US20140289331A1 - Mechanism for sharing states of applications and devices across different user profiles - Google Patents

Mechanism for sharing states of applications and devices across different user profiles Download PDF

Info

Publication number
US20140289331A1
US20140289331A1 US14/221,174 US201414221174A US2014289331A1 US 20140289331 A1 US20140289331 A1 US 20140289331A1 US 201414221174 A US201414221174 A US 201414221174A US 2014289331 A1 US2014289331 A1 US 2014289331A1
Authority
US
United States
Prior art keywords
application
application state
computing device
state
target application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/221,174
Inventor
Michael A. Chan
Daniel R. Bornstein
Linda Tong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Razer Asia Pacific Pte Ltd
Original Assignee
NextBit Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NextBit Systems Inc filed Critical NextBit Systems Inc
Priority to US14/221,174 priority Critical patent/US20140289331A1/en
Priority to US14/252,674 priority patent/US8954611B2/en
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BORNSTEIN, DANIEL R., CHAN, Michael A., TONG, LINDA
Priority to US14/267,823 priority patent/US9095779B2/en
Publication of US20140289331A1 publication Critical patent/US20140289331A1/en
Assigned to PINNACLE VENTURES, L.L.C., AS AGENT reassignment PINNACLE VENTURES, L.L.C., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PINNACLE VENTURES, L.L.C., AS AGENT
Assigned to RAZER (ASIA-PACIFIC) PTE. LTD. reassignment RAZER (ASIA-PACIFIC) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/178Techniques for file synchronisation in file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1458Management of the backup or restore process
    • G06F11/1464Management of the backup or restore process for networked environments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/11File system administration, e.g. details of archiving or snapshots
    • G06F16/113Details of archiving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/11File system administration, e.g. details of archiving or snapshots
    • G06F16/116Details of conversion of file system types or formats
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/11File system administration, e.g. details of archiving or snapshots
    • G06F16/122File system administration, e.g. details of archiving or snapshots using management policies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/16File or folder operations, e.g. details of user interfaces specifically adapted to file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/16File or folder operations, e.g. details of user interfaces specifically adapted to file systems
    • G06F16/168Details of user interfaces specifically adapted to file systems, e.g. browsing and visualisation, 2d or 3d GUIs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/1734Details of monitoring file system events, e.g. by the use of hooks, filter drivers, logs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/178Techniques for file synchronisation in file systems
    • G06F16/1787Details of non-transparently synchronising file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24578Query processing with adaptation to user needs using ranking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformation of program code
    • G06F8/41Compilation
    • G06F8/44Encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0853Network architectures or network communication protocols for network security for authentication of entities using an additional device, e.g. smartcard, SIM or a different communication terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/306User profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/535Tracking the activity of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1448Management of the data involved in backup or backup restore
    • G06F11/1451Management of the data involved in backup or backup restore by selection of backup contents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1458Management of the backup or restore process
    • G06F11/1469Backup restoration techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • At least one embodiment of this disclosure relates generally to cloud computing and, in particular, to mobile device based cloud computing.
  • Application state data is data used to record the running status of a computer application.
  • One example of application state data is a “game save” for a game application.
  • a game save is a piece of digitally-stored information about the progress of a user operating the game application. The game save can be reloaded later, so that the user can continue where he/she stopped. The user instructs the game application to generate a game save (i.e., save the game) to prevent the loss of progress in the game, especially when the user is interrupted or ending a game session.
  • Sharing game saves among users has been common for many years. Originally, by swapping memory cards with game saves, users could help each other to unlock features in a game application. With the growing popularity of the Internet, users can now upload their game saves from their devices to Internet servers. By downloading a game save from an Internet server, a user can continue the progress of the game on the device used to play the game or another device such as a computer, game console, or smart phone. However, to achieve the goal of continuing the progress on another device, the user needs to deliberately instruct the device to save the game progress (i.e., game save) and to upload the game save to a server or a memory card. Then the user needs to download the game from the server or the memory card to the other device and then instruct the other device to load the game save. The whole process is tedious and requires many user interventions. Furthermore, the process only works for game applications that are specifically designed with game saving functionalities.
  • Techniques introduced here provide an application state sharing mechanism between user profiles (e.g., implemented as separate user accounts). For example, different user profiles can lend application states to each other. In some embodiments, user profiles can share application states within the same computing device. In other embodiments, user profiles can share application states across multiple devices.
  • the disclosed techniques can be implemented through a cloud computing system with multiple computing devices, each with a synchronization agent and an app-share agent. Through these agents and a cloud storage service, the cloud computing system can provide an application sharing platform for user profiles to share application states with each other.
  • a first user can simply select a target application and a target user and, with a click of a button (e.g., a user interface generated by the app-share agent), load the most recent application state of the target application from the target user's devices.
  • This application state sharing mechanism enables a user to conveniently load application states from other users. For example, this sharing mechanism can execute without the target user's manual retrieval of the application state and without having to iterate through multiple devices of the target user to identify the most recent application state at the time the application state request is made by the first user.
  • the first user can load the application state to his/her device without an explicit approval from the target user for the specific application state request.
  • the synchronization agent in a computing device can update application states with a cloud storage service (e.g., a centralized cloud service, a distributed cloud service, or a peer-to-peer cloud service).
  • a cloud storage service e.g., a centralized cloud service, a distributed cloud service, or a peer-to-peer cloud service.
  • the cloud storage service can trigger an update of an application state when a request for the application state is made by another computing device.
  • the cloud storage service can then distribute application states to the computing devices within the cloud computing system to ensure that the computing devices have consistent copies of applications managed by the cloud computing system.
  • the synchronization agent can detect an instance of a computer application running at or at least installed on a first electronic device and determine an update event that occurs in the first electronic device.
  • the update event is a process of making a copy of the execution status of the computer application.
  • the application state data represents an application state of the computer application at the update event.
  • the synchronization agent can then transmit the application state data of the computer application to the cloud storage service in response to the update event.
  • Another electronic device can thus retrieve the application state data of the computer application from the cloud storage service and restore another instance of the computer application to the application state using the application state data.
  • the update event can proceed automatically in the background of the operating system of the computing devices.
  • the update event can be transparent to the user.
  • the update event can also be transparent to the computer application.
  • the app-share agent in a computing device can facilitate a first user to load an application state of a target application from a second user. As discussed above, the loading of the application state can occur without interactions from the second user in response to a request to copy the application state associated with the second user.
  • the app-share agent can send a request to the cloud storage service to retrieve the application state associated with a second user.
  • the cloud storage service can match the request to application data associated with the most recent application state or whichever application state that is requested.
  • the cloud storage service can then verify that the first user is permitted to load the application state to the computing device of the first user.
  • the app-share agent can first request to download the target application.
  • the app-share agent can load the application state whether or not the target application expects the application state to be loaded.
  • the target application receives the application data from the app-share agent and provides at least part of the logic to load the application state.
  • the target application is paused or terminated such that the app-share agent can load the application data into operational memory portions of the target application.
  • the synchronization agent can back up a new application state of the target application on the computing device associated with the first user (e.g., the computing device that loaded a foreign application state) to the cloud storage service.
  • the cloud storage service can back up the new application state as a new set of application data independent of the original application data associated with the second user.
  • the cloud storage service can re-integrate the new application state to the original application data associated with the second user.
  • FIG. 1 is a block diagram of an example of a cloud computing system for application state sharing between user profiles, in accordance with various embodiments.
  • FIG. 2 is a block diagram of an example of a system architecture of a computing device, in accordance with various embodiments.
  • FIG. 3 is a block diagram of an example environment for application state sharing between computing devices, in accordance with various embodiments.
  • FIG. 4 is a block diagram of an example of an application state of a computer application, in accordance with various embodiments.
  • FIG. 5A is a first portion of an activity diagram illustrating a method of sharing an application state of a computer application between computing devices, in accordance with various embodiments.
  • FIG. 5B is a second portion of the activity diagram of FIG. 5A .
  • FIG. 6 is a flow chart illustrating a method of loading an instance of an application state of a target application into a computing device, in accordance with various embodiments.
  • FIG. 7 is a block diagram of an example of a computing device, which may represent one or more computing device or server described herein.
  • FIG. 1 is a block diagram of an example of a cloud computing system 100 for application state sharing between user profiles, in accordance with various embodiments.
  • the cloud computing system 100 provides a state sharing platform to enable different user profiles to share application states.
  • the cloud computing system 100 includes a cloud storage service 110 configured to store and manage application states and to load application states to different computing devices.
  • the cloud storage service 110 can be a device cluster having storage nodes 112 interconnected with each other by a storage network channel 118 .
  • the device cluster can communicate with other computing devices via a global network, such as the Internet, a local network, or a cloud data interface 120 .
  • the cloud storage service 110 includes the storage nodes 112 .
  • Each of the storage nodes 112 includes one or more processors 114 and storage devices 116 .
  • the storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage, or any other computer storage medium which can be used to store the desired information.
  • the cloud storage service 110 can implement the cloud data interface 120 to receive data from and send data to computing devices (e.g., a first electronic device 130 and a second electronic device 140 ).
  • the computing devices can include desktop computers, laptop computers, tablet computers, automobile computers, game consoles, smart phones, personal digital assistants, other computing devices capable of running computer applications, or any combination thereof.
  • the cloud data interface 120 can be coupled to network communication hardware and network connection logic to receive the information from the computing devices.
  • the cloud data interface can be coupled to a local area network (LAN), wide area network (WAN) or the Internet.
  • the cloud data interface 120 may include a queuing mechanism to organize data updates received from or sent to the computing devices.
  • the cloud data interface 120 is implemented by one or more computing devices different from the storage nodes 112 .
  • the cloud data interface 120 is implemented by a subset or all of the storage nodes 112 .
  • the cloud data interface 120 can be implemented such that existence of individual computing devices that implement the cloud data interface 120 is transparent to a client (e.g., the first electronic device 130 or the second electronic device 140 ).
  • the cloud data interface 120 and the cloud storage service 110 can be implemented such that existence of the storage nodes 112 that store the client data is transparent to a client (e.g., the first electronic device 130 or the second electronic device 140 ) of the cloud data interface 120 .
  • the electronic devices can share data amongst each other via the cloud storage service 110 .
  • the cloud storage service 110 can maintain one or more application states for one or more applications of one or more electronic devices.
  • the cloud storage service 110 can maintain an application state database of the application states.
  • the application state database can maintain timestamps of when each of the application states is captured and/or when it is collected.
  • the application state database can maintain different snapshots of application states belonging to the same user account and the same application at different times.
  • Each of the application states can be associated with one or more user profiles, with at least one of the user profiles being an owner of the application state.
  • An owner is a user account having complete rights to the application state.
  • An owner can configure the permission settings of the application state (e.g., who can copy and load the application state).
  • the application state database can maintain these associations between the user profiles and the application states.
  • the application state database can also maintain a list of computing devices that have currently loaded one of the application states, the list including specific application states that each computing device has loaded.
  • the first electronic device 130 includes a first operating system 132 to manage the hardware resources of the first electronic device 130 and to provide services for running computer applications 134 on the first electronic device 130 .
  • the first electronic device 130 can send application data of the computer applications 134 , representative of a current application state, to the cloud storage service 110 .
  • the first electronic device 130 includes at least a first memory 138 to store the computer applications 134 and the application data associated therewith.
  • the computer applications 134 can include applications for general productivity and information retrieval, including email, calendar, contacts, news, and stock market and weather information.
  • the computer applications 134 can also include applications in other categories, such as mobile games, file sharing, playing music, media streaming, media creation, media editing, automation, navigation and location-based services, banking, e-reader, order-tracking, ticket purchases, or any combination thereof.
  • the first memory 138 includes a state synchronization module 136 to update and synchronize the application states with the cloud storage service 110 .
  • the first electronic device 130 can execute the state synchronization module 136 on the first operating system 132 or as part of the first operating system 132 .
  • the first memory 138 further includes an application share module 137 to facilitate requests between user accounts to share an application state.
  • the second electronic device 140 includes a second memory 148 .
  • the second memory 148 includes a second operating system 142 , which may be the same or different from the first operating system 132 .
  • the second memory 148 can include computer applications 144 .
  • the second memory 148 can also include a state synchronization module 146 and an application share module 147 performing the same functionality as the state synchronization module 136 and the application share module 137 , respectively.
  • the state synchronization modules 136 and 146 can share a set of source codes further compiled into different binary executables for their respective operating systems.
  • the application share modules 137 and 147 can also share a set of source codes further compiled into different binary executables for their respective operating systems.
  • At least one of the computer applications 144 can overlap with the computer applications 134 , such that the application state of the overlapped application can be shared between the first electronic device 130 and the second electronic device 140 .
  • the cloud storage service 110 can determine when to commit an application state of the first electronic device 130 or the second electronic device 140 to the cloud storage service 110 .
  • the electronic devices 130 and 140 themselves can determine when to commit an application state to the cloud storage service 110 .
  • the first electronic device 130 can send an update message to the cloud storage service 110 .
  • the first electronic device 130 can capture a current application state (e.g., as a set of application data) of one of the computer applications 134 running on the first electronic device 130 .
  • the first electronic device 130 can either include the application data of the current application state in the update message or a differential mapping of the application data in the update message.
  • the differential mapping represents the difference between the current application state and a previous application state most recently sent to the cloud storage service 110 .
  • the cloud storage service 110 can provide an interface with the state synchronization modules 136 and 146 to facilitate concurrent updates from one or more of the computer applications 134 and 144 .
  • the cloud storage service 110 can determine a current application state of a target application shared across multiple user accounts and/or across multiple electronic devices even when there are multiple conflicting updates (e.g., by prioritizing ranks amongst the conflicting updates and re-integrating them based on the prioritized ranks).
  • the cloud storage service 110 can distribute the current application state to the electronic devices having an instance copy of the target application.
  • the cloud storage service 110 can schedule this distribution such that all electronic devices maintain a consistent instance copy of the application state.
  • the electronic devices 130 and 140 do not communicate with each other directly during synchronization.
  • the cloud storage service 110 can perform the synchronization by routing the application state updates from one electronic device to another.
  • the electronic devices 130 and 140 can directly send application state updates to each other with instructions from the cloud storage service 110 that determines which instance copy to update.
  • FIG. 1 illustrates the first electronic device 130 and the second electronic device 140 as being outside of the cloud storage service 110
  • the first electronic device 130 and the second electronic device 140 are part of the cloud storage service 110 .
  • the first electronic device 130 or the second electronic device 140 can serve as one of the storage nodes 112 .
  • the first electronic device 130 and/or the second electronic device 140 can implement the cloud data interface 120 .
  • the cloud storage service 110 can be implemented by electronic devices that each implements an instance of the state synchronization module 136 .
  • FIG. 1 illustrates two electronic devices (e.g., the electronic devices 130 and 140 ), a person having ordinary skill in the art will readily understand that the technology disclosed herein can be applied to data synchronization among more than two computing devices.
  • FIG. 2 is a block diagram of an example of a system architecture of a computing device 200 , in accordance with various embodiments.
  • the computing device 200 can implement an operating system 202 .
  • the operating system 202 includes a kernel 204 .
  • the kernel 204 provides interfaces to hardware of the computing device 200 for computer applications 240 running on top of the kernel 204 and, on occasions, supervises and controls the computer applications 240 .
  • the kernel 204 isolates the computer applications 240 from the hardware.
  • the kernel 204 may include one or more intervening sources that can affect execution of the computer applications 240 .
  • the kernel 204 includes a network I/O module 206 , a file I/O module 208 , a multi-threading module 210 , a user input module 214 , a system interrupts module 216 , and a shared memory access module 218 .
  • the computer applications 240 can reference and utilize one or more libraries 244 that are accessible through the operating system 202 .
  • the libraries 244 can be referenced directly by executable codes 242 of the computer applications 240 .
  • a “library” is a collection of instructions that generate a well-defined interface by which software instruction behaviors can be invoked.
  • a library can be linked or loaded to a computer application at the start of the execution of the computer application or in the middle of the execution.
  • Some of the computer applications 240 may also include other instruction frameworks or packages that becomes part of the executable codes 242 .
  • At least a portion of the logic behind the cloud computing system can be implemented in one or more modules running on the operating system 202 or as part of the operating system 202 .
  • the state synchronization module 220 can be a synchronization agent (e.g., the state synchronization modules 136 and 146 of FIG. 1 ) discussed above.
  • the application share module 230 can be the app-share agent (e.g., the application share modules 137 and 147 of FIG. 1 ) discussed above as well.
  • the state synchronization module 220 can be one of the computer applications 240 .
  • the state synchronization module 220 can be at least partly implemented in the executable codes 242 .
  • the state synchronization module 220 can also be at least partly implemented by one of the libraries 244 and/or the operating system 202 .
  • the state synchronization module 220 can initialize and run a background process on the operating system 202 .
  • the state synchronization module 220 can run a service accessible within the operating system 202 and/or across a network.
  • the application share module 230 can be one of the computer applications 240 .
  • the application share module 230 can be at least partly implemented in the executable codes 242 .
  • the application share module 230 can also be at least partly implemented by one of the libraries 244 and/or the operating system 202 .
  • the application share module 230 can initialize and run a background process on the operating system 202 .
  • the application share module 230 can run a service accessible within the operating system 202 and/or across a network.
  • the modules described herein can be implemented as instructions on a tangible storage memory capable of being executed by a processor or a controller.
  • the tangible storage memory may be volatile or non-volatile memory.
  • the volatile memory may be considered “non-transitory” in the sense that it is not transitory signal.
  • Modules may be operable when executed by a processor or other computing device, e.g., a single chip board, application specific integrated circuit, a field programmable gate array, a network capable computing device, a virtual machine hosting device, a cloud-based device, or any combination thereof.
  • Memory spaces and storages accessible to the modules can be implemented with tangible storage memory as well, including volatile or non-volatile memory.
  • Each of the modules may operate individually and independently of other modules. Some or all of the modules may be executed by different computing components. The separate computing components can be coupled through one or more communication channels (e.g., wireless or wired channels) to coordinate their operations. Some or all of the modules may reside on different memory devices. Some or all of the modules may be combined as one component or module.
  • a single module may be divided into sub-modules, each sub-module performing separate method step or method steps of the single module.
  • at least some of the modules share access to a memory space. For example, one module may access data accessed by or transformed by another module.
  • the modules may be considered “coupled” to one another if they share a physical connection or a virtual connection, directly or indirectly, allowing data accessed or modified from one module to be accessed in another module.
  • FIG. 3 is a block diagram of an example environment for application state sharing between computing devices (e.g., a computing device 302 A, a computing device 302 B, and a computing device 302 C, collectively as the “computing devices 302 ”), in accordance with various embodiments.
  • the computing devices 302 can share application states (e.g., an application state 304 A, an application state 304 B, and an application state 304 C, collectively as the “application states 304 ”) for an application 306 directly amongst each other.
  • the application states 304 can be shared within a local network 308 (as illustrated) or across a global network 310 .
  • the computing devices 302 share the application states 304 amongst each other via an application state broker system 312 (e.g., the cloud storage service 110 of FIG. 1 ).
  • the application state broker system 312 may be connected to the computing devices 302 via the global network 310 .
  • the application state broker system 312 can maintain an application state database 314 .
  • the application state database 314 can maintain various user-specific application datasets (e.g., an application dataset 316 A for a user profile A, an application dataset 316 B for a user profile B, and an application dataset 316 C, collectively as the “application datasets 316 ”).
  • Each of the application datasets 316 can include a synchronization group 318 .
  • the synchronization group 318 is a list of computing devices owned by the same user profile (e.g., the user profile A). Computing devices within the synchronization group 318 can maintain one or more consistent instances of one or more computer applications.
  • Each of the application datasets 316 can include application data 320 .
  • the application data 320 can represent one of the application states 304 .
  • a state synchronization agent e.g., the state synchronization module 220 of FIG. 2
  • an app-share agent e.g., the application share module 230 of FIG. 2
  • the application data 320 in one of the application datasets 316 can be loaded onto a device that is not listed in the synchronization group 318 .
  • the synchronization group 318 of the application dataset 316 B may consist of the computing device 302 A and the computing device 302 B.
  • an app-share agent can request the application state broker system 312 to load the application data 320 of the application dataset 316 B into the computing device 302 C.
  • FIG. 4 is a block diagram of an example of an application state 400 of a computer application (e.g., one of the computer applications 134 , 144 , or 244 ), in accordance with various embodiments.
  • the application state 400 can be represented by application state data, such as the application data 320 of FIG. 3 .
  • application state data can be organized as files and synchronized between the computing devices via a cloud storage service (e.g., the cloud storage service 110 of FIG. 1 or the application state broker system 312 of FIG. 3 ).
  • one or more modules of the operating system of the computing device are responsible for organizing, monitoring, and synchronizing the application state 400 .
  • Such modules can run in the computing devices as background services or programs.
  • the computer applications can be developed without any code dedicated to the organization, monitoring, or synchronization of the application state data.
  • the application state data maintained by the operating system includes sufficient information for the operating system to restore a previous snapshot of the application state 400 specified by the application state data.
  • the application state 400 of a computer application may include application memory data 402 , application local storage data 404 , hardware configuration data 406 , user account configuration data 408 , permission settings data 410 , or any combination thereof.
  • the application memory data 402 describes an operational state of an operational memory of the computer application.
  • the operational memory can be a portion of a volatile memory (e.g., random access memory or a processor cache) in the computing device that the computer application is running on.
  • the operational memory can be a portion of a flash memory in the computing device.
  • the operational memory dynamically evolves throughout the execution of the computer application.
  • the application local storage data 404 represents certain data in a local storage of the computing device that the computer application running on.
  • the application local storage data 404 can change based on specific instructions from the computer application to write to a persistent storage device.
  • the local storage can be a portion of a persistent storage device, such as a hard disk or a flash drive.
  • the hardware configuration data 406 represents how hardware components within the computing device when the computer application is executing.
  • the hardware configuration data 406 can include a current device sound volume level and a screen brightness level when the computer application is running.
  • the user account configuration data 408 represents a user's preferences and choices regarding the computer application and/or the operating system environment for running the computer application based on previous user inputs.
  • the user account configuration data 408 may include information about the user's language preference. Assuming the computer application is a game supporting both English and Chinese languages for user interface in the game, the language preference can be the user's selection of the English language as the preferred language.
  • the permission settings data 410 represents restrictions on who can load the application state 400 and how the application state 400 can be loaded or shared (i.e., loaded onto a device logged in by a user profile who is not an owner of the application state 400 ).
  • the permission settings data 410 includes a listing of user profiles that can load the application state 400 and/or a list of user profiles that are not allowed to load the application state 400 .
  • the permission settings data 410 can reference a social network account such that only “friends” of the social network account can load the application state 400 .
  • the permission settings data 410 can indicate a number of attributes of how the application state 400 can be shared.
  • the application state 400 can be shared as a “session share,” such that the application state 400 expires after a predetermined amount of time (e.g., from the time of loading the application state 400 ) or after a precondition for expiration occurs (e.g., the user reaches a certain game level if the computer application is a computer game).
  • the application state 400 can be shared as a “partial share,” such that only part of the application state 400 is loaded. For example, a partial share of the application state 400 can include only sharing of the hardware configuration data 406 .
  • the application state 400 can be shared as a “transferable share,” such that the user profile that receives the application state 400 can further share the application state 400 to a third user profile.
  • the application state 400 can be shared as a “separable share,” such that the user profile that receives the application state 400 can maintain a separate application state different from the application state 400 in the cloud storage service once the application state 400 is loaded on to a device of the receiver user profile.
  • the application state 400 can be shared as a “modifiable share,” such that future updates and changes to the application state 400 after it is loaded can be synchronized and re-integrated back into the application state 400 in the cloud storage service.
  • the application state 400 can be shared as a “complete transfer share,” such that the owner of the application state 400 is changed to the receiver user profile, and the original owner of the application state 400 loses any control or privilege over the application state 400 in the cloud storage service.
  • the application state 400 can be shared as a “co-ownership share,” such that the application state 400 becomes co-owned by the original owner and the receiver user profile.
  • the application state 400 can include one or more of the above attributes.
  • a transferable sharing of the application state 400 can be a modifiable share as well, where the sharing includes synchronizing of every copy of the application state 400 (e.g., devices of the receiver user profile and the third user profile are added to the synchronization group 318 of the original owner).
  • the permission settings data 410 can only be modified by the owner of the application state 400 and not subsequent user accounts that the application state 400 . In other embodiments, the permission settings data 410 are layered such that each subsequent user of the application state 400 can add additional permission restrictions without affecting the permission restrictions created by a previous user of the application state 400 .
  • FIG. 5A and FIG. 5B are portions of an activity diagram illustrating a method 500 of sharing an application state of a computer application between computing devices, in accordance with various embodiments.
  • Each of the computing devices can be the computing device 200 of FIG. 2 .
  • the method 500 involves an application state broker system 502 (e.g., the cloud storage service 110 of FIG. 1 , the application share module 230 of FIG. 2 , or the application state broker system 312 of FIG. 3 ) that manages an application state storage 504 .
  • the application state broker system 502 can facilitate sharing of an application state from a source application instance 506 of an application installed on a first computing device 508 to a destination application instance 510 of the application on a second computing device 512 .
  • the source application instance 506 can execute on the same computing device as the destination application instance 510 . That is, the first computing device 508 can be the second computing device 512 . In other embodiments, the source application instance 506 and the destination application instance 510 execute on different computing devices.
  • the first computing device 508 can execute a synchronization module 514 , such as the state synchronization module 220 of FIG. 2 .
  • the second computing device 512 can execute an app-share module 516 , such as the application share module 230 of FIG. 2 .
  • the synchronization agent 514 can log into the application state broker system 502 as user profile A.
  • the application state broker system 502 can authenticate the user profile A.
  • the synchronization agent 514 can update application data associated with an application state to the application state broker system 502 .
  • the application state broker system 502 can store the application data as the application state for the user profile A.
  • the app-share agent 516 can log into the application state broker system 502 as user profile B in step 528 .
  • the application state broker system 502 can authenticate the user profile B.
  • the app-share agent 516 can request an application state from the user profile A.
  • the application state broker system 502 can verify permission settings for the application state associated with the user profile A to determine whether the user profile B is allowed to load the application state. If permission is denied to the user profile B, then the application state broker system 502 can send a rejection message to the app-share agent 516 . If permission is granted, the application state broker system 502 can check, in step 538 , whether the application state in the application state storage 504 is up-to-date.
  • the application state broker system 502 sends, in step 542 , an update request to the synchronization agent 514 .
  • the synchronization agent 514 can schedule, in step 544 , an application state update.
  • the synchronization agent 514 can update the application state to the application state broker system 502 .
  • the application state broker system 502 configures a sharing copy of the application state based on the request from the app-share agent and the permission settings of the application state. For example, the application state broker system 502 can configure whether the sharing copy is sharable to a third computing device. As another example, the application state broker system 502 can configure whether new application data, generated after executing the sharing copy of the target application, is to re-integrate with the application data of the application state associated with the user profile A in the application state storage 504 . The application state broker system 504 can further configure whether new application data, generated after executing the sharing copy of the target application, is to synchronize as new application data of a new application state associated with the user profile B in the application state storage 504 . In embodiments, the application state broker system 504 can configure the sharing copy as a session-only instance of the target application that expires in accordance with a schedule or a condition that can be met while executing the session-only instance.
  • step 552 the application state broker system 502 can send the sharing copy to the app-share agent 516 . Then in step 554 , the app-share agent 516 can load the sharing copy of the application state for execution on the second computing device 512 .
  • the app-share agent 516 can submit a return copy of the application state back to the application state broker system 502 .
  • the application state broker system 502 can determine, in step 562 , whether the application state is configured for re-integration with the application state that is originally associated with the user profile A in the application state storage 504 . If the application state is configured for re-integration, the return copy is synchronized, in step 564 , to associate with devices of both the user profiles A and B. If the application state is not configured for re-integration, the return copy is stored, in step 566 , in the application state storage 504 to associate with the user profile B.
  • FIG. 6 is a flow chart illustrating a method 600 of loading an instance of an application state of a target application into a computing device (e.g., the second computing device 512 of FIG. 5 ), in accordance with various embodiments.
  • the computing device can be the computing device 200 of FIG. 2 .
  • the method 600 begins with an app-share agent (e.g., the application share module 230 of FIG. 2 ) of the computing device requesting, in step 602 , an application state of the target application from an application state broker system.
  • the application state is associated with a foreign user profile different from a current user profile logged into the computing device.
  • the application state broker system for example, can be the cloud storage service 110 of FIG. 1 , the application share module 230 of FIG. 2 , or the application state broker system 312 of FIG. 3 .
  • the application state can be the application state 400 of FIG. 4 .
  • the application state broker system can send an instance of the application state to the computing device. That is, the computing device receives an instance of the application state from the application state broker system in step 604 .
  • the app-share agent can back up a current instance of the application state of the target application executing on the computing device in step 606 .
  • the current instance can be stored locally on the computing device.
  • the app-share agent can send application data associated with the current instance to the application state broker system to backup the application state of the current instance.
  • the application state broker system sends and the computing device receives, in step 608 , a link or a data stream to download the target application.
  • the app-share agent Upon receiving the instance of the application state, the app-share agent configures, in step 610 , the target application with the instance of the application state for executing on the computing device.
  • the app-share agent can merge the received instance of the application data with the current instance already on the first computing device.
  • the app-share agent can use the hardware configuration data of the current instance and the application memory data of the received instance to load the target application.
  • step 610 either the user of the computing device can manually or the app-share agent can automatically execute the configured target application on the computing device in step 612 .
  • a synchronization agent e.g., the state synchronization module 136 of FIG. 1 or the state synchronization module 220 of FIG. 2
  • step 610 can include: pausing or terminating the target application in sub-step 622 ; modifying a portion of a memory allotted for the target application in the computing device in sub-step 624 ; and unpausing or restarting the target application in sub-step 626 .
  • the target application includes built-in logic to facilitate loading of an instance of a new application state.
  • step 610 can include: passing the instance of the application state to the target application in sub-step 632 ; and configuring the target application based on the instance of the application state and logical instructions within the target application in sub-step 634 .
  • the app-share agent can pass the instance of the application state to the target application while the target application is executing on the computing device.
  • the app-share agent can initialize the target application with the instance of the application state if the target application is not running on the computing device.
  • FIG. 7 is a block diagram of an example of a computing device 700 , which may represent one or more computing device or server described herein.
  • the computing device 700 includes one or more processors 710 and memory 720 coupled to an interconnect 730 .
  • the interconnect 730 shown in FIG. 7 is an abstraction that represents any one or more separate physical buses, point-to-point connections, or both connected by appropriate bridges, adapters, or controllers.
  • the interconnect 730 may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
  • PCI Peripheral Component Interconnect
  • ISA industry standard architecture
  • SCSI small computer system interface
  • USB universal serial bus
  • I2C IIC
  • IEEE Institute of Electrical and Electronics Engineers
  • the processor(s) 710 is/are the central processing unit (CPU) of the computing device 700 and thus controls the overall operation of the computing device 700 . In certain embodiments, the processor(s) 710 accomplishes this by executing software or firmware stored in memory 720 .
  • the processor(s) 710 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • TPMs trusted platform modules
  • the memory 720 is or includes the main memory of the computing device 700 .
  • the memory 720 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices.
  • the memory 720 may contain a code 770 containing instructions according to the technology disclosed herein.
  • the network adapter 740 provides the computing device 700 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter.
  • the network adapter 740 may also provide the computing device 700 with the ability to communicate with other computers.
  • the storage adapter 750 allows the computing device 700 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
  • the code 770 stored in memory 720 may be implemented as software and/or firmware to program the processor(s) 710 to carry out actions described above.
  • such software or firmware may be initially provided to the computing device 700 by downloading it from a remote system through the computing device 700 (e.g., via network adapter 740 ).
  • programmable circuitry e.g., one or more microprocessors
  • Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
  • ASICs application-specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field-programmable gate arrays
  • Machine-readable storage medium includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.).
  • a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
  • logic can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)
  • Stored Programmes (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Storage Device Security (AREA)

Abstract

At least one embodiment of this disclosure includes a method of sharing application states across different user profiles. The method can include: receiving a request from a first computing device associated with a first user profile to load an application state of a target application, wherein the application state is owned by a second user profile; verifying permission for the first user profile to load the application state owned by the second user profile; configuring a sharing instance of the application state of the target application by accessing application data of the application state associated with the second user profile in a storage service; and sending the sharing instance to be loaded onto the first computing device.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application claims to the benefit of U.S. Provisional Patent Application No. 61/804,134, entitled “OPERATING SYSTEM AND DEVICE INTEGRATED WITH CLOUD COMPUTING FUNCTIONALITIES,” which was filed on Mar. 21, 2013, which is incorporated by reference herein in its entirety.
  • This application is related to U.S. patent application Ser. No. 13/772,163, entitled “APPLICATION STATE SYNCHRONIZATION ACROSS MULTIPLE DEVICES,” which was filed on Feb. 20, 2013, which is incorporated by reference herein in its entirety.
  • This application is related to U.S. patent application Ser. No. 14/042,398, entitled “INTERFACE FOR RESOLVING SYNCHRONIZATION CONFLICTS OF APPLICATION STATES,” which was filed on Sep. 30, 2013, which is incorporated by reference herein in its entirety.
  • RELATED FIELDS
  • At least one embodiment of this disclosure relates generally to cloud computing and, in particular, to mobile device based cloud computing.
  • BACKGROUND
  • Application state data is data used to record the running status of a computer application. One example of application state data is a “game save” for a game application. A game save is a piece of digitally-stored information about the progress of a user operating the game application. The game save can be reloaded later, so that the user can continue where he/she stopped. The user instructs the game application to generate a game save (i.e., save the game) to prevent the loss of progress in the game, especially when the user is interrupted or ending a game session.
  • Sharing game saves among users has been common for many years. Originally, by swapping memory cards with game saves, users could help each other to unlock features in a game application. With the growing popularity of the Internet, users can now upload their game saves from their devices to Internet servers. By downloading a game save from an Internet server, a user can continue the progress of the game on the device used to play the game or another device such as a computer, game console, or smart phone. However, to achieve the goal of continuing the progress on another device, the user needs to deliberately instruct the device to save the game progress (i.e., game save) and to upload the game save to a server or a memory card. Then the user needs to download the game from the server or the memory card to the other device and then instruct the other device to load the game save. The whole process is tedious and requires many user interventions. Furthermore, the process only works for game applications that are specifically designed with game saving functionalities.
  • DISCLOSURE OVERVIEW
  • Techniques introduced here provide an application state sharing mechanism between user profiles (e.g., implemented as separate user accounts). For example, different user profiles can lend application states to each other. In some embodiments, user profiles can share application states within the same computing device. In other embodiments, user profiles can share application states across multiple devices. The disclosed techniques can be implemented through a cloud computing system with multiple computing devices, each with a synchronization agent and an app-share agent. Through these agents and a cloud storage service, the cloud computing system can provide an application sharing platform for user profiles to share application states with each other.
  • For example, a first user can simply select a target application and a target user and, with a click of a button (e.g., a user interface generated by the app-share agent), load the most recent application state of the target application from the target user's devices. This application state sharing mechanism enables a user to conveniently load application states from other users. For example, this sharing mechanism can execute without the target user's manual retrieval of the application state and without having to iterate through multiple devices of the target user to identify the most recent application state at the time the application state request is made by the first user. In some embodiments, the first user can load the application state to his/her device without an explicit approval from the target user for the specific application state request.
  • The synchronization agent in a computing device can update application states with a cloud storage service (e.g., a centralized cloud service, a distributed cloud service, or a peer-to-peer cloud service). When to update can be determined either by the synchronization agent (e.g., by monitoring activity in the application) and/or by the cloud storage service (e.g., by monitoring requests for the application states). For example, the synchronization agent can determine to update when a pre-determined progress in the target application has been reached or when the target application is paused or has gone idled (e.g., from lack of user interaction). For another example, the cloud storage service can trigger an update of an application state when a request for the application state is made by another computing device. The cloud storage service can then distribute application states to the computing devices within the cloud computing system to ensure that the computing devices have consistent copies of applications managed by the cloud computing system.
  • For example, the synchronization agent can detect an instance of a computer application running at or at least installed on a first electronic device and determine an update event that occurs in the first electronic device. The update event is a process of making a copy of the execution status of the computer application. The application state data represents an application state of the computer application at the update event. The synchronization agent can then transmit the application state data of the computer application to the cloud storage service in response to the update event. Another electronic device can thus retrieve the application state data of the computer application from the cloud storage service and restore another instance of the computer application to the application state using the application state data. The update event can proceed automatically in the background of the operating system of the computing devices. The update event can be transparent to the user. The update event can also be transparent to the computer application.
  • The app-share agent in a computing device can facilitate a first user to load an application state of a target application from a second user. As discussed above, the loading of the application state can occur without interactions from the second user in response to a request to copy the application state associated with the second user. The app-share agent can send a request to the cloud storage service to retrieve the application state associated with a second user. The cloud storage service can match the request to application data associated with the most recent application state or whichever application state that is requested. The cloud storage service can then verify that the first user is permitted to load the application state to the computing device of the first user.
  • If the target application is not installed on the computing device, the app-share agent can first request to download the target application. The app-share agent can load the application state whether or not the target application expects the application state to be loaded. In some cases, the target application receives the application data from the app-share agent and provides at least part of the logic to load the application state. In other cases, the target application is paused or terminated such that the app-share agent can load the application data into operational memory portions of the target application.
  • In embodiments, the synchronization agent can back up a new application state of the target application on the computing device associated with the first user (e.g., the computing device that loaded a foreign application state) to the cloud storage service. In some embodiments, the cloud storage service can back up the new application state as a new set of application data independent of the original application data associated with the second user. In other embodiments, the cloud storage service can re-integrate the new application state to the original application data associated with the second user.
  • Some embodiments of this disclosure have other aspects, elements, features, and steps in addition to or in place of what is described above. These potential additions and replacements are described throughout the rest of the specification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an example of a cloud computing system for application state sharing between user profiles, in accordance with various embodiments.
  • FIG. 2 is a block diagram of an example of a system architecture of a computing device, in accordance with various embodiments.
  • FIG. 3 is a block diagram of an example environment for application state sharing between computing devices, in accordance with various embodiments.
  • FIG. 4 is a block diagram of an example of an application state of a computer application, in accordance with various embodiments.
  • FIG. 5A is a first portion of an activity diagram illustrating a method of sharing an application state of a computer application between computing devices, in accordance with various embodiments.
  • FIG. 5B is a second portion of the activity diagram of FIG. 5A.
  • FIG. 6 is a flow chart illustrating a method of loading an instance of an application state of a target application into a computing device, in accordance with various embodiments.
  • FIG. 7 is a block diagram of an example of a computing device, which may represent one or more computing device or server described herein.
  • The figures depict various embodiments of this disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
  • DETAILED DESCRIPTION
  • FIG. 1 is a block diagram of an example of a cloud computing system 100 for application state sharing between user profiles, in accordance with various embodiments. The cloud computing system 100 provides a state sharing platform to enable different user profiles to share application states. The cloud computing system 100 includes a cloud storage service 110 configured to store and manage application states and to load application states to different computing devices. In one embodiment, the cloud storage service 110 can be a device cluster having storage nodes 112 interconnected with each other by a storage network channel 118. The device cluster can communicate with other computing devices via a global network, such as the Internet, a local network, or a cloud data interface 120.
  • The cloud storage service 110 includes the storage nodes 112. Each of the storage nodes 112 includes one or more processors 114 and storage devices 116. The storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage, or any other computer storage medium which can be used to store the desired information.
  • The cloud storage service 110 can implement the cloud data interface 120 to receive data from and send data to computing devices (e.g., a first electronic device 130 and a second electronic device 140). The computing devices can include desktop computers, laptop computers, tablet computers, automobile computers, game consoles, smart phones, personal digital assistants, other computing devices capable of running computer applications, or any combination thereof. The cloud data interface 120 can be coupled to network communication hardware and network connection logic to receive the information from the computing devices. For example, the cloud data interface can be coupled to a local area network (LAN), wide area network (WAN) or the Internet. The cloud data interface 120 may include a queuing mechanism to organize data updates received from or sent to the computing devices. In some embodiments, the cloud data interface 120 is implemented by one or more computing devices different from the storage nodes 112. In other embodiments, the cloud data interface 120 is implemented by a subset or all of the storage nodes 112.
  • In embodiments, the cloud data interface 120 can be implemented such that existence of individual computing devices that implement the cloud data interface 120 is transparent to a client (e.g., the first electronic device 130 or the second electronic device 140). In embodiments, the cloud data interface 120 and the cloud storage service 110 can be implemented such that existence of the storage nodes 112 that store the client data is transparent to a client (e.g., the first electronic device 130 or the second electronic device 140) of the cloud data interface 120.
  • The electronic devices (e.g., the first electronic device 130 and the second electronic device 140) can share data amongst each other via the cloud storage service 110. For example, the cloud storage service 110 can maintain one or more application states for one or more applications of one or more electronic devices.
  • The cloud storage service 110 can maintain an application state database of the application states. The application state database can maintain timestamps of when each of the application states is captured and/or when it is collected. The application state database can maintain different snapshots of application states belonging to the same user account and the same application at different times. Each of the application states can be associated with one or more user profiles, with at least one of the user profiles being an owner of the application state. An owner is a user account having complete rights to the application state. An owner can configure the permission settings of the application state (e.g., who can copy and load the application state). The application state database can maintain these associations between the user profiles and the application states. The application state database can also maintain a list of computing devices that have currently loaded one of the application states, the list including specific application states that each computing device has loaded.
  • The first electronic device 130 includes a first operating system 132 to manage the hardware resources of the first electronic device 130 and to provide services for running computer applications 134 on the first electronic device 130. The first electronic device 130 can send application data of the computer applications 134, representative of a current application state, to the cloud storage service 110. The first electronic device 130 includes at least a first memory 138 to store the computer applications 134 and the application data associated therewith.
  • The computer applications 134 can include applications for general productivity and information retrieval, including email, calendar, contacts, news, and stock market and weather information. The computer applications 134 can also include applications in other categories, such as mobile games, file sharing, playing music, media streaming, media creation, media editing, automation, navigation and location-based services, banking, e-reader, order-tracking, ticket purchases, or any combination thereof.
  • The first memory 138 includes a state synchronization module 136 to update and synchronize the application states with the cloud storage service 110. The first electronic device 130 can execute the state synchronization module 136 on the first operating system 132 or as part of the first operating system 132. The first memory 138 further includes an application share module 137 to facilitate requests between user accounts to share an application state.
  • Similarly, the second electronic device 140 includes a second memory 148. The second memory 148 includes a second operating system 142, which may be the same or different from the first operating system 132. The second memory 148 can include computer applications 144. The second memory 148 can also include a state synchronization module 146 and an application share module 147 performing the same functionality as the state synchronization module 136 and the application share module 137, respectively. For example, the state synchronization modules 136 and 146 can share a set of source codes further compiled into different binary executables for their respective operating systems. The application share modules 137 and 147 can also share a set of source codes further compiled into different binary executables for their respective operating systems. At least one of the computer applications 144 can overlap with the computer applications 134, such that the application state of the overlapped application can be shared between the first electronic device 130 and the second electronic device 140.
  • In some embodiments, the cloud storage service 110 can determine when to commit an application state of the first electronic device 130 or the second electronic device 140 to the cloud storage service 110. In other embodiments, the electronic devices 130 and 140 themselves can determine when to commit an application state to the cloud storage service 110. For example, when an application state of the first electronic device 130 is scheduled to be committed to the cloud storage service 110, the first electronic device 130 can send an update message to the cloud storage service 110. To generate the update message, the first electronic device 130 can capture a current application state (e.g., as a set of application data) of one of the computer applications 134 running on the first electronic device 130. The first electronic device 130 can either include the application data of the current application state in the update message or a differential mapping of the application data in the update message. The differential mapping represents the difference between the current application state and a previous application state most recently sent to the cloud storage service 110.
  • The cloud storage service 110 can provide an interface with the state synchronization modules 136 and 146 to facilitate concurrent updates from one or more of the computer applications 134 and 144. The cloud storage service 110 can determine a current application state of a target application shared across multiple user accounts and/or across multiple electronic devices even when there are multiple conflicting updates (e.g., by prioritizing ranks amongst the conflicting updates and re-integrating them based on the prioritized ranks). The cloud storage service 110 can distribute the current application state to the electronic devices having an instance copy of the target application. The cloud storage service 110 can schedule this distribution such that all electronic devices maintain a consistent instance copy of the application state.
  • In some embodiments, the electronic devices 130 and 140 do not communicate with each other directly during synchronization. For example, the cloud storage service 110 can perform the synchronization by routing the application state updates from one electronic device to another. In other embodiments, the electronic devices 130 and 140 can directly send application state updates to each other with instructions from the cloud storage service 110 that determines which instance copy to update.
  • Although FIG. 1 illustrates the first electronic device 130 and the second electronic device 140 as being outside of the cloud storage service 110, in some embodiments, the first electronic device 130 and the second electronic device 140 are part of the cloud storage service 110. For example, the first electronic device 130 or the second electronic device 140 can serve as one of the storage nodes 112. As another example, the first electronic device 130 and/or the second electronic device 140 can implement the cloud data interface 120. In embodiments, the cloud storage service 110 can be implemented by electronic devices that each implements an instance of the state synchronization module 136. Although FIG. 1 illustrates two electronic devices (e.g., the electronic devices 130 and 140), a person having ordinary skill in the art will readily understand that the technology disclosed herein can be applied to data synchronization among more than two computing devices.
  • FIG. 2 is a block diagram of an example of a system architecture of a computing device 200, in accordance with various embodiments. The computing device 200 can implement an operating system 202. The operating system 202 includes a kernel 204. The kernel 204 provides interfaces to hardware of the computing device 200 for computer applications 240 running on top of the kernel 204 and, on occasions, supervises and controls the computer applications 240. The kernel 204 isolates the computer applications 240 from the hardware. The kernel 204 may include one or more intervening sources that can affect execution of the computer applications 240. In one embodiment, the kernel 204 includes a network I/O module 206, a file I/O module 208, a multi-threading module 210, a user input module 214, a system interrupts module 216, and a shared memory access module 218.
  • The computer applications 240 can reference and utilize one or more libraries 244 that are accessible through the operating system 202. The libraries 244 can be referenced directly by executable codes 242 of the computer applications 240. A “library” is a collection of instructions that generate a well-defined interface by which software instruction behaviors can be invoked. A library can be linked or loaded to a computer application at the start of the execution of the computer application or in the middle of the execution. Some of the computer applications 240 may also include other instruction frameworks or packages that becomes part of the executable codes 242.
  • At least a portion of the logic behind the cloud computing system (i.e., the resource sharing platform) can be implemented in one or more modules running on the operating system 202 or as part of the operating system 202. The state synchronization module 220 can be a synchronization agent (e.g., the state synchronization modules 136 and 146 of FIG. 1) discussed above. The application share module 230 can be the app-share agent (e.g., the application share modules 137 and 147 of FIG. 1) discussed above as well.
  • The state synchronization module 220 can be one of the computer applications 240. The state synchronization module 220 can be at least partly implemented in the executable codes 242. The state synchronization module 220 can also be at least partly implemented by one of the libraries 244 and/or the operating system 202. For example, the state synchronization module 220 can initialize and run a background process on the operating system 202. In embodiments, the state synchronization module 220 can run a service accessible within the operating system 202 and/or across a network.
  • Similarly, the application share module 230 can be one of the computer applications 240. The application share module 230 can be at least partly implemented in the executable codes 242. The application share module 230 can also be at least partly implemented by one of the libraries 244 and/or the operating system 202. For example, the application share module 230 can initialize and run a background process on the operating system 202. In embodiments, the application share module 230 can run a service accessible within the operating system 202 and/or across a network.
  • The modules described herein can be implemented as instructions on a tangible storage memory capable of being executed by a processor or a controller. The tangible storage memory may be volatile or non-volatile memory. In some embodiments, the volatile memory may be considered “non-transitory” in the sense that it is not transitory signal. Modules may be operable when executed by a processor or other computing device, e.g., a single chip board, application specific integrated circuit, a field programmable gate array, a network capable computing device, a virtual machine hosting device, a cloud-based device, or any combination thereof. Memory spaces and storages accessible to the modules can be implemented with tangible storage memory as well, including volatile or non-volatile memory.
  • Each of the modules may operate individually and independently of other modules. Some or all of the modules may be executed by different computing components. The separate computing components can be coupled through one or more communication channels (e.g., wireless or wired channels) to coordinate their operations. Some or all of the modules may reside on different memory devices. Some or all of the modules may be combined as one component or module.
  • A single module may be divided into sub-modules, each sub-module performing separate method step or method steps of the single module. In some embodiments, at least some of the modules share access to a memory space. For example, one module may access data accessed by or transformed by another module. The modules may be considered “coupled” to one another if they share a physical connection or a virtual connection, directly or indirectly, allowing data accessed or modified from one module to be accessed in another module.
  • FIG. 3 is a block diagram of an example environment for application state sharing between computing devices (e.g., a computing device 302A, a computing device 302B, and a computing device 302C, collectively as the “computing devices 302”), in accordance with various embodiments. In some embodiments, the computing devices 302 can share application states (e.g., an application state 304A, an application state 304B, and an application state 304C, collectively as the “application states 304”) for an application 306 directly amongst each other. The application states 304 can be shared within a local network 308 (as illustrated) or across a global network 310.
  • In other embodiments, the computing devices 302 share the application states 304 amongst each other via an application state broker system 312 (e.g., the cloud storage service 110 of FIG. 1). The application state broker system 312 may be connected to the computing devices 302 via the global network 310. The application state broker system 312 can maintain an application state database 314. The application state database 314 can maintain various user-specific application datasets (e.g., an application dataset 316A for a user profile A, an application dataset 316B for a user profile B, and an application dataset 316C, collectively as the “application datasets 316”).
  • Each of the application datasets 316 can include a synchronization group 318. The synchronization group 318 is a list of computing devices owned by the same user profile (e.g., the user profile A). Computing devices within the synchronization group 318 can maintain one or more consistent instances of one or more computer applications. Each of the application datasets 316 can include application data 320. The application data 320 can represent one of the application states 304. For example, a state synchronization agent (e.g., the state synchronization module 220 of FIG. 2) or an app-share agent (e.g., the application share module 230 of FIG. 2) can use the application data 320 to load one of the application states 304 to a device running the application 306 at a different state than the specific one of the application states 304.
  • In embodiments where the computing devices 302 share the application states 304 amongst each other via the application state broker system 312, the application data 320 in one of the application datasets 316 can be loaded onto a device that is not listed in the synchronization group 318. For example, the synchronization group 318 of the application dataset 316B may consist of the computing device 302A and the computing device 302B. However, an app-share agent can request the application state broker system 312 to load the application data 320 of the application dataset 316B into the computing device 302C.
  • FIG. 4 is a block diagram of an example of an application state 400 of a computer application (e.g., one of the computer applications 134, 144, or 244), in accordance with various embodiments. The application state 400 can be represented by application state data, such as the application data 320 of FIG. 3. For instance, application state data can be organized as files and synchronized between the computing devices via a cloud storage service (e.g., the cloud storage service 110 of FIG. 1 or the application state broker system 312 of FIG. 3).
  • In various embodiments, one or more modules of the operating system of the computing device are responsible for organizing, monitoring, and synchronizing the application state 400. Such modules can run in the computing devices as background services or programs. The computer applications can be developed without any code dedicated to the organization, monitoring, or synchronization of the application state data. The application state data maintained by the operating system includes sufficient information for the operating system to restore a previous snapshot of the application state 400 specified by the application state data.
  • The application state 400 of a computer application may include application memory data 402, application local storage data 404, hardware configuration data 406, user account configuration data 408, permission settings data 410, or any combination thereof. The application memory data 402 describes an operational state of an operational memory of the computer application. For example, the operational memory can be a portion of a volatile memory (e.g., random access memory or a processor cache) in the computing device that the computer application is running on. For another example, the operational memory can be a portion of a flash memory in the computing device. The operational memory dynamically evolves throughout the execution of the computer application. The application local storage data 404 represents certain data in a local storage of the computing device that the computer application running on. The application local storage data 404 can change based on specific instructions from the computer application to write to a persistent storage device. For example, the local storage can be a portion of a persistent storage device, such as a hard disk or a flash drive.
  • The hardware configuration data 406 represents how hardware components within the computing device when the computer application is executing. For instance, the hardware configuration data 406 can include a current device sound volume level and a screen brightness level when the computer application is running. The user account configuration data 408 represents a user's preferences and choices regarding the computer application and/or the operating system environment for running the computer application based on previous user inputs. For instance, the user account configuration data 408 may include information about the user's language preference. Assuming the computer application is a game supporting both English and Chinese languages for user interface in the game, the language preference can be the user's selection of the English language as the preferred language.
  • The permission settings data 410 represents restrictions on who can load the application state 400 and how the application state 400 can be loaded or shared (i.e., loaded onto a device logged in by a user profile who is not an owner of the application state 400). For example, the permission settings data 410 includes a listing of user profiles that can load the application state 400 and/or a list of user profiles that are not allowed to load the application state 400. As another example, the permission settings data 410 can reference a social network account such that only “friends” of the social network account can load the application state 400.
  • The permission settings data 410 can indicate a number of attributes of how the application state 400 can be shared. The application state 400 can be shared as a “session share,” such that the application state 400 expires after a predetermined amount of time (e.g., from the time of loading the application state 400) or after a precondition for expiration occurs (e.g., the user reaches a certain game level if the computer application is a computer game). The application state 400 can be shared as a “partial share,” such that only part of the application state 400 is loaded. For example, a partial share of the application state 400 can include only sharing of the hardware configuration data 406. The application state 400 can be shared as a “transferable share,” such that the user profile that receives the application state 400 can further share the application state 400 to a third user profile. The application state 400 can be shared as a “separable share,” such that the user profile that receives the application state 400 can maintain a separate application state different from the application state 400 in the cloud storage service once the application state 400 is loaded on to a device of the receiver user profile. The application state 400 can be shared as a “modifiable share,” such that future updates and changes to the application state 400 after it is loaded can be synchronized and re-integrated back into the application state 400 in the cloud storage service.
  • The application state 400 can be shared as a “complete transfer share,” such that the owner of the application state 400 is changed to the receiver user profile, and the original owner of the application state 400 loses any control or privilege over the application state 400 in the cloud storage service. The application state 400 can be shared as a “co-ownership share,” such that the application state 400 becomes co-owned by the original owner and the receiver user profile. In some embodiments, the application state 400 can include one or more of the above attributes. For example, a transferable sharing of the application state 400 can be a modifiable share as well, where the sharing includes synchronizing of every copy of the application state 400 (e.g., devices of the receiver user profile and the third user profile are added to the synchronization group 318 of the original owner).
  • In some embodiments, the permission settings data 410 can only be modified by the owner of the application state 400 and not subsequent user accounts that the application state 400. In other embodiments, the permission settings data 410 are layered such that each subsequent user of the application state 400 can add additional permission restrictions without affecting the permission restrictions created by a previous user of the application state 400.
  • FIG. 5A and FIG. 5B are portions of an activity diagram illustrating a method 500 of sharing an application state of a computer application between computing devices, in accordance with various embodiments. Each of the computing devices can be the computing device 200 of FIG. 2. The method 500 involves an application state broker system 502 (e.g., the cloud storage service 110 of FIG. 1, the application share module 230 of FIG. 2, or the application state broker system 312 of FIG. 3) that manages an application state storage 504. The application state broker system 502 can facilitate sharing of an application state from a source application instance 506 of an application installed on a first computing device 508 to a destination application instance 510 of the application on a second computing device 512. In embodiments, the source application instance 506 can execute on the same computing device as the destination application instance 510. That is, the first computing device 508 can be the second computing device 512. In other embodiments, the source application instance 506 and the destination application instance 510 execute on different computing devices.
  • The first computing device 508 can execute a synchronization module 514, such as the state synchronization module 220 of FIG. 2. The second computing device 512 can execute an app-share module 516, such as the application share module 230 of FIG. 2.
  • In step 522, the synchronization agent 514 can log into the application state broker system 502 as user profile A. In response, the application state broker system 502 can authenticate the user profile A. Sometimes later in step 524, the synchronization agent 514 can update application data associated with an application state to the application state broker system 502. Subsequently, in step 526, the application state broker system 502 can store the application data as the application state for the user profile A.
  • Independent of the activities with the synchronization agent 514, the app-share agent 516 can log into the application state broker system 502 as user profile B in step 528. In response, the application state broker system 502 can authenticate the user profile B. In step 530, the app-share agent 516 can request an application state from the user profile A.
  • In step 534, the application state broker system 502 can verify permission settings for the application state associated with the user profile A to determine whether the user profile B is allowed to load the application state. If permission is denied to the user profile B, then the application state broker system 502 can send a rejection message to the app-share agent 516. If permission is granted, the application state broker system 502 can check, in step 538, whether the application state in the application state storage 504 is up-to-date.
  • In some embodiments, if the application state is not up-to-date, then the application state broker system 502 sends, in step 542, an update request to the synchronization agent 514. In response, the synchronization agent 514 can schedule, in step 544, an application state update. In step 546, the synchronization agent 514 can update the application state to the application state broker system 502.
  • In step 548, the application state broker system 502 configures a sharing copy of the application state based on the request from the app-share agent and the permission settings of the application state. For example, the application state broker system 502 can configure whether the sharing copy is sharable to a third computing device. As another example, the application state broker system 502 can configure whether new application data, generated after executing the sharing copy of the target application, is to re-integrate with the application data of the application state associated with the user profile A in the application state storage 504. The application state broker system 504 can further configure whether new application data, generated after executing the sharing copy of the target application, is to synchronize as new application data of a new application state associated with the user profile B in the application state storage 504. In embodiments, the application state broker system 504 can configure the sharing copy as a session-only instance of the target application that expires in accordance with a schedule or a condition that can be met while executing the session-only instance.
  • In step 552, the application state broker system 502 can send the sharing copy to the app-share agent 516. Then in step 554, the app-share agent 516 can load the sharing copy of the application state for execution on the second computing device 512.
  • After step 554, the app-share agent 516 can submit a return copy of the application state back to the application state broker system 502. In response, the application state broker system 502 can determine, in step 562, whether the application state is configured for re-integration with the application state that is originally associated with the user profile A in the application state storage 504. If the application state is configured for re-integration, the return copy is synchronized, in step 564, to associate with devices of both the user profiles A and B. If the application state is not configured for re-integration, the return copy is stored, in step 566, in the application state storage 504 to associate with the user profile B.
  • FIG. 6 is a flow chart illustrating a method 600 of loading an instance of an application state of a target application into a computing device (e.g., the second computing device 512 of FIG. 5), in accordance with various embodiments. For example, the computing device can be the computing device 200 of FIG. 2. The method 600 begins with an app-share agent (e.g., the application share module 230 of FIG. 2) of the computing device requesting, in step 602, an application state of the target application from an application state broker system. The application state is associated with a foreign user profile different from a current user profile logged into the computing device. The application state broker system, for example, can be the cloud storage service 110 of FIG. 1, the application share module 230 of FIG. 2, or the application state broker system 312 of FIG. 3. The application state can be the application state 400 of FIG. 4.
  • In response to the request, the application state broker system can send an instance of the application state to the computing device. That is, the computing device receives an instance of the application state from the application state broker system in step 604. Optionally, the app-share agent can back up a current instance of the application state of the target application executing on the computing device in step 606. For instance, the current instance can be stored locally on the computing device. In addition to or instead of storing the current instance locally, the app-share agent can send application data associated with the current instance to the application state broker system to backup the application state of the current instance.
  • Also optionally, after the application state of the target application has been requested and when the target application has not been installed on an operating system of the computing device, the application state broker system sends and the computing device receives, in step 608, a link or a data stream to download the target application. This feature can enable a convenient single-step application sharing mechanism for a user account to borrow an application from another user account even when the user account does not possess the application on his/her device.
  • Upon receiving the instance of the application state, the app-share agent configures, in step 610, the target application with the instance of the application state for executing on the computing device. In embodiments, the app-share agent can merge the received instance of the application data with the current instance already on the first computing device. For example, the app-share agent can use the hardware configuration data of the current instance and the application memory data of the received instance to load the target application. Once step 610 is completed, either the user of the computing device can manually or the app-share agent can automatically execute the configured target application on the computing device in step 612. After the configured target application has been executed, a synchronization agent (e.g., the state synchronization module 136 of FIG. 1 or the state synchronization module 220 of FIG. 2) can update changes to the application state of the configured target application back to the application state broker system in step 614.
  • Various methods of configuring the target application is contemplated in this disclosure. In some embodiments, the configuration of the target application is transparent to the target application. For example, step 610 can include: pausing or terminating the target application in sub-step 622; modifying a portion of a memory allotted for the target application in the computing device in sub-step 624; and unpausing or restarting the target application in sub-step 626. In other embodiments, the target application includes built-in logic to facilitate loading of an instance of a new application state. For example, step 610 can include: passing the instance of the application state to the target application in sub-step 632; and configuring the target application based on the instance of the application state and logical instructions within the target application in sub-step 634. In sub-step 632, the app-share agent can pass the instance of the application state to the target application while the target application is executing on the computing device. Alternatively, the app-share agent can initialize the target application with the instance of the application state if the target application is not running on the computing device.
  • While processes or methods are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. In addition, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel or may be performed at different times.
  • FIG. 7 is a block diagram of an example of a computing device 700, which may represent one or more computing device or server described herein. The computing device 700 includes one or more processors 710 and memory 720 coupled to an interconnect 730. The interconnect 730 shown in FIG. 7 is an abstraction that represents any one or more separate physical buses, point-to-point connections, or both connected by appropriate bridges, adapters, or controllers. The interconnect 730, therefore, may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2C) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
  • The processor(s) 710 is/are the central processing unit (CPU) of the computing device 700 and thus controls the overall operation of the computing device 700. In certain embodiments, the processor(s) 710 accomplishes this by executing software or firmware stored in memory 720. The processor(s) 710 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
  • The memory 720 is or includes the main memory of the computing device 700. The memory 720 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices. In use, the memory 720 may contain a code 770 containing instructions according to the technology disclosed herein.
  • Also connected to the processor(s) 710 through the interconnect 730 are a network adapter 740 and a storage adapter 750. The network adapter 740 provides the computing device 700 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter. The network adapter 740 may also provide the computing device 700 with the ability to communicate with other computers. The storage adapter 750 allows the computing device 700 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
  • The code 770 stored in memory 720 may be implemented as software and/or firmware to program the processor(s) 710 to carry out actions described above. In certain embodiments, such software or firmware may be initially provided to the computing device 700 by downloading it from a remote system through the computing device 700 (e.g., via network adapter 740).
  • The techniques introduced herein can be implemented by, for example, programmable circuitry (e.g., one or more microprocessors) programmed with software and/or firmware, or entirely in special-purpose hardwired circuitry, or in a combination of such forms. Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
  • Software or firmware for use in implementing the techniques introduced here may be stored on a machine-readable storage medium and may be executed by one or more general-purpose or special-purpose programmable microprocessors. A “machine-readable storage medium”, as the term is used herein, includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.). For example, a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
  • The term “logic”, as used herein, can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.
  • References in this specification to “an embodiment,” “one embodiment,” or the like mean that the particular feature, structure, or characteristic being described is included in at least one embodiment of the present disclosure. Occurrences of such phrases in this specification do not all necessarily refer to the same embodiment, however. In addition to the above mentioned examples, various other modifications and alterations of the disclosed technology may be made. Accordingly, the above disclosure is not to be considered as limiting, and the appended claims are to be interpreted as encompassing the true spirit and the entire scope of the disclosure.

Claims (24)

What is claimed is:
1. A computer-implemented method of operating an application state broker system, comprising:
authenticating a login from a first user profile at a first computing device;
receiving a request from the first computing device to load an application state of a target application, wherein the application state is owned by a second user profile;
verifying permission for the first user profile to load the application state owned by the second user profile;
configuring a sharing instance of the application state of the target application by accessing application data of the application state associated with the second user profile in a storage service; and
sending the sharing instance to be loaded onto the first computing device.
2. The computer-implemented method of claim 1, further comprising:
in response to receiving the request, determining that the target application is not installed on the first computing device; and
sending the target application or a link to the target application to the first computing device.
3. The computer-implemented method of claim 1, further comprising:
authenticating the second user profile at the application state broker system from a second computing device;
receiving the application data associated with the target application installed on the second computing device; and
generating the application state of the target application for storing in the storage service based on the received application data.
4. The computer-implemented method of claim 1, further comprising:
determining whether the application state stored in the storage service is up-to-date;
requesting additional application data from the second computing device when the application state is determined not to be up-to-date; and
in response to receiving the additional application data, updating the application state of the target application for storing in the storage service based on the received additional application data.
5. The computer-implemented method of claim 1, further comprising:
after sending the sharing instance, receiving new application data from the first computing device with updates to the application state of the target application; and
updating the application state in the storage service with the new application data from the first computing device.
6. The computer-implemented method of claim 1, further comprising:
after sending the sharing instance, receiving application data from the first computing device with updates to the application state of the target application; and
generating another application state for the target application in the storage service based on the received application data, wherein the other application state is associated with the first user profile.
7. The computer-implemented method of claim 1, wherein configuring the sharing instance of the application state includes configuring whether the sharing instance is sharable to a third computing device.
8. The computer-implemented method of claim 1, wherein configuring the sharing instance of the application state includes configuring whether new application data, generated after executing the sharing instance of the target application, is to re-integrate with the application data of the application state associated with the second user profile in the storage service.
9. The computer-implemented method of claim 1, wherein configuring the sharing instance of the application state includes configuring whether new application data, generated after executing the sharing instance of the target application, is to synchronize as new application data of a new application state associated with the first user profile in the storage service.
10. The computer-implemented method of claim 1, wherein configuring the sharing instance of the application state includes configuring the sharing instance as a session-only instance of the target application that expires in accordance with a schedule.
11. The computer-implemented method of claim 1, wherein configuring the sharing instance of the application state includes configuring the sharing instance as a session-only instance of the target application that expires when a condition is met while executing the session-only instance.
12. The computer-implemented method of claim 1, wherein the application data represents at least a portion of the application state.
13. The computer-implemented method of claim 1, wherein the application data represents a differential update from a previously sent application data of the target application.
14. A computer-implemented method of operating a first computing, comprising:
requesting an application state, associated with a foreign user profile different from a current user profile logged in on the first computing device, of a target application from an application state broker system;
receiving a sharing instance of the application state from the application state broker system, in response to the requesting;
configuring the target application with the sharing instance of the application state for executing on the first computing device; and
executing the configured target application on the first computing device.
15. The computer-implemented method of claim 14, further comprising pausing or terminating the target application on the first computing device prior to executing the configured target application, wherein requesting the application state of the target application occurs when the target application is executing on the first computing device.
16. The computer-implemented method of claim 15, wherein configuring the target application includes initializing the target application with the sharing instance of the application state after the target application is paused or terminated.
17. The computer-implemented method of claim 15, wherein configuring the target application includes modifying a portion of memory, allotted for the target application, of the first computing device after the target application is paused or terminated.
18. The computer-implemented method of claim 14, wherein configuring the target application includes merging the sharing instance with an existing instance already executing on the first computing device.
19. The computer-implemented method of claim 14, further comprising receiving a link or a data stream to download the target application in response to requesting the application state, wherein requesting the application state of the target application occurs when the target application has not been installed on an operating system of the first computing device.
20. The computer-implemented method of claim 14, further comprising backing up a current instance of the application state of the target application executing on the first computing device prior to configuring the target application with the sharing instance.
21. The computer-implemented method of claim 14, further comprising synchronizing changes to the application state of the configured target application back to the application state broker system.
22. The computer-implemented method of claim 14, wherein configuring the target application includes passing the sharing instance of the application state to the target application while the target application is executing on the first computing device.
23. The computer-implemented method of claim 22, wherein configuring the target application further includes configuring the target application based on the sharing instance of the application state and logical instructions within the target application.
24. A server system comprising:
a memory storing executable instructions;
a processor configured by the executable instructions to:
receive a request from a first computing device associated with a first user profile to load an application state of a target application, wherein the application state is owned by a second user profile;
verify permission for the first user profile to load the application state owned by the second user profile;
configure a sharing instance of the application state of the target application by accessing application data of the application state associated with the second user profile in a storage service accessible to the server system; and
send the sharing instance to be loaded onto the first computing device.
US14/221,174 2013-03-21 2014-03-20 Mechanism for sharing states of applications and devices across different user profiles Abandoned US20140289331A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/221,174 US20140289331A1 (en) 2013-03-21 2014-03-20 Mechanism for sharing states of applications and devices across different user profiles
US14/252,674 US8954611B2 (en) 2013-03-21 2014-04-14 Mechanism for sharing states of applications and devices across different user profiles
US14/267,823 US9095779B2 (en) 2013-03-21 2014-05-01 Gaming application state transfer amongst user profiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361804134P 2013-03-21 2013-03-21
US14/221,174 US20140289331A1 (en) 2013-03-21 2014-03-20 Mechanism for sharing states of applications and devices across different user profiles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/252,674 Continuation-In-Part US8954611B2 (en) 2013-03-21 2014-04-14 Mechanism for sharing states of applications and devices across different user profiles

Publications (1)

Publication Number Publication Date
US20140289331A1 true US20140289331A1 (en) 2014-09-25

Family

ID=51569904

Family Applications (20)

Application Number Title Priority Date Filing Date
US14/179,778 Active 2036-03-06 US9858052B2 (en) 2013-03-21 2014-02-13 Decentralized operating system
US14/199,909 Active US9122491B2 (en) 2013-03-21 2014-03-06 Detecting serialization scheme used in software applications
US14/199,939 Active 2035-10-01 US9720665B2 (en) 2013-03-21 2014-03-06 Utilizing user devices for backing up and retrieving data in a distributed backup system
US14/218,765 Active 2035-03-28 US9965489B2 (en) 2013-03-21 2014-03-18 Prioritizing file synchronization in a distributed computing system
US14/220,803 Active 2035-01-16 US9990371B2 (en) 2013-03-21 2014-03-20 Classification of data objects in a distributed file system based on application creation and/or access information
US14/221,189 Active 2034-04-04 US9442705B2 (en) 2013-03-21 2014-03-20 Sharing authentication profiles between a group of user devices
US14/221,161 Active 2034-09-10 US9606782B2 (en) 2013-03-21 2014-03-20 Game state synchronization and restoration across multiple devices
US14/221,095 Active 2035-08-05 US10515056B2 (en) 2013-03-21 2014-03-20 API for resource discovery and utilization
US14/221,174 Abandoned US20140289331A1 (en) 2013-03-21 2014-03-20 Mechanism for sharing states of applications and devices across different user profiles
US14/220,984 Active 2034-03-26 US9146716B2 (en) 2013-03-21 2014-03-20 Automatic resource balancing for multi-device applications
US14/221,706 Active 2034-09-25 US9563413B2 (en) 2013-03-21 2014-03-21 Configurable application state synchronization
US14/222,221 Active 2035-10-27 US10725972B2 (en) 2013-03-21 2014-03-21 Continuous and concurrent device experience in a multi-device ecosystem
US14/222,533 Abandoned US20140289382A1 (en) 2013-03-21 2014-03-21 Utilizing version vectors across server and client changes to determine device usage by type, app, and time of day
US14/222,337 Active 2035-03-29 US9836287B2 (en) 2013-03-21 2014-03-21 Storage optimization in computing devices
US14/222,374 Active 2034-06-19 US9524151B2 (en) 2013-03-21 2014-03-21 Context sensitive distributed file system synchronization and merging semantics
US15/467,090 Active US10146790B2 (en) 2013-03-21 2017-03-23 Game state synchronization and restoration across multiple devices
US15/638,500 Active 2035-08-29 US10762055B2 (en) 2013-03-21 2017-06-30 Utilizing user devices for backing up and retrieving data in a distributed backup system
US15/824,022 Active US10684995B2 (en) 2013-03-21 2017-11-28 Storage optimization in computing devices
US15/945,795 Active 2034-12-04 US10817477B2 (en) 2013-03-21 2018-04-05 Prioritizing file synchronization in a distributed computing system
US16/178,794 Active US10872064B2 (en) 2013-03-21 2018-11-02 Utilizing version vectors across server and client changes to determine device usage by type, app, and time of day

Family Applications Before (8)

Application Number Title Priority Date Filing Date
US14/179,778 Active 2036-03-06 US9858052B2 (en) 2013-03-21 2014-02-13 Decentralized operating system
US14/199,909 Active US9122491B2 (en) 2013-03-21 2014-03-06 Detecting serialization scheme used in software applications
US14/199,939 Active 2035-10-01 US9720665B2 (en) 2013-03-21 2014-03-06 Utilizing user devices for backing up and retrieving data in a distributed backup system
US14/218,765 Active 2035-03-28 US9965489B2 (en) 2013-03-21 2014-03-18 Prioritizing file synchronization in a distributed computing system
US14/220,803 Active 2035-01-16 US9990371B2 (en) 2013-03-21 2014-03-20 Classification of data objects in a distributed file system based on application creation and/or access information
US14/221,189 Active 2034-04-04 US9442705B2 (en) 2013-03-21 2014-03-20 Sharing authentication profiles between a group of user devices
US14/221,161 Active 2034-09-10 US9606782B2 (en) 2013-03-21 2014-03-20 Game state synchronization and restoration across multiple devices
US14/221,095 Active 2035-08-05 US10515056B2 (en) 2013-03-21 2014-03-20 API for resource discovery and utilization

Family Applications After (11)

Application Number Title Priority Date Filing Date
US14/220,984 Active 2034-03-26 US9146716B2 (en) 2013-03-21 2014-03-20 Automatic resource balancing for multi-device applications
US14/221,706 Active 2034-09-25 US9563413B2 (en) 2013-03-21 2014-03-21 Configurable application state synchronization
US14/222,221 Active 2035-10-27 US10725972B2 (en) 2013-03-21 2014-03-21 Continuous and concurrent device experience in a multi-device ecosystem
US14/222,533 Abandoned US20140289382A1 (en) 2013-03-21 2014-03-21 Utilizing version vectors across server and client changes to determine device usage by type, app, and time of day
US14/222,337 Active 2035-03-29 US9836287B2 (en) 2013-03-21 2014-03-21 Storage optimization in computing devices
US14/222,374 Active 2034-06-19 US9524151B2 (en) 2013-03-21 2014-03-21 Context sensitive distributed file system synchronization and merging semantics
US15/467,090 Active US10146790B2 (en) 2013-03-21 2017-03-23 Game state synchronization and restoration across multiple devices
US15/638,500 Active 2035-08-29 US10762055B2 (en) 2013-03-21 2017-06-30 Utilizing user devices for backing up and retrieving data in a distributed backup system
US15/824,022 Active US10684995B2 (en) 2013-03-21 2017-11-28 Storage optimization in computing devices
US15/945,795 Active 2034-12-04 US10817477B2 (en) 2013-03-21 2018-04-05 Prioritizing file synchronization in a distributed computing system
US16/178,794 Active US10872064B2 (en) 2013-03-21 2018-11-02 Utilizing version vectors across server and client changes to determine device usage by type, app, and time of day

Country Status (3)

Country Link
US (20) US9858052B2 (en)
TW (1) TWI631472B (en)
WO (4) WO2014153478A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150319144A1 (en) * 2014-05-05 2015-11-05 Citrix Systems, Inc. Facilitating Communication Between Mobile Applications
US20160132561A1 (en) * 2013-06-28 2016-05-12 Hewlett-Packard Development Company, L.P. Expiration tag of data
US20160188733A1 (en) * 2014-12-29 2016-06-30 Quixey, Inc. Generating Recommendations Based on Clustered Application States
US9654556B2 (en) 2012-10-02 2017-05-16 Razer (Asia-Pacific) Pte. Ltd. Managing applications on an electronic device
US9747000B2 (en) 2012-10-02 2017-08-29 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US20170289133A1 (en) * 2016-03-31 2017-10-05 Electronic Arts Inc. Authentication identity management for mobile device applications
US20180165297A1 (en) * 2016-12-09 2018-06-14 Salesforce.Com, Inc. Systems and methods for providing database updates for data visualization
CN109462614A (en) * 2015-12-22 2019-03-12 北京奇虎科技有限公司 A kind of method and system for borrowing other people accounts and realizing login
US10271210B2 (en) * 2016-07-13 2019-04-23 Bank Of America Corporation System for authenticating a user and enabling real-time approval notifications
US20200151228A1 (en) * 2014-02-11 2020-05-14 Wix.Com Ltd. System for synchronization of changes in edited websites and interactive applications
US10908895B2 (en) * 2018-12-21 2021-02-02 Pensando Systems Inc. State-preserving upgrade of an intelligent server adapter
CN113360384A (en) * 2021-06-12 2021-09-07 四川虹美智能科技有限公司 App operation stability protection method and device and computer readable medium
US11182150B2 (en) 2020-01-14 2021-11-23 Pensando Systems Inc. Zero packet loss upgrade of an IO device
US11281453B1 (en) 2021-01-06 2022-03-22 Pensando Systems, Inc. Methods and systems for a hitless rollback mechanism during software upgrade of a network appliance
US11627455B2 (en) * 2016-05-24 2023-04-11 Paypal, Inc. Mobile application configurations to enable data transfers

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769048B2 (en) 2008-06-18 2014-07-01 Commvault Systems, Inc. Data protection scheduling, such as providing a flexible backup window in a data protection system
US8725688B2 (en) 2008-09-05 2014-05-13 Commvault Systems, Inc. Image level copy or restore, such as image level restore without knowledge of data object metadata
US20110093493A1 (en) 2008-10-28 2011-04-21 Honeywell International Inc. Building management system site categories
US9529349B2 (en) 2012-10-22 2016-12-27 Honeywell International Inc. Supervisor user management system
US9747296B2 (en) * 2012-11-12 2017-08-29 Samsung Electronics Co., Ltd. Method and apparatus for managing storage space on storage device in an electronic apparatus by using context data and user profile data
US9633216B2 (en) 2012-12-27 2017-04-25 Commvault Systems, Inc. Application of information management policies based on operation with a geographic entity
US9336226B2 (en) 2013-01-11 2016-05-10 Commvault Systems, Inc. Criteria-based data synchronization management
US9519490B2 (en) 2013-03-07 2016-12-13 Microsoft Technology Licensing, Llc Adaptive data synchronization
US9459968B2 (en) 2013-03-11 2016-10-04 Commvault Systems, Inc. Single index to query multiple backup formats
US9858052B2 (en) * 2013-03-21 2018-01-02 Razer (Asia-Pacific) Pte. Ltd. Decentralized operating system
US10656800B2 (en) 2013-03-29 2020-05-19 Microsoft Technology Licensing, Llc Visual configuration and activation
US9854035B2 (en) 2013-05-28 2017-12-26 International Business Machines Corporation Maintaining state synchronization of an application between computing devices as well as maintaining state synchronization of common information between different applications without requiring periodic synchronization
US10044799B2 (en) * 2013-05-28 2018-08-07 International Business Machines Corporation Implementing synchronization of state information betweeen instances of an application as well as between different applications in an efficient, scalable manner
US10452222B2 (en) 2013-05-29 2019-10-22 Microsoft Technology Licensing, Llc Coordination of system readiness tasks
US9710248B2 (en) * 2013-05-29 2017-07-18 Microsoft Technology Licensing, Llc Application install and layout syncing
US9858153B2 (en) * 2013-05-29 2018-01-02 Microsoft Technology Licensing, Llc Service-based backup data restoring to devices
US9848019B2 (en) * 2013-05-30 2017-12-19 Verizon Patent And Licensing Inc. Failover for mobile devices
US11328344B2 (en) * 2013-05-31 2022-05-10 Itron, Inc. Utility application delivery platform
US20140380443A1 (en) * 2013-06-24 2014-12-25 Cambridge Silicon Radio Limited Network connection in a wireless communication device
US20150074275A1 (en) * 2013-09-10 2015-03-12 International Business Machines Corporation Mobile application data storage allocation
TW201513673A (en) * 2013-09-30 2015-04-01 Ibm Method and computer program product of automatic participating in a peer-to-peer communication session
US9588983B2 (en) * 2013-10-17 2017-03-07 Microsoft Technology Licensing, Llc Data classification for adaptive synchronization
US9971977B2 (en) * 2013-10-21 2018-05-15 Honeywell International Inc. Opus enterprise report system
EP3063629A1 (en) * 2013-10-28 2016-09-07 Longsand Limited Instant streaming of the latest version of a file
US20150127770A1 (en) * 2013-11-06 2015-05-07 Pax8, Inc. Distributed Cloud Disk Service Provisioning and Management
KR102147237B1 (en) * 2013-12-27 2020-08-24 삼성전자주식회사 Method and apparatus for registering control device to server
JP6334940B2 (en) * 2014-02-12 2018-05-30 キヤノン株式会社 COMMUNICATION DEVICE, COMMUNICATION DEVICE CONTROL METHOD, AND PROGRAM
US9798596B2 (en) 2014-02-27 2017-10-24 Commvault Systems, Inc. Automatic alert escalation for an information management system
CN104951855B (en) * 2014-03-28 2022-08-02 伊姆西Ip控股有限责任公司 Apparatus and method for facilitating management of resources
US10482658B2 (en) * 2014-03-31 2019-11-19 Gary Stephen Shuster Visualization and control of remote objects
US20150278024A1 (en) * 2014-04-01 2015-10-01 Commvault Systems, Inc. Bandwidth-conscious systems and methods for providing information management system services
US9892001B2 (en) * 2014-04-30 2018-02-13 Actian Corporation Customizing backup and restore of databases
US9740574B2 (en) 2014-05-09 2017-08-22 Commvault Systems, Inc. Load balancing across multiple data paths
US10171370B1 (en) * 2014-05-30 2019-01-01 Amazon Technologies, Inc. Distribution operating system
US10055567B2 (en) 2014-05-30 2018-08-21 Apple Inc. Proximity unlock and lock operations for electronic devices
US10187770B2 (en) 2014-05-30 2019-01-22 Apple Inc. Forwarding activity-related information from source electronic devices to companion electronic devices
US10237711B2 (en) 2014-05-30 2019-03-19 Apple Inc. Dynamic types for activity continuation between electronic devices
US10193987B2 (en) * 2014-05-30 2019-01-29 Apple Inc. Activity continuation between electronic devices
US9380123B2 (en) 2014-05-30 2016-06-28 Apple Inc. Activity continuation between electronic devices
JP5783301B1 (en) 2014-06-11 2015-09-24 富士ゼロックス株式会社 Communication terminal, communication system, and program
US9442803B2 (en) * 2014-06-24 2016-09-13 International Business Machines Corporation Method and system of distributed backup for computer devices in a network
US9491231B1 (en) * 2014-06-26 2016-11-08 Sprint Communications Company L.P. Mobile communication device stateful applications system
US9933762B2 (en) 2014-07-09 2018-04-03 Honeywell International Inc. Multisite version and upgrade management system
US10154409B2 (en) 2014-07-17 2018-12-11 Cirrent, Inc. Binding an authenticated user with a wireless device
US10834592B2 (en) 2014-07-17 2020-11-10 Cirrent, Inc. Securing credential distribution
US9942756B2 (en) 2014-07-17 2018-04-10 Cirrent, Inc. Securing credential distribution
US10356651B2 (en) 2014-07-17 2019-07-16 Cirrent, Inc. Controlled connection of a wireless device to a network
US9852026B2 (en) 2014-08-06 2017-12-26 Commvault Systems, Inc. Efficient application recovery in an information management system based on a pseudo-storage-device driver
US11249858B2 (en) 2014-08-06 2022-02-15 Commvault Systems, Inc. Point-in-time backups of a production application made accessible over fibre channel and/or ISCSI as data sources to a remote application by representing the backups as pseudo-disks operating apart from the production application and its host
WO2016023160A1 (en) * 2014-08-11 2016-02-18 华为技术有限公司 Method and device for loading view of application and electronic terminal
JP6442915B2 (en) * 2014-08-15 2018-12-26 富士ゼロックス株式会社 Communication terminal, communication system, and program
WO2016033056A1 (en) * 2014-08-26 2016-03-03 Ctera Networks, Ltd. A method and computing device for allowing synchronized access to cloud
US10291740B2 (en) * 2014-09-03 2019-05-14 Lenovo (Beijing) Co., Ltd. Method and apparatus for determining application to be recommended
US9411539B2 (en) * 2014-09-24 2016-08-09 International Business Machines Corporation Providing access information to a storage controller to determine a storage tier for storing data
US20170041429A1 (en) * 2014-09-26 2017-02-09 Hewlett Packard Enterprise Development Lp Caching nodes
US20160134428A1 (en) * 2014-11-11 2016-05-12 Cisco Technology, Inc. User Device Evaluation for Online Meetings
US9923896B2 (en) * 2014-11-24 2018-03-20 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Providing access to a restricted resource via a persistent authenticated device network
US9645891B2 (en) 2014-12-04 2017-05-09 Commvault Systems, Inc. Opportunistic execution of secondary copy operations
US9753816B2 (en) 2014-12-05 2017-09-05 Commvault Systems, Inc. Synchronization based on filtered browsing
US10673852B2 (en) * 2014-12-23 2020-06-02 Mcafee, Llc Self-organizing trusted networks
US9795879B2 (en) * 2014-12-31 2017-10-24 Sony Interactive Entertainment America Llc Game state save, transfer and resume for cloud gaming
US9952934B2 (en) * 2015-01-20 2018-04-24 Commvault Systems, Inc. Synchronizing selected portions of data in a storage management system
US9588849B2 (en) 2015-01-20 2017-03-07 Commvault Systems, Inc. Synchronizing selected portions of data in a storage management system
US9892003B2 (en) * 2015-02-11 2018-02-13 International Business Machines Corporation Method for automatically configuring backup client systems and backup server systems in a backup environment
US11336519B1 (en) * 2015-03-10 2022-05-17 Amazon Technologies, Inc. Evaluating placement configurations for distributed resource placement
JP6536095B2 (en) * 2015-03-11 2019-07-03 富士通株式会社 Content distribution method, content distribution apparatus and content distribution program
US20160294827A1 (en) * 2015-03-30 2016-10-06 Tangome, Inc. Account access authorizer
US20160294834A1 (en) * 2015-03-30 2016-10-06 Tangome, Inc. Account information releaser
US20160294920A1 (en) * 2015-03-30 2016-10-06 Tangome, Inc. Network communication system
US11023492B2 (en) * 2015-05-20 2021-06-01 Guidewire Software, Inc. Deferred synchronization for work unit-related data
US9817957B1 (en) 2015-06-04 2017-11-14 EMC IP Holding Company LLC Access management based on active environment comprising dynamically reconfigurable sets of smart objects
US10348812B2 (en) * 2015-06-22 2019-07-09 Vmware Inc. Sticky session data migration
CZ306210B6 (en) * 2015-07-07 2016-09-29 Aducid S.R.O. Method of assignment of at least two authentication devices to the account of a user using authentication server
US9766825B2 (en) 2015-07-22 2017-09-19 Commvault Systems, Inc. Browse and restore for block-level backups
US10152489B2 (en) * 2015-07-24 2018-12-11 Salesforce.Com, Inc. Synchronize collaboration entity files
US10656991B2 (en) * 2015-08-24 2020-05-19 International Business Machines Corporation Electronic component having redundant product data stored externally
US10152330B2 (en) * 2015-09-21 2018-12-11 Bae Systems Information And Electronic Systems Integration Inc. Memory protection using a tagged architecture
US10362104B2 (en) 2015-09-23 2019-07-23 Honeywell International Inc. Data manager
US10209689B2 (en) 2015-09-23 2019-02-19 Honeywell International Inc. Supervisor history service import manager
CN106557399B (en) * 2015-09-25 2019-09-06 伊姆西公司 The method and apparatus of the state of storage cluster for rendering
US10157003B1 (en) * 2015-12-17 2018-12-18 EMC IP Holding Company LLC Storage system with distributed tiered parallel file system comprising software-defined unified memory cluster
US10007577B2 (en) 2015-12-21 2018-06-26 Intel Corporation Methods and apparatus to facilitate distributed data backup
WO2017118002A1 (en) * 2016-01-04 2017-07-13 杭州亚美利嘉科技有限公司 Method and system for synchronization between robot and server
US10250488B2 (en) * 2016-03-01 2019-04-02 International Business Machines Corporation Link aggregation management with respect to a shared pool of configurable computing resources
US10296368B2 (en) 2016-03-09 2019-05-21 Commvault Systems, Inc. Hypervisor-independent block-level live browse for access to backed up virtual machine (VM) data and hypervisor-free file-level recovery (block-level pseudo-mount)
US10769113B2 (en) 2016-03-25 2020-09-08 Microsoft Technology Licensing, Llc Attribute-based dependency identification for operation ordering
US10157136B2 (en) * 2016-03-31 2018-12-18 Intel Corporation Pipelined prefetcher for parallel advancement of multiple data streams
KR101865879B1 (en) * 2016-04-27 2018-06-12 주식회사 하렉스인포텍 System and method for providing financial transaction using pre-approval
US20170329526A1 (en) * 2016-05-13 2017-11-16 Hewlett Packard Enterprise Development Lp Interoperable capabilities
US10657459B2 (en) 2016-05-31 2020-05-19 International Business Machines Corporation Coordinated version control system, method, and recording medium for parameter sensitive applications
US20170352073A1 (en) * 2016-06-02 2017-12-07 Accenture Global Solutions Limited Platform configuration tool
US10595169B2 (en) 2016-06-12 2020-03-17 Apple Inc. Message extension app store
US10785175B2 (en) * 2016-06-12 2020-09-22 Apple Inc. Polling extension application for interacting with a messaging application
US10852912B2 (en) 2016-06-12 2020-12-01 Apple Inc. Image creation app in messaging app
CN107248969A (en) * 2016-06-13 2017-10-13 苏州海博智能系统有限公司 Safe encryption device Communication processing system and method
US10324722B2 (en) 2016-06-24 2019-06-18 Hewlett Packard Enterprise Development Lp Global capabilities transferrable across node boundaries
US9971529B1 (en) * 2016-06-30 2018-05-15 EMC IP Holding Company LLC Selective data replication
WO2018004644A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Adaptive synching
WO2018006381A1 (en) * 2016-07-07 2018-01-11 华为技术有限公司 Network resource management method, apparatus and system
US10616327B2 (en) * 2016-09-20 2020-04-07 Microsoft Technology Licensing, Llc Policy based hydration behavior in cloud storage synchronization
US11368528B2 (en) 2016-09-20 2022-06-21 Microsoft Technology Licensing, Llc Dynamic storage management in cloud storage synchronization
US11023463B2 (en) 2016-09-26 2021-06-01 Splunk Inc. Converting and modifying a subquery for an external data system
US11567993B1 (en) 2016-09-26 2023-01-31 Splunk Inc. Copying buckets from a remote shared storage system to memory associated with a search node for query execution
US10984044B1 (en) 2016-09-26 2021-04-20 Splunk Inc. Identifying buckets for query execution using a catalog of buckets stored in a remote shared storage system
US11416528B2 (en) 2016-09-26 2022-08-16 Splunk Inc. Query acceleration data store
US11250056B1 (en) 2016-09-26 2022-02-15 Splunk Inc. Updating a location marker of an ingestion buffer based on storing buckets in a shared storage system
US11604795B2 (en) 2016-09-26 2023-03-14 Splunk Inc. Distributing partial results from an external data system between worker nodes
US11615104B2 (en) 2016-09-26 2023-03-28 Splunk Inc. Subquery generation based on a data ingest estimate of an external data system
US11269939B1 (en) 2016-09-26 2022-03-08 Splunk Inc. Iterative message-based data processing including streaming analytics
US11874691B1 (en) 2016-09-26 2024-01-16 Splunk Inc. Managing efficient query execution including mapping of buckets to search nodes
US10776355B1 (en) 2016-09-26 2020-09-15 Splunk Inc. Managing, storing, and caching query results and partial query results for combination with additional query results
US11599541B2 (en) 2016-09-26 2023-03-07 Splunk Inc. Determining records generated by a processing task of a query
US11106734B1 (en) 2016-09-26 2021-08-31 Splunk Inc. Query execution using containerized state-free search nodes in a containerized scalable environment
US11562023B1 (en) 2016-09-26 2023-01-24 Splunk Inc. Merging buckets in a data intake and query system
US11550847B1 (en) 2016-09-26 2023-01-10 Splunk Inc. Hashing bucket identifiers to identify search nodes for efficient query execution
US12013895B2 (en) 2016-09-26 2024-06-18 Splunk Inc. Processing data using containerized nodes in a containerized scalable environment
US11586627B2 (en) 2016-09-26 2023-02-21 Splunk Inc. Partitioning and reducing records at ingest of a worker node
US11163758B2 (en) 2016-09-26 2021-11-02 Splunk Inc. External dataset capability compensation
US11461334B2 (en) 2016-09-26 2022-10-04 Splunk Inc. Data conditioning for dataset destination
US11314753B2 (en) 2016-09-26 2022-04-26 Splunk Inc. Execution of a query received from a data intake and query system
US11860940B1 (en) 2016-09-26 2024-01-02 Splunk Inc. Identifying buckets for query execution using a catalog of buckets
US11593377B2 (en) 2016-09-26 2023-02-28 Splunk Inc. Assigning processing tasks in a data intake and query system
US10726009B2 (en) * 2016-09-26 2020-07-28 Splunk Inc. Query processing using query-resource usage and node utilization data
US11442935B2 (en) 2016-09-26 2022-09-13 Splunk Inc. Determining a record generation estimate of a processing task
US11580107B2 (en) 2016-09-26 2023-02-14 Splunk Inc. Bucket data distribution for exporting data to worker nodes
US11294941B1 (en) 2016-09-26 2022-04-05 Splunk Inc. Message-based data ingestion to a data intake and query system
US11281706B2 (en) 2016-09-26 2022-03-22 Splunk Inc. Multi-layer partition allocation for query execution
US10956415B2 (en) 2016-09-26 2021-03-23 Splunk Inc. Generating a subquery for an external data system using a configuration file
US11243963B2 (en) 2016-09-26 2022-02-08 Splunk Inc. Distributing partial results to worker nodes from an external data system
US11222066B1 (en) 2016-09-26 2022-01-11 Splunk Inc. Processing data using containerized state-free indexing nodes in a containerized scalable environment
US11126632B2 (en) 2016-09-26 2021-09-21 Splunk Inc. Subquery generation based on search configuration data from an external data system
US11620336B1 (en) 2016-09-26 2023-04-04 Splunk Inc. Managing and storing buckets to a remote shared storage system based on a collective bucket size
US11663227B2 (en) 2016-09-26 2023-05-30 Splunk Inc. Generating a subquery for a distinct data intake and query system
US20180089324A1 (en) 2016-09-26 2018-03-29 Splunk Inc. Dynamic resource allocation for real-time search
US10977260B2 (en) 2016-09-26 2021-04-13 Splunk Inc. Task distribution in an execution node of a distributed execution environment
US10353965B2 (en) 2016-09-26 2019-07-16 Splunk Inc. Data fabric service system architecture
US11003714B1 (en) 2016-09-26 2021-05-11 Splunk Inc. Search node and bucket identification using a search node catalog and a data store catalog
US11321321B2 (en) 2016-09-26 2022-05-03 Splunk Inc. Record expansion and reduction based on a processing task in a data intake and query system
US11232100B2 (en) 2016-09-26 2022-01-25 Splunk Inc. Resource allocation for multiple datasets
US10528432B2 (en) * 2016-09-28 2020-01-07 Sap Se Off-site backup network disk
US10291627B2 (en) * 2016-10-17 2019-05-14 Arm Ltd. Blockchain mining using trusted nodes
JP6786342B2 (en) * 2016-10-18 2020-11-18 キヤノン株式会社 Information processing equipment, information processing methods and programs
US10749970B1 (en) * 2016-12-28 2020-08-18 Wells Fargo Bank, N.A. Continuous task-based communication sessions
US10778795B2 (en) 2017-01-30 2020-09-15 Microsoft Technology Licensing, Llc Synchronization of property values between a client and a server
US10838821B2 (en) 2017-02-08 2020-11-17 Commvault Systems, Inc. Migrating content and metadata from a backup system
CN106911776B (en) * 2017-02-24 2020-02-07 郑州云海信息技术有限公司 Management method and device of cloud storage equipment
US10740193B2 (en) 2017-02-27 2020-08-11 Commvault Systems, Inc. Hypervisor-independent reference copies of virtual machine payload data based on block-level pseudo-mount
US10331624B2 (en) * 2017-03-03 2019-06-25 Transitive Innovation, Llc Automated data classification system
EP3379413A1 (en) * 2017-03-21 2018-09-26 Nokia Solutions and Networks Oy Optimization of a software image layer stack
US10891069B2 (en) 2017-03-27 2021-01-12 Commvault Systems, Inc. Creating local copies of data stored in online data repositories
US10776329B2 (en) 2017-03-28 2020-09-15 Commvault Systems, Inc. Migration of a database management system to cloud storage
US11074140B2 (en) 2017-03-29 2021-07-27 Commvault Systems, Inc. Live browsing of granular mailbox data
US10878014B2 (en) * 2017-03-29 2020-12-29 International Business Machines Corporation Protocol based user data management
US10958966B2 (en) 2017-03-31 2021-03-23 Gracenote, Inc. Synchronizing streaming media content across devices
US10565168B2 (en) * 2017-05-02 2020-02-18 Oxygen Cloud, Inc. Independent synchronization with state transformation
CA3061761A1 (en) * 2017-05-05 2018-11-08 Royal Bank Of Canada Distributed memory data repository based defense system
US10824709B2 (en) * 2017-06-04 2020-11-03 Apple Inc. Autofill for application login credentials
US10970385B2 (en) 2017-06-04 2021-04-06 Apple Inc. Multiple device credential sharing
US10904248B2 (en) * 2017-06-09 2021-01-26 Microsoft Technology Licensing, Llc Persistent linked sign-in for gaming consoles
US10664352B2 (en) 2017-06-14 2020-05-26 Commvault Systems, Inc. Live browsing of backed up data residing on cloned disks
US10303615B2 (en) 2017-06-16 2019-05-28 Hewlett Packard Enterprise Development Lp Matching pointers across levels of a memory hierarchy
CN107341232A (en) * 2017-07-03 2017-11-10 深圳市全民合伙人科技有限公司 A kind of game data processing method and system
US11921672B2 (en) 2017-07-31 2024-03-05 Splunk Inc. Query execution at a remote heterogeneous data store of a data fabric service
US11989194B2 (en) 2017-07-31 2024-05-21 Splunk Inc. Addressing memory limits for partition tracking among worker nodes
TWI669693B (en) * 2017-09-12 2019-08-21 國立勤益科技大學 IoT development board teaching aid with moving target function
US11256573B1 (en) * 2017-09-20 2022-02-22 EMC IP Holding Company LLC Method of categorizing data and its backup destination
CN110069455B (en) * 2017-09-21 2021-12-14 北京华为数字技术有限公司 File merging method and device
US10896182B2 (en) 2017-09-25 2021-01-19 Splunk Inc. Multi-partitioning determination for combination operations
US11151137B2 (en) 2017-09-25 2021-10-19 Splunk Inc. Multi-partition operation in combination operations
EP3462388A1 (en) * 2017-09-27 2019-04-03 Siemens Aktiengesellschaft Method and system for processing engineering objects in an industrial automation environment
US10944685B2 (en) * 2017-11-29 2021-03-09 International Business Machines Corporation Abstracted, extensible cloud access of resources
JP7087363B2 (en) * 2017-12-01 2022-06-21 富士フイルムビジネスイノベーション株式会社 Information processing equipment and programs
US10866963B2 (en) 2017-12-28 2020-12-15 Dropbox, Inc. File system authentication
US10909150B2 (en) 2018-01-19 2021-02-02 Hypernet Labs, Inc. Decentralized latent semantic index using distributed average consensus
US10878482B2 (en) 2018-01-19 2020-12-29 Hypernet Labs, Inc. Decentralized recommendations using distributed average consensus
US10942783B2 (en) * 2018-01-19 2021-03-09 Hypernet Labs, Inc. Distributed computing using distributed average consensus
US11244243B2 (en) 2018-01-19 2022-02-08 Hypernet Labs, Inc. Coordinated learning using distributed average consensus
US11175969B2 (en) * 2018-01-26 2021-11-16 Nicira, Inc. Extensible systematic representation of objects and operations applied to them
US11206267B2 (en) 2018-01-31 2021-12-21 T-Mobile Usa, Inc. Fine grained digital experience controls
US10587623B2 (en) * 2018-01-31 2020-03-10 T-Mobile Usa, Inc. Mobile device platform for access privilege control system
US10795927B2 (en) 2018-02-05 2020-10-06 Commvault Systems, Inc. On-demand metadata extraction of clinical image data
US10761942B2 (en) 2018-03-12 2020-09-01 Commvault Systems, Inc. Recovery point objective (RPO) driven backup scheduling in a data storage management system using an enhanced data agent
US10789387B2 (en) 2018-03-13 2020-09-29 Commvault Systems, Inc. Graphical representation of an information management system
CN108737505A (en) * 2018-04-27 2018-11-02 厦门理工学院 A kind of method of resource downloading, system and terminal device
US11334543B1 (en) 2018-04-30 2022-05-17 Splunk Inc. Scalable bucket merging for a data intake and query system
US20190342380A1 (en) * 2018-05-07 2019-11-07 Microsoft Technology Licensing, Llc Adaptive resource-governed services for performance-compliant distributed workloads
US11500904B2 (en) 2018-06-05 2022-11-15 Amazon Technologies, Inc. Local data classification based on a remote service interface
US11443058B2 (en) * 2018-06-05 2022-09-13 Amazon Technologies, Inc. Processing requests at a remote service to implement local data classification
JP7185978B2 (en) * 2018-07-03 2022-12-08 株式会社ソラコム Apparatus and method for mediating setting of authentication information
WO2020023709A1 (en) * 2018-07-25 2020-01-30 Blues Inc. DATA SYSTEM ON A MODULE (DSoM) FOR CONNECTING COMPUTING DEVICES AND CLOUD-BASED SERVICES
US10705921B2 (en) * 2018-07-31 2020-07-07 EMC IP Holding Company LLC Client data driven smart backup scheduler
US11005971B2 (en) * 2018-08-02 2021-05-11 Paul Swengler System and method for user device authentication or identity validation without passwords or matching tokens
US20200042650A1 (en) * 2018-08-06 2020-02-06 Ca, Inc. Methods of rendering a mobile application page based on past usage information and related wireless devices
US11126506B2 (en) * 2018-08-06 2021-09-21 Acronis International Gmbh Systems and methods for predictive data protection
CN109194720A (en) * 2018-08-15 2019-01-11 京信通信系统(中国)有限公司 Standby machine method of data synchronization, device and computer equipment
US10956378B2 (en) 2018-08-28 2021-03-23 International Business Machines Corporation Hierarchical file transfer using KDE-optimized filesize probability densities
US11080078B2 (en) * 2018-09-19 2021-08-03 Microsoft Technology Licensing, Llc Processing files via edge computing device
CN110944146B (en) 2018-09-21 2022-04-12 华为技术有限公司 Intelligent analysis equipment resource adjusting method and device
US10819786B2 (en) * 2018-10-04 2020-10-27 Sap Se Local thin cloud tenant
KR102561027B1 (en) * 2018-11-28 2023-07-31 삼성전자주식회사 Electronic apparatus and method for transmitting data in electronic apparatus
US10860443B2 (en) 2018-12-10 2020-12-08 Commvault Systems, Inc. Evaluation and reporting of recovery readiness in a data storage management system
US11340877B2 (en) * 2018-12-19 2022-05-24 Network Native, Inc. System and method for holistic application development and deployment in a distributed heterogeneous computing environment
US10824650B2 (en) * 2018-12-20 2020-11-03 Servicenow, Inc. Discovery of database and related services
US11431568B2 (en) * 2018-12-20 2022-08-30 Servicenow, Inc. Discovery of software bus architectures
CN109714229B (en) * 2018-12-27 2020-09-04 山东超越数控电子股份有限公司 Performance bottleneck positioning method of distributed storage system
US11169797B2 (en) * 2019-02-22 2021-11-09 Ford Global Technologies, Llc Vehicle controller configuration backup and restoration using data snapshots
US10795704B2 (en) * 2019-03-01 2020-10-06 Red Hat, Inc. Serialization of objects to java bytecode
CN109946956B (en) * 2019-03-27 2020-11-24 北京全路通信信号研究设计院集团有限公司 Device main and standby system synchronization and hot standby method
WO2020220216A1 (en) 2019-04-29 2020-11-05 Splunk Inc. Search time estimate in data intake and query system
US11715051B1 (en) 2019-04-30 2023-08-01 Splunk Inc. Service provider instance recommendations using machine-learned classifications and reconciliation
CN110096482B (en) * 2019-05-09 2020-10-30 北京微播易科技股份有限公司 Data analysis method and device
US11394718B2 (en) * 2019-06-10 2022-07-19 Microsoft Technology Licensing, Llc Resolving decentralized identifiers using multiple resolvers
US11308034B2 (en) 2019-06-27 2022-04-19 Commvault Systems, Inc. Continuously run log backup with minimal configuration and resource usage from the source machine
US10582019B1 (en) 2019-07-12 2020-03-03 Coupang Corp. Systems and methods for interfacing networks using a unified communication scheme
US11363032B2 (en) 2019-08-22 2022-06-14 Microsoft Technology Licensing, Llc Resolving decentralized identifiers at customized security levels
CN110489491B (en) * 2019-08-26 2023-07-04 湖南中车时代通信信号有限公司 Full data synchronization device suitable for A/B network double clusters
US11494380B2 (en) 2019-10-18 2022-11-08 Splunk Inc. Management of distributed computing framework components in a data fabric service system
US11044300B2 (en) * 2019-10-21 2021-06-22 Citrix Systems, Inc. File transfer control systems and methods
US11157373B2 (en) * 2019-11-04 2021-10-26 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Prioritized transfer of failure event log data
US11103780B2 (en) * 2019-11-06 2021-08-31 Microsoft Technology Licensing, Llc Saving and restoring virtual machine states and hardware states for application content
US11922222B1 (en) 2020-01-30 2024-03-05 Splunk Inc. Generating a modified component for a data intake and query system using an isolated execution environment image
US20210286793A1 (en) * 2020-03-16 2021-09-16 EMC IP Holding Company LLC Indexing stored data objects using probabilistic filters
JP7413879B2 (en) 2020-03-26 2024-01-16 ブラザー工業株式会社 Communication systems, electronic devices, and programs
US20210327547A1 (en) * 2020-04-16 2021-10-21 Mastercard International Incorporated Systems, methods, and non-transitory computer-readable media for secure biometrically-enhanced data exchanges and data storage
US11611877B2 (en) 2020-07-08 2023-03-21 T-Mobile Usa, Inc. User authentication
CN112040059B (en) * 2020-08-10 2022-11-11 北京小米移动软件有限公司 Application control method, application control device and storage medium
US20230370675A1 (en) * 2020-09-29 2023-11-16 Ju Li System and method for providing common key among media gateway appliance subsystem
US11704313B1 (en) 2020-10-19 2023-07-18 Splunk Inc. Parallel branch operation using intermediary nodes
CN114764377A (en) * 2020-12-30 2022-07-19 花瓣云科技有限公司 Data backup method, electronic equipment, data backup system and chip system
US11836153B1 (en) * 2021-06-14 2023-12-05 Eightfold AI Inc. Bidirectional high-volume data synchronization between intelligent platform and remote system with minimal latency
US11868319B2 (en) 2021-12-08 2024-01-09 International Business Machines Corporation File storage system based on attributes of file components
US11936516B2 (en) 2022-06-02 2024-03-19 Vmware, Inc. Using hardware profiles of hardware components to determine performance issues of user devices
US11943263B2 (en) * 2022-06-02 2024-03-26 Vmware, Inc. Recommendation engine for improved user experience in online meetings
US20230418520A1 (en) * 2022-06-27 2023-12-28 Microsoft Technology Licensing, Llc Storage policy change usage estimation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121837A1 (en) * 2002-12-20 2004-06-24 Electronic Arts Inc. Using shared files in a game console or computer for cross-game state sharing
US20120176976A1 (en) * 2011-12-28 2012-07-12 Wells Kevin C Opportunistic resource sharing between devices
US20140258441A1 (en) * 2011-09-29 2014-09-11 Israel L'Heureux Application programming interface for enhanced wireless local area network router
US20150367238A1 (en) * 2013-02-06 2015-12-24 Square Enix Holdings Co., Ltd. Game system, game apparatus, a method of controlling the same, a program, and a storage medium
US9274780B1 (en) * 2011-12-21 2016-03-01 Amazon Technologies, Inc. Distribution of applications with a saved state

Family Cites Families (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030093790A1 (en) 2000-03-28 2003-05-15 Logan James D. Audio and video program recording, editing and playback systems using metadata
EP0943990A3 (en) 1998-02-27 2004-12-22 Texas Instruments Incorporated Method and system of providing dynamic optimization information in a code interpretive runtime environment
US6167430A (en) * 1998-05-12 2000-12-26 Unisys Corporation Multicomputer with distributed directory and operating system
US6848108B1 (en) * 1998-06-30 2005-01-25 Microsoft Corporation Method and apparatus for creating, sending, and using self-descriptive objects as messages over a message queuing network
US20020194260A1 (en) * 1999-01-22 2002-12-19 Kent Lawrence Headley Method and apparatus for creating multimedia playlists for audio-visual systems
US6757698B2 (en) * 1999-04-14 2004-06-29 Iomega Corporation Method and apparatus for automatically synchronizing data from a host computer to two or more backup data storage locations
US20010034728A1 (en) * 1999-04-14 2001-10-25 Mcbride Stephen Larry Method and apparatus for automatically synchronizing data to electronic devices across a communications network
US6505214B1 (en) * 1999-09-28 2003-01-07 Microsoft Corporation Selective information synchronization based on implicit user designation
US6578054B1 (en) * 1999-10-04 2003-06-10 Microsoft Corporation Method and system for supporting off-line mode of operation and synchronization using resource state information
US7039656B1 (en) * 1999-10-20 2006-05-02 Yodlee.Com, Inc. Method and apparatus for synchronizing data records between a remote device and a data server over a data-packet-network
US6609212B1 (en) * 2000-03-09 2003-08-19 International Business Machines Corporation Apparatus and method for sharing predictive failure information on a computer network
US6646658B1 (en) * 2000-05-17 2003-11-11 Sharp Laboratories Of America, Inc. Tagging data files with application information
US6512651B1 (en) * 2000-07-11 2003-01-28 Storage Technology Corporation Helical scan tape track following
US7249179B1 (en) * 2000-11-09 2007-07-24 Hewlett-Packard Development Company, L.P. System for automatically activating reserve hardware component based on hierarchical resource deployment scheme or rate of resource consumption
US20020078075A1 (en) * 2000-12-15 2002-06-20 Colson James C. System, method, and program product for prioritizing synchronizable data
US6718539B1 (en) * 2000-12-22 2004-04-06 Lsi Logic Corporation Interrupt handling mechanism in translator from one instruction set to another
US7013297B2 (en) * 2001-02-27 2006-03-14 Microsoft Corporation Expert system for generating user interfaces
US7216289B2 (en) * 2001-03-16 2007-05-08 Microsoft Corporation Method and apparatus for synchronizing multiple versions of digital data
US7203966B2 (en) * 2001-06-27 2007-04-10 Microsoft Corporation Enforcement architecture and method for digital rights management system for roaming a license to a plurality of user devices
EP1310869A1 (en) * 2001-11-12 2003-05-14 Hewlett-Packard Company Data processing system and method
US20030097659A1 (en) * 2001-11-16 2003-05-22 Goldman Phillip Y. Interrupting the output of media content in response to an event
US7162475B2 (en) 2002-04-17 2007-01-09 Ackerman David M Method for user verification and authentication and multimedia processing for interactive database management and method for viewing the multimedia
US7987491B2 (en) * 2002-05-10 2011-07-26 Richard Reisman Method and apparatus for browsing using alternative linkbases
US7260738B2 (en) * 2002-06-17 2007-08-21 Microsoft Corporation System and method for splitting an image across multiple computer readable media
US20030236813A1 (en) * 2002-06-24 2003-12-25 Abjanic John B. Method and apparatus for off-load processing of a message stream
US7698276B2 (en) * 2002-06-26 2010-04-13 Microsoft Corporation Framework for providing a subscription based notification system
JP4136517B2 (en) * 2002-07-31 2008-08-20 株式会社日立製作所 Mobile terminal
US7219341B2 (en) 2002-10-31 2007-05-15 International Business Machines Corporation Code analysis for selective runtime data processing
US8009966B2 (en) * 2002-11-01 2011-08-30 Synchro Arts Limited Methods and apparatus for use in sound replacement with automatic synchronization to images
US20040088397A1 (en) * 2002-11-05 2004-05-06 Sidley Austin Brown & Wood Llp. System and method for management of software applications
US7809384B2 (en) * 2002-11-05 2010-10-05 Microsoft Corporation User-input scheduling of synchronization operation on a mobile device based on user activity
US7627479B2 (en) * 2003-02-21 2009-12-01 Motionpoint Corporation Automation tool for web site content language translation
US7380242B2 (en) * 2003-05-14 2008-05-27 Mainsoft Israel Ltd. Compiler and software product for compiling intermediate language bytecodes into Java bytecodes
US7219329B2 (en) * 2003-06-13 2007-05-15 Microsoft Corporation Systems and methods providing lightweight runtime code generation
US7325226B2 (en) 2003-06-19 2008-01-29 Microsoft Corporation Modular object serialization architecture
US7290258B2 (en) * 2003-06-25 2007-10-30 Microsoft Corporation Managing multiple devices on which operating systems can be automatically deployed
US7324473B2 (en) * 2003-10-07 2008-01-29 Accenture Global Services Gmbh Connector gateway
US7487537B2 (en) * 2003-10-14 2009-02-03 International Business Machines Corporation Method and apparatus for pervasive authentication domains
US7467374B2 (en) * 2003-11-05 2008-12-16 Microsoft Corporation Serialization for structured tracing in managed code
US8112764B2 (en) * 2003-11-20 2012-02-07 Microsoft Corporation Devices as services in a decentralized operating system
US20050125486A1 (en) * 2003-11-20 2005-06-09 Microsoft Corporation Decentralized operating system
US20060184410A1 (en) 2003-12-30 2006-08-17 Shankar Ramamurthy System and method for capture of user actions and use of capture data in business processes
US7836021B2 (en) * 2004-01-15 2010-11-16 Xerox Corporation Method and system for managing image files in a hierarchical storage management system
US7526768B2 (en) * 2004-02-04 2009-04-28 Microsoft Corporation Cross-pollination of multiple sync sources
US7395446B2 (en) * 2004-05-03 2008-07-01 Microsoft Corporation Systems and methods for the implementation of a peer-to-peer rule-based pull autonomous synchronization system
US7676590B2 (en) * 2004-05-03 2010-03-09 Microsoft Corporation Background transcoding
US20050256923A1 (en) * 2004-05-14 2005-11-17 Citrix Systems, Inc. Methods and apparatus for displaying application output on devices having constrained system resources
US7330997B1 (en) * 2004-06-03 2008-02-12 Gary Odom Selective reciprocal backup
US20050273511A1 (en) * 2004-06-08 2005-12-08 Hewlett-Packard Development Company, L.P. Equitable resource sharing in grid-based computing environments
US20070043766A1 (en) * 2005-08-18 2007-02-22 Nicholas Frank C Method and System for the Creating, Managing, and Delivery of Feed Formatted Content
US7925698B2 (en) * 2004-08-18 2011-04-12 Siemens Enterprise Communications, Inc. Apparatus and method for a synchronized mobile communication client
KR100667767B1 (en) * 2004-10-20 2007-01-11 삼성전자주식회사 Multimedia device having backup function of broadcast contents on home network environment and backup method thereof
WO2006053019A2 (en) * 2004-11-08 2006-05-18 Sharpcast, Inc. Method and apparatus for a file sharing and synchronization system
US7424288B2 (en) * 2004-11-22 2008-09-09 Searete Llc Call transfer to proximate devices
US8055622B1 (en) * 2004-11-30 2011-11-08 Symantec Operating Corporation Immutable data containers in tiered storage hierarchies
US7917944B2 (en) * 2004-12-13 2011-03-29 Alcatel Lucent Secure authentication advertisement protocol
US8984140B2 (en) * 2004-12-14 2015-03-17 Hewlett-Packard Development Company, L.P. Managing connections through an aggregation of network resources providing offloaded connections between applications over a network
US20060135182A1 (en) * 2004-12-21 2006-06-22 Unmehopa Musa R Method and apparatus for reporting implicit events
EP1829286B1 (en) * 2004-12-23 2010-12-22 Research In Motion Limited Systems and methods for continuous pim synchronization between a host computer and a client handheld device
US20130104251A1 (en) 2005-02-01 2013-04-25 Newsilike Media Group, Inc. Security systems and methods for use with structured and unstructured data
US7548977B2 (en) * 2005-02-11 2009-06-16 International Business Machines Corporation Client / server application task allocation based upon client resources
US7818350B2 (en) 2005-02-28 2010-10-19 Yahoo! Inc. System and method for creating a collaborative playlist
US7424644B2 (en) * 2005-03-01 2008-09-09 Microsoft Corporation Method and system for recovering data from a hung application
US7996493B2 (en) * 2005-03-10 2011-08-09 Microsoft Corporation Framework for managing client application data in offline and online environments
US7647346B2 (en) * 2005-03-29 2010-01-12 Microsoft Corporation Automatic rules-based device synchronization
US7693958B2 (en) * 2005-06-20 2010-04-06 Microsoft Corporation Instant messaging with data sharing
US8495015B2 (en) * 2005-06-21 2013-07-23 Apple Inc. Peer-to-peer syncing in a decentralized environment
US20060293028A1 (en) 2005-06-27 2006-12-28 Gadamsetty Uma M Techniques to manage network authentication
US20070060054A1 (en) * 2005-09-15 2007-03-15 Sony Ericsson Mobile Communications Ab Wireless home communication system method and apparatus
US20070083482A1 (en) * 2005-10-08 2007-04-12 Unmesh Rathi Multiple quality of service file system
CN100442901C (en) * 2005-10-25 2008-12-10 华为技术有限公司 Method and apparatus for monitoring and updating software in apparatus management
US7650389B2 (en) * 2006-02-01 2010-01-19 Subhashis Mohanty Wireless system and method for managing logical documents
US8122427B2 (en) * 2006-01-04 2012-02-21 Microsoft Corporation Decentralized system services
US7546484B2 (en) * 2006-02-08 2009-06-09 Microsoft Corporation Managing backup solutions with light-weight storage nodes
US20070204003A1 (en) * 2006-02-28 2007-08-30 Maven Networks, Inc. Downloading a file over HTTP from multiple servers
US20070204115A1 (en) * 2006-02-28 2007-08-30 Maven Networks, Inc. Systems and methods for storage shuffling techniques to download content to a file
US7769715B2 (en) * 2006-03-17 2010-08-03 International Business Machines Corporation Synchronization of access permissions in a database network
US8966018B2 (en) * 2006-05-19 2015-02-24 Trapeze Networks, Inc. Automated network device configuration and network deployment
US7558797B2 (en) * 2006-06-30 2009-07-07 Microsoft Corporation Metadata structures for mass P2P file sharing
US20080016573A1 (en) 2006-07-13 2008-01-17 Aladdin Knowledge System Ltd. Method for detecting computer viruses
US20080024520A1 (en) 2006-07-26 2008-01-31 Rudd Michael L Digital image file transmission
US7870128B2 (en) * 2006-07-28 2011-01-11 Diskeeper Corporation Assigning data for storage based on speed with which data may be retrieved
US8060071B2 (en) * 2006-08-09 2011-11-15 Avaya Inc. Enterprise mobility user
US8121585B2 (en) * 2006-08-25 2012-02-21 International Business Machines Corporation Technique for synchronizing data with a mobile device based on a synchronization context
US8135443B2 (en) 2006-08-31 2012-03-13 Qualcomm Incorporated Portable device with priority based power savings control and method thereof
US8743778B2 (en) * 2006-09-06 2014-06-03 Devicescape Software, Inc. Systems and methods for obtaining network credentials
US20080092239A1 (en) * 2006-10-11 2008-04-17 David H. Sitrick Method and system for secure distribution of selected content to be protected
US7813730B2 (en) 2006-10-17 2010-10-12 Mavenir Systems, Inc. Providing mobile core services independent of a mobile device
US7882077B2 (en) * 2006-10-17 2011-02-01 Commvault Systems, Inc. Method and system for offline indexing of content and classifying stored data
US20080140941A1 (en) * 2006-12-07 2008-06-12 Dasgupta Gargi B Method and System for Hoarding Content on Mobile Clients
US20130166580A1 (en) * 2006-12-13 2013-06-27 Quickplay Media Inc. Media Processor
US20080147747A1 (en) * 2006-12-14 2008-06-19 Dan Cardamore Media system having synchronization with preemptive prioritization of synchronization order
US8078688B2 (en) * 2006-12-29 2011-12-13 Prodea Systems, Inc. File sharing through multi-services gateway device at user premises
US8631088B2 (en) * 2007-01-07 2014-01-14 Apple Inc. Prioritized data synchronization with host device
US8365249B1 (en) 2007-01-30 2013-01-29 Sprint Communications Company L.P. Proxy registration and authentication for personal electronic devices
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
US8161179B2 (en) * 2007-06-28 2012-04-17 Apple Inc. Generating low resolution user interfaces for transmission to mobile devices
US20090024664A1 (en) * 2007-06-29 2009-01-22 Alberto Benbunan Garzon Method and system for generating a content-based file, and content-based data structure
US8347286B2 (en) * 2007-07-16 2013-01-01 International Business Machines Corporation Method, system and program product for managing download requests received to download files from a server
EP2201761B1 (en) * 2007-09-24 2013-11-20 Qualcomm Incorporated Enhanced interface for voice and video communications
GB2453383A (en) 2007-10-05 2009-04-08 Iti Scotland Ltd Authentication method using a third party
US7895242B2 (en) * 2007-10-31 2011-02-22 Microsoft Corporation Compressed storage management
US7970350B2 (en) 2007-10-31 2011-06-28 Motorola Mobility, Inc. Devices and methods for content sharing
US7991734B2 (en) * 2008-03-07 2011-08-02 Microsoft Corporation Remote pointing
US8023934B2 (en) * 2008-03-28 2011-09-20 Ianywhere Solutions, Inc. Synchronizing communications and data between mobile devices and servers
US7873619B1 (en) * 2008-03-31 2011-01-18 Emc Corporation Managing metadata
US8271579B2 (en) * 2008-04-07 2012-09-18 Phunware, Inc. Server method and system for executing applications on a wireless device
US20090282169A1 (en) * 2008-05-09 2009-11-12 Avi Kumar Synchronization programs and methods for networked and mobile devices
US8265599B2 (en) * 2008-05-27 2012-09-11 Intel Corporation Enabling and charging devices for broadband services through nearby SIM devices
US8401681B2 (en) * 2008-06-08 2013-03-19 Apple Inc. System and method for placeshifting media playback
US20100042655A1 (en) * 2008-08-18 2010-02-18 Xerox Corporation Method for selective compression for planned degradation and obsolence of files
US8458128B2 (en) * 2008-08-26 2013-06-04 Microsoft Corporation Minimal extensions required for multi-master offline and collaboration for devices and web services
US8965954B2 (en) * 2008-10-21 2015-02-24 Google Inc. Always ready client/server data synchronization
US8135690B2 (en) * 2009-01-05 2012-03-13 Microsoft Corporation Concurrency object classification
US20110119716A1 (en) * 2009-03-12 2011-05-19 Mist Technology Holdings, Inc. System and Method for Video Distribution Management with Mobile Services
US8429236B2 (en) 2009-04-08 2013-04-23 Research In Motion Limited Transmission of status updates responsive to status of recipient application
US8612439B2 (en) * 2009-06-30 2013-12-17 Commvault Systems, Inc. Performing data storage operations in a cloud storage environment, including searching, encryption and indexing
JP4856743B2 (en) 2009-08-06 2012-01-18 株式会社バッファロー Wireless communication apparatus, wireless communication system, and network apparatus
KR101717644B1 (en) * 2009-09-08 2017-03-27 샌디스크 테크놀로지스 엘엘씨 Apparatus, system, and method for caching data on a solid-state storage device
US10213159B2 (en) * 2010-03-10 2019-02-26 Sotera Wireless, Inc. Body-worn vital sign monitor
KR101263217B1 (en) * 2009-10-15 2013-05-10 한국전자통신연구원 Mobile terminal for providing mobile cloud service and operating method of the same
US8375399B2 (en) * 2009-12-03 2013-02-12 Osocad Remote Limited Liability Company Method, apparatus and computer program to perform dynamic selection of serialization processing schemes
US9009294B2 (en) * 2009-12-11 2015-04-14 International Business Machines Corporation Dynamic provisioning of resources within a cloud computing environment
CN101788926B (en) * 2009-12-28 2014-04-30 中兴通讯股份有限公司 Resource allocation method and device for switching J2ME (Java 2 Micro Edition) application platform
CN101751473A (en) * 2009-12-31 2010-06-23 中兴通讯股份有限公司 The searching of a kind of amendment record item, renewal and method for synchronous and data sync equipment
US8499088B1 (en) * 2010-01-15 2013-07-30 Sprint Communications Company L.P. Parallel multiple format downloads
WO2011094734A2 (en) 2010-02-01 2011-08-04 Jumptap, Inc. Integrated advertising system
US8478721B2 (en) * 2010-02-22 2013-07-02 Sybase, Inc. Synchronization of recurring time-scheduled data objects between incompatible databases
US20110258160A1 (en) 2010-04-15 2011-10-20 Po-Yen Lee Data synchronization methods for synchronizing data in communication system and communication systems
US8909950B1 (en) * 2010-04-18 2014-12-09 Aptima, Inc. Systems and methods of power management
US8805967B2 (en) * 2010-05-03 2014-08-12 Panzura, Inc. Providing disaster recovery for a distributed filesystem
CN101853179B (en) 2010-05-10 2012-09-26 深圳市极限网络科技有限公司 Universal distributed dynamic operation technology for executing task decomposition based on plug-in unit
US9380011B2 (en) * 2010-05-28 2016-06-28 Google Inc. Participant-specific markup
US8755921B2 (en) * 2010-06-03 2014-06-17 Google Inc. Continuous audio interaction with interruptive audio
US8754900B2 (en) * 2010-06-17 2014-06-17 Thinci, Inc. Processing of graphics data of a server system for transmission
US8954597B2 (en) 2010-06-28 2015-02-10 Hulu, LLC Method and apparatus for synchronizing paused playback across platforms
US9070182B1 (en) * 2010-07-13 2015-06-30 Google Inc. Method and system for automatically cropping images
US8429674B2 (en) * 2010-07-20 2013-04-23 Apple Inc. Maintaining data states upon forced exit
US9158650B2 (en) 2010-08-04 2015-10-13 BoxTone, Inc. Mobile application performance management
EP2617170A4 (en) * 2010-09-15 2017-07-26 Nokia Technologies Oy Method and apparatus for sharing of data by dynamic groups
US20120079095A1 (en) * 2010-09-24 2012-03-29 Amazon Technologies, Inc. Cloud-based device synchronization
US9277260B2 (en) 2010-10-01 2016-03-01 Mobitv, Inc. Media convergence platform
CN102447723B (en) * 2010-10-12 2015-09-09 运软网络科技(上海)有限公司 Client-side virtualization framework
CN103190118B (en) 2010-10-27 2016-10-05 瑞典爱立信有限公司 Authorize electronic equipment control media hype unit
JP2012100894A (en) 2010-11-10 2012-05-31 Universal Entertainment Corp Gaming machine
US8694778B2 (en) * 2010-11-19 2014-04-08 Nxp B.V. Enrollment of physically unclonable functions
US8504831B2 (en) 2010-12-07 2013-08-06 At&T Intellectual Property I, L.P. Systems, methods, and computer program products for user authentication
US9971656B2 (en) * 2010-12-13 2018-05-15 International Business Machines Corporation Instant data restoration
US20120172025A1 (en) * 2010-12-29 2012-07-05 Nokia Corporation Method and apparatus for providing recommendations based on preloaded models
US9060239B1 (en) * 2011-08-09 2015-06-16 Zscaler, Inc. Cloud based mobile device management systems and methods
US9154826B2 (en) * 2011-04-06 2015-10-06 Headwater Partners Ii Llc Distributing content and service launch objects to mobile devices
TW201301118A (en) 2011-06-30 2013-01-01 Gcca Inc Cloud-based communication device and smart mobile device using cloud-based communication device
US8732475B2 (en) 2011-08-17 2014-05-20 Comcast Cable Communication, Llc Authentication and binding of multiple devices
US8904216B2 (en) 2011-09-02 2014-12-02 Iota Computing, Inc. Massively multicore processor and operating system to manage strands in hardware
US9086923B2 (en) * 2011-09-16 2015-07-21 Rutgers, The State University Of New Jersey Autonomic workflow management in dynamically federated, hybrid cloud infrastructures
US9571477B2 (en) * 2011-09-30 2017-02-14 Intel Corporation Mechanism for facilitating remote access of user and device credentials for remoting device activities between computing devices
US8370922B1 (en) 2011-09-30 2013-02-05 Kaspersky Lab Zao Portable security device and methods for dynamically configuring network security settings
US20130090980A1 (en) 2011-10-10 2013-04-11 Brett Patrick Hummel System & method for tracking members of an affinity group
US9659437B2 (en) * 2012-09-28 2017-05-23 Bally Gaming, Inc. System and method for cross platform persistent gaming sessions using a mobile device
US9448961B1 (en) * 2011-10-18 2016-09-20 Google Inc. Prioritized download of social network content
US8909247B2 (en) * 2011-11-08 2014-12-09 At&T Mobility Ii Llc Location based sharing of a network access credential
US9396277B2 (en) * 2011-12-09 2016-07-19 Microsoft Technology Licensing, Llc Access to supplemental data based on identifier derived from corresponding primary application data
US9389088B2 (en) * 2011-12-12 2016-07-12 Google Inc. Method of pre-fetching map data for rendering and offline routing
US20130185487A1 (en) * 2012-01-18 2013-07-18 Samsung Electronics Co., Ltd Memory system and mobile device including host and flash memory-based storage device
US8366546B1 (en) 2012-01-23 2013-02-05 Zynga Inc. Gamelets
US9838287B2 (en) * 2012-01-27 2017-12-05 Microsoft Technology Licensing, Llc Predicting network data consumption relative to data usage patterns
US9330106B2 (en) * 2012-02-15 2016-05-03 Citrix Systems, Inc. Selective synchronization of remotely stored content
AU2013202553B2 (en) * 2012-03-30 2015-10-01 Commvault Systems, Inc. Information management of mobile device data
US8700931B2 (en) * 2012-03-30 2014-04-15 Verizon Patent And Licensing Inc. Method and system for managing power of a mobile device
US9054919B2 (en) * 2012-04-05 2015-06-09 Box, Inc. Device pinning capability for enterprise cloud service and storage accounts
US8949179B2 (en) * 2012-04-23 2015-02-03 Google, Inc. Sharing and synchronizing electronically stored files
US9178879B2 (en) * 2012-05-03 2015-11-03 At&T Intellectual Property I, L.P. Device-based authentication for secure online access
US20130339605A1 (en) 2012-06-19 2013-12-19 International Business Machines Corporation Uniform storage collaboration and access
US8880648B1 (en) * 2012-06-27 2014-11-04 Audible, Inc. Automated transition of content consumption across devices
US8510759B1 (en) * 2012-06-29 2013-08-13 Intel Corporation Scatter gather emulation
US9152220B2 (en) * 2012-06-29 2015-10-06 International Business Machines Corporation Incremental preparation of videos for delivery
US9170718B2 (en) 2012-07-25 2015-10-27 Devicescape Software, Inc. Systems and methods for enhanced engagement
US9053161B2 (en) * 2012-08-30 2015-06-09 International Business Machines Corporation Database table format conversion based on user data access patterns in a networked computing environment
US20140068058A1 (en) 2012-09-06 2014-03-06 Apple Inc. Usage-based sorting of local network services
WO2014041203A1 (en) * 2012-09-17 2014-03-20 King.Com Limited A method for implementing a computer game
US20140092757A1 (en) * 2012-10-01 2014-04-03 Futurewei Technologies, Co. Controlling Data Synchronization and Backup Services
US9026819B2 (en) * 2012-10-01 2015-05-05 College Of William And Mary Method of conserving power based on electronic device's I/O pattern
US9776078B2 (en) * 2012-10-02 2017-10-03 Razer (Asia-Pacific) Pte. Ltd. Application state backup and restoration across multiple devices
US8764555B2 (en) 2012-10-02 2014-07-01 Nextbit Systems Inc. Video game application state synchronization across multiple devices
WO2014063739A1 (en) * 2012-10-25 2014-05-01 Telefonaktiebolaget L M Ericsson (Publ) Method for transferring a communication session between devices
EP2912913A4 (en) * 2012-10-26 2016-06-22 Nokia Technologies Oy Method and apparatus for management of multiple communication channels
US20140128161A1 (en) 2012-11-06 2014-05-08 Stephen Latta Cross-platform augmented reality experience
US9323695B2 (en) * 2012-11-12 2016-04-26 Facebook, Inc. Predictive cache replacement
US9813662B2 (en) * 2012-11-30 2017-11-07 Lenovo (Singapore) Pte. Ltd. Transfer to target disambiguation
US9112844B2 (en) * 2012-12-06 2015-08-18 Audible, Inc. Device credentialing for network access
TWI477978B (en) * 2012-12-07 2015-03-21 Inst Information Industry Data synchronization system and method for synchronizing data
US20140163971A1 (en) * 2012-12-11 2014-06-12 Tencent Technology (Shenzhen) Company Limited Method of using a mobile device as a microphone, method of audio playback, and related device and system
US20140172783A1 (en) * 2012-12-17 2014-06-19 Prowess Consulting, Llc System and method for providing computing environment delivery service with offline operations
US8612470B1 (en) * 2012-12-28 2013-12-17 Dropbox, Inc. Application recommendation using stored files
US8438631B1 (en) 2013-01-24 2013-05-07 Sideband Networks, Inc. Security enclave device to extend a virtual secure processing environment to a client device
US9137355B2 (en) * 2013-01-01 2015-09-15 Qualcomm Incorporated Method and apparatus for enabling collaberative interactions among devices on a peer-to-peer network
US9336226B2 (en) * 2013-01-11 2016-05-10 Commvault Systems, Inc. Criteria-based data synchronization management
US9203874B2 (en) * 2013-01-14 2015-12-01 Sap Portals Israel Ltd Portal multi-device session context preservation
US9942750B2 (en) * 2013-01-23 2018-04-10 Qualcomm Incorporated Providing an encrypted account credential from a first device to a second device
US8949488B2 (en) * 2013-02-15 2015-02-03 Compellent Technologies Data replication with dynamic compression
US9078083B2 (en) * 2013-02-20 2015-07-07 Verizon Patent And Licensing Inc. Application server awareness of device capabilities in a wireless network
US9319265B2 (en) * 2013-02-22 2016-04-19 Hitachi Data Systems Engineering UK Limited Read ahead caching of data from cloud storage and method thereof
US10318492B2 (en) * 2013-02-25 2019-06-11 Amazon Technologies, Inc. Predictive storage service
US20140274181A1 (en) 2013-03-15 2014-09-18 Rosemount Inc. Resource optimization in a field device
US9858052B2 (en) * 2013-03-21 2018-01-02 Razer (Asia-Pacific) Pte. Ltd. Decentralized operating system
US9002829B2 (en) * 2013-03-21 2015-04-07 Nextbit Systems Inc. Prioritizing synchronization of audio files to an in-vehicle computing device
CA2886282C (en) * 2013-05-23 2019-07-23 Stephan Georgiev Dynamic allocation of rendering resources in a cloud gaming system
US8769610B1 (en) * 2013-10-31 2014-07-01 Eventure Interactive, Inc. Distance-modified security and content sharing
US20160195221A1 (en) * 2015-01-07 2016-07-07 James C. Roberts Autogas Dispensing Tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121837A1 (en) * 2002-12-20 2004-06-24 Electronic Arts Inc. Using shared files in a game console or computer for cross-game state sharing
US20140258441A1 (en) * 2011-09-29 2014-09-11 Israel L'Heureux Application programming interface for enhanced wireless local area network router
US9274780B1 (en) * 2011-12-21 2016-03-01 Amazon Technologies, Inc. Distribution of applications with a saved state
US20120176976A1 (en) * 2011-12-28 2012-07-12 Wells Kevin C Opportunistic resource sharing between devices
US20150367238A1 (en) * 2013-02-06 2015-12-24 Square Enix Holdings Co., Ltd. Game system, game apparatus, a method of controlling the same, a program, and a storage medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654556B2 (en) 2012-10-02 2017-05-16 Razer (Asia-Pacific) Pte. Ltd. Managing applications on an electronic device
US9747000B2 (en) 2012-10-02 2017-08-29 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US10684744B2 (en) 2012-10-02 2020-06-16 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US20160132561A1 (en) * 2013-06-28 2016-05-12 Hewlett-Packard Development Company, L.P. Expiration tag of data
US11544347B2 (en) * 2014-02-11 2023-01-03 Wix.Com Ltd. System for synchronization of changes in edited websites and interactive applications
US20200151228A1 (en) * 2014-02-11 2020-05-14 Wix.Com Ltd. System for synchronization of changes in edited websites and interactive applications
US20150319144A1 (en) * 2014-05-05 2015-11-05 Citrix Systems, Inc. Facilitating Communication Between Mobile Applications
US9729520B2 (en) * 2014-05-05 2017-08-08 Citrix Systems, Inc. Facilitating communication between mobile applications
US20170293767A1 (en) * 2014-05-05 2017-10-12 Citrix Systems, Inc. Facilitating Communication Between Mobile Applications
US10346622B2 (en) * 2014-05-05 2019-07-09 Citrix Systems, Inc. Facilitating communication between mobile applications
US20160188733A1 (en) * 2014-12-29 2016-06-30 Quixey, Inc. Generating Recommendations Based on Clustered Application States
CN109462614A (en) * 2015-12-22 2019-03-12 北京奇虎科技有限公司 A kind of method and system for borrowing other people accounts and realizing login
US10631164B2 (en) * 2016-03-31 2020-04-21 Electronic Arts Inc. Authentication identity management for mobile device applications
US11363013B2 (en) 2016-03-31 2022-06-14 Electronic Arts Inc. Authentication identity management for mobile device applications
US20170289133A1 (en) * 2016-03-31 2017-10-05 Electronic Arts Inc. Authentication identity management for mobile device applications
US11870772B2 (en) 2016-03-31 2024-01-09 Electronic Arts Inc. Authentication identity management for mobile device applications
US11627455B2 (en) * 2016-05-24 2023-04-11 Paypal, Inc. Mobile application configurations to enable data transfers
US10271210B2 (en) * 2016-07-13 2019-04-23 Bank Of America Corporation System for authenticating a user and enabling real-time approval notifications
US20180165297A1 (en) * 2016-12-09 2018-06-14 Salesforce.Com, Inc. Systems and methods for providing database updates for data visualization
US10891263B2 (en) * 2016-12-09 2021-01-12 Salesforce.Com, Inc. Systems and methods for providing database updates for data visualization
US10908895B2 (en) * 2018-12-21 2021-02-02 Pensando Systems Inc. State-preserving upgrade of an intelligent server adapter
US11182150B2 (en) 2020-01-14 2021-11-23 Pensando Systems Inc. Zero packet loss upgrade of an IO device
US11281453B1 (en) 2021-01-06 2022-03-22 Pensando Systems, Inc. Methods and systems for a hitless rollback mechanism during software upgrade of a network appliance
CN113360384A (en) * 2021-06-12 2021-09-07 四川虹美智能科技有限公司 App operation stability protection method and device and computer readable medium

Also Published As

Publication number Publication date
US20140289194A1 (en) 2014-09-25
US20170300307A1 (en) 2017-10-19
US20140289411A1 (en) 2014-09-25
US9720665B2 (en) 2017-08-01
US20140289190A1 (en) 2014-09-25
US10817477B2 (en) 2020-10-27
US10684995B2 (en) 2020-06-16
US10725972B2 (en) 2020-07-28
US9990371B2 (en) 2018-06-05
US20140289195A1 (en) 2014-09-25
US20140289824A1 (en) 2014-09-25
WO2014153480A3 (en) 2014-11-13
US20140289189A1 (en) 2014-09-25
US10762055B2 (en) 2020-09-01
US9858052B2 (en) 2018-01-02
US20190073377A1 (en) 2019-03-07
US9146716B2 (en) 2015-09-29
US20170195418A1 (en) 2017-07-06
US20180081649A1 (en) 2018-03-22
US20140289414A1 (en) 2014-09-25
TWI631472B (en) 2018-08-01
US20140289415A1 (en) 2014-09-25
US20140289382A1 (en) 2014-09-25
US10146790B2 (en) 2018-12-04
US9965489B2 (en) 2018-05-08
US20140289426A1 (en) 2014-09-25
US9563413B2 (en) 2017-02-07
TW201510742A (en) 2015-03-16
US9442705B2 (en) 2016-09-13
US10515056B2 (en) 2019-12-24
US20180225303A1 (en) 2018-08-09
US20140289413A1 (en) 2014-09-25
US20140289191A1 (en) 2014-09-25
US10872064B2 (en) 2020-12-22
US20140289202A1 (en) 2014-09-25
WO2014153479A1 (en) 2014-09-25
US9606782B2 (en) 2017-03-28
US9524151B2 (en) 2016-12-20
WO2014153480A2 (en) 2014-09-25
US9122491B2 (en) 2015-09-01
WO2014153532A3 (en) 2014-11-13
US9836287B2 (en) 2017-12-05
US20140289717A1 (en) 2014-09-25
WO2014153478A1 (en) 2014-09-25
WO2014153532A2 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US8954611B2 (en) Mechanism for sharing states of applications and devices across different user profiles
US20140289331A1 (en) Mechanism for sharing states of applications and devices across different user profiles
US10946276B2 (en) Application state backup and restoration across multiple devices
US10540368B2 (en) System and method for resolving synchronization conflicts
US20210026703A1 (en) Leveraging microservice containers to provide tenant isolation in a multi-tenant api gateway
US9268655B2 (en) Interface for resolving synchronization conflicts of application states
US9600552B2 (en) Proximity based application state synchronization
US10223024B2 (en) Storage controller for provisioning storage services for an application based upon application-specific requirements
EP3014485B1 (en) Naive, client-side sharding with online addition of shards
US20140135105A1 (en) Video game application state synchronization across multiple devices
US10229122B2 (en) Extensible customization migration via pluggable interface
US10185553B2 (en) Fault-tolerant variable region repaving during firmware over the air update
US11327905B2 (en) Intents and locks with intent
US9529702B2 (en) System to enable multi-tenancy testing of business data and validation logic on the cloud
US20160154829A1 (en) Preserving deprecated database columns
US20220222224A1 (en) Database connection refresh for server instances and live database updates
US9785543B2 (en) Dual tagging between test and pods
US9563752B2 (en) License information access based on developer profiles
US12001408B2 (en) Techniques for efficient migration of key-value data

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAN, MICHAEL A.;BORNSTEIN, DANIEL R.;TONG, LINDA;REEL/FRAME:032757/0768

Effective date: 20140324

AS Assignment

Owner name: PINNACLE VENTURES, L.L.C., AS AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:037184/0762

Effective date: 20151201

AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PINNACLE VENTURES, L.L.C., AS AGENT;REEL/FRAME:041519/0146

Effective date: 20170126

AS Assignment

Owner name: RAZER (ASIA-PACIFIC) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:041980/0254

Effective date: 20170126

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION