US20140203349A1 - Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure - Google Patents

Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure Download PDF

Info

Publication number
US20140203349A1
US20140203349A1 US14/138,167 US201314138167A US2014203349A1 US 20140203349 A1 US20140203349 A1 US 20140203349A1 US 201314138167 A US201314138167 A US 201314138167A US 2014203349 A1 US2014203349 A1 US 2014203349A1
Authority
US
United States
Prior art keywords
area
voltage
semiconductor
conductivity type
trench structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/138,167
Inventor
Frank Pfirsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority to US14/138,167 priority Critical patent/US20140203349A1/en
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PFIRSCH, FRANK
Publication of US20140203349A1 publication Critical patent/US20140203349A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the invention relates to a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and having a trench structure, and to a method for its production.
  • the maximum donor concentration [N D ] in an n ⁇ -region and hence also the electrical conductivity of the n ⁇ -region is governed by the required blocking capability, and vice versa.
  • the approximately 1.5 ⁇ 10 12 cm ⁇ 2 donors are ionized, and find their opposite charge in the acceptor charge of the p-conductive region of the MOSFET structure, if the aim is to allow a higher donor concentration, then opposite charges for the donor atoms in the n ⁇ -region must be found, for example in the same conductor plane.
  • MOS field plate transistors with a trench structure as are known from the document U.S. Pat. No.
  • n ⁇ -region or p ⁇ -region is understood as meaning an area of a semiconductor component which is lightly doped and has an impurity concentration [N D ] or [N A ] below
  • this area can also be extended up to 1 ⁇ 10 17 cm ⁇ 3 .
  • the expression an n-region or p-region means an area of a semiconductor component with medium doping and having an impurity concentration between 5 ⁇ 10 15 cm ⁇ 3 ⁇ [N D ] and [N A ] ⁇ 1 ⁇ 10 18 cm ⁇ 3 , respectively.
  • n + -region or p + -region means an area of a semiconductor component which is heavily doped and has an impurity concentration above 1 ⁇ 10 18 cm ⁇ 3 ⁇ [N D ] and [N A ], respectively.
  • Semiconductor devices with a trench structure are also known from the documents U.S. Pat. No. 4,893,160 and U.S. Pat. No. 5,262,018. In these trench structures, avalanche breakdowns in the lightly doped epitaxial area between a gate arrangement in the trench structure and a drain area with a heavily doped substrate are avoided by means of medium to heavily doped zones in the area of the trench bases. Further semiconductor devices with a trench structure are known from the document U.S. Pat. No. 6,608,350 B2.
  • trench structures such as these can be used to produce a high-voltage transistor with a low forward resistance on an n + -conductive semiconductor substrate with a lightly doped semiconductor body area on the n + -conductive semiconductor substrate, by defusing compensation regions out of the trench structure into the lightly doped semiconductor body area.
  • the trench can be filled with a dielectric or with a highly resistive material, as is also described in DE 19848828 C2.
  • the above forward resistance R on ⁇ A and the breakdown voltage of a high-voltage-resistant semiconductor component for a power transistor are linked by the doping and length and the thickness of a drift path, that is to say of the lightly doped n ⁇ -region which mainly provides the blocking voltage.
  • High doping and a short drift path mean a low forward resistance, but also a low breakdown voltage.
  • light doping and a long drift path are required for a high breakdown voltage, which results in a high forward resistance R on ⁇ A.
  • German Patent Application DE 10 2004 007 197.7 describes a semiconductor device in which significantly higher drift path doping is made possible by means of layers which are arranged parallel to the drift path and are composed of a material with a high dielectric constant, which is referred to in the following text as a high-k material (high dielectric constant material), thus resulting in a considerably lower forward resistance.
  • a high-k material high dielectric constant material
  • a transition from a material with a high dielectric constant to a material with a low dielectric constant such as silicon is located on the lower face of the high-k material layers. This is associated with a corresponding sudden change in the normal component of the electrical field strength E, because this field component is described by:
  • ⁇ hk is the high dielectric constant of the trench material or of the high-k material
  • E hk is the field strength at the boundary surface in the material with the high dielectric constant
  • ⁇ Si is the dielectric constant of the silicon
  • E Si is the field strength in the adjacent silicon.
  • the field strength E hk in the high-k region typically in its own right amounts to half the breakdown field strength of the semiconductor material
  • the field strength E Si in the semiconductor located underneath this also rises, with a relative dielectric constant of the high-k region of even only 50 to well above the breakdown field strength of the silicon as the semiconductor material, so that the desired blocking capability cannot be achieved in the proposed structures unless the region which is filled with a high-k material, or the filled trench, achieves the transition to the heavily doped n + -region of the heavily doped substrate very precisely, which is technologically scarcely feasible, but has been found to be disadvantageous in the previous technology.
  • high-voltage-resistant semiconductor components are therefore subject to the problem that the high-k region must end as precisely as possible at a heavily doped region of the semiconductor substrate, which, in technological terms, is an object which can be achieved only with difficulty, not least because the trench structures for the high-k regions are incorporated using technologies such as laser ablation or plasma etching, which are not suitable for the removal of material being stopped between lightly doped epitaxial layer areas and heavily doped substrate areas.
  • One objective of the invention is to reduce as much as possible the field strength peaks at the trench base of a high-k region, which disadvantageously reduce the breakdown withstand voltage of power semiconductor components in the prior art, despite the trench structures being incorporated less accurately in a semiconductor epitaxial layer.
  • another object of the invention is to improve the breakdown withstand voltage for semiconductor components such as these.
  • the invention specifies a high-voltage-resistant semiconductor component having vertically conductive, lightly doped semiconductor body areas as drift path regions of a first conductivity type, and having a trench structure on its upper face.
  • the trench structure at least partially surrounds the vertically conductive lightly doped semiconductor body areas, and has a base area and a wall area.
  • the trench structure is filled with a material with a high relative dielectric constant, a so-called “high-k material”, with the base area of the trench structure having a heavily doped semiconductor material of the same conductivity type as the lightly doped semiconductor body areas, and/or having a metallically conductive material.
  • This semiconductor component has the advantage that the heavily doped semiconductor material of the same conductivity type as the lightly doped semiconductor body areas and the metallically conductive material in the base area of the trench structure make it possible to reduce field strength peaks such as those which occur when the heavily doped n + -semi conductor region of the substrate is not reached, within a very short distance of a few nanometers in this n + -conductive base area or metallic base area.
  • the introduction of the trench structures is interrupted even before the heavily doped substrate is reached, and the layer according to the invention is introduced in the base area of the trench structure.
  • These high-voltage-resistant semiconductor components furthermore have the advantage that the waste during manufacture is considerably reduced, not least because a wider tolerance band is now possible for the depth of the trench structure in the lightly doped epitaxial layer of the semiconductor structure.
  • the range of depth scatter above a semiconductor wafer is also in consequence therefore no longer as critical as in the case of the semiconductor structures which are known from the Patent Application DE 10 2004 007 197.7.
  • the lightly doped semiconductor body areas are arranged in the form of plates alternately with corresponding trench structures in the form of plates on the upper face of the semiconductor component.
  • the trench structures which are in the form of plates are formed from the high-k material.
  • the width of the trench structures which are in the form of plates or the width of the lightly doped semiconductor body areas governs the blocking capability of the semiconductor components. If a critical width of the lightly doped semiconductor body areas which are in the form of plates is exceeded, then complete blocking of the n ⁇ -conductive drift zone is not ensured.
  • the lightly doped semiconductor body areas are arranged in the form of columns with a circular, square or other polygonal, preferably hexagonal, cross section on the upper face of the semiconductor component and are surrounded by the trench structure:
  • the trench structure is introduced by means of laser ablation or by means of plasma etching. Both methods can represent an anisotropic process or anisotropic etching, with the material removal rate or the etching rate in the direction of the depth of the trench structure being considerably greater than the removal rate from the side wall structures of the trenches.
  • the wall area of the trench structure in one further preferred embodiment of the invention has an isolation layer as a protective layer, with the isolation layer having an oxide or a nitride from the group of insulating materials such as SiO 2 , Si 3 N 4 , TiO 2 , HfO 2 , Ta 2 O 5 , Al 2 O 3 or AlN, or mixtures thereof.
  • An insulating wall structure such as this- can at the same time protect the walls during the filling of the trench structure, in particular during the introduction of heavily doped semiconductor material or metallically conductive material into the base area of the trench structure.
  • the protective layers which have been mentioned above and are composed of oxides or nitrides can act as etching stop layers.
  • the wall area of the trench structure with a-wall layer composed of semiconductor material, of the opposite conductivity type to the first conductivity type of the lightly doped area. This creates a space charge zone, which improves the breakdown strength of the semiconductor device.
  • the base area of the trench structure as a heavily doped semiconductor material, has a material whose impurity concentration is
  • ⁇ r is the relative dielectric constant
  • ⁇ 0 is the absolute dielectric constant of a vacuum
  • E crit is the critical field strength
  • E g is the band gap of the semiconductor material.
  • the base area of the trench structure preferably has a crystalline silicon, polysilicon or silicon carbide with an impurity concentration of
  • This heavy doping makes it possible to reduce the voltage peaks which would otherwise occur in the base area and to improve the breakdown withstand voltage of the component in such a way that no avalanche affect can occur.
  • Silicides preferably tungsten or cobalt silicide, have been proven as metallically conductive materials in the base area. Silicides such as these are not only metallically conductive but are also temperature-resistant, so that high power losses do not adversely affect the functionality of the metallically conductive materials arranged in the base area.
  • metals including titanium, hafnium, tantalum or alloys thereof are used as the metallically conductive materials. These materials cannot, however, be subject to indefinitely high temperature loads.
  • nitrides of titanium, hafnium or zirconium are also possible to use conductive layers in the base area of the trench structure, which are themselves electrically conductive and likewise have good temperature resistance.
  • a highly conductive or metallic contact can be arranged on the upper face of the filled trench structure, and is electrically connected to a source electrode of a high-voltage-resistant MOS power transistor or to an emitter diode of a high-voltage-resistant IGBT power transistor.
  • An embodiment of the invention such as this has the advantage that the upper face of the trench structure, in particular of the high-k material, is at the same potential as the source electrode and the emitter electrode.
  • the contact can alternatively also be connected to another fixed potential or to the gate electrode. It is possible for the lightly doped semiconductor body areas to have different gate structures on their upper faces.
  • a gate structure is arranged planar and flat on the semiconductor body area
  • a gate structure can also be buried vertically in the upper face of the lightly doped semiconductor body area, and leads to a vertical gate channel which requires less surface area than that which can be achieved by a planar or flat gate structure.
  • the vertical gate can be arranged in the same trench as the high-k material.
  • a further aspect of the present invention relates to a semiconductor device having a semiconductor component based on the structure described above.
  • this semiconductor device has a Schottky diode material.
  • the trench structure which is filled with a high-k material surrounds semiconductor body areas of a lightly doped semiconductor body area of a first conductivity type, which has the Schottky diode structure on its upper face.
  • a layer of heavily doped semiconductor material or a metal layer is arranged in the base area of the trench structure.
  • the lightly doped semiconductor body area of the first conductivity type is arranged on a heavily doped substrate of the same conductivity type.
  • the upper faces of the semiconductor body areas have a metal coating of a Schottky contact material, which forms an individual electrode of a Schottky diode.
  • the individual electrodes of the plurality of semiconductor body areas are electrically connected in parallel to form an overall electrode, while the opposite electrode is formed by the heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area.
  • the heavily doped substrate has a metal coating, which forms the opposite electrode, on its rear face.
  • this semiconductor device has a high-voltage-resistant PIN or NIP diode structure.
  • This high-voltage-resistant diode structure has a trench structure which is filled with a high-k material and has a layer composed of heavily doped semiconductor material or a metal layer in the base area of the trench structure, in order to ensure the resistance to high voltage.
  • the trench structure surrounds a lightly doped semiconductor body area of a first conductivity type. This semiconductor body area is arranged on a heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area.
  • the filled trench structure surrounds a plurality of semiconductor body areas of the lightly doped semiconductor body area and the upper face areas of the semiconductor body areas have a medium to heavily doped diffusion zone of the opposite conductivity type, which is coated with an individual metal electrode.
  • the plurality of individual metal electrodes in the semiconductor body areas are electrically connected in parallel to form an overall electrode, and are electrically connected to the filled trench structure on the upper face of the semiconductor body area.
  • the opposite electrode of the high-voltage-resistant PIN or NIP diode is formed by a heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area.
  • the lower face of the semiconductor device has a metal layer which is conductively connected to the heavily doped substrate, and forms an opposite electrode for the upper face of the semiconductor device.
  • the trench structure is composed of a high-k material, which surrounds a lightly doped semiconductor body area of a first conductivity type. This lightly doped semiconductor body area is arranged on a heavily doped semiconductor substrate, which is of the same conductivity type as the lightly doped epitaxial layer with the trench structure.
  • the upper face areas of the semiconductor body areas are equipped with an MOS structure with individual source electrodes and individual gate electrodes.
  • a medium to heavily doped impurity zone of the opposite conductivity type is provided for the semiconductor body areas in the surface area, and forms a gate channel area towards the edge area of the semiconductor body area.
  • the impurity zone has a source electrode, and the plurality of source electrodes in the semiconductor body areas are electrically connected in parallel to form a common source electrode, and are electrically connected to the trench structure.
  • the gate channel area of the medium to heavily doped region in the edge area of the semiconductor body areas is covered by a gate oxide.
  • a gate electrode is arranged on the gate oxide, with the plurality of individual gate electrodes in the semiconductor body areas being interconnected to form a common gate electrode above the upper face of the lightly doped semiconductor body area.
  • the heavily doped substrate material which is of the same conductivity type as the lightly doped semiconductor body area, has a metal coating on its lower face, and this is used as a large-area drain electrode.
  • An MOS power structure such as this has the advantage (when a metallically conductive or heavily doped material is arranged in the trench structure with the high-k material in the base area) that the field strength peaks in the lightly doped semiconductor body area, adjacent to the base area of the trench structure which is filled with the high-k material, are reduced, and the full breakdown withstand voltage can be achieved for devices such as these.
  • a semiconductor device with a high-voltage-resistant IGBT Insulated Gate Bipolar Transistor
  • the heavily doped substrate is of the opposite conductivity type to the lightly doped semiconductor body area.
  • This high-voltage-resistant IGBT is a bipolar transistor with an insulated gate connection.
  • the structure of this power transistor differs from the structure of a high-voltage-resistant MOS power transistor only in that the trench structure is embedded with a conductive layer on the trench base in a lightly doped semiconductor body area of one conductivity type, which is arranged on a heavily doped substrate of the opposite conductivity type.
  • the substrates of the components described above, such as the Schottky diode, the PIN diode, the MOSFET or the IGBT, can been made to be virtually indefinitely thin.
  • a method for production of a plurality of semiconductor chips from a semiconductor wafer which has semiconductor chip positions arranged in rows and columns is described by the following method steps.
  • a lightly doped semiconductor wafer of a first conductivity type or an epitaxial layer which is lightly doped with the first conductivity type and is deposited on a semiconductor wafer which is heavily doped with the first conductivity type is produced.
  • Trench structures with a base and a wall area are then introduced into the lightly doped surface area of the semiconductor chip positions on the semiconductor wafer.
  • heavy doping of the same conductivity type as the lightly doped areas can be introduced into the base area of the trench structure, or a metallically conductive coating is introduced in the base area of the trench structure.
  • the trench structure is then filled with a high-k material.
  • the advantage of this method is that the introduction of heavy doping or of a metallically conductive coating on the base of the trench structure decreases the field strength peaks which can occur either at the side or underneath the trench structure at the transition between the trench structure and a lightly doped semiconductor region, by means of the metallically conductive or heavily doped layer on the base of the trench, so that the full theoretically feasible breakdown voltage over the drift path then becomes possible.
  • the base area of the trench structure can be doped by means of a directed ion implantation technique.
  • the upper face of the semiconductor component is protected by a photoresist layer except for the trench structure itself, and the ion beams do not pass through this photoresist layer. If the ion beams are aligned orthogonally with respect to the surface of the semiconductor wafer, it is possible to achieve very precise doping of the base area of the semiconductor wafer.
  • they can be covered in advance with an oxide layer or nitride layer of silicon or aluminum. Tantalum oxides and hafnium oxides can also be used to protect the side walls against the ingress of the dopant.
  • the thin layer loaded with dopant can be removed by isotropic etching.
  • Physical methods such as sputtering, vapor deposition or chemical methods such as chemical gas-phase deposition or electrolytic deposition are advantageously used for application of a metallically conductive layer in the area of the trench base, preferably composed of a silicide such as tungsten silicide and/or cobalt silicide.
  • a metallically conductive layer in the area of the trench base, preferably composed of a silicide such as tungsten silicide and/or cobalt silicide.
  • manufacturing steps are carried out to produce functional semiconductor chips on the semiconductor wafer, and the semiconductor wafer is then cut up into individual semiconductor chips. Once the semiconductor chips have been manufactured, these chips are processed to form corresponding high-voltage-resistant semiconductor devices, based on the device variants described above.
  • a heavily doped or metallically conductive region in the base area of the trench structure makes it possible to reduce the high field strength peaks at the transition from the high-k material to a lightly doped semiconductor body area over a very short distance.
  • a field of 10 6 V/cm. in silicon with a doping of 10 19 cm ⁇ 3 is dissipated over a distance of only 6 nm.
  • a voltage of only just 0.3 V is dropped across, this distance, so that the charge carriers cannot absorb sufficient energy in this case to generate new charge carriers by impact ionization. No avalanches are thus generated so that the breakdown voltage remains uninfluenced by the high field strength peak which occurs in this area.
  • the doping were to be only 10 16 cm ⁇ 3 , then the breakdown voltage would in contrast fall from 600 V to only 200 V, which is associated with a high field strength peak in the transition area, which could lead to an avalanche breakdown.
  • the invention advantageously means that the electrical field underneath the high-k regions is dissipated over short distances by heavily doped material or by metallic material.
  • the invention advantageously means that the trench structure is self-adjusting, and a heavily doped coating or metallic coating can be introduced very easily in the depth of the high-k region in this case.
  • FIG. 1 shows the principle of the profile of the electrical field strength E in a high-voltage-resistant semiconductor component with a filled trench structure in a lightly doped semiconductor body area without any buried conductive layers according to the invention in the trench base area, as a function of the vertical position coordinate d.
  • FIG. 2 shows the principle of the profile of the electrical field strength E in a high-voltage-resistant semiconductor component with a filled trench structure with a trench base area which is arranged within a heavily doped semiconductor substrate area (without the conductive layer according to the invention in the trench base area), as a function of the vertical position coordinate d.
  • FIG. 3 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a first embodiment of the invention.
  • FIG. 4 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a second embodiment of the invention.
  • FIG. 5 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a third embodiment of the invention.
  • FIG. 6 shows a schematic cross section through a high-voltage-resistant semiconductor component with a vertical MOS channel area and a filled trench structure according to a fourth embodiment of the invention.
  • FIG. 7 which includes FIGS. 7A-7C , illustrates a top view of a high-voltage-resistant semiconductor component having differently shaped cross sections on the upper face of the semiconductor component according to an embodiment of the invention.
  • FIG. 1 shows the principle of the profile of the electrical field strength E as a function of the vertical position coordinate d in a high-voltage-resistant semiconductor component 1 with a filled trench structure 5 , whose trench base area 7 is arranged in a lightly doped semiconductor body area 17 .
  • the trench structure 5 is filled with a material 9 with a high relative dielectric constant ⁇ r This structure does not yet have the conductive buried layer according to the invention in the trench base area 7 .
  • the field strength B is initially at its highest on the upper face 14 of the trench structure 5 , with E o , and decreases to E s towards the base area 7 of the trench structure 5 .
  • a field strength peak E s is formed within the buffer layer 26 at the transition from the base area 7 to the lightly doped semiconductor body area 17 , before then being completely dissipated in the heavily doped substrate area 18 .
  • This field strength peak E s in the buffer layer 26 can lead to avalanche effects, thus reducing the breakdown voltage of the semiconductor component 1 , and hence the breakdown withstand voltage of the semiconductor chip, and hence also of the power unit.
  • This field strength peak E s is suppressed only if the trench structure extends with its base area 7 to the area of the heavily doped substrate 18 . However, if the trench structure is continued deeper than to the heavily doped substrate area 18 , then field strength peaks which reduce the breakdown voltage are also formed there. This is illustrated in the next FIG., FIG. 2 .
  • FIG. 2 shows the principle of the profile of the electrical field strength E as a function of the vertical position coordinate d in a high-voltage-resistant semiconductor component 1 with a filled trench structure 5 , whose trench base area 7 is arranged within a heavily doped substrate area 18 (without the conductive buried layer according to the invention in the trench area).
  • the high field strength E o on the upper face 14 of the trench structure 5 initially decreases as the depth d of the trench structure increases, but now forms a field strength peak ED around the trench structure to the adjacent lightly doped semiconductor body area 17 at the transition to the substrate doping. This therefore results in the requirement that the introduction of the trench structure is extremely critical with respect to the trench depth do both in the situation in FIG.
  • FIG. 3 shows a schematic cross section through a semiconductor component 1 of a high-voltage-resistant semiconductor device 20 with a filled trench structure 5 according to a first embodiment of the invention.
  • the trench structure 5 still ends before the heavily doped substrate area 18 , and has a heavily doped semiconductor material layer 11 in its base area 7 .
  • This heavily doped semiconductor material layer 11 dissipates the field strength peak, which is still present in FIG. 1 , within the heavily doped layer area 11 , thus preventing any avalanche breakdown.
  • this semiconductor component it is thus possible to use this semiconductor component to provide a high-voltage-resistant MOS power transistor with a planar gate arrangement without the trench structure having to reach the heavily doped substrate area 18 . This considerably widens the previously narrow manufacturing tolerances relating to the trench depth.
  • This high-voltage-resistant . semiconductor component 1 of which only two MOS semiconductor body areas 10 are shown, has a high-k material as the filling in the trench structure. This high-k material bounds individual MOS semiconductor body areas 10 of width b of a lightly doped semiconductor body area 17 .
  • the lightly doped semiconductor body area 17 is formed by an n ⁇ -region.
  • An MOS structure which in this embodiment forms two channel areas 21 is arranged on the upper face 6 of the semiconductor component, and thus on the upper face 16 of the semiconductor body area 10 , with a gate oxide 23 being arranged between the gate electrode G 1 and the upper face 16 of the semiconductor body area.
  • the channel area, with its channel length a, is formed by a medium-doped p-region 21 , which has been diffused from the upper face 16 of the semiconductor body area 10 and is bounded on one side by a heavily doped n + -region.
  • the other boundary of the channel length a is formed by the lightly doped semiconductor body area 17 .
  • the individual source electrodes S 1 make contact with the trench structure at the same time via a metallic contact 15 and are connected to one another via a common source electrode S G .
  • the individual gate electrodes G 1 are also connected in parallel by a common gate electrode, which is not shown in this illustration. While the channel region 21 is produced by diffusion of impurities into the lightly doped semiconductor body area 17 from the upper face 16 of the semiconductor body area 10 , the source region is produced by n + -doping by ion implantation and subsequent recrystallization, with the polysilicon gate electrode G 1 forming the masking.
  • the channel length a is in this case achieved by means of a planar technology and thus cannot be indefinitely reduced in size.
  • the entire structure comprising the buried layers and the lightly doped semiconductor body area 17 is introduced into a lightly doped epitaxial layer 25 .
  • Widely differing techniques such as laser ablation and/or plasma etching can be used to produce the trench structure.
  • photoresist techniques and diffusion methods as well as implantation methods are used for the structuring of the surface of each semiconductor body area 10 .
  • the filling of the trenches with a high-k material can also be modified by introducing a film capacitor into the trenches, instead of a homogeneous high-k material.
  • a heavily doped semiconductor area 11 is in this embodiment incorporated in the base area 7 of the trench structure 5 in order to reduce field strength peaks.
  • the introduction of this heavily doped base area into the trench structure can likewise be carried out by ion implantation, to be precise at the same time as the doping of the n + -source regions, provided that the trench structure has been incorporated in advance.
  • the wall faces 8 can be covered by a protective layer before the heavy doping is introduced into the trench base area 7 .
  • n + -substrate is covered on the lower face 24 by a metal coating 19 , which forms the drain electrode of the MOS power transistor structure 22 .
  • FIG. 4 shows a schematic cross section through a high-voltage-resistant semiconductor component 2 based on a second embodiment of the invention, with a filled trench structure 5 , whose trench base 7 is arranged in a lightly doped semiconductor area 17 , and is provided with a buried layer 11 according to the invention, in the trench base area 7 .
  • Components with the same functions as those in FIG. 3 are identified by the same reference symbols, and will not be explained again.
  • the difference from the embodiment shown in FIG. 3 is that the heavily doped layer 11 has been incorporated deep in the trench base area 7 in such a way that it extends as far as the heavily doped substrate area 18 .
  • this embodiment of the invention reduces or avoids any field strength peaks in the transitional area from the base area 7 to the heavily doped substrate area 18 .
  • the level of the n + -doping under the high-k region of the trench structure 5 should be at least 10 18 cm ⁇ 3 , preferably at least 1019 cm ⁇ 3 , for silicon. In general, the minimum n + -doping level is governed by the semiconductor characteristics, on the basis of the quotient:
  • E g is the band gap of the semiconductor material
  • E crit is the breakdown field strength for a doping level of 10 16 cm ⁇ 3
  • ⁇ R is the relative dielectric constant of the semiconductor
  • ⁇ 0 is the absolute dielectric constant of a vacuum.
  • E crit for silicon is about 4 ⁇ 10 5 V/cm
  • E g is 1.1 eV
  • ⁇ r is 11.7. This results in the value of at least 10 18 cm ⁇ 3 , as already required above, for the concentration of impurities in the heavily doped n + -region in the base area 7 of the trench structure 5 .
  • Suitable semiconductor materials for such components include not only silicon but also silicon carbide and other, preferably III-V, semiconductor materials. As shown in FIG. 4 here, it is normally possible for these heavily doped areas of the trench base 7 to extend as far as the heavily doped substrate material 18 . On the other hand, the field strength peaks are likewise decreased when the heavily doped material in the trench base area 7 does not extend as far as the heavily doped substrate 18 . High-voltage-resistant semiconductor devices such as these can thus be produced more easily and more reliably than by using conventional technology, in which the trench structures must exactly reach the boundary area to the heavily doped substrate 18 .
  • FIG. 5 shows a schematic cross section through a high-voltage-resistant semiconductor component 3 with a filled trench structure 5 based on a third embodiment of the invention.
  • the trench base 7 is arranged in a lightly doped semiconductor body area 17 , with the trench base 7 having a metallic coating 12 .
  • This metallic coating 12 in this embodiment of the invention is a silicide such as a tungsten silicide or cobalt silicide, which is introduced under the high-k region, with this layer 12 being used as the lower electrode of the high-k region and preventing the electrical field from entering the lightly doped semiconductor body area 17 located underneath it.
  • the layer 12 can also make direct contact with the heavily doped substrate material 18 .
  • FIG. 6 shows a schematic cross section through a high-voltage-resistant semiconductor component 4 based on a fourth embodiment of the invention with a vertical MOS channel area 27 and a trench structure 5 based on a fourth embodiment of the invention.
  • the trench structure surrounds a lightly doped semiconductor body area 17 with the trench base area 7 having a metallic layer 12 .
  • the MOS structure on the upper face 6 of the semiconductor component and on the upper face 16 differs considerably from the MOS structure as is known from the previous embodiments. Where components of the semiconductor component 4 have the same function as in the previous figures, they are identified by the same reference symbols, and will not be explained again.
  • Gate electrodes G 1 and individual source electrodes S 1 are arranged alternately alongside one another on the upper face 6 of the semiconductor component 4 , with the source electrodes S 1 making contact with a source region with n + -doping. This is then followed, staggered in the depth direction, by a heavily doped p + -zone, which surrounds the source electrode S 1 .
  • This p + -region is followed by a medium-doped channel zone 21 of the conductivity type p, which is controlled by a vertically arranged gate G 1 ;
  • The- channel length a in this embodiment of the invention is arranged vertically and thus has a very small size, which makes the switching speed of the devices higher than that of the planar-arranged gate structures. This is because the channel length a corresponds to the diffusion depth of the p-regions.
  • the gate function is provided with the aid of gate electrodes G 1 and a gate oxide 23 in the vertical direction, together with the trench structure 5 for a material with a high relative dielectric constant ⁇ r , by first of all producing the trench structure and by then applying the gate oxide 23 to the walls 8 of the trench structure as an isolation layer 13 at this time.
  • the metallic layer 12 composed of silicides can be incorporated in the base area 7 in order to reduce field strength peaks.
  • the high-k material is then incorporated above this metallic layer 12 in the trench base area 7 , and is likewise sealed by an upper electrode 28 on the upper face 14 of the high-k material.
  • the side boundary formed by the gate oxide at the same time provides protection against metallic short circuits in the wall area 8 .
  • This upper electrode 28 is covered by an oxide, and the remainder is filled with a gate electrode G 1 , up to the upper face 6 of the semiconductor component 4 .
  • this gate oxide 23 can also be introduced into the upper area of the trench structure 5 shortly before the introduction of the gate electrode metal.
  • the advantage of this semiconductor device is not just that the field strength peaks are decreased by the metallic layer 12 , but also that the trench structure 5 is at the same time used to represent a vertical channel region. This has considerable manufacturing advantages, and short channel lengths a can also be achieved as a result of the shallow diffusion depth of the channel region p.
  • the overlap between the n + -source region and the metallic gate electrode G 1 is small and is restricted just to the depth of the n + -source regions, which has a thickness of only a few tens of nanometers, which cannot be achieved with planar structuring of channel lengths, despite ion implantation and self-masking, by the conductive gate material, as disclosed in the other embodiments.
  • the gate structure requires only a very small surface area.
  • the heavily doped p + -region which surrounds the source metal of the source electrode S 1 is introduced in order to avoid a Schottky effect at the metal transition between the source electrode S 1 and the channel area 21 , and thus to ensure a low contact resistance as well as high hole conductivity.
  • the drain electrode of this MOS power transistor is provided by metallization on the lower face of the semiconductor component, so that the n + -substrate 18 forms a drain electrode D g , which is shared by all the MOS body areas 10 .
  • FIGS. 7A-7C illustrate that the lightly doped semiconductor body areas 17 can be arranged in the form of columns with a circular, square or other polygonal preferably

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

A high-voltage-resistant semiconductor component (1) has vertically conductive semiconductor areas (17) and a trench structure (5). These vertically conductive semiconductor areas are formed from semiconductor body areas (10) of a first conductivity type and are surrounded by a trench structure (5) on the upper face (6) of the semiconductor component. For this purpose the trench structure has a base (7) and a wall area (8) and is filled with a material (9) with a relatively high dielectric constant (εr). The base area (7) of the trench structure (5) is provided with a heavily doped semiconductor material (11) of the same conductivity type as the lightly doped semiconductor body areas (17), and/or having a metallically conductive material

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 11/234,585 filed 23 Sep. 2005, which in turn claims priority from German Patent Application No. 10 2004 046 697.1, which was filed on Sep. 24, 2004, both of said applications incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The invention relates to a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and having a trench structure, and to a method for its production.
  • BACKGROUND
  • In the case of conventional vertical MOSFETs, the maximum donor concentration [ND] in an n-region and hence also the electrical conductivity of the n-region is governed by the required blocking capability, and vice versa. In the event of an avalanche breakdown, the approximately 1.5×1012 cm−2 donors are ionized, and find their opposite charge in the acceptor charge of the p-conductive region of the MOSFET structure, if the aim is to allow a higher donor concentration, then opposite charges for the donor atoms in the n-region must be found, for example in the same conductor plane. In the case of MOS field plate transistors with a trench structure, as are known from the document U.S. Pat. No. 6,573,558 B2, this is achieved by means of the charge carriers in the field plate. In the case of compensation components, such as “CoolMOS”, which have n-regions and p-regions arranged alternatively in cells, this is achieved by means of acceptors in the p-regions as opposite charges.
  • In this context, the expression an n-region or p-region is understood as meaning an area of a semiconductor component which is lightly doped and has an impurity concentration [ND] or [NA] below
  • [ND] or[NA]≦5×10 cm−3, respectively where [ND] is the donor concentration and [NA]is the acceptor concentration. In compensation components and components according to the
  • present invention, this area can also be extended up to 1×1017 cm−3. The expression an n-region or p-region means an area of a semiconductor component with medium doping and having an impurity concentration between 5×1015 cm−3≦[ND] and [NA]≦1×1018 cm−3, respectively.
  • An n+-region or p+-region means an area of a semiconductor component which is heavily doped and has an impurity concentration above 1×1018 cm−3≦[ND] and [NA], respectively.
  • If the aim is to improve the electrical conductivity of an n-region in the case of compensation components, such as “CoolMOS”, further, then the compensation level must be set ever more accurately. This is now reaching the limits of technical feasibility. The MOS field plate transistors which are known from U.S. Pat. No. 6,573,558 B2 with a trench structure in contrast have the disadvantage that the entire reverse voltage is dropped at the drain-side end to the n-region, so that very thick isolation layers are required. A continuous load of 600 V would require SiO2 with a thickness of about 4-6 μm, thus leading to a relatively large structure grid and to considerable technological problems.
  • Semiconductor devices with a trench structure are also known from the documents U.S. Pat. No. 4,893,160 and U.S. Pat. No. 5,262,018. In these trench structures, avalanche breakdowns in the lightly doped epitaxial area between a gate arrangement in the trench structure and a drain area with a heavily doped substrate are avoided by means of medium to heavily doped zones in the area of the trench bases. Further semiconductor devices with a trench structure are known from the document U.S. Pat. No. 6,608,350 B2. Known trench structures such as these can be used to produce a high-voltage transistor with a low forward resistance on an n+-conductive semiconductor substrate with a lightly doped semiconductor body area on the n+-conductive semiconductor substrate, by defusing compensation regions out of the trench structure into the lightly doped semiconductor body area. The trench can be filled with a dielectric or with a highly resistive material, as is also described in DE 19848828 C2.
  • The above forward resistance Ron·A and the breakdown voltage of a high-voltage-resistant semiconductor component for a power transistor are linked by the doping and length and the thickness of a drift path, that is to say of the lightly doped n-region which mainly provides the blocking voltage. High doping and a short drift path mean a low forward resistance, but also a low breakdown voltage. Conversely, light doping and a long drift path are required for a high breakdown voltage, which results in a high forward resistance Ron·A.
  • The German Patent Application DE 10 2004 007 197.7 describes a semiconductor device in which significantly higher drift path doping is made possible by means of layers which are arranged parallel to the drift path and are composed of a material with a high dielectric constant, which is referred to in the following text as a high-k material (high dielectric constant material), thus resulting in a considerably lower forward resistance. With typical trench widths and widths of the n-region in the region of a few micrometers, forward resistance values Ron·A which are nowadays better than in the case of “CoolMOS” by a factor of at least 3 can be achieved for 600 V components. A transition from a material with a high dielectric constant to a material with a low dielectric constant such as silicon is located on the lower face of the high-k material layers. This is associated with a corresponding sudden change in the normal component of the electrical field strength E, because this field component is described by:

  • εhk EhkSi ESi,
  • where εhk is the high dielectric constant of the trench material or of the high-k material, Ehk is the field strength at the boundary surface in the material with the high dielectric constant, εSi is the dielectric constant of the silicon and ESi is the field strength in the adjacent silicon. Since the field strength Ehk in the high-k region typically in its own right amounts to half the breakdown field strength of the semiconductor material, the field strength ESi in the semiconductor located underneath this also rises, with a relative dielectric constant of the high-k region of even only 50 to well above the breakdown field strength of the silicon as the semiconductor material, so that the desired blocking capability cannot be achieved in the proposed structures unless the region which is filled with a high-k material, or the filled trench, achieves the transition to the heavily doped n+-region of the heavily doped substrate very precisely, which is technologically scarcely feasible, but has been found to be disadvantageous in the previous technology.
  • Another critical case of such high-voltage-resistant semiconductor component structures occurs when the high-k region extends too far into the heavily doped n+-semiconductor region of the substrate. This results in a field strength peak at the transition from the n-doped drift path to the heavily doped region, and this likewise reduces the blocking capability. These high-voltage-resistant semiconductor components are therefore subject to the problem that the high-k region must end as precisely as possible at a heavily doped region of the semiconductor substrate, which, in technological terms, is an object which can be achieved only with difficulty, not least because the trench structures for the high-k regions are incorporated using technologies such as laser ablation or plasma etching, which are not suitable for the removal of material being stopped between lightly doped epitaxial layer areas and heavily doped substrate areas.
  • SUMMARY
  • One objective of the invention is to reduce as much as possible the field strength peaks at the trench base of a high-k region, which disadvantageously reduce the breakdown withstand voltage of power semiconductor components in the prior art, despite the trench structures being incorporated less accurately in a semiconductor epitaxial layer. At the same time, another object of the invention is to improve the breakdown withstand voltage for semiconductor components such as these.
  • This object is achieved by the independent claims. Advantageous developments of the invention are specified in the dependent claims.
  • The invention specifies a high-voltage-resistant semiconductor component having vertically conductive, lightly doped semiconductor body areas as drift path regions of a first conductivity type, and having a trench structure on its upper face. In this case, the trench structure at least partially surrounds the vertically conductive lightly doped semiconductor body areas, and has a base area and a wall area. The trench structure is filled with a material with a high relative dielectric constant, a so-called “high-k material”, with the base area of the trench structure having a heavily doped semiconductor material of the same conductivity type as the lightly doped semiconductor body areas, and/or having a metallically conductive material.
  • This semiconductor component has the advantage that the heavily doped semiconductor material of the same conductivity type as the lightly doped semiconductor body areas and the metallically conductive material in the base area of the trench structure make it possible to reduce field strength peaks such as those which occur when the heavily doped n+-semi conductor region of the substrate is not reached, within a very short distance of a few nanometers in this n+-conductive base area or metallic base area. To do this, the introduction of the trench structures is interrupted even before the heavily doped substrate is reached, and the layer according to the invention is introduced in the base area of the trench structure.
  • These high-voltage-resistant semiconductor components furthermore have the advantage that the waste during manufacture is considerably reduced, not least because a wider tolerance band is now possible for the depth of the trench structure in the lightly doped epitaxial layer of the semiconductor structure. The range of depth scatter above a semiconductor wafer is also in consequence therefore no longer as critical as in the case of the semiconductor structures which are known from the Patent Application DE 10 2004 007 197.7.
  • In one preferred embodiment of the invention, the lightly doped semiconductor body areas are arranged in the form of plates alternately with corresponding trench structures in the form of plates on the upper face of the semiconductor component. In this case, the trench structures which are in the form of plates are formed from the high-k material. The width of the trench structures which are in the form of plates or the width of the lightly doped semiconductor body areas governs the blocking capability of the semiconductor components. If a critical width of the lightly doped semiconductor body areas which are in the form of plates is exceeded, then complete blocking of the n-conductive drift zone is not ensured.
  • In a further embodiment of the invention, the lightly doped semiconductor body areas are arranged in the form of columns with a circular, square or other polygonal, preferably hexagonal, cross section on the upper face of the semiconductor component and are surrounded by the trench structure: In the case of an arrangement in the form of a column such as this with a surrounding trench structure, the trench structure is introduced by means of laser ablation or by means of plasma etching. Both methods can represent an anisotropic process or anisotropic etching, with the material removal rate or the etching rate in the direction of the depth of the trench structure being considerably greater than the removal rate from the side wall structures of the trenches.
  • The wall area of the trench structure in one further preferred embodiment of the invention has an isolation layer as a protective layer, with the isolation layer having an oxide or a nitride from the group of insulating materials such as SiO2, Si3N4, TiO2, HfO2, Ta2O5, Al2O3 or AlN, or mixtures thereof. An insulating wall structure such as this- can at the same time protect the walls during the filling of the trench structure, in particular during the introduction of heavily doped semiconductor material or metallically conductive material into the base area of the trench structure.
  • During the process of etching such conductive layers, which can be applied in the base of the trench, from the wall structure, the protective layers which have been mentioned above and are composed of oxides or nitrides can act as etching stop layers. On the other hand, it is also possible to provide the wall area of the trench structure with a-wall layer composed of semiconductor material, of the opposite conductivity type to the first conductivity type of the lightly doped area. This creates a space charge zone, which improves the breakdown strength of the semiconductor device.
  • In a further preferred embodiment of the invention, the base area of the trench structure, as a heavily doped semiconductor material, has a material whose impurity concentration is

  • N≧ε r ε0(E crit)2 /E g
  • where εr is the relative dielectric constant, ε0 is the absolute dielectric constant of a vacuum, Ecrit is the critical field strength and Eg is the band gap of the semiconductor material. A heavily doped layer such as this in the base area of the trench reduces the field strength peak which occurs without such a layer when the trench is not sufficiently deep or when the trench is introduced too deeply. This improves the withstand voltage of the power transistor.
  • The base area of the trench structure preferably has a crystalline silicon, polysilicon or silicon carbide with an impurity concentration of

  • 1·1018 cm−3 ≦N D or N A≦5·1020
  • as the heavily doped semiconductor material. This heavy doping makes it possible to reduce the voltage peaks which would otherwise occur in the base area and to improve the breakdown withstand voltage of the component in such a way that no avalanche affect can occur.
  • Silicides, preferably tungsten or cobalt silicide, have been proven as metallically conductive materials in the base area. Silicides such as these are not only metallically conductive but are also temperature-resistant, so that high power losses do not adversely affect the functionality of the metallically conductive materials arranged in the base area.
  • In a further preferred embodiment to the invention, metals including titanium, hafnium, tantalum or alloys thereof are used as the metallically conductive materials. These materials cannot, however, be subject to indefinitely high temperature loads. On the other hand, it is also possible to use nitrides of titanium, hafnium or zirconium as conductive layers in the base area of the trench structure, which are themselves electrically conductive and likewise have good temperature resistance.
  • A highly conductive or metallic contact can be arranged on the upper face of the filled trench structure, and is electrically connected to a source electrode of a high-voltage-resistant MOS power transistor or to an emitter diode of a high-voltage-resistant IGBT power transistor. An embodiment of the invention such as this has the advantage that the upper face of the trench structure, in particular of the high-k material, is at the same potential as the source electrode and the emitter electrode. The contact can alternatively also be connected to another fixed potential or to the gate electrode. It is possible for the lightly doped semiconductor body areas to have different gate structures on their upper faces. While a gate structure is arranged planar and flat on the semiconductor body area, a gate structure can also be buried vertically in the upper face of the lightly doped semiconductor body area, and leads to a vertical gate channel which requires less surface area than that which can be achieved by a planar or flat gate structure. The vertical gate can be arranged in the same trench as the high-k material.
  • A further aspect of the present invention relates to a semiconductor device having a semiconductor component based on the structure described above. In a first embodiment of the invention, this semiconductor device has a Schottky diode material. In this case, the trench structure which is filled with a high-k material surrounds semiconductor body areas of a lightly doped semiconductor body area of a first conductivity type, which has the Schottky diode structure on its upper face. A layer of heavily doped semiconductor material or a metal layer is arranged in the base area of the trench structure. The lightly doped semiconductor body area of the first conductivity type is arranged on a heavily doped substrate of the same conductivity type. The upper faces of the semiconductor body areas have a metal coating of a Schottky contact material, which forms an individual electrode of a Schottky diode. The individual electrodes of the plurality of semiconductor body areas are electrically connected in parallel to form an overall electrode, while the opposite electrode is formed by the heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area. For this purpose, the heavily doped substrate has a metal coating, which forms the opposite electrode, on its rear face.
  • In a further preferred embodiment of the semiconductor device, this semiconductor device has a high-voltage-resistant PIN or NIP diode structure. This high-voltage-resistant diode structure has a trench structure which is filled with a high-k material and has a layer composed of heavily doped semiconductor material or a metal layer in the base area of the trench structure, in order to ensure the resistance to high voltage. The trench structure surrounds a lightly doped semiconductor body area of a first conductivity type. This semiconductor body area is arranged on a heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area.
  • The filled trench structure surrounds a plurality of semiconductor body areas of the lightly doped semiconductor body area and the upper face areas of the semiconductor body areas have a medium to heavily doped diffusion zone of the opposite conductivity type, which is coated with an individual metal electrode. The plurality of individual metal electrodes in the semiconductor body areas are electrically connected in parallel to form an overall electrode, and are electrically connected to the filled trench structure on the upper face of the semiconductor body area. The opposite electrode of the high-voltage-resistant PIN or NIP diode is formed by a heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area. For this purpose, the lower face of the semiconductor device has a metal layer which is conductively connected to the heavily doped substrate, and forms an opposite electrode for the upper face of the semiconductor device.
  • Provision is also made for the high-k material and the heavily doped base area of the trench structure or the metal layer in the base area of the trench, structure to form a high-voltage-resistant MOS power transistor structure. In this MOS power transistor structure, the trench structure is composed of a high-k material, which surrounds a lightly doped semiconductor body area of a first conductivity type. This lightly doped semiconductor body area is arranged on a heavily doped semiconductor substrate, which is of the same conductivity type as the lightly doped epitaxial layer with the trench structure.
  • The upper face areas of the semiconductor body areas are equipped with an MOS structure with individual source electrodes and individual gate electrodes. For this purpose, a medium to heavily doped impurity zone of the opposite conductivity type is provided for the semiconductor body areas in the surface area, and forms a gate channel area towards the edge area of the semiconductor body area. The impurity zone has a source electrode, and the plurality of source electrodes in the semiconductor body areas are electrically connected in parallel to form a common source electrode, and are electrically connected to the trench structure. The gate channel area of the medium to heavily doped region in the edge area of the semiconductor body areas is covered by a gate oxide. A gate electrode is arranged on the gate oxide, with the plurality of individual gate electrodes in the semiconductor body areas being interconnected to form a common gate electrode above the upper face of the lightly doped semiconductor body area. The heavily doped substrate material, which is of the same conductivity type as the lightly doped semiconductor body area, has a metal coating on its lower face, and this is used as a large-area drain electrode.
  • An MOS power structure such as this has the advantage (when a metallically conductive or heavily doped material is arranged in the trench structure with the high-k material in the base area) that the field strength peaks in the lightly doped semiconductor body area, adjacent to the base area of the trench structure which is filled with the high-k material, are reduced, and the full breakdown withstand voltage can be achieved for devices such as these. A semiconductor device with a high-voltage-resistant IGBT (Insulated Gate Bipolar Transistor) is designed in a similar way to the MOS transistor, but the heavily doped substrate is of the opposite conductivity type to the lightly doped semiconductor body area.
  • This high-voltage-resistant IGBT is a bipolar transistor with an insulated gate connection. The structure of this power transistor differs from the structure of a high-voltage-resistant MOS power transistor only in that the trench structure is embedded with a conductive layer on the trench base in a lightly doped semiconductor body area of one conductivity type, which is arranged on a heavily doped substrate of the opposite conductivity type. This results in a bipolar transistor of the pnp type or of the npn type, depending on the conductivity type and the combination of the regions. The substrates of the components described above, such as the Schottky diode, the PIN diode, the MOSFET or the IGBT, can been made to be virtually indefinitely thin.
  • A method for production of a plurality of semiconductor chips from a semiconductor wafer which has semiconductor chip positions arranged in rows and columns is described by the following method steps. First of all, a lightly doped semiconductor wafer of a first conductivity type or an epitaxial layer which is lightly doped with the first conductivity type and is deposited on a semiconductor wafer which is heavily doped with the first conductivity type is produced. Trench structures with a base and a wall area are then introduced into the lightly doped surface area of the semiconductor chip positions on the semiconductor wafer. After this, heavy doping of the same conductivity type as the lightly doped areas can be introduced into the base area of the trench structure, or a metallically conductive coating is introduced in the base area of the trench structure. When introducing a layer into the base area, care should be taken to ensure that the walls of the trench structure do not themselves have any conductive coating. This can preferably be ensured by means of anisotropic deposition of the conductive layer in the trench structure with subsequent isotropic etching, with a metallic coating being removed from the wall area. The trench structure is then filled with a high-k material.
  • The advantage of this method is that the introduction of heavy doping or of a metallically conductive coating on the base of the trench structure decreases the field strength peaks which can occur either at the side or underneath the trench structure at the transition between the trench structure and a lightly doped semiconductor region, by means of the metallically conductive or heavily doped layer on the base of the trench, so that the full theoretically feasible breakdown voltage over the drift path then becomes possible.
  • The base area of the trench structure can be doped by means of a directed ion implantation technique. For this purpose, the upper face of the semiconductor component is protected by a photoresist layer except for the trench structure itself, and the ion beams do not pass through this photoresist layer. If the ion beams are aligned orthogonally with respect to the surface of the semiconductor wafer, it is possible to achieve very precise doping of the base area of the semiconductor wafer. In order to minimize the risk of doping of the side walls, they can be covered in advance with an oxide layer or nitride layer of silicon or aluminum. Tantalum oxides and hafnium oxides can also be used to protect the side walls against the ingress of the dopant. On the other hand, if the side walls have been loaded with dopant, the thin layer loaded with dopant can be removed by isotropic etching.
  • Physical methods such as sputtering, vapor deposition or chemical methods such as chemical gas-phase deposition or electrolytic deposition are advantageously used for application of a metallically conductive layer in the area of the trench base, preferably composed of a silicide such as tungsten silicide and/or cobalt silicide. In this case as well, it is advantageous to protect the wall areas of the trench structure by means of an effective protective layer before the introduction of the metallic layers on the trench base. After the production of the filled trench structure, for which purpose the trench structure is filled with a material with a high relative dielectric constant, a so-called high-k material, manufacturing steps are carried out to produce functional semiconductor chips on the semiconductor wafer, and the semiconductor wafer is then cut up into individual semiconductor chips. Once the semiconductor chips have been manufactured, these chips are processed to form corresponding high-voltage-resistant semiconductor devices, based on the device variants described above.
  • In summary, it can be stated that a heavily doped or metallically conductive region in the base area of the trench structure makes it possible to reduce the high field strength peaks at the transition from the high-k material to a lightly doped semiconductor body area over a very short distance. For example, a field of 106 V/cm. in silicon with a doping of 1019 cm−3 is dissipated over a distance of only 6 nm. In this case, a voltage of only just 0.3 V is dropped across, this distance, so that the charge carriers cannot absorb sufficient energy in this case to generate new charge carriers by impact ionization. No avalanches are thus generated so that the breakdown voltage remains uninfluenced by the high field strength peak which occurs in this area. However, if the doping were to be only 1016 cm−3, then the breakdown voltage would in contrast fall from 600 V to only 200 V, which is associated with a high field strength peak in the transition area, which could lead to an avalanche breakdown.
  • In addition to the heavy doping of the semiconductor material in the transition area, it is also possible to introduce a metallic layer composed of a silicide at the base of the trench underneath the high-k region. This layer acts as a lower electrode of the high-k region and prevents the strong electrical field from entering the lightly doped semiconductor material located underneath it. The invention thus advantageously means that the electrical field underneath the high-k regions is dissipated over short distances by heavily doped material or by metallic material. Furthermore, the invention advantageously means that the trench structure is self-adjusting, and a heavily doped coating or metallic coating can be introduced very easily in the depth of the high-k region in this case.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be explained in more detail with reference to the attached figures.
  • FIG. 1 shows the principle of the profile of the electrical field strength E in a high-voltage-resistant semiconductor component with a filled trench structure in a lightly doped semiconductor body area without any buried conductive layers according to the invention in the trench base area, as a function of the vertical position coordinate d.
  • FIG. 2 shows the principle of the profile of the electrical field strength E in a high-voltage-resistant semiconductor component with a filled trench structure with a trench base area which is arranged within a heavily doped semiconductor substrate area (without the conductive layer according to the invention in the trench base area), as a function of the vertical position coordinate d.
  • FIG. 3 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a first embodiment of the invention.
  • FIG. 4 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a second embodiment of the invention.
  • FIG. 5 shows a schematic cross section through a high-voltage-resistant semiconductor component with a filled trench structure according to a third embodiment of the invention.
  • FIG. 6 shows a schematic cross section through a high-voltage-resistant semiconductor component with a vertical MOS channel area and a filled trench structure according to a fourth embodiment of the invention.
  • FIG. 7, which includes FIGS. 7A-7C, illustrates a top view of a high-voltage-resistant semiconductor component having differently shaped cross sections on the upper face of the semiconductor component according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 shows the principle of the profile of the electrical field strength E as a function of the vertical position coordinate d in a high-voltage-resistant semiconductor component 1 with a filled trench structure 5, whose trench base area 7 is arranged in a lightly doped semiconductor body area 17. The trench structure 5 is filled with a material 9 with a high relative dielectric constant εr This structure does not yet have the conductive buried layer according to the invention in the trench base area 7. The field strength B is initially at its highest on the upper face 14 of the trench structure 5, with Eo, and decreases to Es towards the base area 7 of the trench structure 5. However, a field strength peak Es is formed within the buffer layer 26 at the transition from the base area 7 to the lightly doped semiconductor body area 17, before then being completely dissipated in the heavily doped substrate area 18.
  • This field strength peak Es in the buffer layer 26 can lead to avalanche effects, thus reducing the breakdown voltage of the semiconductor component 1, and hence the breakdown withstand voltage of the semiconductor chip, and hence also of the power unit. This field strength peak Es is suppressed only if the trench structure extends with its base area 7 to the area of the heavily doped substrate 18. However, if the trench structure is continued deeper than to the heavily doped substrate area 18, then field strength peaks which reduce the breakdown voltage are also formed there. This is illustrated in the next FIG., FIG. 2.
  • FIG. 2 shows the principle of the profile of the electrical field strength E as a function of the vertical position coordinate d in a high-voltage-resistant semiconductor component 1 with a filled trench structure 5, whose trench base area 7 is arranged within a heavily doped substrate area 18 (without the conductive buried layer according to the invention in the trench area). The high field strength Eo on the upper face 14 of the trench structure 5 initially decreases as the depth d of the trench structure increases, but now forms a field strength peak ED around the trench structure to the adjacent lightly doped semiconductor body area 17 at the transition to the substrate doping. This therefore results in the requirement that the introduction of the trench structure is extremely critical with respect to the trench depth do both in the situation in FIG. 1 in which the trench structure is not introduced sufficiently deeply, so that it does not reach the heavily doped substrate area 18, and in the situation shown in FIG. 2, in which the trench depth dG is too deep, and the trench which is filled with a material having a high relative dielectric constant εr projects too far into the heavily doped substrate area 18, so that field strength peaks occur in the transition area, and disadvantageously affect the breakdown voltage of the semiconductor component 1.
  • FIG. 3 shows a schematic cross section through a semiconductor component 1 of a high-voltage-resistant semiconductor device 20 with a filled trench structure 5 according to a first embodiment of the invention. The trench structure 5 still ends before the heavily doped substrate area 18, and has a heavily doped semiconductor material layer 11 in its base area 7. This heavily doped semiconductor material layer 11 dissipates the field strength peak, which is still present in FIG. 1, within the heavily doped layer area 11, thus preventing any avalanche breakdown.
  • It is thus possible to use this semiconductor component to provide a high-voltage-resistant MOS power transistor with a planar gate arrangement without the trench structure having to reach the heavily doped substrate area 18. This considerably widens the previously narrow manufacturing tolerances relating to the trench depth.
  • This high-voltage-resistant . semiconductor component 1, of which only two MOS semiconductor body areas 10 are shown, has a high-k material as the filling in the trench structure. This high-k material bounds individual MOS semiconductor body areas 10 of width b of a lightly doped semiconductor body area 17.
  • In this embodiment of the invention, the lightly doped semiconductor body area 17 is formed by an n-region. An MOS structure which in this embodiment forms two channel areas 21 is arranged on the upper face 6 of the semiconductor component, and thus on the upper face 16 of the semiconductor body area 10, with a gate oxide 23 being arranged between the gate electrode G1 and the upper face 16 of the semiconductor body area. The channel area, with its channel length a, is formed by a medium-doped p-region 21, which has been diffused from the upper face 16 of the semiconductor body area 10 and is bounded on one side by a heavily doped n+-region. The other boundary of the channel length a is formed by the lightly doped semiconductor body area 17.
  • The individual source electrodes S1 make contact with the trench structure at the same time via a metallic contact 15 and are connected to one another via a common source electrode SG. The individual gate electrodes G1 are also connected in parallel by a common gate electrode, which is not shown in this illustration. While the channel region 21 is produced by diffusion of impurities into the lightly doped semiconductor body area 17 from the upper face 16 of the semiconductor body area 10, the source region is produced by n+-doping by ion implantation and subsequent recrystallization, with the polysilicon gate electrode G1 forming the masking. The channel length a is in this case achieved by means of a planar technology and thus cannot be indefinitely reduced in size.
  • The entire structure comprising the buried layers and the lightly doped semiconductor body area 17 is introduced into a lightly doped epitaxial layer 25. Widely differing techniques such as laser ablation and/or plasma etching can be used to produce the trench structure. In this case, photoresist techniques and diffusion methods as well as implantation methods are used for the structuring of the surface of each semiconductor body area 10. The filling of the trenches with a high-k material can also be modified by introducing a film capacitor into the trenches, instead of a homogeneous high-k material.
  • However, one critical factor for the present invention is that a heavily doped semiconductor area 11 is in this embodiment incorporated in the base area 7 of the trench structure 5 in order to reduce field strength peaks. The introduction of this heavily doped base area into the trench structure can likewise be carried out by ion implantation, to be precise at the same time as the doping of the n+-source regions, provided that the trench structure has been incorporated in advance. In order to protect the wall areas 8 against the ingress of impurities and against contact with the high-k material, the wall faces 8 can be covered by a protective layer before the heavy doping is introduced into the trench base area 7. On the other hand, it is also possible to use an isotropic etching process to etch any heavy doping away from the trench walls 8 again after anisotropic introduction of the heavily doped layer 11 into the base area 7 and into the n+-source areas. The heavily doped n+-substrate, is covered on the lower face 24 by a metal coating 19, which forms the drain electrode of the MOS power transistor structure 22.
  • FIG. 4 shows a schematic cross section through a high-voltage-resistant semiconductor component 2 based on a second embodiment of the invention, with a filled trench structure 5, whose trench base 7 is arranged in a lightly doped semiconductor area 17, and is provided with a buried layer 11 according to the invention, in the trench base area 7. Components with the same functions as those in FIG. 3 are identified by the same reference symbols, and will not be explained again.
  • The difference from the embodiment shown in FIG. 3 is that the heavily doped layer 11 has been incorporated deep in the trench base area 7 in such a way that it extends as far as the heavily doped substrate area 18. Once again, this embodiment of the invention reduces or avoids any field strength peaks in the transitional area from the base area 7 to the heavily doped substrate area 18. The level of the n+-doping under the high-k region of the trench structure 5 should be at least 1018 cm−3, preferably at least 1019 cm−3, for silicon. In general, the minimum n+-doping level is governed by the semiconductor characteristics, on the basis of the quotient:

  • εR×ε0(E crit)2 /E g
  • In this case, Eg is the band gap of the semiconductor material, Ecrit is the breakdown field strength for a doping level of 1016 cm−3, εR is the relative dielectric constant of the semiconductor, and ε0 is the absolute dielectric constant of a vacuum. Ecrit for silicon is about 4·105 V/cm, Eg is 1.1 eV and εr is 11.7. This results in the value of at least 1018 cm−3, as already required above, for the concentration of impurities in the heavily doped n+-region in the base area 7 of the trench structure 5.
  • Suitable semiconductor materials for such components include not only silicon but also silicon carbide and other, preferably III-V, semiconductor materials. As shown in FIG. 4 here, it is normally possible for these heavily doped areas of the trench base 7 to extend as far as the heavily doped substrate material 18. On the other hand, the field strength peaks are likewise decreased when the heavily doped material in the trench base area 7 does not extend as far as the heavily doped substrate 18. High-voltage-resistant semiconductor devices such as these can thus be produced more easily and more reliably than by using conventional technology, in which the trench structures must exactly reach the boundary area to the heavily doped substrate 18.
  • Instead of the heavily doped n+-regions in the trench base area 7, it is also possible to use a metallic layer, as is shown in a third embodiment of the invention in FIG. 5.
  • FIG. 5 shows a schematic cross section through a high-voltage-resistant semiconductor component 3 with a filled trench structure 5 based on a third embodiment of the invention. The trench base 7 is arranged in a lightly doped semiconductor body area 17, with the trench base 7 having a metallic coating 12. This metallic coating 12 in this embodiment of the invention is a silicide such as a tungsten silicide or cobalt silicide, which is introduced under the high-k region, with this layer 12 being used as the lower electrode of the high-k region and preventing the electrical field from entering the lightly doped semiconductor body area 17 located underneath it. The layer 12 can also make direct contact with the heavily doped substrate material 18.
  • FIG. 6 shows a schematic cross section through a high-voltage-resistant semiconductor component 4 based on a fourth embodiment of the invention with a vertical MOS channel area 27 and a trench structure 5 based on a fourth embodiment of the invention. The trench structure surrounds a lightly doped semiconductor body area 17 with the trench base area 7 having a metallic layer 12. The MOS structure on the upper face 6 of the semiconductor component and on the upper face 16 differs considerably from the MOS structure as is known from the previous embodiments. Where components of the semiconductor component 4 have the same function as in the previous figures, they are identified by the same reference symbols, and will not be explained again.
  • Gate electrodes G1 and individual source electrodes S1 are arranged alternately alongside one another on the upper face 6 of the semiconductor component 4, with the source electrodes S1 making contact with a source region with n+-doping. This is then followed, staggered in the depth direction, by a heavily doped p+-zone, which surrounds the source electrode S1. This p+-region is followed by a medium-doped channel zone 21 of the conductivity type p, which is controlled by a vertically arranged gate G1 ; The- channel length a in this embodiment of the invention is arranged vertically and thus has a very small size, which makes the switching speed of the devices higher than that of the planar-arranged gate structures. This is because the channel length a corresponds to the diffusion depth of the p-regions.
  • The gate function is provided with the aid of gate electrodes G1 and a gate oxide 23 in the vertical direction, together with the trench structure 5 for a material with a high relative dielectric constant εr, by first of all producing the trench structure and by then applying the gate oxide 23 to the walls 8 of the trench structure as an isolation layer 13 at this time. Once the trench structure has been protected by a gate oxide in this way, the metallic layer 12 composed of silicides can be incorporated in the base area 7 in order to reduce field strength peaks. The high-k material is then incorporated above this metallic layer 12 in the trench base area 7, and is likewise sealed by an upper electrode 28 on the upper face 14 of the high-k material.
  • The side boundary formed by the gate oxide at the same time provides protection against metallic short circuits in the wall area 8. This upper electrode 28 is covered by an oxide, and the remainder is filled with a gate electrode G1, up to the upper face 6 of the semiconductor component 4. Instead of introducing the gate oxide 23 in the vertical direction on the trench walls 8, this gate oxide 23 can also be introduced into the upper area of the trench structure 5 shortly before the introduction of the gate electrode metal.
  • The advantage of this semiconductor device is not just that the field strength peaks are decreased by the metallic layer 12, but also that the trench structure 5 is at the same time used to represent a vertical channel region. This has considerable manufacturing advantages, and short channel lengths a can also be achieved as a result of the shallow diffusion depth of the channel region p.
  • The overlap between the n+-source region and the metallic gate electrode G1 is small and is restricted just to the depth of the n+-source regions, which has a thickness of only a few tens of nanometers, which cannot be achieved with planar structuring of channel lengths, despite ion implantation and self-masking, by the conductive gate material, as disclosed in the other embodiments. In particular, the gate structure requires only a very small surface area.
  • The heavily doped p+-region which surrounds the source metal of the source electrode S1 is introduced in order to avoid a Schottky effect at the metal transition between the source electrode S1 and the channel area 21, and thus to ensure a low contact resistance as well as high hole conductivity. The drain electrode of this MOS power transistor is provided by metallization on the lower face of the semiconductor component, so that the n+-substrate 18 forms a drain electrode Dg, which is shared by all the MOS body areas 10.
  • (New paragraph) As referenced previously in the specification, a further embodiment of the invention is shown in FIGS. 7A-7C. FIGS. 7A-7C illustrate that the lightly doped semiconductor body areas 17 can be arranged in the form of columns with a circular, square or other polygonal preferably

Claims (21)

1-25. (canceled)
26. A high-voltage-resistant semiconductor component comprising: a vertical MOS channel area, comprising:
lightly doped drift path regions of a first conductivity type, and a trench structure comprising a base area and a wall area, wherein a conductive buried layer is arranged in the base area of the trench structure, a material with a high relative dielectric constant is arranged on the conductive buried layer and a gate electrode is arranged on the material with a high relative dielectric constant.
27. The high-voltage-resistant semiconductor component according to claim 26, further comprising an upper electrode arranged between the gate electrode and the material with a high relative dielectric constant.
28. The high-voltage-resistant semiconductor component according to claim 27, further comprising a gate oxide arranged between the upper electrode and the gate electrode.
29. The high-voltage-resistant semiconductor component according to claim 27, wherein the upper electrode is coupled to a source.
30. The high-voltage-resistant semiconductor component according to claim 26, wherein the wall area of the trench structure further comprises an isolation layer.
31. The high-voltage-resistant semiconductor component according to claim 30, wherein the isolation layer comprises one or more of an oxide, a nitride, SiO2, Si3N4, TiO2, HfO2, Ta2O5, Al2O3 and AlN.
32. The high-voltage-resistant semiconductor component according to claim 26, wherein the conductive buried layer comprises a heavily doped semiconductor material of the same conductivity type as the lightly doped drift path regions.
33. The high-voltage-resistant semiconductor component according to claim 32, wherein the heavily doped semiconductor material, has a material whose impurity concentration is:

N≧ε r ε0(E crit)2 /E g
where εr is the relative dielectric constant, ε0 is the absolute dielectric constant of the vacuum, Ecrit is the critical field strength, Eg is the band gap.
34. The high-voltage-resistant semiconductor component according to claim 32, wherein the heavily doped semiconductor material comprises a crystalline silicon, polysilicon or silicon carbide with an impurity concentration of:

N D Or N A≦1·1018 cm−3
35. The high-voltage-resistant semiconductor component according to claim 26, wherein the conductive buried layer comprises a metallically conductive material.
36. The high-voltage-resistant semiconductor component according to claim 35, wherein the metallically conductive material comprises one of the group consisting of a silicide, a tungsten silicide, a cobalt silicide and a material comprising titanium, hafnium, tantalum or alloys thereof.
37. The high-voltage-resistant semiconductor component according to claim 26, further comprising source electrodes arranged alternately with the gate electrodes.
38. The high-voltage-resistant semiconductor component according to claim 37, wherein the source electrodes contact heavily doped regions of the first conductivity type.
39. The high-voltage-resistant semiconductor component according to claim 38, further comprising a heavily doped zone of a second conductivity type in direct contact with the source electrode.
40. The high-voltage-resistant semiconductor component according to claim 39, further comprising a medium-doped channel zone of the second conductivity type.
41. The high-voltage-resistant semiconductor component according to claim 26, wherein the trench structure is embedded in a lightly doped semiconductor body area of one conductivity type, which is arranged on a heavily doped substrate of the same conductivity type, with the filled trench structure surrounding a plurality of semiconductor body areas of the lightly doped semiconductor body area and the upper face areas of the semiconductor body areas having an MOS structure with individual source electrodes and individual gate electrodes, with a medium to heavily doped impurity zone of the opposite conductivity type being arranged in the upper face area of the semiconductor body areas, which impurity zone contains a gate channel area, with the impurity zone having an individual source electrode and with the plurality of individual source electrodes in the semiconductor body areas being electrically connected in parallel to form a common source electrode, and being electrically connected to the trench structure, while the gate channel area is covered by a gate oxide and has an individual gate electrode, with the plurality of individual gate electrodes in the semiconductor body areas being interconnected to form a common gate electrode, and with the heavily doped substrate of the same conductivity type as the lightly doped semiconductor body area having a metal coating as a large-area drain electrode on its lower face.
42. A method for production of a plurality of semiconductor chips from a semiconductor wafer which has semiconductor chip positions arranged in rows and columns, the method comprising:
producing a semiconductor wafer which is lightly doped with a first conductivity type or of an epitaxial layer which is lightly doped with the first conductivity type and is deposited on a semiconductor wafer which is heavily doped with the first or second conductivity type;
introducing trench structures with a base area and a wall area into a lightly doped semiconductor body area of the semiconductor chip positions on the semiconductor wafer;
introducing heavy doping of the same conductivity type as the lightly doped
semiconductor body area into the base area of the trench structures, or introducing a metallically conductive coating into the base area of the trench structures; and
introducing a material with a high relative dielectric constant into the trench structures.
43. The method as claimed in claim 42, wherein the heavy doping of the same conductivity type as the lightly doped semiconductor body areas is introduced into the base area of the trench structures by means of ion implantation technology.
44. The method as claimed in claim 42, wherein the metallically conductive coating is introduced to the base area of the trench structures by means of physical sputtering, vapor-deposition, or chemically by means of chemical gas-phase deposition or electrolytic deposition.
45. The method as claimed in claim 42, wherein before the introduction of the metallically conductive coating to the base area of the trench structures, the wall area of the trench structure and those surfaces of the semiconductor wafer which are not to be coated are selectively provided with a protective layer.
US14/138,167 2004-09-24 2013-12-23 Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure Abandoned US20140203349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/138,167 US20140203349A1 (en) 2004-09-24 2013-12-23 Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004046697.1 2004-09-24
DE102004046697.1A DE102004046697B4 (en) 2004-09-24 2004-09-24 High-voltage-resistant semiconductor component with vertically conductive semiconductor body regions and a trench structure, and method for producing the same
US11/234,585 US8643085B2 (en) 2004-09-24 2005-09-23 High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure
US14/138,167 US20140203349A1 (en) 2004-09-24 2013-12-23 Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/234,585 Division US8643085B2 (en) 2004-09-24 2005-09-23 High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure

Publications (1)

Publication Number Publication Date
US20140203349A1 true US20140203349A1 (en) 2014-07-24

Family

ID=36061981

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/234,585 Expired - Fee Related US8643085B2 (en) 2004-09-24 2005-09-23 High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure
US14/138,167 Abandoned US20140203349A1 (en) 2004-09-24 2013-12-23 Method of producing a high-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/234,585 Expired - Fee Related US8643085B2 (en) 2004-09-24 2005-09-23 High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure

Country Status (2)

Country Link
US (2) US8643085B2 (en)
DE (1) DE102004046697B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252404A (en) * 2016-10-18 2016-12-21 电子科技大学 A kind of longitudinal enhancement mode MIS HEMT device with high K dielectric groove
CN107046062A (en) * 2017-03-16 2017-08-15 西安电子科技大学 A kind of vertical double-diffused MOS FET with semi-insulating polysilicon layer
CN107093622A (en) * 2017-03-16 2017-08-25 西安电子科技大学 A kind of longitudinal super-junction bilateral diffusion metal oxide semiconductor FET with semi-insulating polysilicon layer
CN107579119A (en) * 2017-07-27 2018-01-12 西安电子科技大学 With compound medium layer longitudinal direction super-junction bilateral diffusion metal oxide semiconductor FET and preparation method thereof
CN107591450A (en) * 2017-07-27 2018-01-16 西安电子科技大学 With compound medium layer wide band gap semiconducter longitudinal direction super-junction bilateral diffusion metal oxide semiconductor FET and preparation method thereof
CN107644913A (en) * 2017-09-22 2018-01-30 西安电子科技大学 One kind has high K charge compensations longitudinal double diffusion metal oxide elemental semiconductor field-effect transistor
CN107833922A (en) * 2017-09-22 2018-03-23 西安电子科技大学 One kind has high K charge compensations longitudinal double diffusion metal oxide wide band gap semiconducter field-effect transistor

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648869B2 (en) * 2006-01-12 2010-01-19 International Business Machines Corporation Method of fabricating semiconductor structures for latch-up suppression
US20070158779A1 (en) * 2006-01-12 2007-07-12 International Business Machines Corporation Methods and semiconductor structures for latch-up suppression using a buried damage layer
US7491618B2 (en) * 2006-01-26 2009-02-17 International Business Machines Corporation Methods and semiconductor structures for latch-up suppression using a conductive region
US7276768B2 (en) * 2006-01-26 2007-10-02 International Business Machines Corporation Semiconductor structures for latch-up suppression and methods of forming such semiconductor structures
US20070194403A1 (en) * 2006-02-23 2007-08-23 International Business Machines Corporation Methods for fabricating semiconductor device structures with reduced susceptibility to latch-up and semiconductor device structures formed by the methods
US7679146B2 (en) * 2006-05-30 2010-03-16 Semiconductor Components Industries, Llc Semiconductor device having sub-surface trench charge compensation regions
DE102006029701B4 (en) * 2006-06-28 2017-06-01 Infineon Technologies Ag Semiconductor component and method for producing a semiconductor device
US7982284B2 (en) 2006-06-28 2011-07-19 Infineon Technologies Ag Semiconductor component including an isolation structure and a contact to the substrate
CN100552991C (en) * 2006-09-27 2009-10-21 中国科学院半导体研究所 Phonon regulation and control indirect gap semiconductor material transverse electric implantation light-emitting device
US7818702B2 (en) * 2007-02-28 2010-10-19 International Business Machines Corporation Structure incorporating latch-up resistant semiconductor device structures on hybrid substrates
US7754513B2 (en) * 2007-02-28 2010-07-13 International Business Machines Corporation Latch-up resistant semiconductor structures on hybrid substrates and methods for forming such semiconductor structures
US20100013009A1 (en) * 2007-12-14 2010-01-21 James Pan Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance
JP5045733B2 (en) 2008-12-24 2012-10-10 株式会社デンソー Semiconductor device
US20110108912A1 (en) * 2009-11-09 2011-05-12 Hamilton Lu Methods for fabricating trench metal oxide semiconductor field effect transistors
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
US8264035B2 (en) * 2010-03-26 2012-09-11 Force Mos Technology Co., Ltd. Avalanche capability improvement in power semiconductor devices
CN102208414B (en) * 2010-03-31 2013-05-22 力士科技股份有限公司 Super-junction channel metal oxide semiconductor field effect transistor and manufacturing method thereof
US9224496B2 (en) 2010-08-11 2015-12-29 Shine C. Chung Circuit and system of aggregated area anti-fuse in CMOS processes
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
US9431127B2 (en) 2010-08-20 2016-08-30 Shine C. Chung Circuit and system of using junction diode as program selector for metal fuses for one-time programmable devices
US9824768B2 (en) 2015-03-22 2017-11-21 Attopsemi Technology Co., Ltd Integrated OTP memory for providing MTP memory
US9460807B2 (en) 2010-08-20 2016-10-04 Shine C. Chung One-time programmable memory devices using FinFET technology
US8854859B2 (en) 2010-08-20 2014-10-07 Shine C. Chung Programmably reversible resistive device cells using CMOS logic processes
US9711237B2 (en) 2010-08-20 2017-07-18 Attopsemi Technology Co., Ltd. Method and structure for reliable electrical fuse programming
US10229746B2 (en) 2010-08-20 2019-03-12 Attopsemi Technology Co., Ltd OTP memory with high data security
US9818478B2 (en) 2012-12-07 2017-11-14 Attopsemi Technology Co., Ltd Programmable resistive device and memory using diode as selector
US9019742B2 (en) 2010-08-20 2015-04-28 Shine C. Chung Multiple-state one-time programmable (OTP) memory to function as multi-time programmable (MTP) memory
US10916317B2 (en) 2010-08-20 2021-02-09 Attopsemi Technology Co., Ltd Programmable resistance memory on thin film transistor technology
US10249379B2 (en) 2010-08-20 2019-04-02 Attopsemi Technology Co., Ltd One-time programmable devices having program selector for electrical fuses with extended area
US9496033B2 (en) 2010-08-20 2016-11-15 Attopsemi Technology Co., Ltd Method and system of programmable resistive devices with read capability using a low supply voltage
US9236141B2 (en) 2010-08-20 2016-01-12 Shine C. Chung Circuit and system of using junction diode of MOS as program selector for programmable resistive devices
US9042153B2 (en) 2010-08-20 2015-05-26 Shine C. Chung Programmable resistive memory unit with multiple cells to improve yield and reliability
US9025357B2 (en) 2010-08-20 2015-05-05 Shine C. Chung Programmable resistive memory unit with data and reference cells
US8488359B2 (en) 2010-08-20 2013-07-16 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices
US9070437B2 (en) 2010-08-20 2015-06-30 Shine C. Chung Circuit and system of using junction diode as program selector for one-time programmable devices with heat sink
US10923204B2 (en) 2010-08-20 2021-02-16 Attopsemi Technology Co., Ltd Fully testible OTP memory
US8988965B2 (en) 2010-11-03 2015-03-24 Shine C. Chung Low-pin-count non-volatile memory interface
US9076513B2 (en) 2010-11-03 2015-07-07 Shine C. Chung Low-pin-count non-volatile memory interface with soft programming capability
US9019791B2 (en) 2010-11-03 2015-04-28 Shine C. Chung Low-pin-count non-volatile memory interface for 3D IC
US8735289B2 (en) * 2010-11-29 2014-05-27 Infineon Technologies Ag Method of contacting a doping region in a semiconductor substrate
CN102544011A (en) 2010-12-08 2012-07-04 庄建祥 Anti-fuse memory and electronic system
CN102110716B (en) * 2010-12-29 2014-03-05 电子科技大学 Trench type semiconductor power device
US10192615B2 (en) 2011-02-14 2019-01-29 Attopsemi Technology Co., Ltd One-time programmable devices having a semiconductor fin structure with a divided active region
US8848423B2 (en) 2011-02-14 2014-09-30 Shine C. Chung Circuit and system of using FinFET for building programmable resistive devices
US10586832B2 (en) 2011-02-14 2020-03-10 Attopsemi Technology Co., Ltd One-time programmable devices using gate-all-around structures
CN102184939B (en) * 2011-03-28 2012-08-29 电子科技大学 Semiconductor power device with high-K medium tank
US8912576B2 (en) * 2011-11-15 2014-12-16 Shine C. Chung Structures and techniques for using semiconductor body to construct bipolar junction transistors
US9136261B2 (en) 2011-11-15 2015-09-15 Shine C. Chung Structures and techniques for using mesh-structure diodes for electro-static discharge (ESD) protection
US9324849B2 (en) 2011-11-15 2016-04-26 Shine C. Chung Structures and techniques for using semiconductor body to construct SCR, DIAC, or TRIAC
US9007804B2 (en) 2012-02-06 2015-04-14 Shine C. Chung Circuit and system of protective mechanisms for programmable resistive memories
US9048118B2 (en) * 2012-02-13 2015-06-02 Maxpower Semiconductor Inc. Lateral transistors with low-voltage-drop shunt to body diode
CN102779836B (en) * 2012-07-13 2015-02-11 电子科技大学 Longitudinal power device with low specific on-resistance using high dielectric constant groove structure
US8829562B2 (en) * 2012-07-24 2014-09-09 Infineon Technologies Ag Semiconductor device including a dielectric structure in a trench
US9076526B2 (en) 2012-09-10 2015-07-07 Shine C. Chung OTP memories functioning as an MTP memory
US9722041B2 (en) * 2012-09-19 2017-08-01 Vishay-Siliconix Breakdown voltage blocking device
US9183897B2 (en) 2012-09-30 2015-11-10 Shine C. Chung Circuits and methods of a self-timed high speed SRAM
US9324447B2 (en) 2012-11-20 2016-04-26 Shine C. Chung Circuit and system for concurrently programming multiple bits of OTP memory devices
JP6164604B2 (en) 2013-03-05 2017-07-19 ローム株式会社 Semiconductor device
JP6164636B2 (en) 2013-03-05 2017-07-19 ローム株式会社 Semiconductor device
US9318554B2 (en) * 2013-03-13 2016-04-19 Michael Wayne Shore Gate pad and gate feed breakdown voltage enhancement
US9520390B2 (en) * 2013-03-15 2016-12-13 Semiconductor Components Industries, Llc Electronic device including a capacitor structure and a process of forming the same
US9412473B2 (en) 2014-06-16 2016-08-09 Shine C. Chung System and method of a novel redundancy scheme for OTP
DE102015121566B4 (en) * 2015-12-10 2021-12-09 Infineon Technologies Ag Semiconductor components and a circuit for controlling a field effect transistor of a semiconductor component
CN107665918A (en) * 2016-07-31 2018-02-06 朱江 A kind of semiconductor device
CN108428744A (en) * 2017-02-13 2018-08-21 朱江 A kind of groove structure Schottky semiconductor device
CN108695373A (en) * 2017-04-09 2018-10-23 朱江 A kind of semiconductor device
US11062786B2 (en) 2017-04-14 2021-07-13 Attopsemi Technology Co., Ltd One-time programmable memories with low power read operation and novel sensing scheme
US11615859B2 (en) 2017-04-14 2023-03-28 Attopsemi Technology Co., Ltd One-time programmable memories with ultra-low power read operation and novel sensing scheme
US10535413B2 (en) 2017-04-14 2020-01-14 Attopsemi Technology Co., Ltd Low power read operation for programmable resistive memories
US10726914B2 (en) 2017-04-14 2020-07-28 Attopsemi Technology Co. Ltd Programmable resistive memories with low power read operation and novel sensing scheme
CN107437566B (en) * 2017-07-27 2020-06-16 西安电子科技大学 Semiconductor longitudinal double-diffusion metal oxide semiconductor field effect transistor with composite dielectric layer wide band gap and manufacturing method thereof
US10319670B2 (en) * 2017-10-20 2019-06-11 Semiconductor Components Industries, Llc Package including multiple semiconductor devices
US10770160B2 (en) 2017-11-30 2020-09-08 Attopsemi Technology Co., Ltd Programmable resistive memory formed by bit slices from a standard cell library
JP7196403B2 (en) * 2018-03-09 2022-12-27 富士電機株式会社 semiconductor equipment
CN111293174A (en) * 2020-02-25 2020-06-16 英诺赛科(珠海)科技有限公司 Semiconductor device and method for manufacturing the same
JP2022016842A (en) * 2020-07-13 2022-01-25 富士電機株式会社 Semiconductor device
CN113707712B (en) * 2021-08-27 2022-09-23 西安电子科技大学 High-voltage-resistance silicon-based gallium nitride power semiconductor device and manufacturing method thereof
CN115148787B (en) * 2022-06-30 2023-09-22 扬州国宇电子有限公司 Fast recovery diode chip resistant to single particle burning effect and preparation method thereof
CN117334748B (en) * 2023-12-01 2024-04-09 深圳天狼芯半导体有限公司 Source electrode trench integrated SBD and HK medium SiC UMOS and preparation method
CN117334746A (en) * 2023-12-01 2024-01-02 深圳天狼芯半导体有限公司 Source electrode groove integrated SBD super-junction SiC MOS with oxide layer and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030237A1 (en) * 2000-06-30 2002-03-14 Ichiro Omura Power semiconductor switching element
US20040079990A1 (en) * 2001-03-09 2004-04-29 Martin Schrems Memory cell having a trench and method for fabricating the memory cell
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587712A (en) * 1981-11-23 1986-05-13 General Electric Company Method for making vertical channel field controlled device employing a recessed gate structure
US4893160A (en) 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
JP2504862B2 (en) * 1990-10-08 1996-06-05 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US5282018A (en) 1991-01-09 1994-01-25 Kabushiki Kaisha Toshiba Power semiconductor device having gate structure in trench
US5554862A (en) * 1992-03-31 1996-09-10 Kabushiki Kaisha Toshiba Power semiconductor device
US5471075A (en) * 1994-05-26 1995-11-28 North Carolina State University Dual-channel emitter switched thyristor with trench gate
US5591655A (en) * 1995-02-28 1997-01-07 Sgs-Thomson Microelectronics, Inc. Process for manufacturing a vertical switched-emitter structure with improved lateral isolation
DE19848828C2 (en) * 1998-10-22 2001-09-13 Infineon Technologies Ag Semiconductor device with low forward voltage and high blocking capability
US6252288B1 (en) * 1999-01-19 2001-06-26 Rockwell Science Center, Llc High power trench-based rectifier with improved reverse breakdown characteristic
AU4820100A (en) 1999-05-06 2000-11-21 Cp Clare Corporation Mosfet with field reducing trenches in body region
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
GB0003186D0 (en) 2000-02-12 2000-04-05 Koninkl Philips Electronics Nv A semiconductor device
US6781194B2 (en) * 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
US6608350B2 (en) 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
GB0104342D0 (en) 2001-02-22 2001-04-11 Koninkl Philips Electronics Nv Semiconductor devices
EP1396030B1 (en) * 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertical power semiconductor device and method of making the same
US6573558B2 (en) 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
JP2004134547A (en) * 2002-10-10 2004-04-30 Hitachi Ltd Semiconductor device
US7173290B2 (en) * 2003-03-07 2007-02-06 Teledyne Licensing, Llc Thyristor switch with turn-off current shunt, and operating method
DE102004007197B4 (en) 2004-02-13 2012-11-08 Infineon Technologies Ag High-pass semiconductor device with low forward voltage
US7009237B2 (en) * 2004-05-06 2006-03-07 International Business Machines Corporation Out of the box vertical transistor for eDRAM on SOI

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020030237A1 (en) * 2000-06-30 2002-03-14 Ichiro Omura Power semiconductor switching element
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture
US20040079990A1 (en) * 2001-03-09 2004-04-29 Martin Schrems Memory cell having a trench and method for fabricating the memory cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252404A (en) * 2016-10-18 2016-12-21 电子科技大学 A kind of longitudinal enhancement mode MIS HEMT device with high K dielectric groove
CN107046062A (en) * 2017-03-16 2017-08-15 西安电子科技大学 A kind of vertical double-diffused MOS FET with semi-insulating polysilicon layer
CN107093622A (en) * 2017-03-16 2017-08-25 西安电子科技大学 A kind of longitudinal super-junction bilateral diffusion metal oxide semiconductor FET with semi-insulating polysilicon layer
CN107579119A (en) * 2017-07-27 2018-01-12 西安电子科技大学 With compound medium layer longitudinal direction super-junction bilateral diffusion metal oxide semiconductor FET and preparation method thereof
CN107591450A (en) * 2017-07-27 2018-01-16 西安电子科技大学 With compound medium layer wide band gap semiconducter longitudinal direction super-junction bilateral diffusion metal oxide semiconductor FET and preparation method thereof
CN107644913A (en) * 2017-09-22 2018-01-30 西安电子科技大学 One kind has high K charge compensations longitudinal double diffusion metal oxide elemental semiconductor field-effect transistor
CN107833922A (en) * 2017-09-22 2018-03-23 西安电子科技大学 One kind has high K charge compensations longitudinal double diffusion metal oxide wide band gap semiconducter field-effect transistor

Also Published As

Publication number Publication date
US8643085B2 (en) 2014-02-04
DE102004046697B4 (en) 2020-06-10
DE102004046697A1 (en) 2006-04-06
US20060065923A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US8643085B2 (en) High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure
US11923444B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9312336B2 (en) MOSFET device with reduced breakdown voltage
TWI550851B (en) Vertical power mosfet including planar channel
KR100816253B1 (en) Trench-gate field-effect transistors and their manufacture
US7858478B2 (en) Method for producing an integrated circuit including a trench transistor and integrated circuit
US7692239B2 (en) MIS-type semiconductor device
US8187947B2 (en) Capacitor structure in trench structures of semiconductor devices and semiconductor devices comprising capacitor structures of this type and methods for fabricating the same
US8187941B2 (en) Method of manufacturing semiconductor device
US7067877B2 (en) MIS-type semiconductor device
US20230045954A1 (en) Schottky diode integrated into superjunction power mosfets
US20090072304A1 (en) Trench misfet
EP3772110A1 (en) Charge-balance power device, and process for manufacturing the charge-balance power device
US20220310829A1 (en) Semiconductor device and method of manufacturing semiconductor device
US10453915B2 (en) Semiconductor device having a field electrode and a gate electrode in a trench structure and manufacturing method
US11264475B2 (en) Semiconductor device having a gate electrode formed in a trench structure
US11322596B2 (en) Semiconductor device including junction material in a trench and manufacturing method
US20230411446A1 (en) Gate trench power semiconductor devices having trench shielding patterns formed during the well implant and related methods
US7291899B2 (en) Power semiconductor component
EP3690954A1 (en) Semiconductor device
JP6650372B2 (en) Semiconductor device and manufacturing method thereof
US20220384577A1 (en) Semiconductor device and method for designing thereof
US9960269B2 (en) Semiconductor device and method of manufacturing the same
US20240234495A1 (en) Gate trench power semiconductor devices having self-aligned trench shielding regions and related methods
WO2021049351A1 (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PFIRSCH, FRANK;REEL/FRAME:032847/0193

Effective date: 20051027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE