US20140178643A1 - Cycloolefin resin composition, molded article thereof, and mirror - Google Patents
Cycloolefin resin composition, molded article thereof, and mirror Download PDFInfo
- Publication number
- US20140178643A1 US20140178643A1 US14/233,691 US201214233691A US2014178643A1 US 20140178643 A1 US20140178643 A1 US 20140178643A1 US 201214233691 A US201214233691 A US 201214233691A US 2014178643 A1 US2014178643 A1 US 2014178643A1
- Authority
- US
- United States
- Prior art keywords
- resin composition
- silica particles
- cycloolefin resin
- molded article
- celsius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001925 cycloalkenes Chemical class 0.000 title claims abstract description 80
- 239000011342 resin composition Substances 0.000 title claims abstract description 68
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 128
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims abstract description 41
- 239000011164 primary particle Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 25
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 19
- 238000000465 moulding Methods 0.000 claims abstract description 10
- 230000003746 surface roughness Effects 0.000 claims description 28
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 description 27
- 238000004898 kneading Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229910002012 Aerosil® Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010954 inorganic particle Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- -1 monocyclic cycloolefins Chemical class 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 125000005372 silanol group Chemical group 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 239000003017 thermal stabilizer Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- DHKVCYCWBUNNQH-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(1,4,5,7-tetrahydropyrazolo[3,4-c]pyridin-6-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)C=NN2 DHKVCYCWBUNNQH-UHFFFAOYSA-N 0.000 description 1
- 229910002020 Aerosil® OX 50 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 102220616555 S-phase kinase-associated protein 2_E48R_mutation Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 125000005816 fluoropropyl group Chemical group [H]C([H])(F)C([H])([H])C([H])([H])* 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/008—Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/418—Ring opening metathesis polymerisation [ROMP]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/834—Optical properties of nanomaterial, e.g. specified transparency, opacity, or index of refraction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
- Y10T428/24421—Silicon containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
Definitions
- the present invention relates to a cycloolefin resin composition, a molded article of the cycloolefin resin composition, and an optical element, and in particular, to a resin composition containing inorganic particles in a resin, a molded article of the resin composition, and an optical element formed of the molded article.
- a large dimensional change of the member due to a temperature change may cause the positional shift of the optical system.
- a reduction in the linear expansion coefficient of the organic resin material is effective in inhibiting the dimensional change of the member due to the temperature change.
- a desired linear expansion coefficient depends on the optical system.
- the optical member can have a linear expansion coefficient of 50 ⁇ 10 ⁇ 6 /degrees (Celsius) or less.
- PTL 1 discloses that in a method for reducing a linear expansion coefficient by adding fine inorganic particles to a thermoplastic organic resin, the addition of the fine inorganic particles to the resin results in a linear expansion coefficient of 9.2 ⁇ 10 ⁇ 6 /degrees (Celsius) or less.
- the optical element is further required to have an optically effective surface with satisfactory surface smoothness.
- the desired surface smoothness depends on the optical system.
- the optical element is required to have an average root-mean-square surface roughness (Rq) of 10 nm or less.
- thermoplastic resin used as a matrix
- the addition of a large amount of fine inorganic particles increases the melt viscosity of the resulting resin material.
- the increase in melt viscosity is more likely to disadvantageously cause, for example, lack of charging of the resin material at the time of injection molding and reduce the surface smoothness of an optically effective surface. This is a phenomenon that occurs quite frequently when a large amount of the fine inorganic particles is added in order to achieve lower thermal expansibility and when fine inorganic particles having smaller particle size are added in order to achieve higher surface smoothness.
- the present invention has been accomplished in light of the foregoing problems.
- the present invention provides a cycloolefin resin composition that can be formed into a molded article having low thermal expansibility and a smooth surface.
- the present invention also provides a molded article having low thermal expansibility and a smooth surface, and a mirror including the molded article.
- One aspect of the present invention provides a molded article formed by molding a cycloolefin resin composition into a shape, in which the cycloolefin resin composition contains a cycloolefin resin and silica particles, the silica particles have an average primary particle size of 10 nm to 150 nm, the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and the molded article has a linear expansion coefficient of 50 ⁇ 10 ⁇ 6 /degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
- a mirror including a molded article formed by molding a resin composition into a shape and a reflective layer arranged on an optically effective surface of the molded article, in which the resin composition is a cycloolefin resin composition containing a cycloolefin resin and silica particles, the silica particles have an average primary particle size of 10 nm to 150 nm, the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and the molded article has a linear expansion coefficient of 50 ⁇ 10 ⁇ 6 /degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
- the resin composition is a cycloolefin resin composition containing a cycloolefin resin and silica particles
- the silica particles have an average primary particle size of 10 nm to 150 nm
- the cycloolefin resin composition has a silica particle content of
- Another aspect of the present invention provides a cycloolefin resin composition containing a cycloolefin resin and silica particles, in which the silica particles have an average primary particle size of 10 nm to 150 nm, and the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight.
- a cycloolefin resin composition that can be formed into a molded article having low thermal expansibility and a smooth surface. Furthermore, according to the present invention, it is possible to provide a molded article having low thermal expansibility and a smooth surface, and an optical element formed of the molded article.
- the molded article according to the present invention is suitably usable as an optical element of a device, such as a precision optical system, e.g., a lens or a mirror, or its peripheral member.
- a precision optical system e.g., a lens or a mirror
- the present invention overcomes the foregoing problems. Embodiments of the present invention will be specifically described below.
- a cycloolefin resin composition according to the present invention contains a cycloolefin resin and silica particles, in which the silica particles have an average primary particle size of 10 nm to 150 nm, and the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight.
- the cycloolefin resin composition according to the present invention contains a cycloolefin resin serving as a resin component.
- a cycloolefin resin serving as a resin component.
- an optical element of a device such as a precision optical system, or its peripheral member is produced with an organic resin material
- it is necessary to suppress a dimensional change of the optical element due to the expansion of the resin on water absorption.
- a low-hygroscopicity resin as a matrix material.
- the cycloolefin resin has low hygroscopicity and is widely used.
- the cycloolefin resin in the present invention indicates a polymer having a cycloolefin structure.
- a polymer having the cycloolefin structure include, but are not limited to, norbornene-based polymers, polymers of monocyclic cycloolefins, polymers of cyclic conjugated dienes, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
- Examples of commercial items of the cycloolefin resin include ZEONEX (trade name, manufactured by Zeon Corporation), ZEONOR (trade name, manufactured by Zeon Corporation), APEL (trade name, manufactured by Mitsui Chemicals, Inc.), TOPAS (trade name, manufactured by Polyplastics Co., Ltd.), and ARTON (trade name, manufactured by JSR Corporation).
- the cycloolefin resin of the present invention may contain an additive to the extent that the intended purpose is not impaired.
- the additive include phosphorus-based thermal stabilizers; hydroxylamine thermal stabilizers; hindered phenol antioxidants; hindered amine light stabilizers; ultraviolet absorbers composed of, for example, benzotriazole, triazine, benzophenone, and benzoate; plasticizers composed of, for example, phosphates, phthalates, citrates, and polyesters; release agents composed of, for example, silicones; flame retardants composed of, for example, phosphates and melamine; fatty ester-based surfactants; antistatic agents composed of, for example, alkyl sulfonates and glycerol esters of stearic acid; colorants of organic dyes; and impact modifiers.
- These additives may be used alone or in combination.
- the cycloolefin resin composition of the present invention has an additive content of 20% by weight or less with respect to the total amount of the resin composition.
- silica particles used in the cycloolefin resin composition of the present invention silica particles produced by a known method may be used as long as intended properties are satisfied.
- a method for producing silica particles include a method in which a silica powder is charged into a high-temperature flame, melted, fluidized, and rapidly cooled; a method in which a silicon powder is charged into a chemical flame formed by a burner in an oxygen-containing atmosphere and exploded to produce silica particles; and a sol-gel method in which a silicon alkoxide is hydrolyzed and polycondensed in the presence of a catalyst.
- the cycloolefin resin composition of the present invention preferably has a silica particle content of 15% by weight to 70% by weight, more preferably 15% by weight to 65% by weight, and still more preferably 15% by weight to 60% by weight with respect to the total amount of the cycloolefin resin and silica particles.
- a concentration of the silica particles of less than 15% by weight fails to sufficiently reduce the linear expansion coefficient of a molded article composed of the cycloolefin resin composition.
- a concentration of the silica particles exceeding 70% by weight results in an increase in the melt viscosity of the cycloolefin resin composition. This is more likely to disadvantageously cause, for example, lack of charging of the cycloolefin resin composition at the time of injection molding and reduce the surface smoothness of an optically effective surface.
- the concentration of the silica particles in the present invention indicates the residual weight percent when the cycloolefin resin composition is heated to 800 degrees (Celsius) in a nitrogen atmosphere with a thermogravimetric analyzer (TGA).
- the silica particles in the present invention have an average primary particle size of 10 nm to 150 nm and preferably 10 nm to 100 nm.
- An average primary particle size of less than 10 nm is not preferred because the effect of reducing the linear expansion coefficient by the addition of the silica particles is decreased and the melt viscosity of the cycloolefin resin composition is extremely increased by an increase in the surface area of the particles.
- An average primary particle size exceeding 150 nm results in a reduction in surface smoothness, so that it is difficult to achieve a surface roughness (Rq) of 10 nm or less.
- the average primary particle size in the present invention indicates the equivalent volume diameter of unaggregated particles.
- the silica particle content of the cycloolefin resin composition and the average primary particle size of the silica particles do not uniquely determine the linear expansion coefficient and the surface smoothness, respectively. It is possible to satisfy both properties by suitably controlling the melt viscosity of the cycloolefin resin composition.
- the inventors have found that a cycloolefin resin composition capable of producing a molded article having a sufficiently low linear expansion coefficient and a sufficiently smooth surface from a practical standpoint can be provided even if silica particles having an average primary particle size equal to or larger than a desired surface roughness are used.
- silica particles having a larger average primary particle size can inhibit an increase in the melt viscosity of the resin due to the addition of the silica particles, thus providing a cycloolefin resin composition capable of producing a molded article having desired surface smoothness.
- the inhibition of the increase in melt viscosity enables a further increase in silica particle content, thus resulting in a further reduction in linear expansion coefficient.
- each of the silica particles in the present invention is not particularly limited and may be selected, depending on a desired linear expansion coefficient value, surface smoothness, the melt viscosity of the resin composition, and the dispersibility of the silica particles. With respect to the type of group exposed at the surface of each silica particle, one or more known groups may be selected.
- alkyl and cycloalkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-hexyl, cyclohexyl, octyl, decyl, and hexadecyl groups; aryl groups, such as a phenyl group; halogenated alkyl groups, such as chloromethyl, chloropropyl, fluoromethyl, and fluoropropyl groups; a vinyl group; a styryl group; an acrylic group; a methacryl group; a glycidyl group; an epoxycyclohexyl group; an isocyanate group; an amino group; a ureido group; a mercapto group; a sulfide group; and a hydroxy group, such as a silanol group.
- Preferred examples of a group exposed at the surface of each particle include alkyl and cycloalkyl groups, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-hexyl, cyclohexyl, octyl, decyl, and hexadecyl groups; aryl groups, such as a phenyl group; and a hydroxy group, such as a silanol group.
- Silica particles each having one or more groups described above can further reduce failure at the time of molding. More preferred examples of a group exposed at the surface of each particle include a methyl group and a hydroxy group, such as a silanol group. The silica particles each having one or more groups described above are preferred.
- the silica particles may be surface-modified with a silicon-containing compound by a known method, without limitation.
- the silicon-containing compound used here indicates one or more silicon-containing compounds selected from the group consisting of, for example, chlorosilanes, alkoxysilanes, silylamines, hydrosilanes, polyorganosiloxanes, and silicone oils, which contain the group described above.
- One or more silicon-containing compounds selected from the group consisting of, for example, silylamines and silicone oils may be used.
- Hexamethyldisilazane may be used. The use of hexamethyldisilazane results in the production of a molded article having extremely high surface smoothness.
- a method for mixing the cycloolefin resin and the silica particles is not particularly limited. They may be mixed together by a known method. In view of the production cost of the cycloolefin resin composition, they may be mixed together by a known melt dispersion method with, for example, a roll mill, a kneader, a mixer, a single-screw extruder, a twin screw extruder, or a multi-screw extruder.
- the mixing of the cycloolefin resin and the silica particles by the melt dispersion method is performed by allowing the silica particles to coexist in the cycloolefin resin melted by heating or the like and applying a shearing force to the resulting mixture to disperse the particles in the cycloolefin resin.
- the silica particles may be directly charged in the form of a powder.
- the silica particles may be charged in the form of a particle dispersion.
- a mechanism such as a vent mechanism, for removing a solvent used in the dispersion needs to be arranged in a melt-dispersion apparatus.
- the resin can be melted in an inert gas atmosphere, such as a nitrogen gas atmosphere.
- the cycloolefin resin composition of the present invention may be formed into a desired shape by a known method, for example, injection molding or heat press molding.
- An excessively low resin temperature during molding fails to form a desired shape.
- An excessively high resin temperature can cause yellowing and an increase in the linear expansion coefficient of the molded article due to thermal decomposition.
- the resin temperature can be in the range of 200 degrees (Celsius) to 285 degrees (Celsius).
- the holding pressure is not particularly limited and can be 50 MPa or more in order to transfer the shape.
- the mold temperature can be in the range of (Tg ⁇ 40) degrees (Celsius) to Tg degrees (Celsius).
- the surface roughness (Rq) of the optically effective surface of the mold used needs to be equal to or lower than a surface roughness required for a desired optical element.
- the optically effective surface of the mold can have an average root-mean-square surface roughness (Rq) of 10 nm or less.
- the molded article may have various shapes, such as spherical, rod-like, plate-like, block-like, cylindrical, conical, fibrous, grid-like, film-like, and sheet-like shapes.
- the molded article may be used as the interior or exterior of any apparatus, an optical element of a device, such as a precision optical system, or its peripheral member.
- the molded article of the present invention is an article formed by molding the cycloolefin resin composition into a shape.
- the molded article has a linear expansion coefficient of 50 ⁇ 10 ⁇ 6 /degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), wherein the range of the linear expansion coefficient includes positive and negative linear expansion coefficients.
- the linear expansion coefficient is preferably in the range of ⁇ 50 ⁇ 10 ⁇ 6 /degrees (Celsius) to 50 ⁇ 10 ⁇ 6 /degrees (Celsius) and more preferably ⁇ 45 ⁇ 10 ⁇ 6 /degrees (Celsius) to 45 ⁇ 10 ⁇ 6 /degrees (Celsius).
- the surface roughness of the optically effective surface of the molded article of the present invention is 10 nm or less and preferably 0 nm to 8 nm in terms of average root-mean-square surface roughness (Rq).
- An optical element of the present invention is formed of the molded article described above.
- a reflective layer may be formed by a known method.
- an aluminum layer or a reflective multilayer is formed on an optically effective surface by evaporation or the like.
- a layer other than the reflective layer may be formed.
- copper, titanium oxide, aluminum oxide, silicon oxide, an amorphous fluorocarbon resin, and so forth may be used.
- the optical element can be a mirror having a reflective layer on at least one optically effective surface.
- the mirror may be used for a scanner unit of a multifunction device required to have a low linear expansion coefficient and low surface roughness in order to achieve a high quality image.
- the multifunction device is a device having two or more functions of a copier, a printer, image scanner, and a facsimile machine.
- silica particles (trade name: Aerosil OX50, average primary particle size: 40 nm, non-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were charged into a pressure kneader (trade name: DRV1-5MB-E, manufactured by Moriyama Company Ltd.) in such a manner that the silica particle content was 18.6% by weight.
- the mixture was uniformly kneaded at an initial phase temperature of 210 degrees (Celsius) and 30 rpm to prepare a cycloolefin resin composition.
- the cycloolefin resin composition was formed into a shape at a resin temperature of 270 to 285 degrees (Celsius), an injection speed of 10 mm/sec, a mold temperature of 130 degrees (Celsius), and a holding pressure of 110 MPa to 180 MPa with an injection molding machine (trade name: SE7M, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a mold having a mirror-polished surface with a surface roughness (Rq) of a 25 mm ⁇ 25 mm optically effective surface of 4 nm.
- an injection molding machine (trade name: SE7M, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a mold having a mirror-polished surface with a surface roughness (Rq) of a 25 mm ⁇ 25 mm optically effective surface of 4 nm.
- the resulting molded article was evaluated by methods described below.
- the silica particle content was measured with a thermogravimetric analyzer (TGA) (trade name: TGA Q500, manufactured by TA Instruments Japan Inc).
- TGA thermogravimetric analyzer
- concentration of the silica particles was defined as the residual weight percent when the cycloolefin resin composition was heated to 800 degrees (Celsius) in a nitrogen atmosphere.
- the molded article was cut into pieces having appropriate sizes when evaluated.
- the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius) was determined as follows: A temperature load was applied in three cycles with a thermomechanical analyzer (TMA) (trade name: TMA Q400, manufactured by TA Instruments Japan Inc.) in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius). Then the linear expansion coefficient in the thickness direction was calculated in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius). The displacement was measured with an expansion probe.
- TMA thermomechanical analyzer
- the average root-mean-square surface roughness (Rq) was measured with NewView 5000 manufactured by Zygo Corporation.
- the average root-mean-square surface roughness (Rq) at and near the center of a 25 mm ⁇ 25 mm optically effective surface was measured with objective lenses having magnifications of ⁇ 2.5, ⁇ 10, and ⁇ 50. A cylindrical component was removed from the measured value. Evaluation criteria were described below: In a measurement area for each lens, a maximum Rq of 10 nm or less was defined to be acceptable, and a maximum Rq of more than 10 nm was defined to be unacceptable.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-5N, average primary particle size: 70 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.5% by weight.
- silica particles trade name: Silfil NSS-5N, average primary particle size: 70 nm, non-treated surface, manufactured by Tokuyama Corporation
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-4N, average primary particle size: 90 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.7% by weight.
- silica particles trade name: Silfil NSS-4N, average primary particle size: 90 nm, non-treated surface, manufactured by Tokuyama Corporation
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-3N, average primary particle size: 120 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.7% by weight.
- silica particles trade name: Silfil NSS-3N, average primary particle size: 120 nm, non-treated surface, manufactured by Tokuyama Corporation
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that the concentration of the silica particles was changed to 46.3% by weight.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 18.5% by weight.
- silica particles trade name: Aerosil RX200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 18.8% by weight.
- silica particles trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil R8200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 19.6% by weight.
- silica particles trade name: Aerosil R8200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 35.0% by weight.
- silica particles trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX50, average primary particle size: 40 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 45.1% by weight.
- silica particles trade name: Aerosil RX50, average primary particle size: 40 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX300, average primary particle size: 7 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 19.0% by weight.
- silica particles trade name: Aerosil RX300, average primary particle size: 7 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.
- the resulting molded articles were defective molded articles because sink marks were formed during molding.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Sol-Gel Silica SS-04, average primary particle size: 400 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 17.0% by weight.
- silica particles trade name: Sol-Gel Silica SS-04, average primary particle size: 400 nm, non-treated surface, manufactured by Tokuyama Corporation
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- a cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that the concentration of the silica particles was changed to 10.8% by weight.
- the concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- Kneading was performed as in EXAMPLE 1, except that the concentration of the silica particles was changed to 72.2% by weight. However, a uniform cycloolefin resin composition was not prepared.
- Table 1 describes the evaluation results of the examples and comparative examples.
- Examples and comparative examples demonstrate that in the case where the silica particles in the cycloolefin resin composition of the present invention have an average primary particle size of 10 nm to 150 nm, it is possible to provide the molded article having practically sufficiently low thermal expansibility and a practically sufficiently smooth surface. Examples and comparative examples further demonstrate that in the case where the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, it is possible to provide the molded article having practically sufficiently low thermal expansibility and a practically sufficiently smooth surface.
- a molded article composed of a cycloolefin resin composition of the present invention has low thermal expansibility and a smooth surface and thus is usable as an optical element of a device, such as a precision optical system, e.g., a lens or a mirror, or its peripheral member.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Optical Elements Other Than Lenses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
A molded article is formed by molding a cycloolefin resin composition, in which the cycloolefin resin composition contains a cycloolefin resin and silica particles, the silica particles have an average primary particle size of 10 nm to 150 nm, the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and the molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
Description
- The present invention relates to a cycloolefin resin composition, a molded article of the cycloolefin resin composition, and an optical element, and in particular, to a resin composition containing inorganic particles in a resin, a molded article of the resin composition, and an optical element formed of the molded article.
- With respect to a device, such as a precision optical system, in the case where a member composed of an organic resin material is used for an optical element or its peripheral member, a large dimensional change of the member due to a temperature change may cause the positional shift of the optical system. A reduction in the linear expansion coefficient of the organic resin material is effective in inhibiting the dimensional change of the member due to the temperature change. A desired linear expansion coefficient depends on the optical system. For example, in the case of an optical member for use in a catoptric system, the optical member can have a linear expansion coefficient of 50×10−6/degrees (Celsius) or less.
- To reduce the linear expansion coefficient of the organic resin material, a method for adding fine inorganic particles having a low linear expansion coefficient to an organic resin is known. For example, PTL 1 discloses that in a method for reducing a linear expansion coefficient by adding fine inorganic particles to a thermoplastic organic resin, the addition of the fine inorganic particles to the resin results in a linear expansion coefficient of 9.2×10−6/degrees (Celsius) or less.
- In the case where an organic resin material is used as an optical element itself, the optical element is further required to have an optically effective surface with satisfactory surface smoothness. The desired surface smoothness depends on the optical system. For example, in the case of an optical element for use in a catoptric system, the optical element is required to have an average root-mean-square surface roughness (Rq) of 10 nm or less.
- PTL 1: Japanese Patent Laid-Open No. 2007-047452
- In the case where a thermoplastic resin is used as a matrix, however, the addition of a large amount of fine inorganic particles increases the melt viscosity of the resulting resin material. The increase in melt viscosity is more likely to disadvantageously cause, for example, lack of charging of the resin material at the time of injection molding and reduce the surface smoothness of an optically effective surface. This is a phenomenon that occurs quite frequently when a large amount of the fine inorganic particles is added in order to achieve lower thermal expansibility and when fine inorganic particles having smaller particle size are added in order to achieve higher surface smoothness.
- The present invention has been accomplished in light of the foregoing problems. The present invention provides a cycloolefin resin composition that can be formed into a molded article having low thermal expansibility and a smooth surface. The present invention also provides a molded article having low thermal expansibility and a smooth surface, and a mirror including the molded article.
- One aspect of the present invention provides a molded article formed by molding a cycloolefin resin composition into a shape, in which the cycloolefin resin composition contains a cycloolefin resin and silica particles, the silica particles have an average primary particle size of 10 nm to 150 nm, the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and the molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
- Another aspect of the present invention provides a mirror including a molded article formed by molding a resin composition into a shape and a reflective layer arranged on an optically effective surface of the molded article, in which the resin composition is a cycloolefin resin composition containing a cycloolefin resin and silica particles, the silica particles have an average primary particle size of 10 nm to 150 nm, the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and the molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
- Another aspect of the present invention provides a cycloolefin resin composition containing a cycloolefin resin and silica particles, in which the silica particles have an average primary particle size of 10 nm to 150 nm, and the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight.
- According to the present invention, it is possible to provide a cycloolefin resin composition that can be formed into a molded article having low thermal expansibility and a smooth surface. Furthermore, according to the present invention, it is possible to provide a molded article having low thermal expansibility and a smooth surface, and an optical element formed of the molded article.
- The molded article according to the present invention is suitably usable as an optical element of a device, such as a precision optical system, e.g., a lens or a mirror, or its peripheral member.
- The present invention overcomes the foregoing problems. Embodiments of the present invention will be specifically described below.
- A cycloolefin resin composition according to the present invention contains a cycloolefin resin and silica particles, in which the silica particles have an average primary particle size of 10 nm to 150 nm, and the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight.
- The cycloolefin resin composition according to the present invention contains a cycloolefin resin serving as a resin component. In the case where an optical element of a device, such as a precision optical system, or its peripheral member is produced with an organic resin material, it is necessary to suppress a dimensional change of the optical element due to the expansion of the resin on water absorption. To this end, it is effective to use a low-hygroscopicity resin as a matrix material. The cycloolefin resin has low hygroscopicity and is widely used.
- The cycloolefin resin in the present invention indicates a polymer having a cycloolefin structure. Examples of a polymer having the cycloolefin structure include, but are not limited to, norbornene-based polymers, polymers of monocyclic cycloolefins, polymers of cyclic conjugated dienes, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Examples of commercial items of the cycloolefin resin include ZEONEX (trade name, manufactured by Zeon Corporation), ZEONOR (trade name, manufactured by Zeon Corporation), APEL (trade name, manufactured by Mitsui Chemicals, Inc.), TOPAS (trade name, manufactured by Polyplastics Co., Ltd.), and ARTON (trade name, manufactured by JSR Corporation).
- The cycloolefin resin of the present invention may contain an additive to the extent that the intended purpose is not impaired. Examples of the additive include phosphorus-based thermal stabilizers; hydroxylamine thermal stabilizers; hindered phenol antioxidants; hindered amine light stabilizers; ultraviolet absorbers composed of, for example, benzotriazole, triazine, benzophenone, and benzoate; plasticizers composed of, for example, phosphates, phthalates, citrates, and polyesters; release agents composed of, for example, silicones; flame retardants composed of, for example, phosphates and melamine; fatty ester-based surfactants; antistatic agents composed of, for example, alkyl sulfonates and glycerol esters of stearic acid; colorants of organic dyes; and impact modifiers. These additives may be used alone or in combination.
- The cycloolefin resin composition of the present invention has an additive content of 20% by weight or less with respect to the total amount of the resin composition.
- As the silica particles used in the cycloolefin resin composition of the present invention, silica particles produced by a known method may be used as long as intended properties are satisfied. Examples of a method for producing silica particles include a method in which a silica powder is charged into a high-temperature flame, melted, fluidized, and rapidly cooled; a method in which a silicon powder is charged into a chemical flame formed by a burner in an oxygen-containing atmosphere and exploded to produce silica particles; and a sol-gel method in which a silicon alkoxide is hydrolyzed and polycondensed in the presence of a catalyst.
- The cycloolefin resin composition of the present invention preferably has a silica particle content of 15% by weight to 70% by weight, more preferably 15% by weight to 65% by weight, and still more preferably 15% by weight to 60% by weight with respect to the total amount of the cycloolefin resin and silica particles. A concentration of the silica particles of less than 15% by weight fails to sufficiently reduce the linear expansion coefficient of a molded article composed of the cycloolefin resin composition. A concentration of the silica particles exceeding 70% by weight results in an increase in the melt viscosity of the cycloolefin resin composition. This is more likely to disadvantageously cause, for example, lack of charging of the cycloolefin resin composition at the time of injection molding and reduce the surface smoothness of an optically effective surface.
- The concentration of the silica particles in the present invention indicates the residual weight percent when the cycloolefin resin composition is heated to 800 degrees (Celsius) in a nitrogen atmosphere with a thermogravimetric analyzer (TGA).
- The silica particles in the present invention have an average primary particle size of 10 nm to 150 nm and preferably 10 nm to 100 nm. An average primary particle size of less than 10 nm is not preferred because the effect of reducing the linear expansion coefficient by the addition of the silica particles is decreased and the melt viscosity of the cycloolefin resin composition is extremely increased by an increase in the surface area of the particles. An average primary particle size exceeding 150 nm results in a reduction in surface smoothness, so that it is difficult to achieve a surface roughness (Rq) of 10 nm or less. The average primary particle size in the present invention indicates the equivalent volume diameter of unaggregated particles.
- The silica particle content of the cycloolefin resin composition and the average primary particle size of the silica particles do not uniquely determine the linear expansion coefficient and the surface smoothness, respectively. It is possible to satisfy both properties by suitably controlling the melt viscosity of the cycloolefin resin composition. In other words, the inventors have found that a cycloolefin resin composition capable of producing a molded article having a sufficiently low linear expansion coefficient and a sufficiently smooth surface from a practical standpoint can be provided even if silica particles having an average primary particle size equal to or larger than a desired surface roughness are used. The use of silica particles having a larger average primary particle size can inhibit an increase in the melt viscosity of the resin due to the addition of the silica particles, thus providing a cycloolefin resin composition capable of producing a molded article having desired surface smoothness. The inhibition of the increase in melt viscosity enables a further increase in silica particle content, thus resulting in a further reduction in linear expansion coefficient.
- The surface of each of the silica particles in the present invention is not particularly limited and may be selected, depending on a desired linear expansion coefficient value, surface smoothness, the melt viscosity of the resin composition, and the dispersibility of the silica particles. With respect to the type of group exposed at the surface of each silica particle, one or more known groups may be selected. Examples thereof include alkyl and cycloalkyl groups, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-hexyl, cyclohexyl, octyl, decyl, and hexadecyl groups; aryl groups, such as a phenyl group; halogenated alkyl groups, such as chloromethyl, chloropropyl, fluoromethyl, and fluoropropyl groups; a vinyl group; a styryl group; an acrylic group; a methacryl group; a glycidyl group; an epoxycyclohexyl group; an isocyanate group; an amino group; a ureido group; a mercapto group; a sulfide group; and a hydroxy group, such as a silanol group. Preferred examples of a group exposed at the surface of each particle include alkyl and cycloalkyl groups, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-hexyl, cyclohexyl, octyl, decyl, and hexadecyl groups; aryl groups, such as a phenyl group; and a hydroxy group, such as a silanol group. Silica particles each having one or more groups described above can further reduce failure at the time of molding. More preferred examples of a group exposed at the surface of each particle include a methyl group and a hydroxy group, such as a silanol group. The silica particles each having one or more groups described above are preferred.
- In the case where the silica particles are surface-modified, the silica particles may be surface-modified with a silicon-containing compound by a known method, without limitation. The silicon-containing compound used here indicates one or more silicon-containing compounds selected from the group consisting of, for example, chlorosilanes, alkoxysilanes, silylamines, hydrosilanes, polyorganosiloxanes, and silicone oils, which contain the group described above. One or more silicon-containing compounds selected from the group consisting of, for example, silylamines and silicone oils may be used. Hexamethyldisilazane may be used. The use of hexamethyldisilazane results in the production of a molded article having extremely high surface smoothness.
- A method for mixing the cycloolefin resin and the silica particles is not particularly limited. They may be mixed together by a known method. In view of the production cost of the cycloolefin resin composition, they may be mixed together by a known melt dispersion method with, for example, a roll mill, a kneader, a mixer, a single-screw extruder, a twin screw extruder, or a multi-screw extruder.
- The mixing of the cycloolefin resin and the silica particles by the melt dispersion method is performed by allowing the silica particles to coexist in the cycloolefin resin melted by heating or the like and applying a shearing force to the resulting mixture to disperse the particles in the cycloolefin resin. In this case, the silica particles may be directly charged in the form of a powder. Alternatively, the silica particles may be charged in the form of a particle dispersion. In the case where the particle dispersion is charged, a mechanism, such as a vent mechanism, for removing a solvent used in the dispersion needs to be arranged in a melt-dispersion apparatus. To prevent the degradation of the resin due to heating for melting, the resin can be melted in an inert gas atmosphere, such as a nitrogen gas atmosphere.
- The cycloolefin resin composition of the present invention may be formed into a desired shape by a known method, for example, injection molding or heat press molding. An excessively low resin temperature during molding fails to form a desired shape. An excessively high resin temperature can cause yellowing and an increase in the linear expansion coefficient of the molded article due to thermal decomposition. Thus, the resin temperature can be in the range of 200 degrees (Celsius) to 285 degrees (Celsius). In the case where injection molding is employed, the holding pressure is not particularly limited and can be 50 MPa or more in order to transfer the shape. When the glass transition temperature is defined as Tg degrees (Celsius), the mold temperature can be in the range of (Tg −40) degrees (Celsius) to Tg degrees (Celsius). The surface roughness (Rq) of the optically effective surface of the mold used needs to be equal to or lower than a surface roughness required for a desired optical element. The optically effective surface of the mold can have an average root-mean-square surface roughness (Rq) of 10 nm or less.
- The molded article may have various shapes, such as spherical, rod-like, plate-like, block-like, cylindrical, conical, fibrous, grid-like, film-like, and sheet-like shapes. The molded article may be used as the interior or exterior of any apparatus, an optical element of a device, such as a precision optical system, or its peripheral member.
- The molded article of the present invention is an article formed by molding the cycloolefin resin composition into a shape. The molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), wherein the range of the linear expansion coefficient includes positive and negative linear expansion coefficients. The linear expansion coefficient is preferably in the range of −50×10−6/degrees (Celsius) to 50×10−6/degrees (Celsius) and more preferably −45×10−6/degrees (Celsius) to 45×10−6/degrees (Celsius).
- The surface roughness of the optically effective surface of the molded article of the present invention is 10 nm or less and preferably 0 nm to 8 nm in terms of average root-mean-square surface roughness (Rq).
- An optical element of the present invention is formed of the molded article described above.
- In the case where the molded article is used as an optical element of a catoptric system, a reflective layer may be formed by a known method. For example, an aluminum layer or a reflective multilayer is formed on an optically effective surface by evaporation or the like. To provide functions, such as reflectance control, antioxidation, surface coating, and improvement in adhesion, a layer other than the reflective layer may be formed. In this case, copper, titanium oxide, aluminum oxide, silicon oxide, an amorphous fluorocarbon resin, and so forth may be used. The optical element can be a mirror having a reflective layer on at least one optically effective surface.
- The mirror may be used for a scanner unit of a multifunction device required to have a low linear expansion coefficient and low surface roughness in order to achieve a high quality image. The multifunction device is a device having two or more functions of a copier, a printer, image scanner, and a facsimile machine.
- While the present invention will be described in more detail below by examples and comparative examples, the present invention is not limited to these examples.
- Pellets of a cycloolefin resin (trade name: ZEONEX E48R, manufactured by Zeon
- Corporation) and silica particles (trade name: Aerosil OX50, average primary particle size: 40 nm, non-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were charged into a pressure kneader (trade name: DRV1-5MB-E, manufactured by Moriyama Company Ltd.) in such a manner that the silica particle content was 18.6% by weight. The mixture was uniformly kneaded at an initial phase temperature of 210 degrees (Celsius) and 30 rpm to prepare a cycloolefin resin composition.
- The cycloolefin resin composition was formed into a shape at a resin temperature of 270 to 285 degrees (Celsius), an injection speed of 10 mm/sec, a mold temperature of 130 degrees (Celsius), and a holding pressure of 110 MPa to 180 MPa with an injection molding machine (trade name: SE7M, manufactured by Sumitomo Heavy Industries, Ltd.) equipped with a mold having a mirror-polished surface with a surface roughness (Rq) of a 25 mm×25 mm optically effective surface of 4 nm.
- The resulting molded article was evaluated by methods described below.
- The silica particle content was measured with a thermogravimetric analyzer (TGA) (trade name: TGA Q500, manufactured by TA Instruments Japan Inc). The concentration of the silica particles was defined as the residual weight percent when the cycloolefin resin composition was heated to 800 degrees (Celsius) in a nitrogen atmosphere. The molded article was cut into pieces having appropriate sizes when evaluated.
- The linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius) was determined as follows: A temperature load was applied in three cycles with a thermomechanical analyzer (TMA) (trade name: TMA Q400, manufactured by TA Instruments Japan Inc.) in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius). Then the linear expansion coefficient in the thickness direction was calculated in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius). The displacement was measured with an expansion probe.
- The average root-mean-square surface roughness (Rq) was measured with NewView 5000 manufactured by Zygo Corporation. The average root-mean-square surface roughness (Rq) at and near the center of a 25 mm×25 mm optically effective surface was measured with objective lenses having magnifications of ×2.5, ×10, and ×50. A cylindrical component was removed from the measured value. Evaluation criteria were described below: In a measurement area for each lens, a maximum Rq of 10 nm or less was defined to be acceptable, and a maximum Rq of more than 10 nm was defined to be unacceptable.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-5N, average primary particle size: 70 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.5% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-4N, average primary particle size: 90 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.7% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Silfil NSS-3N, average primary particle size: 120 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 19.7% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that the concentration of the silica particles was changed to 46.3% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 18.5% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 18.8% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil R8200, average primary particle size: 12 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 19.6% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RY200, average primary particle size: 12 nm, surface treated with dimethyl silicone oil, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 35.0% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX50, average primary particle size: 40 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 45.1% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Aerosil RX300, average primary particle size: 7 nm, hexamethyldisilazane-treated surface, manufactured by Nippon Aerosil Co., Ltd.) were used and the concentration of the silica particles was changed to 19.0% by weight.
- The resulting molded articles were defective molded articles because sink marks were formed during molding.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that silica particles (trade name: Sol-Gel Silica SS-04, average primary particle size: 400 nm, non-treated surface, manufactured by Tokuyama Corporation) were used and the concentration of the silica particles was changed to 17.0% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- A cycloolefin resin composition was prepared by kneading and formed into a shape as in EXAMPLE 1, except that the concentration of the silica particles was changed to 10.8% by weight.
- The concentration of the silica particles, the linear expansion coefficient in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius), and the average root-mean-square surface roughness (Rq) of the resulting molded article were measured in the same way as in EXAMPLE 1.
- Kneading was performed as in EXAMPLE 1, except that the concentration of the silica particles was changed to 72.2% by weight. However, a uniform cycloolefin resin composition was not prepared.
- Table 1 describes the evaluation results of the examples and comparative examples.
-
TABLE 1 Average Linear expansion Average primary Concentration coefficient at 0 degrees root-mean-square particle size of silica (Celsius) to 80 degrees surface roughness of silica particles (Celsius) (Rq) (nm) (wt %) (×10−6/degrees (Celsius) (nm) EXAMPLE 1 40 18.6 48 5 EXAMPLE 2 70 19.5 46 5 EXAMPLE 3 90 19.7 44 5 EXAMPLE 4 120 19.7 46 6 EXAMPLE 5 40 46.3 37 6 EXAMPLE 6 12 18.5 49 4 EXAMPLE 7 12 18.8 47 7 EXAMPLE 8 12 19.6 49 4 EXAMPLE 9 12 35.0 45 6 EXAMPLE 10 40 45.1 38 4 COMPARATIVE 7 19.0 — — EXAMPLE 1 COMPARATIVE 400 17.0 48 12 EXAMPLE 2 COMPARATIVE 40 10.8 54 4 EXAMPLE 3 COMPARATIVE 40 72.2 — — EXAMPLE 4 - Examples and comparative examples demonstrate that in the case where the silica particles in the cycloolefin resin composition of the present invention have an average primary particle size of 10 nm to 150 nm, it is possible to provide the molded article having practically sufficiently low thermal expansibility and a practically sufficiently smooth surface. Examples and comparative examples further demonstrate that in the case where the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, it is possible to provide the molded article having practically sufficiently low thermal expansibility and a practically sufficiently smooth surface.
- While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
- This application claims the benefit of Japanese Patent Application No. 2011-157672, filed Jul. 19, 2011, which is hereby incorporated by reference herein in its entirety.
- A molded article composed of a cycloolefin resin composition of the present invention has low thermal expansibility and a smooth surface and thus is usable as an optical element of a device, such as a precision optical system, e.g., a lens or a mirror, or its peripheral member.
Claims (10)
1. A molded article formed by molding a cycloolefin resin composition,
wherein the cycloolefin resin composition contains a cycloolefin resin and silica particles,
wherein the silica particles have an average primary particle size of 10 nm to 150 nm,
the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and
the molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
2. The molded article according to claim 1 ,
wherein the silica particles are treated with hexamethyldisilazane.
3. The molded article according to claim 1 ,
wherein the molded article has an average root-mean-square surface roughness (Rq) of 10 nm or less.
4. A mirror comprising:
a molded article formed by molding a resin composition; and
a reflective layer arranged on an optically effective surface of the molded article,
wherein the resin composition is a cycloolefin resin composition containing a cycloolefin resin and silica particles,
wherein the silica particles have an average primary particle size of 10 nm to 150 nm,
the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight, and
the molded article has a linear expansion coefficient of 50×10−6/degrees (Celsius) or less in the temperature range of 0 degrees (Celsius) to 80 degrees (Celsius).
5. The mirror according to claim 4 ,
wherein the silica particles are treated with hexamethyldisilazane.
6. The mirror according to claim 4 ,
wherein the molded article has an optically effective surface with an average root-mean-square surface roughness (Rq) of 10 nm or less.
7. The mirror according to claim 4 ,
wherein the molded article has an optically effective surface with an average root-mean-square surface roughness (Rq) of 4 nm or less.
8. The mirror according to claim 4 ,
wherein the mirror is used for a scanner unit of a multifunction device.
9. A cycloolefin resin composition comprising:
a cycloolefin resin; and
silica particles,
wherein the silica particles have an average primary particle size of 10 nm to 150 nm, and
the cycloolefin resin composition has a silica particle content of 15% by weight to 70% by weight.
10. The resin composition according to claim 9 ,
wherein the silica particles are treated with hexamethyldisilazane.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011157672 | 2011-07-19 | ||
| JP2011-157672 | 2011-07-19 | ||
| PCT/JP2012/004473 WO2013011663A1 (en) | 2011-07-19 | 2012-07-11 | Cycloolefin resin composition, molded article thereof, and mirror |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2012/004473 A-371-Of-International WO2013011663A1 (en) | 2011-07-19 | 2012-07-11 | Cycloolefin resin composition, molded article thereof, and mirror |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/368,466 Continuation US10473888B2 (en) | 2011-07-19 | 2016-12-02 | Cycloolefin resin composition, molded article thereof, and mirror |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140178643A1 true US20140178643A1 (en) | 2014-06-26 |
Family
ID=47557864
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/233,691 Abandoned US20140178643A1 (en) | 2011-07-19 | 2012-07-11 | Cycloolefin resin composition, molded article thereof, and mirror |
| US15/368,466 Active 2033-02-16 US10473888B2 (en) | 2011-07-19 | 2016-12-02 | Cycloolefin resin composition, molded article thereof, and mirror |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/368,466 Active 2033-02-16 US10473888B2 (en) | 2011-07-19 | 2016-12-02 | Cycloolefin resin composition, molded article thereof, and mirror |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20140178643A1 (en) |
| JP (2) | JP6150470B2 (en) |
| WO (1) | WO2013011663A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020063154A1 (en) * | 2018-09-25 | 2020-04-02 | 深圳光峰科技股份有限公司 | Light reflecting material, reflecting layer and preparation method therefor |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6261158B2 (en) * | 2012-05-30 | 2018-01-17 | キヤノン株式会社 | Molded body and method for producing the same |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060251906A1 (en) * | 2005-05-09 | 2006-11-09 | Liao Wen P | Curable composition and article possessing protective layer obtained therefrom |
| US20090143523A1 (en) * | 2005-08-30 | 2009-06-04 | Zeon Corporation | Cycloolefin additon polymer, composite material and molded article thereof, and optical material |
| US20100004393A1 (en) * | 2006-08-31 | 2010-01-07 | Mitsui Chemicals, Inc. | Polyolefin polymer containing vinyl groups at both ends and composition thereof |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69426235T2 (en) * | 1993-03-01 | 2001-05-31 | Nippon Zeon Co., Ltd. | RESIN COMPOSITION AND MOLDING MADE THEREOF |
| EP1535941B1 (en) * | 2002-06-28 | 2007-09-12 | Zeon Corporation | Processes for producing thermoplastic resins, crosslinked resins and crosslinked resin composite materials |
| DK3184275T3 (en) * | 2003-05-22 | 2020-06-22 | Canco Hungary Invest Ltd | POLYMER ARTICLES |
| US7081295B2 (en) * | 2003-08-18 | 2006-07-25 | Eastman Kodak Company | Method of manufacturing a polymethylmethacrylate core shell nanocomposite optical plastic article |
| JPWO2006051699A1 (en) * | 2004-11-10 | 2008-05-29 | コニカミノルタオプト株式会社 | Resin composition and optical element using the same |
| US20090281234A1 (en) * | 2004-12-10 | 2009-11-12 | Konica Minolta Opto, Inc. | Manufacturing method of thermoplastic composite material, thermoplastic composite material and optical element |
| JP2006188677A (en) * | 2004-12-10 | 2006-07-20 | Konica Minolta Opto Inc | Thermoplastic resin and optical element |
| JP2006161000A (en) * | 2004-12-10 | 2006-06-22 | Konica Minolta Opto Inc | Thermoplastic composite material and optical element |
| JP2006213759A (en) * | 2005-02-01 | 2006-08-17 | Konica Minolta Opto Inc | Optical material and optical element |
| JP2007052100A (en) * | 2005-08-16 | 2007-03-01 | Konica Minolta Opto Inc | Optical reflection member |
| JP2007070564A (en) * | 2005-09-09 | 2007-03-22 | Konica Minolta Opto Inc | Thermoplastic resin composition and optical element |
| JP2007077235A (en) * | 2005-09-13 | 2007-03-29 | Konica Minolta Opto Inc | Thermoplastic resin composition and optical element |
| JP2007187840A (en) * | 2006-01-12 | 2007-07-26 | Nippon Shokubai Co Ltd | Molding for optical system, method of manufacturing same, and application therefor |
| EP2028232A4 (en) * | 2006-06-13 | 2012-09-05 | Polyplastics Co | THERMOPLAST RESIN COMPOSITION |
| JP2008033188A (en) * | 2006-07-31 | 2008-02-14 | Nippon Zeon Co Ltd | Plastic optical system members |
| US8318058B2 (en) * | 2006-09-20 | 2012-11-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
| JP4793259B2 (en) * | 2006-12-27 | 2011-10-12 | コニカミノルタオプト株式会社 | Reflector |
| DE102007013563A1 (en) * | 2007-03-21 | 2008-09-25 | Carl Zeiss Smt Ag | Method and device for producing an element with at least one free-form surface with high dimensional accuracy and low surface roughness |
| WO2008120745A1 (en) * | 2007-03-30 | 2008-10-09 | Zeon Corporation | Polymerizable composition and resin molded article |
| JP5117757B2 (en) * | 2007-04-26 | 2013-01-16 | 日東電工株式会社 | Light reflecting member including polyolefin resin foam and method for producing the same |
| EP2484507A4 (en) * | 2009-09-30 | 2014-06-11 | Konica Minolta Opto Inc | Device for manufacturing resin molded articles for use in optical elements, and method for manufacturing optical elements |
-
2012
- 2012-07-11 US US14/233,691 patent/US20140178643A1/en not_active Abandoned
- 2012-07-11 WO PCT/JP2012/004473 patent/WO2013011663A1/en active Application Filing
- 2012-07-18 JP JP2012159434A patent/JP6150470B2/en not_active Expired - Fee Related
-
2016
- 2016-12-02 US US15/368,466 patent/US10473888B2/en active Active
-
2017
- 2017-03-10 JP JP2017046634A patent/JP6324565B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060251906A1 (en) * | 2005-05-09 | 2006-11-09 | Liao Wen P | Curable composition and article possessing protective layer obtained therefrom |
| US7622514B2 (en) * | 2005-05-09 | 2009-11-24 | Sabic Innovative Plastics Ip B.V. | Curable composition and article possessing protective layer obtained therefrom |
| US20090143523A1 (en) * | 2005-08-30 | 2009-06-04 | Zeon Corporation | Cycloolefin additon polymer, composite material and molded article thereof, and optical material |
| US20100004393A1 (en) * | 2006-08-31 | 2010-01-07 | Mitsui Chemicals, Inc. | Polyolefin polymer containing vinyl groups at both ends and composition thereof |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020063154A1 (en) * | 2018-09-25 | 2020-04-02 | 深圳光峰科技股份有限公司 | Light reflecting material, reflecting layer and preparation method therefor |
| US12105307B2 (en) | 2018-09-25 | 2024-10-01 | Appotronics Corporation Limited | Light reflecting material, reflecting layer and preparation method therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2017129874A (en) | 2017-07-27 |
| JP6150470B2 (en) | 2017-06-21 |
| JP2013041274A (en) | 2013-02-28 |
| WO2013011663A1 (en) | 2013-01-24 |
| JP6324565B2 (en) | 2018-05-16 |
| US10473888B2 (en) | 2019-11-12 |
| US20170082830A1 (en) | 2017-03-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2011516717A (en) | Optical polymer composition and method for producing the same | |
| CN112352016B (en) | Thermoplastic resin composition and method for producing molded article | |
| JP6921459B2 (en) | Optical film with excellent slipperiness and polarizing plate containing this | |
| US10473888B2 (en) | Cycloolefin resin composition, molded article thereof, and mirror | |
| TWI746514B (en) | Decorative film, image displaydevice, touch panel, and method of producing decorative film | |
| JP4822688B2 (en) | Aromatic polycarbonate resin molding having optical diffusion characteristics | |
| JP2019509518A (en) | Optical film excellent in slip property and ultraviolet blocking function, and polarizing plate including the same | |
| JP2012246343A (en) | Aromatic polycarbonate resin composition, and molded article comprising the same | |
| TWI769147B (en) | Polyester film and method of producing the same, hard coat film and method of producing the same, image display device and touch panel | |
| US9335441B2 (en) | Resin composition, formed article, and mirror | |
| US9353247B2 (en) | Molded article and method of producing the same | |
| JP2012251084A (en) | Aromatic polycarbonate resin composition and molded article comprising the same | |
| JP4884213B2 (en) | Aromatic polycarbonate molded body and resin composition | |
| JP5364653B2 (en) | Flame retardant polycarbonate resin composition and molded product comprising the same | |
| JP5568988B2 (en) | Optical element | |
| WO2012172737A1 (en) | Organic-inorganic composite molded product and optical element | |
| US9376553B2 (en) | Organic-inorganic composite molded product and optical element | |
| JP6080392B2 (en) | Polycarbonate resin composition and molded article | |
| CN100519655C (en) | Molded aromatic polycarbonate and resin composition | |
| JP2009086264A (en) | Optical device | |
| WO2012172917A1 (en) | Thermoplastic composite material and molded article | |
| WO2018056671A1 (en) | Optical film exhibiting excellent slippage properties and polarizing plate comprising same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSOKAWA, KATSUMOTO;KOJIMA, TAKAHIRO;SIGNING DATES FROM 20131211 TO 20131216;REEL/FRAME:032141/0339 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |