US20140182747A1 - Thermo-mechanical Process for Martensitic Bearing Steels - Google Patents
Thermo-mechanical Process for Martensitic Bearing Steels Download PDFInfo
- Publication number
- US20140182747A1 US20140182747A1 US14/136,049 US201314136049A US2014182747A1 US 20140182747 A1 US20140182747 A1 US 20140182747A1 US 201314136049 A US201314136049 A US 201314136049A US 2014182747 A1 US2014182747 A1 US 2014182747A1
- Authority
- US
- United States
- Prior art keywords
- max
- bearing component
- steel bearing
- depth
- inches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/36—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
- C23C8/26—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/32—Balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2202/00—Solid materials defined by their properties
- F16C2202/02—Mechanical properties
- F16C2202/04—Hardness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/66—High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/70—Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2223/00—Surface treatments; Hardening; Coating
- F16C2223/02—Mechanical treatment, e.g. finishing
- F16C2223/08—Mechanical treatment, e.g. finishing shot-peening, blasting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2223/00—Surface treatments; Hardening; Coating
- F16C2223/10—Hardening, e.g. carburizing, carbo-nitriding
- F16C2223/14—Hardening, e.g. carburizing, carbo-nitriding with nitriding
Definitions
- the present teachings generally relate to improved processes for manufacturing bearing components for roller (rolling element) bearing applications, as well as to improved bearing components and roller (rolling element) bearings containing the same.
- High performance mechanical systems such as bearings and gears in advanced gas turbine engines are required to operate at ever increasing speeds, temperatures and loads.
- Known bearing steels have been developed to handle the existing operating conditions but are limited in achieving higher speeds and loads under current heat treatment and processing operations.
- the present teachings achieve surprisingly improved fatigue life characteristics in steel components, e.g., for bearing applications, by subjecting a steel bearing component (such as bearing balls) to both scouring and nitriding processes, which increases the magnitude of the compressive residual stress in the steel component, thereby improving the ability of the steel component to handle higher loads and debris damage without premature failure.
- a steel bearing component such as bearing balls
- An increase in rolling contact fatigue life is also a benefit of this combination of processes.
- the sole FIGURE shows a comparison of compressive residual stress profiles for bearing balls prepared according to the present teachings (Scoured/Nitrided Balls) and bearing balls prepared without both scouring and nitriding.
- Bearings are basically comprised of an inner race (ring), an outer race (ring) and roller (rolling) elements (e.g., balls) disposed therebetween.
- roller (rolling) elements e.g., balls
- one or more components of a roller (rolling element) bearing are made from steel that has been scoured (peened) and then nitrided (case-hardened) to a depth of about 0.002-0.014 inches (2 to 14 mils), preferably about 0.008 inches (0.20 mm).
- the steel is M50 steel, M50NiL steel or 52100 steel.
- the nitriding treatment preferably avoids the formation of intergranular precipitates and also does not result in the decarburization of the surface of the steel.
- bearing elements While the entire surface of one or more of the bearing elements may be nitrided, portions of the bearing surfaces may be masked, if desired so as not to be nitrided.
- roller (rolling) elements Preferably, at least the roller (rolling) elements have been treated according to the present teachings, but it is also possible to treat other wear surfaces according to the present teachings, such as the raceway surfaces of the inner race and the outer race as well as the lands of the raceways.
- the bearing may include a cage, separator or retainer for separating the roller (rolling) elements, which may be comprised of any suitable material.
- M50 steel is often used as a bearing material for aircraft engine applications and is comprised of, in weight percent, about 0.80-0.85% carbon, about 4.00-4.25% chromium, about 4.00-4.50% molybdenum, about 0.15-0.35% manganese, about 0.10-0.25% silicon, about 0.9-1.10% vanadium, 0.015% max. phosphorus, 0.010% max. sulfur, 0.15% max. nickel, 0.25% max. cobalt, 0.25% max. tungsten, 0.10% max. copper and the balance being essentially iron.
- M50NiL steel is a low carbon, high nickel variant of the M50 alloy.
- M50NiL also has been often used as a bearing material for aircraft engine applications, and is comprised of, in weight percent, about 0.11-0.15% carbon, about 4.00-4.25% chromium, about 4.00-4.50% molybdenum, about 0.15-0.35% manganese, about 0.10-0.25% silicon, about 3.20-3.60% nickel, about 1.13-1.33% vanadium, 0.015% max. phosphorus, 0.010% max. sulfur, 0.25% max cobalt, 0.25% max. tungsten, 0.10% max. copper and the balance being essentially iron.
- 52100 steel is a high carbon, low alloy steel. 52100 also has been often used as a bearing material for aircraft engine applications, and is comprised of, in weight percent, about 0.93-1.05% carbon, about 1.35-1.60% chromium, about 0.010% max molybdenum, about 0.25-0.45% manganese, about 0.15-0.35% silicon, about 0.25% max nickel, about 0.025% max. phosphorus, 0.015% max. sulfur, 0.050% max aluminum, 0.0015% max. oxygen, 0.30% max. copper and the balance being essentially iron.
- the balance being essentially iron is understood to include, in addition to iron, e.g., small amounts of impurities and/or other incidental elements, some of which have been described above, that are inherent in steels, which in character and/or amount do not affect the advantageous aspects of the steel.
- rolling elements such as balls
- ball blanks heading the ball blanks
- soft grinding a grinding surface
- heat treatment a grinding surface
- hard grinding a grinding surface
- the above-noted steels have particular advantageous properties when prepared as martensitic steels. That is, as bearing materials, beneficial properties are achieved by forming a fully martensitic structure and by avoiding or minimizing retained austenite.
- Retained austenite is soft and may adversely affect the properties of the M50, M50NiL or 52100 steel bearing material and therefore, it is best to be minimized, e.g., by using heat treatment techniques well known in the art such as rapid and severe quenches in suitable quench media, such as for example, an oil or gas quench. If necessary, a cryogenic quench may be utilized to avoid or advantageously reduce the content of the retained austenite.
- the nose of the TTT curve can be avoided and the transformation to martensite can be complete.
- the retained austenite can be reduced from the steel by a series of heat treatments at temperatures well below the ⁇ transition temperature. Multiple ages at temperatures in the range of 1000° F. for M50 and M50NiL steels and 300-450° F. for 52100 steels will promote the formation of carbide precipitates in any retained austenite. Because carbon is an austenite ( ⁇ ) stabilizer, the formation of these precipitates decreases the concentration of carbon in the austenite and promotes the conversion of austenite to a ferrite+graphite structure such as martensite.
- M50NiL steel bearing materials may be carburized to a suitable case depth prior to above-described heat treatment.
- Steel bearing components according to the present teachings preferably should be hardened and tempered to provide a martensitic microstructure having a hardness in the HRC58-64 (e.g., HRC60-64) range and retained austenite of less than 3% (more preferably less than 2%) by volume prior to scouring and nitriding.
- M50NiL steel bearing materials may have a retained austenite volume of less than 6%.
- the present teachings then involve subjecting the steel bearing component to a scouring treatment (peening) or alternate treatment to impart residual compressive stresses and then to a nitriding treatment in order to achieve similar goals in improved compressive residual stresses in the component, wherein the nitriding treatment also adds the benefit of increased surface hardness.
- a scouring treatment peening
- alternate treatment to impart residual compressive stresses
- a nitriding treatment in order to achieve similar goals in improved compressive residual stresses in the component, wherein the nitriding treatment also adds the benefit of increased surface hardness.
- the scouring (peening) operation may be performed on the components (e.g., bearing balls) during the grinding operations and prior to nitriding. With respect to bearing balls, the scouring operation may occur prior to hard grind for larger balls (over 1.25′′ diameter) or after hard grind for smaller balls (less than 1.25′′ diameter).
- the scouring process may be relatively simple and may be performed using a tumbling barrel with paddles secured internally. These paddles are fixed in position and size. The rotational speed is fixed and the tumbling barrel may rotate in the clockwise direction. The number of balls disposed in the tumbling barrel at one time and the amount of time that the scouring operation is performed may be suitably adjusted to achieve a desired compressive residual stress profile prior to nitriding, such as the compressive residual stress profile for the “Tumbled” ball shown in FIG. 1 , as will be discussed below.
- tumbling speeds of 5-25 rpm and tumbling times of 10-60 minutes may be sufficient, depending upon, e.g., the particular steel bearing material utilized, the ball size, the number of balls, etc., to achieve a desired compressive residual stress profile prior to nitriding.
- the tumbling is performed until the balls exhibit a compressive residual stress of at least ⁇ 60 ksi at the surface of the ball.
- a peening process may be performed, e.g., shot peening, according to known peening techniques, or other suitable processes utilized to generate compressive residual stresses such as low plasticity burnishing, laser shock peening, etc.
- Nitriding is a thermal process performed to introduce nitrogen into the surface of the component in order to impart higher hardness and associated compressive residual stresses to the steel bearing component.
- the nitriding process involves introduction of nitrogen (typically, in the form of ammonia, but also as nitrogen gas) into a furnace atmosphere, in which the steel component(s) has (have) been placed.
- the ammonia is dissociated at the surface of the component, thereby creating free nitrogen that diffuses into the component surface.
- the depth of the nitrided layer is temperature and time dependant.
- Nitriding can be performed, e.g., using either gas atmosphere with ammonia or a plasma process with nitrogen.
- the balls may be finished using typical processing techniques in the art, such as a final lapping operation.
- M50 ball samples were processed, as was generally described above, using both the mechanical scouring process and subsequent thermal nitriding step.
- the combination of these two processing techniques resulted in an improvement of both surface hardness due to the nitriding process and increased values of the compressive residual stress.
- a surface hardness of 800-1100HV300 and a nitride depth of 0.006-0.010 inches was achieved by nitriding at temperatures from 842° F. to 1022° F. (450° C. to 550° C.) using ammonia as the nitrogen source, resulting in a nitrided case depth of approximately 0.008 inches (0.20 mm).
- Compressive residual stress values greater than ⁇ 120 ksi ( ⁇ 827 MPa) to a depth of 0.002 inches (0.05 mm) and ⁇ 40 ksi ( ⁇ 276 MPa) to a minimum depth of 0.010′′ (0.25 mm) were achieved.
- Compressive residual stress measurements were performed using x-ray diffraction on a TEC model 1600 or 4000 X-Ray Diffraction System.
- Hardness of HRC 64-72 were observed at the surface of the ball after final processing. The hardness at the surface decays with increasing depths from the surface. A minimum nitrided case depth of 0.004 inches, more preferably 0.006 inches, measured at 800HV is preferable.
- the process according to the present teachings results in a significant and surprising increase in the volume of compressive residual stress on the component while maintaining the benefit of the higher hardness from the nitriding process, as will be demonstrated with reference to the sole FIGURE.
- Standard standard processed balls. No additional processing was performed on these balls prior to testing.
- Tumbled balls that were tumbled/scoured as part of the processing prior to finishing. This scouring occurred after hard grind and prior to the final lapping operations. These balls were not nitrided.
- Nitrided Nitrided balls. These balls were nitrided after hard grind and prior to final lapping operations. However, these balls were not scoured/tumbled.
- Scoured/Nitrided These balls were treated in accordance with the present teachings, i.e. they were scoured using the same operations and sequence as the Tumbled balls plus they also received the same nitriding process as the Nitrided balls after scouring and prior to final lapping operations.
- the Scoured/Nitrided balls exhibited a far greater compressive residual stress below the surface (note in particular, the range between 0.001-0.002 inches below the surface) than a combination of the tumbling and nitriding would have theoretically predicted, in view of the much smaller compressive residual stress values respectively exhibited by the Tumbled balls and the Nitrided balls.
- the balls were all run on a single ball test rig for 100 hrs.
- the single ball test rig was operated by using a ring above and a ring below the ball to be tested. One ring is driven to cause the ball to rotate under load. Temperature-controlled oil was supplied to the ball along with the load. This test was run for 100 hrs or until failure. All tested Scoured/Nitrided balls ran until suspension of the test (i.e. 100 hrs) without failure.
- Additional embodiments of the present teachings disclosed herein include, but are not limited to:
- a method for treating a steel bearing material comprising:
- the steel bearing component is comprised of, in weight percent, about 0.80-0.85% carbon, about 4.00-4.25% chromium, about 4.00-4.50% molybdenum, about 0.15-0.35% manganese, about 0.10-0.25% silicon, about 0.9-1.10% vanadium, 0.015% max. phosphorus, 0.010% max. sulfur, 0.15 max. nickel, 0.25% max. cobalt, 0.25% max. tungsten, 0.10 max. copper and the balance being essentially iron.
- the steel bearing component is comprised of, in weight percent, about 0.11-0.15% carbon, about 4.00-4.25% chromium, about 4.00-4.50% molybdenum, about 0.15-0.35% manganese, about 0.10-0.25% silicon, about 3.20-3.60% nickel, about 1.13-1.33% vanadium, 0.015% max. phosphorus, 0.010% max. sulfur, 0.25% max cobalt, 0.25% max. tungsten, 0.10 max. copper and the balance being essentially iron.
- the steel bearing component is comprised of, in weight percent, about 0.93-1.05% carbon, about 1.35-1.60% chromium, about 0.010% max molybdenum, about 0.25-0.45% manganese, about 0.15-0.35% silicon, about 0.25% max nickel, about 0.025% max. phosphorus, 0.015% max. sulfur, 0.050% max aluminum, 0.0015% max. oxygen, 0.30% max. copper and the balance being essentially iron.
- a steel bearing component exhibiting:
- the steel bearing component according to any one of embodiments 13-17 wherein the steel bearing component is comprised of, in weight percent, about 0.11-0.15% carbon, about 4.00-4.25% chromium, about 4.00-4.50% molybdenum, about 0.15-0.35% manganese, about 0.10-0.25% silicon, about 3.20-3.60% nickel, about 1.13-1.33% vanadium, 0.015% max. phosphorus, 0.010% max. sulfur, 0.25% max cobalt, 0.25% max. tungsten, 0.10 max. copper and the balance being essentially iron.
- the steel bearing component according to any one of embodiments 13-17, wherein the steel bearing component is comprised of, in weight percent, about 0.93-1.05% carbon, about 1.35-1.60% chromium, about 0.010% max molybdenum, about 0.25-0.45% manganese, about 0.15-0.35% silicon, about 0.25% max nickel, about 0.025% max. phosphorus, 0.015% max. sulfur, 0.050% max aluminum, 0.0015% max. oxygen, 0.30% max. copper and the balance being essentially iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/136,049 US20140182747A1 (en) | 2012-12-31 | 2013-12-20 | Thermo-mechanical Process for Martensitic Bearing Steels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261747836P | 2012-12-31 | 2012-12-31 | |
US14/136,049 US20140182747A1 (en) | 2012-12-31 | 2013-12-20 | Thermo-mechanical Process for Martensitic Bearing Steels |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140182747A1 true US20140182747A1 (en) | 2014-07-03 |
Family
ID=49880507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/136,049 Abandoned US20140182747A1 (en) | 2012-12-31 | 2013-12-20 | Thermo-mechanical Process for Martensitic Bearing Steels |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140182747A1 (fr) |
EP (1) | EP2749666B1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018178810A1 (fr) * | 2017-03-30 | 2018-10-04 | Nova Chemicals (International) S.A. | Procédé de décokage |
US12006975B2 (en) * | 2020-03-05 | 2024-06-11 | Schaeffler Technologies AG & Co. KG | Duplex hardened cage pilot surface for bearing ring |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3032723B1 (fr) * | 2015-02-13 | 2021-01-29 | Messier Bugatti Dowty | Procede de fabrication d'une piece en acier faiblement allie nitrure |
DE102016215812A1 (de) * | 2016-08-23 | 2018-03-01 | Schaeffler Technologies AG & Co. KG | Verfahren zum Verarbeiten eines Einsatzstahls unter Ausbildung eines Bauteils |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5147140A (en) * | 1990-11-30 | 1992-09-15 | Nsk Ltd. | Ball-and-roller bearing |
US5478893A (en) * | 1989-01-05 | 1995-12-26 | Siska Diagnostics Inc. | End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids |
US6315445B1 (en) * | 1996-02-21 | 2001-11-13 | Lunar Corporation | Densitometry adapter for compact x-ray fluoroscopy machine |
US20040007944A1 (en) * | 2002-07-10 | 2004-01-15 | Stefan Johansson | Fine control of electromechanical motors |
US20060029318A1 (en) * | 2004-08-04 | 2006-02-09 | Fag Kugelfischer Ag | Rolling bearing of ceramic and steel engaging parts |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6966954B2 (en) | 2002-10-24 | 2005-11-22 | General Electric Comany | Spall propagation properties of case-hardened M50 and M50NiL bearings |
JP3857213B2 (ja) * | 2002-10-30 | 2006-12-13 | 本田技研工業株式会社 | 鋳造用金型およびその表面処理方法 |
US9732394B2 (en) * | 2012-05-17 | 2017-08-15 | United Technologies Corporation | Manufacturing process for aerospace bearing rolling elements |
-
2013
- 2013-12-20 EP EP13198775.2A patent/EP2749666B1/fr active Active
- 2013-12-20 US US14/136,049 patent/US20140182747A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5478893A (en) * | 1989-01-05 | 1995-12-26 | Siska Diagnostics Inc. | End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids |
US5147140A (en) * | 1990-11-30 | 1992-09-15 | Nsk Ltd. | Ball-and-roller bearing |
US6315445B1 (en) * | 1996-02-21 | 2001-11-13 | Lunar Corporation | Densitometry adapter for compact x-ray fluoroscopy machine |
US20040007944A1 (en) * | 2002-07-10 | 2004-01-15 | Stefan Johansson | Fine control of electromechanical motors |
US20060029318A1 (en) * | 2004-08-04 | 2006-02-09 | Fag Kugelfischer Ag | Rolling bearing of ceramic and steel engaging parts |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018178810A1 (fr) * | 2017-03-30 | 2018-10-04 | Nova Chemicals (International) S.A. | Procédé de décokage |
US12006975B2 (en) * | 2020-03-05 | 2024-06-11 | Schaeffler Technologies AG & Co. KG | Duplex hardened cage pilot surface for bearing ring |
Also Published As
Publication number | Publication date |
---|---|
EP2749666B1 (fr) | 2019-10-09 |
EP2749666A2 (fr) | 2014-07-02 |
EP2749666A3 (fr) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5958652B2 (ja) | 面疲労強度に優れる軟窒化高周波焼入れ鋼部品 | |
WO2001068933A2 (fr) | Acier inoxydable de carburation a hautes performances pour utilisation sous hautes temperatures | |
JP5872863B2 (ja) | 耐ピッチング性に優れた歯車およびその製造方法 | |
US10113221B2 (en) | Bearing steel | |
JP6520347B2 (ja) | 高周波焼入れ部品の素形材、高周波焼入れ部品、及びそれらの製造方法 | |
US20140182747A1 (en) | Thermo-mechanical Process for Martensitic Bearing Steels | |
CN111809137A (zh) | 一种低碳高合金钢制轴承套圈的热加工方法 | |
JP2018141218A (ja) | 部品およびその製造方法 | |
JP2018141216A (ja) | 部品およびその製造方法 | |
JP6055397B2 (ja) | 耐摩耗性に優れた軸受部品、およびその製造方法 | |
JP2961768B2 (ja) | 転がり軸受 | |
JP6601358B2 (ja) | 浸炭部品およびその製造方法 | |
JP2006038167A (ja) | 転がり軸受 | |
TWI544088B (zh) | Vacuum carburizing steel and its manufacturing method | |
JP2015531029A (ja) | 鋼コンポーネントを熱処理する方法及び鋼コンポーネント | |
JP2018021654A (ja) | 転がり摺動部材、その製造方法、浸炭用鋼材及び転がり軸受 | |
JPH09296250A (ja) | 面疲れ強度の優れた歯車用鋼 | |
JP2018141217A (ja) | 部品およびその製造方法 | |
JP6160054B2 (ja) | 耐高面圧部品 | |
TW201739933A (zh) | 表面硬化鋼 | |
WO2014019670A1 (fr) | Traitement thermique à basse température pour alliage d'acier | |
US20240124950A1 (en) | Method for heat treating a steel component | |
JP6881497B2 (ja) | 部品およびその製造方法 | |
JP6881496B2 (ja) | 部品およびその製造方法 | |
US20220389559A1 (en) | Method of heat treating a steel component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AKTIEBOLAGET SKF, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCCOY, BRYAN A;ZIMMERMAN, GREGORY A;ANTHONY, DON;AND OTHERS;REEL/FRAME:031827/0962 Effective date: 20131219 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |