solutions Usa, Inc. Guiding differential diagnosis through information maximization
US7707547B2 (en) * 2005-03-11 2010-04-27 Aptana, Inc. System and method for creating target byte code
US20060218046A1 (en) * 2005-03-22 2006-09-28 Cerado, Inc. Method and system of allocating a sales representative
US7751285B1 (en) * 2005-03-28 2010-07-06 Nano Time, LLC Customizable and wearable device with electronic images
JP4421507B2 (en) * 2005-03-30 2010-02-24 株式会社東芝 Sleepiness prediction apparatus and program thereof
CA2650576C (en) * 2005-04-14 2020-07-28 Hidalgo Limited Apparatus and system for monitoring an ambulatory person
EP1872207A4 (en) * 2005-04-18 2008-06-18 Research In Motion Ltd System and method of presenting entities of standard device applications in wireless devices
CA2650562A1 (en) * 2005-04-25 2006-11-02 Caduceus Information Systems Inc. System for development of individualised treatment regimens
US7451161B2 (en) * 2005-04-28 2008-11-11 Friendster, Inc. Compatibility scoring of users in a social network
US7605714B2 (en) * 2005-05-13 2009-10-20 Microsoft Corporation System and method for command and control of wireless devices using a wearable device
US7460897B1 (en) * 2005-05-16 2008-12-02 Hutchinson Technology Incorporated Patient interface for spectroscopy applications
US8021299B2 (en) * 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20060277072A1 (en) * 2005-06-06 2006-12-07 Cindy Bell System for creating a medical chart
WO2006134153A1 (en) * 2005-06-16 2006-12-21 Novo Nordisk A/S Method and apparatus for assisting patients in self administration of medication
US7818131B2 (en) * 2005-06-17 2010-10-19 Venture Gain, L.L.C. Non-parametric modeling apparatus and method for classification, especially of activity state
US8574156B2 (en) * 2005-07-05 2013-11-05 General Electric Company Determination of the clinical state of a subject
US20070038036A1 (en) * 2005-07-21 2007-02-15 Sellers Orlando Ii Method for determining a stress severity index
US8033996B2 (en) * 2005-07-26 2011-10-11 Adidas Ag Computer interfaces including physiologically guided avatars
US20070027367A1 (en) * 2005-08-01 2007-02-01 Microsoft Corporation Mobile, personal, and non-intrusive health monitoring and analysis system
US8099159B2 (en) * 2005-09-14 2012-01-17 Zyto Corp. Methods and devices for analyzing and comparing physiological parameter measurements
US20070078324A1 (en) * 2005-09-30 2007-04-05 Textronics, Inc. Physiological Monitoring Wearable Having Three Electrodes
DE602005014641D1 (en) 2005-10-03 2009-07-09 St Microelectronics Srl Pedometer device and step detection method by algorithm for self-adaptive calculation of acceleration limits
FI20055544L (en) * 2005-10-07 2007-04-08 Polar Electro Oy Procedures, performance meters and computer programs for determining performance
US7734371B2 (en) * 2005-10-21 2010-06-08 Mcneil-Ppc, Inc. System and apparatus for dispensing information and product
US7647285B2 (en) * 2005-11-04 2010-01-12 Microsoft Corporation Tools for health and wellness
US20070112597A1 (en) * 2005-11-04 2007-05-17 Microsoft Corporation Monetizing large-scale information collection and mining
US20070106129A1 (en) * 2005-11-07 2007-05-10 Cardiac Pacemakers, Inc. Dietary monitoring system for comprehensive patient management
CN101305374B (en) * 2005-11-10 2014-05-07 皇家飞利浦电子股份有限公司 Decision support equipment, device with embedded clinical guidelines and method therefor
US8795170B2 (en) * 2005-11-29 2014-08-05 Venture Gain LLC Residual based monitoring of human health
US20070123754A1 (en) * 2005-11-29 2007-05-31 Cuddihy Paul E Non-encumbering, substantially continuous patient daily activity data measurement for indication of patient condition change for access by remote caregiver
US20070129769A1 (en) * 2005-12-02 2007-06-07 Medtronic, Inc. Wearable ambulatory data recorder
US20070143298A1 (en) * 2005-12-16 2007-06-21 Microsoft Corporation Browsing items related to email
US7882084B1 (en) * 2005-12-30 2011-02-01 F5 Networks, Inc. Compression of data transmitted over a network
US20080015061A1 (en) * 2006-07-11 2008-01-17 Klein William M Performance monitoring in a shooting sport using sensor synchronization
US7966647B1 (en) * 2006-08-16 2011-06-21 Resource Consortium Limited Sending personal information to a personal information aggregator
US8103341B2 (en) * 2006-08-25 2012-01-24 Cardiac Pacemakers, Inc. System for abating neural stimulation side effects
US20080058664A1 (en) * 2006-08-29 2008-03-06 Neuropace, Inc. Patient event recording and reporting apparatus, system, and method
US7860752B2 (en) * 2006-08-30 2010-12-28 Ebay Inc. System and method for measuring reputation using take volume
US20080059224A1 (en) * 2006-08-31 2008-03-06 Schechter Alan M Systems and methods for developing a comprehensive patient health profile
US8956290B2 (en) * 2006-09-21 2015-02-17 Apple Inc. Lifestyle companion system
US20080077451A1 (en) * 2006-09-22 2008-03-27 Hartford Fire Insurance Company System for synergistic data processing
US7586418B2 (en) * 2006-11-17 2009-09-08 General Electric Company Multifunctional personal emergency response system
US8346729B2 (en) * 2006-11-18 2013-01-01 International Business Machines Corporation Business-semantic-aware information lifecycle management
US8160977B2 (en) 2006-12-11 2012-04-17 Poulin Christian D Collaborative predictive model building
US8768718B2 (en) * 2006-12-27 2014-07-01 Cardiac Pacemakers, Inc. Between-patient comparisons for risk stratification of future heart failure decompensation
US7629889B2 (en) * 2006-12-27 2009-12-08 Cardiac Pacemakers, Inc. Within-patient algorithm to predict heart failure decompensation
US20080162555A1 (en) * 2006-12-27 2008-07-03 Motorola, Inc. Active lifestyle management
US7710887B2 (en) * 2006-12-29 2010-05-04 Intel Corporation Network protection via embedded controls
US7953613B2 (en) * 2007-01-03 2011-05-31 Gizewski Theodore M Health maintenance system
US20080320030A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Lifeotype markup language
JP5090013B2 (en) * 2007-02-23 2012-12-05 株式会社日立製作所 Information management system and server
US20090043752A1 (en) * 2007-08-08 2009-02-12 Expanse Networks, Inc. Predicting Side Effect Attributes
US20090198516A1 (en) * 2008-02-05 2009-08-06 David Greenholtz System and method of managing diabetes employing an interactive website
US9081889B2 (en) * 2010-11-10 2015-07-14 Apple Inc. Supporting the monitoring of a physical activity
US9962083B2 (en) * 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913074A (en) * 1973-12-18 1975-10-14 Honeywell Inf Systems Search processing apparatus
US6440066B1 (en) * 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
US20050021679A1 (en) * 2000-02-25 2005-01-27 Alexander Lightman Method and system for data transmission between wearable devices or from wearable devices to portal
US7024369B1 (en) * 2000-05-31 2006-04-04 International Business Machines Corporation Balancing the comprehensive health of a user
US20040172290A1 (en) * 2002-07-15 2004-09-02 Samuel Leven Health monitoring device
US20090131759A1 (en) * 2003-11-04 2009-05-21 Nathaniel Sims Life sign detection and health state assessment system
US7616110B2 (en) * 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US20070004969A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Health monitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9861308B2 (en) 2015-06-15 2018-01-09 Medibio Limited Method and system for monitoring stress conditions
US10039485B2 (en) 2015-06-15 2018-08-07 Medibio Limited Method and system for assessing mental state
US10638965B2 (en) 2015-06-15 2020-05-05 Medibio Limited Method and system for monitoring stress conditions
US10912508B2 (en) 2015-06-15 2021-02-09 Medibio Limited Method and system for assessing mental state
US10839302B2 (en) 2015-11-24 2020-11-17 The Research Foundation For The State University Of New York Approximate value iteration with complex returns by bounding
US20180276345A1 (en) * 2017-03-24 2018-09-27 International Business Machines Corporation System and method to monitor mental health implications of unhealthy behavior and optimize mental and physical health via a mobile device
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US20190134463A1 (en) * 2017-11-03 2019-05-09 Lite-On Electronics (Guangzhou) Limited Wearable system, wearable device, cloud server and operating method thereof
US11568236B2 (en) 2018-01-25 2023-01-31 The Research Foundation For The State University Of New York Framework and methods of diverse exploration for fast and safe policy improvement

Also Published As

Publication number Publication date
US9262772B2 (en) 2016-02-16
US20080320029A1 (en) 2008-12-25
US20080318678A1 (en) 2008-12-25
US20140214873A1 (en) 2014-07-31
US20140214874A1 (en) 2014-07-31
US20140221776A1 (en) 2014-08-07
US9396486B2 (en) 2016-07-19
US20080319787A1 (en) 2008-12-25
US8275635B2 (en) 2012-09-25
US20140115008A1 (en) 2014-04-24
US20140214903A1 (en) 2014-07-31
US20140310223A1 (en) 2014-10-16
US20140180024A1 (en) 2014-06-26
US20140156698A1 (en) 2014-06-05
US20080319786A1 (en) 2008-12-25
US20080320030A1 (en) 2008-12-25
EP2126828A4 (en) 2012-01-25
US20140122537A1 (en) 2014-05-01
EP2126828A1 (en) 2009-12-02
US8382590B2 (en) 2013-02-26
US20140220525A1 (en) 2014-08-07
US20140222849A1 (en) 2014-08-07
US20140222850A1 (en) 2014-08-07
US20140317119A1 (en) 2014-10-23
US20140310275A1 (en) 2014-10-16
US20140221773A1 (en) 2014-08-07
US20080319781A1 (en) 2008-12-25
US20140213938A1 (en) 2014-07-31
US20140309940A1 (en) 2014-10-16
US20140317042A1 (en) 2014-10-23
US20140187872A1 (en) 2014-07-03
US20140310284A1 (en) 2014-10-16
WO2008101248A2 (en) 2008-08-21
US20140316885A1 (en) 2014-10-23
US20140310276A1 (en) 2014-10-16
US20140221730A1 (en) 2014-08-07
EP2750098A3 (en) 2014-08-06
US20140222732A1 (en) 2014-08-07
US20140180025A1 (en) 2014-06-26
US20140180993A1 (en) 2014-06-26
US20140122496A1 (en) 2014-05-01
US20080319855A1 (en) 2008-12-25
US20140214552A1 (en) 2014-07-31
US20140310105A1 (en) 2014-10-16
US20140214836A1 (en) 2014-07-31
US20140181108A1 (en) 2014-06-26
US20140310295A1 (en) 2014-10-16
US20140221775A1 (en) 2014-08-07
US20140222847A1 (en) 2014-08-07
US20140188874A1 (en) 2014-07-03
US20140308639A1 (en) 2014-10-16
US20090006458A1 (en) 2009-01-01
US20140213854A1 (en) 2014-07-31
US20140180598A1 (en) 2014-06-26
US20140222804A1 (en) 2014-08-07
US20140310297A1 (en) 2014-10-16
US20140180018A1 (en) 2014-06-26
US20140222734A1 (en) 2014-08-07
US20140317135A1 (en) 2014-10-23
US20090006457A1 (en) 2009-01-01
US20140222735A1 (en) 2014-08-07
US20140317039A1 (en) 2014-10-23
US20140309939A1 (en) 2014-10-16
US20140310298A1 (en) 2014-10-16
EP2750098A2 (en) 2014-07-02
US20140180720A1 (en) 2014-06-26
US20140222848A1 (en) 2014-08-07
US20080319796A1 (en) 2008-12-25
US20140310274A1 (en) 2014-10-16
US20140222733A1 (en) 2014-08-07
US20140222851A1 (en) 2014-08-07
US20140310294A1 (en) 2014-10-16
US20140122536A1 (en) 2014-05-01
US20140187873A1 (en) 2014-07-03
US20140344282A1 (en) 2014-11-20
US20140310296A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US9262772B2 (en) Systems and methods using a wearable device to determine an individuals daily routine

Legal Events

Date Code Title Description
AS Assignment

Owner name: BODYMEDIA, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STIVORIC, JOHN M.;TELLER, ERIC;ANDRE, DAVID;AND OTHERS;SIGNING DATES FROM 20101028 TO 20101206;REEL/FRAME:032480/0680

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:035531/0312

Effective date: 20150428

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:036500/0173

Effective date: 20150826

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE APPLICATION NO. 13870843 PREVIOUSLY RECORDED ON REEL 036500 FRAME 0173. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNORS:ALIPHCOM;MACGYVER ACQUISITION, LLC;ALIPH, INC.;AND OTHERS;REEL/FRAME:041793/0347

Effective date: 20150826

AS Assignment

Owner name: JB IP ACQUISITION LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALIPHCOM, LLC;BODYMEDIA, INC.;REEL/FRAME:049805/0582

Effective date: 20180205

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JAWBONE HEALTH HUB, INC.;REEL/FRAME:049825/0659

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0718

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0907

Effective date: 20180205

AS Assignment

Owner name: ALIPHCOM LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLACKROCK ADVISORS, LLC;REEL/FRAME:050005/0095

Effective date: 20190529

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:JAWBONE HEALTH HUB, INC.;JB IP ACQUISITION, LLC;REEL/FRAME:050067/0286

Effective date: 20190808