US20140237944A1 - Method and device for operating a system for treating containers - Google Patents
Method and device for operating a system for treating containers Download PDFInfo
- Publication number
- US20140237944A1 US20140237944A1 US14/348,764 US201214348764A US2014237944A1 US 20140237944 A1 US20140237944 A1 US 20140237944A1 US 201214348764 A US201214348764 A US 201214348764A US 2014237944 A1 US2014237944 A1 US 2014237944A1
- Authority
- US
- United States
- Prior art keywords
- containers
- treatment unit
- measuring device
- characteristic
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B59/00—Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
- B65B59/02—Arrangements to enable adjustments to be made while the machine is running
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B59/00—Arrangements to enable machines to handle articles of different sizes, to produce packages of different sizes, to vary the contents of packages, to handle different types of packaging material, or to give access for cleaning or maintenance purposes
- B65B59/003—Arrangements to enable adjustments related to the packaging material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B3/00—Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B3/04—Methods of, or means for, filling the material into the containers or receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B61/00—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages
- B65B61/26—Auxiliary devices, not otherwise provided for, for operating on sheets, blanks, webs, binding material, containers or packages for marking or coding completed packages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C9/00—Details of labelling machines or apparatus
- B65C9/40—Controls; Safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67B—APPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
- B67B3/00—Closing bottles, jars or similar containers by applying caps
- B67B3/26—Applications of control, warning, or safety devices in capping machinery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67C—CLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
- B67C3/00—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
- B67C3/007—Applications of control, warning or safety devices in filling machinery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B2210/00—Specific aspects of the packaging machine
- B65B2210/04—Customised on demand packaging by determining a specific characteristic, e.g. shape or height, of articles or material to be packaged and selecting, creating or adapting a packaging accordingly, e.g. making a carton starting from web material
Definitions
- the present disclosure relates to a method of operating a system for treating containers, as well as a system for treating containers.
- Retooling for another product or container is done at the respective individual machines or modules, for example through the selection of a program that has already been stored, the installation of the correct format parts or the setting of adjustment devices to values usually displayed on a control panel, for example for height settings, width settings, etc.
- These setting values were determined during the commissioning of the system and stored in the program.
- these product or container-specific setting values and parameters are partially determined by means of a detection device for the detection of characteristics of a container that is to be treated. The detection device is thereby connected upstream from the treatment elements.
- the startup of the system proceeds such that the first produced containers are transported from the filler to the labeling machine, for example.
- a test run of the labeling is performed in the labeling machine using these containers.
- necessary settings have to be changed, which are time consuming and can lead to a backlog at the filler, and the stop thereof
- the assessment of the labeled containers may likewise lead to necessary corrections, and this, in turn, may mean a loss of time and possibly a loss of production at the filler.
- the time required until the point in time at which a uniform production at the filler occurs may be 2 or more hours, depending on the experience of the personnel.
- the reasons for the necessary fine adjustment are fluctuating parameters, which lead to changes in the geometry of the containers, especially in the case of containers such as plastic (PET) bottles.
- the internal pressure of the container leads to changes in diameter, the height and contour of the container.
- the pressure in the container is determined by many factors including, among others, a nitrogen injection into the product, or the CO 2 content in the product.
- This effect may be enhanced by fluctuations in the wall thickness of the PET bottle, for example when using preforms from different suppliers, batches, etc.
- abrasive wear to machine elements e.g. the abrasive wear to conveyor chains and the sliding guides thereof
- One aspect of the present disclosure is therefore to provide a device and a method for operating a system for treating containers, which simplify and expedite the retooling of the system in the case of a change in the type of product, leading to an improvement in the Overall Equipment Effectiveness (OEE).
- OEE Overall Equipment Effectiveness
- the presently-disclosed measuring device thereby determines at least one parameter that is characteristic of the geometric shape of the containers, either after or during the treatment of the containers. Changes in form that only occur after treatment can thereby be detected and acted upon.
- the actual geometry of the container can be determined by one or a plurality of measuring devices, for example by suitable cameras, scanners or other sensors.
- the measuring device may thereby be based on a visual, magnetic, mechanical or other physical principle.
- the measured values determined by the measuring devices, and the characteristic parameters that are derived therefrom can then be transmitted to all, a plurality or at least one additional treatment unit(s) of the system, and can be taken into account for the control and adjustment thereof, as well as for the determination and/or correction of the setting values to treatment units.
- a treatment unit is understood to be an element/module of the system, which is used for the treatment of containers.
- the system may comprise a plurality of container treatment units. Stretching and/or blowing modules, filling and/or sealing modules, labeling modules, imprinting modules, testing modules, packaging modules, etc. are possible common treatment units.
- the use of a plurality of measuring devices is also conceivable, said devices being distributed among all or a plurality of treatment units or stations respectively within the container treatment system, measure characteristics of the containers and/or characteristics of the machine elements. In this way, the evolution of the setting values can be measured as a function of the position within the system and other variables (such as time, temperature, etc.).
- the measurement and possible subsequent correction of the setting values may be done only during a test run/test startup of the system with a few initial containers of a specific type, for example, or may be done during the ongoing operation in a continuous measurement-correction loop of the treatment unit settings for a specific type of container.
- the deterioration/abrasive wear of machine elements may be detected by a measuring device, and the characteristic parameters that are derived therefrom may be used for the correction of the setting values and for the control of the treatment units.
- FIG. 1 Height comparison between two containers
- FIG. 2 Diameter comparison in the label region of two containers
- FIG. 3 Schematic overview of a possible logical configuration of the container treatment system.
- FIG. 1 shows two containers 1 a , 1 b having different geometries.
- the geometry of the containers differs, in that the containers have different container heights h 1 a and h 1 b .
- Container 1 a is located on machine element 3 a , which is situated above machine element 4 a .
- Aforementioned machine elements 3 a and 3 b are new, or are not worn respectively, and have a height of h 3 a or h 4 a respectively.
- Conveyor chains and sliding, which may be used to transport containers, guides are an example of appropriate machine elements.
- a measuring device detects the geometry of the container (including the container height, diameter of the container in the label region or in the imprinting region, contour, etc.) both in part or in full, the three-dimensional position of said container on a machine element, as well as the geometry of the machine elements, either in part or in full, which is associated with the position of the container.
- the values obtained by the measuring device, or the derived characteristic parameters respectively may be used in order to adapt machines of the system for treating containers to the new type of product or container, or in order to correct and refine the standard default settings for the new type of product/container respectively.
- the measuring device not only determines that the new container height 1 b is less than the container height 1 a of the preceding container 1 a , said measuring device also determines that in the mean time, for example, machine elements have deteriorated and/or been modified (as a result of use and/or changes in the operating environment such as temperature, humidity, etc.). In the case shown in FIG.
- the measuring device determines, for example, that the height of the machine elements has changed from h 3 a to h 3 b , and from h 4 a to h 4 b as a result of use/abrasive wear, and therefore the top edge of the seal 2 b is lower than the top edge of the seal 2 a by dh.
- This information can be transmitted along with additional measured values (absolute position of the container with reference to the system, geometry of the container etc) and/or other derived characteristic parameters to the treatment units of the system for treating containers, where that information can be used for the correction of the setting values and/or for the control thereof
- the standard default settings of the setting values of the system for treating containers are unable or insufficiently able to account for changes, which may occur during or after the treatment of the and/or which may result from abrasive wear/use or changes in the environmental conditions.
- FIG. 2 illustrates the detection of an additional geometric parameter of the containers that are to be treated, namely the diameter of the containers in the label region.
- the diameter ⁇ D 1 of container 5 a measured by the measuring device is smaller than the diameter ⁇ D 2 of container 5 b.
- the difference in the diameter may be, among other things, due to the fact, that the pressure in the containers is different, if the containers were filled and sealed prior to the measurement for example, or as a result of manufacturing fluctuations in the wall thickness and the shape of the containers.
- the measured values detected by a measuring device and derived parameters can be displayed in a control panel (on a measuring device and/or on a treatment unit), to be read, checked and processed by plant personnel.
- the transfer of information between the measuring device and container treatment units may be carried out via a cable connection or wireless.
- the measuring device may be integrated into the first treatment unit, or may be located after the first treatment unit, before or in an additional treatment unit. It is also possible for a plurality of measuring devices to be operated on a plurality of treatment units. Additional or other measurements may be carried out by other/one other measuring device(s) before the first container treatment, if the other measuring device(s) is/are located before or in the first treatment unit, or the measurements may be carried out after the first container treatment. In the case of a measuring device that is integrated in a treatment unit, the measurements may be carried out during or after the treatment.
- FIG. 3 a , FIG. 3 b show schematic examples of two systems A 1 and A 2 for treating containers. Both systems have at least two treatment units B 1 and B 2 , but also may have any additional number, thus a total of, B 1 , B 2 , BN treatment units.
- a measuring device M 1 is provided at/in a first treatment unit B 1 , wherein the measuring device M 1 may also be integrated into treatment unit B 1 .
- the measuring device M 1 can perform measurements on the containers and on machine elements, either during or after the treatment by B 1 .
- Measured values thereby determined, and derived characteristic parameters may be analyzed and processed by the measuring device, and the values resulting therefrom may be taken into account for the setting, correction of the setting, adjustment and control parameters or commands for the setting and control for B 1 and at least one additional treatment unit (z.B. B 2 ).
- M 1 is at least temporarily in a communication link with B 1 itself and/or with at least one additional treatment unit (e.g. B 2 ) by means of a communication channel K 2 .
- the data collected and determined by M 1 may be transmitted to a central system control unit ZS by means of a further communication channel K 1 .
- the ZS is thereby at least temporarily connected to M 1 and at least one treatment unit.
- the transport of containers within the system is carried out by transport-machine elements, such as conveyor chains and sliding guides, for example.
- Machine element T 12 for example, is responsible for transporting containers from B 1 to B 2 , and Tij transports containers from the i′th treatment unit to a further j′th treatment unit, wherein i,j are whole numbers between 2 and N.
- the measuring device M 1 is located after the first treatment unit, i.e. in this case, M 1 only carries out measurements on the containers after a first treatment by B 1 .
- the first treatment unit is advantageously a filling and/or sealing device, thus a treatment unit for the filling and/or sealing of containers. In the case of the following machines and treatment units, it may be advantageous that these are not blocked, i.e. uncoupled from the filling and/or sealing device by transporters or buffer systems.
- At least one additional treatment unit advantageously serves to label or imprint the containers.
- the use of measured values and of the characteristic parameters derived therefrom, which are obtained from a measuring device in order that they be used for the control, adjustment and correction of the setting values for treatment units, may be done automatically or manually.
- the manual use of the measured values by plant personnel may be done by means of the control panels and the corresponding treatment units for example, or by means of a central control panel.
- the automatic use may occur by means of a central computing/control unit, which is in at least intermittent communication with the measuring device(s), and may collect and if necessary, further process all measured values determined by the measuring device(s) and derived characteristic parameters, corrections, control commands etc., and use these for the control, adjustment and correction of setting values for the treatment units.
- An automatic use of the measuring device data (including measured values, derived characteristic parameters, and control and adjustment commands) is also possible, however, by means of a direct communication link between the measuring device(s) and treatment unit(s).
- the detection of the height of the container may be used for setting up the backup detecting sensors in the transport and in machine infeeds, as well as the height setting of the sensor systems.
- the detection of the diameter of the container may be used for setting up the container infeed to labeling machines and packers.
- the measurement of the diameter of the container in the label region of a container may be used for setting up the labeling machines.
- the measurement of the contour of the container in the pressure range for the expiration date may be used for setting up the printer.
- the number of measured values that can be detected according to the disclosure, derived characteristic parameters (i.e. parameters that describe characteristics of the containers, system, or parts of the system respectively) and the control, setting, adjustment commands for treatment units resulting therefrom (i.e. parameters that describe the treatment of the containers) goes on and one and is not limited to those values and parameters that are listed here.
- h 1 a , h 1 b height of container 1 a , or of 1 b respectively (wherein the height of the container the distance between the bottom of the container and the top edge of the seal of the container)
- a 1 , A 2 systems A 1 , A 2 for the treatment of containers
- K 1 communication channel for the transmission of data, commands and other information between the treatment units and the central system control unit
- K 2 communication channel for the transmission of data, commands and other information between a measuring device and treatment units
- Tij machine element for the transport of containers between an i′th and j′th
- i,j are whole numbers between 2 and N.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Basic Packing Technique (AREA)
Abstract
A method for operating a system for treating containers, where the containers are treated by at least one first treatment unit of the system, and the containers are treated by at least one additional treatment unit of the system, and where a measuring device, determines, either after or during the treatment in the first treatment unit, at least one parameter that is characteristic of the geometric shape of the containers, where at least one of the parameters determined by the measuring device that is characteristic of the geometric shape of the containers is taken into account for the control or adjustment of the at least one additional treatment unit and/or sensors thereof disposed after the measuring device.
Description
- The present application claims the benefit of priority of International Patent Application No. PCT/EP2012/064315, filed Jul. 20, 2012, which application claims priority of German Application No. DE 10 2011 084 135.0, filed Oct. 7, 2011. The priority application is hereby incorporated by reference.
- The present disclosure relates to a method of operating a system for treating containers, as well as a system for treating containers.
- Various systems and methods for treating containers are known from the prior art. Thus filling systems, among others, are known, which fill containers such as plastic or glass jars for example, and label these. A typical filling system for filling a container with a product is described in EP1959228A1, for example. As a rule, such systems can process different products and containers. When retooling filling systems from one type of product or container to the other, often numerous adjustments and alterations to the system are required. Since this change in the type of product is complex, and cannot be done in the midst of operation, a change of this kind costs valuable production time.
- Retooling for another product or container is done at the respective individual machines or modules, for example through the selection of a program that has already been stored, the installation of the correct format parts or the setting of adjustment devices to values usually displayed on a control panel, for example for height settings, width settings, etc. These setting values were determined during the commissioning of the system and stored in the program. According to the prior art, these product or container-specific setting values and parameters, as described in DE102009040977A1, are partially determined by means of a detection device for the detection of characteristics of a container that is to be treated. The detection device is thereby connected upstream from the treatment elements.
- In practice, the default setting values are only suitable for use as approximate values. Experience has shown that a fine adjustment is still necessary.
- The startup of the system proceeds such that the first produced containers are transported from the filler to the labeling machine, for example. A test run of the labeling is performed in the labeling machine using these containers. Where necessary settings have to be changed, which are time consuming and can lead to a backlog at the filler, and the stop thereof The assessment of the labeled containers may likewise lead to necessary corrections, and this, in turn, may mean a loss of time and possibly a loss of production at the filler.
- This process of fine adjustment continues for all machines until paletization, with the result that significant losses in production arise. In practice, the time required until the point in time at which a uniform production at the filler occurs may be 2 or more hours, depending on the experience of the personnel.
- The reasons for the necessary fine adjustment are fluctuating parameters, which lead to changes in the geometry of the containers, especially in the case of containers such as plastic (PET) bottles. In particular, the internal pressure of the container leads to changes in diameter, the height and contour of the container.
- The pressure in the container is determined by many factors including, among others, a nitrogen injection into the product, or the CO2 content in the product.
- This effect may be enhanced by fluctuations in the wall thickness of the PET bottle, for example when using preforms from different suppliers, batches, etc.
- Another significant reason for the necessary readjustments is abrasive wear to machine elements, e.g. the abrasive wear to conveyor chains and the sliding guides thereof
- One aspect of the present disclosure is therefore to provide a device and a method for operating a system for treating containers, which simplify and expedite the retooling of the system in the case of a change in the type of product, leading to an improvement in the Overall Equipment Effectiveness (OEE).
- The presently-disclosed measuring device thereby determines at least one parameter that is characteristic of the geometric shape of the containers, either after or during the treatment of the containers. Changes in form that only occur after treatment can thereby be detected and acted upon.
- Thereby, the actual geometry of the container can be determined by one or a plurality of measuring devices, for example by suitable cameras, scanners or other sensors. The measuring device may thereby be based on a visual, magnetic, mechanical or other physical principle. The measured values determined by the measuring devices, and the characteristic parameters that are derived therefrom can then be transmitted to all, a plurality or at least one additional treatment unit(s) of the system, and can be taken into account for the control and adjustment thereof, as well as for the determination and/or correction of the setting values to treatment units.
- A treatment unit is understood to be an element/module of the system, which is used for the treatment of containers. The system may comprise a plurality of container treatment units. Stretching and/or blowing modules, filling and/or sealing modules, labeling modules, imprinting modules, testing modules, packaging modules, etc. are possible common treatment units.
- In addition, the use of a plurality of measuring devices is also conceivable, said devices being distributed among all or a plurality of treatment units or stations respectively within the container treatment system, measure characteristics of the containers and/or characteristics of the machine elements. In this way, the evolution of the setting values can be measured as a function of the position within the system and other variables (such as time, temperature, etc.).
- The measurement and possible subsequent correction of the setting values may be done only during a test run/test startup of the system with a few initial containers of a specific type, for example, or may be done during the ongoing operation in a continuous measurement-correction loop of the treatment unit settings for a specific type of container.
- In addition to the geometric shape of the container, the deterioration/abrasive wear of machine elements may be detected by a measuring device, and the characteristic parameters that are derived therefrom may be used for the correction of the setting values and for the control of the treatment units.
- Further advantages and a better understanding of the present disclosure will follow from the following accompanying drawings.
-
FIG. 1 : Height comparison between two containers -
FIG. 2 : Diameter comparison in the label region of two containers -
FIG. 3 : Schematic overview of a possible logical configuration of the container treatment system. -
FIG. 1 shows twocontainers Container 1 a is located onmachine element 3 a, which is situated abovemachine element 4 a.Aforementioned machine elements container 1 a tocontainer 1 b, the values obtained by the measuring device, or the derived characteristic parameters respectively may be used in order to adapt machines of the system for treating containers to the new type of product or container, or in order to correct and refine the standard default settings for the new type of product/container respectively. Thus for example, in the change fromcontainer 1 a tocontainer 1 b, the measuring device not only determines that thenew container height 1 b is less than thecontainer height 1 a of the precedingcontainer 1 a, said measuring device also determines that in the mean time, for example, machine elements have deteriorated and/or been modified (as a result of use and/or changes in the operating environment such as temperature, humidity, etc.). In the case shown inFIG. 1 , the measuring device determines, for example, that the height of the machine elements has changed from h3 a to h3 b, and from h4 a to h4 b as a result of use/abrasive wear, and therefore the top edge of theseal 2 b is lower than the top edge of theseal 2 a by dh. This information can be transmitted along with additional measured values (absolute position of the container with reference to the system, geometry of the container etc) and/or other derived characteristic parameters to the treatment units of the system for treating containers, where that information can be used for the correction of the setting values and/or for the control thereof - The standard default settings of the setting values of the system for treating containers are unable or insufficiently able to account for changes, which may occur during or after the treatment of the and/or which may result from abrasive wear/use or changes in the environmental conditions.
-
FIG. 2 illustrates the detection of an additional geometric parameter of the containers that are to be treated, namely the diameter of the containers in the label region. AsFIG. 2 shows, the diameter ØD1 ofcontainer 5 a measured by the measuring device is smaller than the diameter ØD2 ofcontainer 5 b. - Aside from the fact that different types of containers may have different geometries, even in the case of the same type of container, the difference in the diameter may be, among other things, due to the fact, that the pressure in the containers is different, if the containers were filled and sealed prior to the measurement for example, or as a result of manufacturing fluctuations in the wall thickness and the shape of the containers.
- The measured values detected by a measuring device and derived parameters can be displayed in a control panel (on a measuring device and/or on a treatment unit), to be read, checked and processed by plant personnel. The transfer of information between the measuring device and container treatment units may be carried out via a cable connection or wireless.
- The measuring device may be integrated into the first treatment unit, or may be located after the first treatment unit, before or in an additional treatment unit. It is also possible for a plurality of measuring devices to be operated on a plurality of treatment units. Additional or other measurements may be carried out by other/one other measuring device(s) before the first container treatment, if the other measuring device(s) is/are located before or in the first treatment unit, or the measurements may be carried out after the first container treatment. In the case of a measuring device that is integrated in a treatment unit, the measurements may be carried out during or after the treatment.
-
FIG. 3 a,FIG. 3 b show schematic examples of two systems A1 and A2 for treating containers. Both systems have at least two treatment units B1 and B2, but also may have any additional number, thus a total of, B1, B2, BN treatment units. In the illustrated configuration for system A1 (FIG. 3 a), a measuring device M1 is provided at/in a first treatment unit B1, wherein the measuring device M1 may also be integrated into treatment unit B1. The measuring device M1 can perform measurements on the containers and on machine elements, either during or after the treatment by B1. Measured values thereby determined, and derived characteristic parameters (for example regarding the container, deterioration and abrasive wear of machine elements) may be analyzed and processed by the measuring device, and the values resulting therefrom may be taken into account for the setting, correction of the setting, adjustment and control parameters or commands for the setting and control for B1 and at least one additional treatment unit (z.B. B2). In addition, M1 is at least temporarily in a communication link with B1 itself and/or with at least one additional treatment unit (e.g. B2) by means of a communication channel K2. Alternatively, the data collected and determined by M1 may be transmitted to a central system control unit ZS by means of a further communication channel K1. The ZS is thereby at least temporarily connected to M1 and at least one treatment unit. The transport of containers within the system is carried out by transport-machine elements, such as conveyor chains and sliding guides, for example. Machine element T12, for example, is responsible for transporting containers from B1 to B2, and Tij transports containers from the i′th treatment unit to a further j′th treatment unit, wherein i,j are whole numbers between 2 and N. - In system 2 (
FIG. 3 b), which, like system 1, has a number N of treatment units, the measuring device M1 is located after the first treatment unit, i.e. in this case, M1 only carries out measurements on the containers after a first treatment by B 1. However, the data communication between M1, ZS and the treatment units proceeds as described in system 1.The first treatment unit is advantageously a filling and/or sealing device, thus a treatment unit for the filling and/or sealing of containers. In the case of the following machines and treatment units, it may be advantageous that these are not blocked, i.e. uncoupled from the filling and/or sealing device by transporters or buffer systems. - At least one additional treatment unit advantageously serves to label or imprint the containers.
- The use of measured values and of the characteristic parameters derived therefrom, which are obtained from a measuring device in order that they be used for the control, adjustment and correction of the setting values for treatment units, may be done automatically or manually. The manual use of the measured values by plant personnel may be done by means of the control panels and the corresponding treatment units for example, or by means of a central control panel. Likewise the automatic use may occur by means of a central computing/control unit, which is in at least intermittent communication with the measuring device(s), and may collect and if necessary, further process all measured values determined by the measuring device(s) and derived characteristic parameters, corrections, control commands etc., and use these for the control, adjustment and correction of setting values for the treatment units. An automatic use of the measuring device data (including measured values, derived characteristic parameters, and control and adjustment commands) is also possible, however, by means of a direct communication link between the measuring device(s) and treatment unit(s).
- The following examples of the use of measured values detected by the measuring device serve to illustrate advantageous embodiments of the disclosure.
- The detection of the height of the container may be used for setting up the backup detecting sensors in the transport and in machine infeeds, as well as the height setting of the sensor systems.
- The detection of the diameter of the container may be used for setting up the container infeed to labeling machines and packers.
- The measurement of the diameter of the container in the label region of a container may be used for setting up the labeling machines.
- The measurement of the contour of the container in the pressure range for the expiration date may be used for setting up the printer.
- The number of measured values that can be detected according to the disclosure, derived characteristic parameters (i.e. parameters that describe characteristics of the containers, system, or parts of the system respectively) and the control, setting, adjustment commands for treatment units resulting therefrom (i.e. parameters that describe the treatment of the containers) goes on and one and is not limited to those values and parameters that are listed here.
- Appended here are 2 sheets including 3 figures, in which the following reference characters are used.
- 1 a, 1 b, 5 a, 5 b containers having different geometries
- 2 a, 2 b top edge of the seal on the
containers - 3 a, 4 a machine elements that are new/not worn
- h3 a, h4 a height of the
machine elements - 3 b, 4 b machine elements that are deteriorated/worn or changed as a result of modifications in the operating environment
- h3 b, h4 b height of the
machine elements - h1 a, h1 b height of
container 1 a, or of 1 b respectively (wherein the height of the container=the distance between the bottom of the container and the top edge of the seal of the container) - dh difference between the sum of (h1 a+h3 a+h3 a) and the sum of (h1 b+h3 b+h3 b)
- ØD1, ØD2 diameter in the label region of the
containers - 6 a, 6 b label region of the
containers - A1, A2 systems A1, A2 for the treatment of containers
- B1, B2, BN First, second and n′th treatment unit for the treatment of containers
- K1 communication channel for the transmission of data, commands and other information between the treatment units and the central system control unit
- K2 communication channel for the transmission of data, commands and other information between a measuring device and treatment units
- T12 machine element for the transport of containers between a first and second treatment unit
- Tij machine element for the transport of containers between an i′th and j′th
- treatment unit, wherein i,j are whole numbers between 2 and N.
- ZS central system control unit
- M1 measuring device
Claims (16)
1. A method for operating a system for treating containers, comprising treating the containers by at least one first treatment unit of the system, treating the containers by at least one additional treatment unit of the system, and determining by a measuring device, either after or during the treatment in the first treatment unit, at least one parameter that is characteristic of the geometric shape of the containers, and the at least one parameter determined by the measuring device that is characteristic of the geometric shape of the containers is taken into account for the control or adjustment of the at least one additional treatment unit and/or the sensors thereof disposed after the measuring device.
2. The method according to claim 1 , and determining by the measuring device, either after or during the treatment in the first treatment unit, at least one parameter that is characteristic of the abrasive wear of at least one machine element, and taking into account the determined at least one parameter that is characteristic of the abrasive wear of at least one machine element for the control or adjustment of the at least one additional treatment unit and/or sensors thereof disposed after the measuring device.
3. The method according to claim 2 , and the at least one parameter determined by the measuring device that is characteristic of the geometric shape of the containers, and/or the at least one parameter determined by the measuring device that is characteristic of the abrasive wear of at least one machine element, and the resultant control and adjustment commands, and setting values derived therefrom, are transferred to at least one additional treatment unit either directly or by means of a central system control unit, and are used for setting up and control of the at least one additional treatment unit.
4. The method according to claim 1 , and the first treatment unit is a filling and/or a sealing device.
5. The method according to claim 1 , and the first additional treatment unit after the measuring device is a labeling device or an imprinting device.
6. The method according to claim 2 , and at least one piece of information with respect to at least one parameter of the manufactured container that is characteristic of the geometric shape of the containers, or a setting value derived therefrom, and/or at least one piece of information with respect to at least one parameter that is characteristic of the abrasive wear of at least one machine element, is output by means of a display device.
7. A system for treating containers, comprising a first treatment unit, at least one additional treatment unit, and a measuring device after or with the first treatment unit, configured in such a way that the measuring device can determine at least one parameter that is characteristic of the geometric shape of the containers either during or after the treatment by the first treatment unit, and the determined at least one parameter that is characteristic of the shape of the containers can be used for the control or adjustment of the at least one additional treatment unit and/or sensors thereof disposed after the measuring device.
8. The system according to 7, and the system is configured in such a way that the measuring device can determine at least one parameter that is characteristic of the abrasive wear of a machine element, and the determined at least one parameter concerning the abrasive wear of at least one machine element that is characteristic of the control or setting of the at least one additional treatment unit and/or sensors thereof disposed after the measuring device.
9. The system according to claim 8 , and a central system control unit, which may, at least temporarily, be in data communication with the controls of the individual treatment units, configured in such a way that
the at least one parameter determined by the measuring device that is characteristic of the geometric shape of the containers, and/or the at least one parameter determined by the measuring device that is characteristic of the abrasive wear of at least one machine element, and control and adjustment commands, and setting values derived therefrom, can be transmitted to at least one additional treatment unit either directly or by means of the central system control unit, and can be used to set and control of the at least one additional treatment unit.
10. The system according to at claim 7 , and the first treatment unit is a filling and/or sealing device.
11. The system according to claim 7 , and the first additional treatment unit after the measuring device is a labeling device or an imprinting device.
12. The system according to claim 8 , and a display device configured to output one or more of at least one piece of information with respect to at least one parameter of the manufactured container that is characteristic of the geometric shape of the containers, a setting value or control command derived therefrom, at least one piece of information with respect to at least one parameter that is characteristic of the abrasive wear of at least one machine element, and a setting value or control command derived therefrom.
13. The method according to claim 1 , and the at least one parameter determined by the measuring device that is characteristic of the geometric shape of the containers, and the resultant control and adjustment commands, and setting values derived therefrom, are transferred to at least one additional treatment unit either directly or by means of a central system control unit, and are used for setting up and control of the at least one additional treatment unit.
14. The method according to claim 1 , and at least one piece of information with respect to at least one parameter of the manufactured container that is characteristic of the geometric shape of the containers, or a setting value derived therefrom, is output by means of a display device.
15. The system according to claim 7 , and a central system control unit, which may, at least temporarily, be in data communication with the controls of the individual treatment units, configured in such a way that
the at least one parameter determined by the measuring device that is characteristic of the geometric shape of the containers, and control and adjustment commands, and setting values derived therefrom, can be transmitted to at least one additional treatment unit either directly or by means of the central system control unit, and can be used to set and control of the at least one additional treatment unit.
16. The system according to claim 7 , and a display device configured to output at least one piece of information with respect to at least one parameter of the manufactured container that is characteristic of the geometric shape of the containers, or a setting value or control command derived therefrom.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011084135A DE102011084135A1 (en) | 2011-10-07 | 2011-10-07 | Method and device for operating a system for treating containers with setting value correction when starting the system |
DE102011084135.0 | 2011-10-07 | ||
PCT/EP2012/064315 WO2013050186A1 (en) | 2011-10-07 | 2012-07-20 | Method and device for operating a system for treating containers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140237944A1 true US20140237944A1 (en) | 2014-08-28 |
Family
ID=46604284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/348,764 Abandoned US20140237944A1 (en) | 2011-10-07 | 2012-07-20 | Method and device for operating a system for treating containers |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140237944A1 (en) |
EP (1) | EP2763904B1 (en) |
CN (1) | CN103930350B (en) |
DE (1) | DE102011084135A1 (en) |
WO (1) | WO2013050186A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017042234A1 (en) * | 2015-09-07 | 2017-03-16 | Krones Ag | Apparatus and method for processing containers having querying processing devices |
WO2019048051A1 (en) * | 2017-09-08 | 2019-03-14 | Sidel Participations | System and method for automated adjustment of a container filling machine |
US10508012B2 (en) * | 2018-02-09 | 2019-12-17 | PSR Automation Inc. | Universal synchronized capping machine |
US11104465B2 (en) * | 2016-06-28 | 2021-08-31 | Krones Ag | Installation for the treatment of containers, and method for packaging filled containers |
US11338496B2 (en) | 2017-09-10 | 2022-05-24 | Khs Gmbh | Method and device for producing containers from thermoplastic material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013218729A1 (en) * | 2013-09-18 | 2015-03-19 | Krones Ag | Method and device for filling plastic moldings with a liquid filling material |
DE102014111277A1 (en) * | 2014-08-07 | 2016-02-11 | Krones Aktiengesellschaft | Method and device for determining the state of a contact area of a filling element |
DE102014216576A1 (en) * | 2014-08-21 | 2016-02-25 | Krones Ag | Container treatment machine with an inspection device |
DE102016103117A1 (en) * | 2016-02-23 | 2017-08-24 | Krones Ag | Method for operating a treatment plant for treating containers with recipe creation for the controller |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591462A (en) * | 1994-11-21 | 1997-01-07 | Pressco Technology, Inc. | Bottle inspection along molder transport path |
US20060037706A1 (en) * | 2004-08-21 | 2006-02-23 | Frank Putzer | Beverage bottle labeling apparatus configured to label beverage bottles in a beverage bottling plant |
US20070215235A1 (en) * | 2005-12-02 | 2007-09-20 | Baxa Corporation | Automated medical liquid filling system and method |
US20070267275A1 (en) * | 2006-05-19 | 2007-11-22 | Nobuhiro Narumi | Abrasion sensing type conveyor chain and a method of judging degree of its abrasion |
US20100071830A1 (en) * | 2006-09-02 | 2010-03-25 | Frank Putzer | Method of labeling bottles and containers in a bottle or container filling plant, and a bottle or container labeling arrangement therefor |
US20100110197A1 (en) * | 2008-10-31 | 2010-05-06 | Krones Ag | Method for testing a monitoring device of an automatic labeling machine for correct functioning |
US7814734B2 (en) * | 2005-08-19 | 2010-10-19 | Ranpak Corp. | Packaging system and method for closed container detection |
US20100324723A1 (en) * | 2008-02-11 | 2010-12-23 | Krones Ag | Handling installation, in particular for containers, with a retroactive correction capability |
US20110049387A1 (en) * | 2009-09-02 | 2011-03-03 | Krones Ag | Handling of containers with dirt detection |
US20110061347A1 (en) * | 2009-09-11 | 2011-03-17 | Christian Stoiber | Container treatment plant and a container treatment method for the treatment of containers capable of being filled with a product |
US20110140010A1 (en) * | 2006-05-22 | 2011-06-16 | Peter Jensen Akkerman | Method and Device for Detecting an Undesirable Object or Flaw |
US20110146880A1 (en) * | 2008-10-17 | 2011-06-23 | Khs Gmbh | Method and device for equipping containers |
US20110308204A1 (en) * | 2008-12-31 | 2011-12-22 | Storopack Hans Reichenecker Gmbh | Apparatus for Dispensing and Inserting Packaging Material in Containers and Method Therefore |
US20120085071A1 (en) * | 2010-10-07 | 2012-04-12 | Krones Ag | Method of treating at least one container in a container treatment plant |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20020550A1 (en) * | 2002-08-29 | 2004-02-29 | Azionaria Costruzioni Acma Spa | METHOD AND MACHINE FOR THE LABELING OF A SUCCESSION |
DE102005050902A1 (en) * | 2005-10-21 | 2007-05-03 | Khs Ag | Device for aligning containers and labeling machine with such a device |
DE102006062536A1 (en) | 2006-12-29 | 2008-07-03 | Krones Ag | Container e.g. plastic bottle, filling device, has measuring device provided downstream concerning closing device for determining characteristic variable for geometrical form of container |
DE202009018193U1 (en) * | 2009-09-30 | 2011-04-21 | Khs Gmbh | Device for treating packaging |
-
2011
- 2011-10-07 DE DE102011084135A patent/DE102011084135A1/en not_active Withdrawn
-
2012
- 2012-07-20 CN CN201280049294.6A patent/CN103930350B/en active Active
- 2012-07-20 US US14/348,764 patent/US20140237944A1/en not_active Abandoned
- 2012-07-20 WO PCT/EP2012/064315 patent/WO2013050186A1/en active Application Filing
- 2012-07-20 EP EP12743112.0A patent/EP2763904B1/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591462A (en) * | 1994-11-21 | 1997-01-07 | Pressco Technology, Inc. | Bottle inspection along molder transport path |
US20060037706A1 (en) * | 2004-08-21 | 2006-02-23 | Frank Putzer | Beverage bottle labeling apparatus configured to label beverage bottles in a beverage bottling plant |
US7814734B2 (en) * | 2005-08-19 | 2010-10-19 | Ranpak Corp. | Packaging system and method for closed container detection |
US20070215235A1 (en) * | 2005-12-02 | 2007-09-20 | Baxa Corporation | Automated medical liquid filling system and method |
US20070267275A1 (en) * | 2006-05-19 | 2007-11-22 | Nobuhiro Narumi | Abrasion sensing type conveyor chain and a method of judging degree of its abrasion |
US20110140010A1 (en) * | 2006-05-22 | 2011-06-16 | Peter Jensen Akkerman | Method and Device for Detecting an Undesirable Object or Flaw |
US20100071830A1 (en) * | 2006-09-02 | 2010-03-25 | Frank Putzer | Method of labeling bottles and containers in a bottle or container filling plant, and a bottle or container labeling arrangement therefor |
US20100324723A1 (en) * | 2008-02-11 | 2010-12-23 | Krones Ag | Handling installation, in particular for containers, with a retroactive correction capability |
US20110146880A1 (en) * | 2008-10-17 | 2011-06-23 | Khs Gmbh | Method and device for equipping containers |
US20100110197A1 (en) * | 2008-10-31 | 2010-05-06 | Krones Ag | Method for testing a monitoring device of an automatic labeling machine for correct functioning |
US20110308204A1 (en) * | 2008-12-31 | 2011-12-22 | Storopack Hans Reichenecker Gmbh | Apparatus for Dispensing and Inserting Packaging Material in Containers and Method Therefore |
US20110049387A1 (en) * | 2009-09-02 | 2011-03-03 | Krones Ag | Handling of containers with dirt detection |
US20110061347A1 (en) * | 2009-09-11 | 2011-03-17 | Christian Stoiber | Container treatment plant and a container treatment method for the treatment of containers capable of being filled with a product |
US20120085071A1 (en) * | 2010-10-07 | 2012-04-12 | Krones Ag | Method of treating at least one container in a container treatment plant |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017042234A1 (en) * | 2015-09-07 | 2017-03-16 | Krones Ag | Apparatus and method for processing containers having querying processing devices |
US10795339B2 (en) | 2015-09-07 | 2020-10-06 | Krones Ag | Apparatus and method for processing containers having querying processing devices |
US11104465B2 (en) * | 2016-06-28 | 2021-08-31 | Krones Ag | Installation for the treatment of containers, and method for packaging filled containers |
WO2019048051A1 (en) * | 2017-09-08 | 2019-03-14 | Sidel Participations | System and method for automated adjustment of a container filling machine |
US11338496B2 (en) | 2017-09-10 | 2022-05-24 | Khs Gmbh | Method and device for producing containers from thermoplastic material |
US10508012B2 (en) * | 2018-02-09 | 2019-12-17 | PSR Automation Inc. | Universal synchronized capping machine |
Also Published As
Publication number | Publication date |
---|---|
EP2763904B1 (en) | 2017-03-08 |
CN103930350B (en) | 2016-04-27 |
DE102011084135A1 (en) | 2013-04-11 |
WO2013050186A1 (en) | 2013-04-11 |
EP2763904A1 (en) | 2014-08-13 |
CN103930350A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140237944A1 (en) | Method and device for operating a system for treating containers | |
CN102030119B (en) | Container treatment plant and container treatment method | |
US9375878B2 (en) | Method and apparatus for operating a plant for the treatment of containers with superordinated choice of parameters | |
US10489263B2 (en) | Method for operating a container treatment system with fault diagnosis | |
CN105229698B (en) | For monitoring and controlling the method and apparatus for carrying out the method for bulking system | |
US20120222387A1 (en) | Method and plant for filling bottles or containers with continuous calibration | |
US9120328B2 (en) | Marking device for marking containers, container handling device and a method for marking containers | |
US20190210813A1 (en) | Transport device and method for controlling and monitoring the elongation of a transport device | |
CN103562122B (en) | Container volume control unit at upstream of filling level control unit | |
US10981688B2 (en) | Weight marking monitoring for packages | |
US20130025243A1 (en) | Method for cutting packages | |
CN103998344A (en) | Cigarette package coding system and associated method | |
CN111051225B (en) | Apparatus and method for orienting a cluster | |
JP4832607B1 (en) | Filling equipment | |
CN104114983A (en) | Device for providing consumable material | |
CN102781813A (en) | Monitoring device for container processing systems | |
CN110116834A (en) | Method in packing machine for automatically controlling thin-film network feeding | |
CN212314769U (en) | Container treatment apparatus | |
CN107176417B (en) | Device for transporting packaging elements, in particular bottles or cups | |
CN215946717U (en) | Detection control system for filling machine | |
US11679942B2 (en) | Method and apparatus for transferring items from and to a transport line | |
CN104816935B (en) | It is automatic to adjust escapement and its adjust partitioning method | |
CN219688248U (en) | Raw material formula stereoscopic warehouse system based on tobacco leaf moisture sequencing | |
CN107176431A (en) | Device for conveying and packaging device, especially bottle or cup | |
US20240228178A9 (en) | Apparatus for transporting containers with sensor for position monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KRONES AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAHN, WOLFGANG;REEL/FRAME:032750/0667 Effective date: 20140408 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |