US20140174358A1 - Magnetic Field Assisted Deposition - Google Patents

Magnetic Field Assisted Deposition Download PDF

Info

Publication number
US20140174358A1
US20140174358A1 US14/193,988 US201414193988A US2014174358A1 US 20140174358 A1 US20140174358 A1 US 20140174358A1 US 201414193988 A US201414193988 A US 201414193988A US 2014174358 A1 US2014174358 A1 US 2014174358A1
Authority
US
United States
Prior art keywords
substrate
precursor molecules
reaction chamber
molecules
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/193,988
Inventor
Sang In LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeco ALD Inc
Synos Technology Inc
Original Assignee
Veeco ALD Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeco ALD Inc filed Critical Veeco ALD Inc
Priority to US14/193,988 priority Critical patent/US20140174358A1/en
Publication of US20140174358A1 publication Critical patent/US20140174358A1/en
Assigned to SYNOS TECHNOLOGY, INC. reassignment SYNOS TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, SANG IN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Embodiments relate to applying a magnetic field across the paths of injected polar precursor molecules to cause spiral movement of the precursor molecules relative to the surface of a substrate. When the polar precursor molecules arrive at the surface of the substrate, the polar precursor molecules make lateral movements on the surface due to their inertia. Such lateral movements of the polar precursor molecules increase the chance that the molecules would find and settle at sites (e.g., nucleation sites, broken bonds and stepped surface locations) or react on the surface of the substrate. Due to the increased chance of absorption or reaction of the polar precursor molecules, the injection time or injection iterations may be reduced.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional of U.S. patent application Ser. No. 13/410,545 filed on Mar. 2, 2012, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/470,405 filed on Mar. 31, 2011, which are incorporated by reference herein in their entirety.
  • BACKGROUND
  • 1. Field of Art
  • The present invention relates to using a magnetic field for depositing one or more layers of materials on a substrate.
  • 2. Description of the Related Art
  • Various chemical processes are used to deposit material on a substrate. Such chemical processes include chemical vapor deposition (CVD), atomic layer deposition (ALD) and molecular layer deposition (MLD). CVD is the most common method for depositing a layer of material on a substrate. In CVD, reactive gas precursors are mixed and then delivered to a reaction chamber where a layer of material is deposited after the mixed gas comes into contact with the substrate.
  • ALD is another way of depositing material on a substrate. ALD uses the bonding force of a chemisorbed molecule that is different from the bonding force of a physisorbed molecule. In ALD, source precursor is absorbed into the surface of a substrate and then purged with an inert gas. As a result, physisorbed molecules of the source precursor (bonded by the Van der Waals force) are desorbed from the substrate. However, chemisorbed molecules of the source precursor are covalently bonded, and hence, these molecules are strongly adsorbed in the substrate and not desorbed from the substrate. The chemisorbed molecules of the source precursor (adsorbed on the substrate) react with and/or are replaced by molecules of reactant precursor. Then, the excessive precursor or physisorbed molecules are removed by injecting the purge gas and/or pumping the chamber, obtaining a final atomic layer.
  • MLD is a thin film deposition method similar to ALD but in MLD, molecules are deposited onto the substrate as a unit to form polymeric films on a substrate. In MLD, a molecular fragment is deposited during each reaction cycle. The precursors for MLD have typically been homobifunctional reactants. MLD method is used generally for growing organic polymers such as polyamides on the substrate. The precursors for MLD and ALD may also be used to grow hybrid organic-inorganic polymers such as Alucone (i.e., aluminum alkoxide polymer having carbon-containing backbones obtained by reacting trimethylaluminum (TMA: Al(CH3)3) and ethylene glycol) or Zircone (hybrid organic-inorganic systems based on the reaction between zirconium precursor (such as zirconium t-butoxide Zr[OC(CH3)3)]4, or tetrakis(dimethylamido)zieconium Zr[N(CH3)2]4) with diol (such as ethylene glycol)).
  • In such deposition processes, molecules are absorbed on the surface of the substrate, react with material on the surface or replace material on the surface. Depending on the substrate and/or the type of precursor, however, the precursor molecules are not easily absorbed on the surface of the substrate. Alternatively, the precursor molecules may not easily react with or replace material on the surface of the substrate. In such cases, the injection time of the precursor is increased or the process of injecting the precursor is repeated for a number of times to ensure that a sufficient amount of precursor molecules are absorbed in the surface of the substrate. The increased time or repetition of process results in lower efficiency and increased time for depositing materials on the substrate.
  • SUMMARY
  • Embodiments relate to a method of depositing a layer of material on a substrate where injected precursor molecules are subject to a magnetic field that traverses the paths of the precursor molecules to the substrate. The injected precursor molecules are polar precursor molecules. Hence, the magnetic field causes spiral movements of the precursor molecules relative to a surface of the substrate as the precursor molecules move toward the substrate. The surface of the substrate is exposed to the precursor molecules that move along the spiral paths. Such spiral movements of the precursor molecules facilitate absorption or reaction of the precursor molecules with the surface of the substrate.
  • In one embodiment, excess precursor molecules remaining after exposing the surface of the substrate to the injected precursor molecules are discharged from an apparatus for performing the deposition process.
  • In one embodiment, radicals are generated as precursor molecules by applying voltage across electrodes.
  • In one embodiment, the substrate is moved relative to a reactor that injects the precursor molecules onto the surface of the substrate.
  • In one embodiment, the magnetic field is generated by permanent magnets or electromagnets.
  • In one embodiment, the precursor molecules are source precursor molecules or reactant precursor molecules for performing atomic layer deposition (ALD), chemical vapor deposition (CVD) or molecular layer deposition (MLD) on the substrate.
  • In one embodiment, the precursor molecules are methylsilane molecules, dimethylaluminumhydride (DMAH) molecules or dimethylethylamine alane (DMEAA) molecules.
  • Embodiments relate to an apparatus for depositing a layer of material on a substrate. The apparatus may include a body and a plurality of magnets within or outside the body. The body is formed with a reaction chamber in which injected precursor molecules travel to come in contact with the surface of the substrate. The magnets are configured to generate a magnetic field within the reaction chamber. The magnetic field traverses paths of the precursor molecules to the substrate to cause spiral movements of the precursor molecules relative to a surface of the substrate.
  • In one embodiment, the apparatus further includes a mechanism coupled to the substrate of the body to cause a relative motion between the body and the substrate.
  • In one embodiment, the body is further formed with a channel for supplying the precursor molecules to the reaction chamber, a constriction zone connected to the reaction chamber and having a height lower than the reaction chamber, and an exhaust portion connected to the constriction zone and configured to discharge excess precursor molecules from the apparatus.
  • In one embodiment, at least one of the magnets forms a wall of the reaction chamber.
  • In one embodiment, at least one of the magnets is placed outside the body.
  • In one embodiment, the body is formed of a non-magnetic material.
  • In one embodiment, one of the plurality of magnet is placed at one side of the reaction chamber and another of the plurality of magnet is placed at an opposite side of the reaction chamber.
  • In one embodiment, the apparatus further includes an electrode extending along a plasma chamber formed in the body. The plasma is generated within the plasma chamber by applying voltage across the electrode and the body.
  • In one embodiment, the body is further formed with a channel for supplying gas into the plasma chamber, perforations between the reactor chamber and the plasma chamber, a constriction zone connected to the reaction chamber and having a height lower than the reaction chamber, and an exhaust portion connected to the constriction zone and configured to discharge excess precursor molecules from the apparatus.
  • In one embodiment, the plurality of magnets are permanent magnets or electromagnets.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a cross sectional diagram of a linear deposition device, according to one embodiment.
  • FIG. 2 is a perspective view of a linear deposition device, according to one embodiment.
  • FIG. 3 is a perspective view of a rotating deposition device, according to one embodiment.
  • FIG. 4A is a diagram illustrating an injector with magnets attached thereto, according to one embodiment.
  • FIG. 4B is a sectional diagram of the injector of FIG. 4A taken along line A-B, according to one embodiment.
  • FIG. 5A is a conceptual diagram illustrating paths of precursor molecules traveling to a substrate without application of a magnetic field.
  • FIG. 5B is a conceptual diagram illustrating paths of precursor molecules traveling to a substrate when a magnetic field is applied, according to one embodiment.
  • FIG. 6 is a sectional diagram of a set of injectors, according to one embodiment.
  • FIG. 7 is a sectional diagram of an injector and a radical reactor, according to one embodiment.
  • FIG. 8 is a sectional diagram of an injector and a radical reactor, according to another embodiment.
  • FIG. 9 is a sectional diagram of an injector and a radical reactor, according to another embodiment.
  • FIG. 10 is a flowchart illustrating a process of injecting precursor onto the substrate, according to one embodiment.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Embodiments are described herein with reference to the accompanying drawings. Principles disclosed herein may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the features of the embodiments.
  • In the drawings, like reference numerals in the drawings denote like elements. The shape, size and regions, and the like, of the drawing may be exaggerated for clarity.
  • Embodiments relate to applying a magnetic field across the paths of injected polar precursor molecules to cause spiral movements of the precursor molecules relative to the surface of a substrate. When the polar precursor molecules arrive at the surface of the substrate, the polar precursor molecules make movements parallel to the surface of the substrate due to their inertia. Such lateral movements of the polar precursor molecules increase the chance that the molecules would attach or react on certain sites on the substrate (e.g., nucleation sites, broken bonds and stepped surface locations). Due to the increased chance of absorption or reaction of the polar precursor molecules, the injection time or injection iterations may be reduced.
  • Polar precursor describe herein refers to material including molecules or their chemical groups having an electric dipole or multipole moment. Polarity is dependent on the difference in electronegativity between atoms in a compound and the symmetry of the compound's structure. Polar precursor may include, among others, linear molecules (e.g., CO), molecules with a single H (e.g., HF), molecules with an OH at one end (e.g., CH3OH and C2H5OH), molecules with an O at one end (e.g., H2O), molecules with an N at one end (e.g., NH3) and plasma. Polar precursor also includes materials such as Methylsilane ((CH3)xSi4-x, where x=1, 2 or 3), dimethylaluminumhydride (DMAH) and dimethylethylamine alane (DMEAA).
  • In contrast, non-polar precursor includes molecules that have no polarity in the bonds or have symmetrical arrangement of polar bonds. Non-polar precursor includes, among others, diatomic molecules of the same element (e.g., O2, H2, N2), most carbon compounds (e.g., CO2, CH4, C2H4) and noble or inert gases (e.g., He and Ar).
  • Example Apparatuses for Depositing Material
  • FIG. 1 is a cross sectional diagram of a linear deposition device 100, according to one embodiment. FIG. 2 is a perspective view of the linear deposition device 100 (without chamber walls to facilitate explanation), according to one embodiment. The linear deposition device 100 may include, among other components, a support pillar 118, the process chamber 110 and one or more reactors 136. The reactors 136 may include one or more of injectors and radical reactors. Each of the injectors injects source precursors, reactant precursors, purge gases or a combination of these materials onto the substrate 120. The linear deposition device 100 may perform chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular layer deposition (MLD) or a combination thereof.
  • The process chamber enclosed by the walls may be maintained in a vacuum state to prevent contaminants from affecting the deposition process. The process chamber 110 contains a susceptor 128 which receives a substrate 120. The susceptor 128 is placed on a support plate 124 for a sliding movement. The support plate 124 may include a temperature controller (e.g., a heater or a cooler) to control the temperature of the substrate 120. The linear deposition device 100 may also include lift pins that facilitate loading of the substrate 120 onto the susceptor 128 or dismounting of the substrate 120 from the susceptor 128.
  • In one embodiment, the susceptor 128 is secured to brackets 210 that move across an extended bar 138 with screws formed thereon. The brackets 210 have corresponding screws formed in their holes for receiving the extended bar 138. The extended bar 138 is secured to a spindle of a motor 114, and hence, the extended bar 138 rotates as the spindle of the motor 114 rotates. The rotation of the extended bar 138 causes the brackets 210 (and therefore the susceptor 128) to make a linear movement on the support plate 124. By controlling the speed and rotation direction of the motor 114, the speed and direction of the linear movement of the susceptor 128 can be controlled. The use of a motor 114 and the extended bar 138 is merely an example of a mechanism for moving the susceptor 128. Various other ways of moving the susceptor 128 (e.g., use of gears and pinion at the bottom, top or side of the susceptor 128). Moreover, instead of moving the susceptor 128, the susceptor 128 may remain stationary and the reactors 136 may be moved.
  • FIG. 3 is a perspective view of a rotating deposition device 300, according to one embodiment. Instead of using the linear deposition device 100 of FIG. 1, the rotating deposition device 300 may be used to perform the deposition process according to another embodiment. The rotating deposition device 300 may include, among other components, reactors 320, 334, 364, 368, a susceptor 318, and a container 324 enclosing these components. The susceptor 318 secures the substrates 314 in place. The reactors 320, 334, 364, 368 are placed above the substrates 314 and the susceptor 318. Either the susceptor 318 or the reactors 320, 334, 364, 368 rotate to subject the substrates 314 to different processes.
  • One or more of the reactors 320, 334, 364, 368 are connected to gas pipes (not shown) to provide source precursor, reactor precursor, purge gas and/or other materials. The materials provided by the gas pipes may be (i) injected onto the substrate 314 directly by the reactors 320, 334, 364, 368, (ii) after mixing in a chamber inside the reactors 320, 334, 364, 368, or (iii) after conversion into radicals by plasma generated within the reactors 320, 334, 364, 368. After the materials are injected onto the substrate 314, the redundant materials may be exhausted through outlets 330, 338.
  • Embodiments as described herein may be use in the linear deposition device 100, the rotating deposition device 300 or other types of deposition device. Taking the examples of the linear deposition device 100 and the rotating deposition device 300, the substrate 120 (or 314) may undergo different sequences of processes by moving the substrate 120 (or 314) relative to the reactors in one direction and then in an opposite direction.
  • Example Reactor with Magnetic Field Generated Therein
  • FIG. 4A is a perspective view of an injector 136 according to one embodiment. The injector 136 includes, among other components, a set of magnet 424A, 424B to generate a magnetic field in the injector 136. The magnetic field in the injector 136 causes polar precursor molecules to move along spiral paths to the surface of the substrate 120, as described below in detail with reference to FIG. 5B.
  • The injector 136 has a body 404 that is connected to a supply pipe 410 and a discharge pipe 420. The supply pipe 410 receives source precursor, reactant precursor, mixed gas compound, purge gas or a combination thereof. Excess precursor molecules and/or by-product gas are discharged from the injector 136 via the discharge pipe 420.
  • The injector 136 injects the received gas onto the surface of the substrate 120 as the substrate 120 moves in a direction indicated by arrow 450 to deposit a layer 140 of material on the substrate 120. In an alternative embodiment, the injector 136 may move relative to a fixed substrate 120. Subsequently, the substrate 120 may be injected with a different material using the same or different injector or radical reactor.
  • In one embodiment, the body 404 is formed of non-magnetic materials such as Aluminum. When the injector 136 is used in a higher temperature range, it is advantageous to form the body 404 of Al2O3, AlN or ceramic such as SiC.
  • FIG. 4B is a sectional diagram of the injector 136 of FIG. 4A taken along line A-B, according to one embodiment. The body of the injector 136 is formed with a channel 462, perforations 464 (e.g., holes or slits), a reactor chamber 468, a constriction zone 470 and an exhaust portion 472. The supply pipe 410 is connected to the channel 462 to supply precursor material into the reaction chamber 468 via the perforations 464. The precursor material comes into contact with the substrate 120 below the reaction chamber 468.
  • After part of the precursor material is absorbed onto the surface of the substrate 120, the remaining precursor material (i.e., excess precursor molecules) and/or by-product gases pass through the constriction zone 470 and are discharged out of the injector 136 via the exhaust portion 472 that is connected to the pipe 420.
  • The constriction zone 470 has a height H2 lower than the height H1 of the reaction chamber 468. Hence, the flow rate of the precursor material is higher in the constriction zone 470 compared to the reaction chamber 468. The higher flow rate in the reaction chamber 468 enables the removal of physisorbed precursor molecules from the surface of the substrate 120 while retaining the chemisorbed precursor molecules on the substrate 120.
  • The set of magnets 424A, 424B generates a magnetic field generally in a direction perpendicular to the flow direction of the precursor molecules. That is, the set of magnets 424A, 424B generates a magnetic field generally parallel to the surface of the substrate 120. If the precursor molecules are polar, the magnetic field exerts lateral force on the precursor molecules, causing the precursor molecules to make spiral movements as the molecules move towards the substrate 120.
  • After the precursor molecules reach the surface of the substrate 120, the precursor molecules continue to make movements parallel to the surface of the substrate 120 due to their inertia. Such movements are advantageous, among other reasons, because the precursor molecules are more likely to find spots on the substrate 120 amenable to attachment or reaction. Spots amenable for attachment of the precursor molecules include, among others, nucleation sites, broken bonds or stepped region on the substrate 120. Hence, applying the magnetic field in the injector 136 facilitates the absorption or reaction of the precursor molecules on the substrate 120.
  • Generation of Magnetic Field
  • FIG. 5A is a conceptual diagram illustrating paths 514 of precursor molecules 510 traveling to the substrate 120 without application of a magnetic field. Without any magnetic field, the paths 514 are generally linear from an injection point (i.e., the perforation 464) to the substrate 120. Since the motion vectors of the precursor molecules 510 have no element parallel to the surface of the substrate 120, the precursor molecules 510 either becomes absorbed or react at the spots where the molecules 510 reaches the substrate 120 or the precursor molecules 510 bounce off from the surface of the substrate 120 without or after making minimal lateral movements (i.e., movement parallel to the surface of the substrate 120) on the substrate 120.
  • FIG. 5B is a conceptual diagram illustrating paths 518, 522 of precursor molecules 510 traveling to the substrate 120 when magnetic field is applied in the injector 136, according to one embodiment. When polar precursor is used, the molecules are subject to Lorentz force as the molecules pass the magnetic field. Assuming that the direction of the magnetic field is from the left to the right as illustrated in FIG. 5B, Lorentz force applied to the molecules is perpendicular to the direction of the magnetic field and the moving direction of the molecules as shown by arrow 526.
  • Hence, the precursor molecules 510 come to move along spiral paths 522 as they move across the magnetic field until the precursor molecules 510 reach the surface of the substrate 120. After reaching the surface of the substrate 120, the precursor molecules may continue to make movements parallel to the surface of the substrate 120 before bouncing off the surface of the substrate 120. The lateral movements of the precursor molecules 510 on the surface of the substrate 120 tend to be longer compared to cases where the precursor molecules 510 are not applied with a magnetic field.
  • During the movements of the precursor molecules 510 parallel to the surface of the substrate 120, the precursor molecules 510 may reach spots on the surface of the substrate 120 where the precursor molecules 510 are more likely to become attached or react with materials on the surface of the substrate 120. The increased absorption or reaction of the precursor molecules 510 contributes to more even absorption of the precursor molecules 510 on the substrate, increased density of the layer formed on the substrate 120, and reduced number of pin-holes or other defects in the deposited layer.
  • The magnetic field can be formed by magnets of various configurations and structures. Permanent magnets or electromagnets may be placed within or outside the reaction chamber of the injector or radical reactor to generate the magnetic field. The permanent magnets may be made of, for example, Alnico, Neodymium or Sm-cobalt.
  • Preferably, a set of magnets are placed at opposite sides of the reaction chamber so that the reaction chamber is subject to a magnetic field that is generally perpendicular to the movement of the precursor molecules. That is, although primary embodiments described herein use injectors or radical reactors that inject the precursor materials vertically down towards the substrate, in other embodiments, the precursor molecules may travel horizontally or in other directions. Regardless of the direction that the precursor molecules travel in such embodiments, the magnets are placed so that the magnetic field traverses the travel path of the precursor molecules to cause spiral movements in the precursor molecules before reaching the substrate.
  • Further, although it is advantageous that the direction of the magnetic field is perpendicular to the general paths of the precursor molecules to apply increased Lorentz force, the direction of the magnetic field may be somewhat slanted or non-perpendicular, for example, as described below in detail with reference to FIG. 9.
  • Alternative Embodiments
  • FIG. 6 is a sectional diagram of a set of injectors 136A, 136B placed in tandem, according to one embodiment. Each of the injectors 136A, 136B has a structure and configuration that are the same as the injector 136 of FIGS. 4A and 4B except that two injectors are placed in tandem to inject different precursor materials onto the substrate 120.
  • In one embodiment, the injectors 136A, 136B are used for performing atomic layer deposition (ALD) of Al2O3 film. The substrate 120 moves from the left to the right and is injected with DMAH as a source precursor by the injector 136A and then injected with O3 or H2O as a reactant precursor by the injector 136B. DMAH, O3 and H2O are polar precursors, and therefore, these precursors are subject to Lorentz force caused by magnets 424A, 424B and magnets 620A, 620B.
  • In another embodiment, the injectors 136A, 136B are used to deposit AlN film by ALD. For this purpose, the substrate 120 moves from the left to the right and is injected with DMAH as a source precursor by the injector 136A and then injected with NH3 as a reactant precursor by the injector 136B. DMAH and NH3 are polar precursors, and therefore, these precursors are subject to Lorentz force caused by magnets 424A, 424B and magnets 620A, 620B.
  • FIG. 7 is a sectional diagram of the injector 136C and a radical reactor 136D, according to one embodiment. The injector 136C is substantially the same as the injector 136 of FIGS. 4A and 4B except that magnet 702A forms part of the wall defining a reaction chamber 704 and magnet 702B forms part of the wall defining an exhaust portion 706. The function of the reaction chamber 704 and the exhaust portion 706 are substantially identical to the functions of the reaction chamber 468 and the exhaust portion 472 of FIG. 4B.
  • The radical reactor 136D generates radicals by applying voltage across an inner electrode 722 and an outer electrode 720 (which is part of the body 712). The body 712 is formed with a channel 710, perforations 714 (e.g., holes or slits), a plasma chamber 718, slits 726, a reaction chamber 730, a constriction zone 732 and an exhaust portion 734. The reaction chamber 730, the constriction zone 732 and the exhaust portion 734 have the same function as the reaction chamber 468, the constriction zone 470 and the exhaust portion 472 of FIG. 4B. A gas or mixture of gases is injected from a source into the plasma chamber 718 via a channel 710 extending across the length of the radical reactor 136D and the perforations 714. As the voltage is applied between the inner electrode 722 and the outer electrode 720, plasma is generated in the plasma chamber 718. As a result, radicals are generated within the plasma chamber 718 and are injected into the reaction chamber 730. The radicals are generated at a location remote from the substrate 120, and hence, the radical reactor 136D is referred to as a “remote plasma generator.”
  • As the radicals move down towards the substrate 120, the magnetic field generated by the magnets 744A, 744B causes the radicals to travel along spiral paths due to Lorentz force. Compared to the case where the radicals are not applied with magnetic field, the radicals travel for a longer distance along the surface of the substrate 120 due to spiral paths and inertia of the radicals. Hence, the radicals are more likely to attach to the surface of the substrate 120, or interact/replace source precursor molecules already absorbed on the surface of the substrate 120.
  • The use of a remote plasma generator is merely an example, and various other types of plasma generators may also be used to generate and inject radicals onto the substrate 120. Regardless of the structure, the plasma generators may include magnets that generate the magnetic field that traverses across the traveling path of the radicals.
  • Further, although the radical reactor 136D has the magnets 744A, 744B illustrated as forming part of the wall for the reaction chamber 730 and the exhaust portion 744B, the magnets may be installed as separate elements attached inside or outside these walls.
  • In one embodiment, the injector 136C and the radical reactor 136D are used for depositing Al2O3 layer on the substrate 120. For this purpose, the substrate 120 moves from the left to the right and is injected with DMAH as a source precursor by the injector 136C and then injected with O* radicals as a reactant precursor by the injector 136D. DMAH and O* radicals are polar precursors, and therefore, these precursors are subject to Lorentz force caused by magnets 702A, 702B and magnets 744A, 744B.
  • In another embodiment, the injector 136C and the radical reactor 136D are used for depositing AlN layer on the substrate 120. For this purpose, the substrate 120 moves from the left to the right and is injected with DMAH as a source precursor by the injector 136C and then injected with N* radicals as a reactant precursor by the injector 136D. DMAH and N* radicals are polar precursors, and therefore, these precursors are subject to Lorentz force caused by magnets 702A, 702B and magnets 744A, 744B.
  • The magnets may also be placed to form walls of the radical chamber. FIG. 8 is a sectional diagram of an injector 136E and a radical reactor 136F, according to another embodiment. Magnet 812A forms a wall of a reaction chamber 816 of the injector 136E. Similarly, magnet 824A forms a wall of a reaction chamber 820 of the radical reactor 136F. Magnet 812B is attached to interior of the reaction chamber 816 and magnet 824B is attached to the interior of the reaction chamber 820.
  • The magnets may also have an asymmetric structure. FIG. 9 is a sectional diagram of an injector 136G and a radical reactor 136H, according to another embodiment. In the injector 136G and the radical reactor 136H, the magnets 912A, 912B and the magnets 916A, 916B are asymmetric. Hence, the direction of the magnetic field may be slanted as illustrated in FIG. 9. As long as the magnets are designed to exert Lorentz force on the precursor molecules, the dimensions, strengths, and the configuration of the magnets may be varied.
  • Method of Performing Deposition Using Magnets
  • FIG. 10 is a flowchart illustrating a process of injecting precursor onto the substrate, according to one embodiment. First, precursor is injected 1010 into a reactor chamber of an injector or a radical reactor. A magnetic field is applied 1020 to the reactor chamber so that the magnetic field traverses the paths of precursor molecules traveling to the substrate.
  • By applying the magnetic field, the precursor molecules are subject to Lorentz force. The Lorentz force causes the precursor molecules to take spiral paths to the substrate.
  • The substrate is then exposed 1030 to the precursor molecules. Due to the spiral path, the precursor molecules travel along the surface of the substrate for a distance before bouncing off the surface. As a result, the precursor molecules are more likely to settle on spots of the surface of the substrate where the molecules can attach or react.
  • Excess precursor molecules remaining after exposure of the substrate are then discharged 1040 from the reactor chamber.
  • Although the present invention has been described above with respect to several embodiments, various modifications can be made within the scope of the present invention. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

Claims (9)

What is claimed is:
1. An apparatus for depositing a layer on a substrate, comprising:
a process chamber;
a reactor at least partially enclosed in a process chamber, the reactor comprising electrodes for generating radicals as precursor molecules, the reactor formed with a reaction chamber in which the precursor molecules travel to a surface of the substrate;
a plurality of magnets within the processor chamber and attached to the reactor, the plurality of magnets configured to generate a magnetic field within the reaction chamber, the magnetic field traversing paths of the precursor molecules to the substrate to cause spiral movements of the precursor molecules relative to a surface of the substrate; and
a mechanism coupled to the substrate of the body to cause relative motion between the body and the substrate.
2. The apparatus of claim 1, wherein the reactor is further formed with a channel for supplying the precursor molecules to the reaction chamber, a constriction zone connected to the reaction chamber and having a height lower than the reaction chamber, and an exhaust portion connected to the constriction zone and configured to discharge excess precursor molecules from the apparatus.
3. The apparatus of claim 1, wherein at least one of the magnets form a wall of the reaction chamber.
4. The apparatus of claim 1, wherein at least one of the magnets are placed outside the body.
5. The apparatus of claim 1, wherein the reactor is formed of non-magnetic material.
6. The apparatus of claim 1, wherein one of the plurality of magnet is placed at one side of the reaction chamber and another of the plurality of magnet is placed at an opposite side of the reaction chamber.
7. The apparatus of claim 1, wherein the reactor is formed with a plasma chamber along which the electrodes extending, and wherein plasma is generated within the plasma chamber by applying voltage across the electrodes.
8. The apparatus of claim 7, wherein the reactor is further formed with a channel for supplying gas into the plasma chamber, perforations between the reactor chamber and the plasma chamber, a constriction zone connected to the reaction chamber and having a height lower than the reaction chamber, and an exhaust portion connected to the constriction zone and configured to discharge excess precursor molecules from the apparatus.
9. The apparatus of claim 1, wherein the plurality of magnets are permanent magnets or electromagnets.
US14/193,988 2011-03-31 2014-02-28 Magnetic Field Assisted Deposition Abandoned US20140174358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/193,988 US20140174358A1 (en) 2011-03-31 2014-02-28 Magnetic Field Assisted Deposition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161470405P 2011-03-31 2011-03-31
US13/410,545 US8697198B2 (en) 2011-03-31 2012-03-02 Magnetic field assisted deposition
US14/193,988 US20140174358A1 (en) 2011-03-31 2014-02-28 Magnetic Field Assisted Deposition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/410,545 Division US8697198B2 (en) 2011-03-31 2012-03-02 Magnetic field assisted deposition

Publications (1)

Publication Number Publication Date
US20140174358A1 true US20140174358A1 (en) 2014-06-26

Family

ID=46927613

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/410,545 Expired - Fee Related US8697198B2 (en) 2011-03-31 2012-03-02 Magnetic field assisted deposition
US14/193,988 Abandoned US20140174358A1 (en) 2011-03-31 2014-02-28 Magnetic Field Assisted Deposition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/410,545 Expired - Fee Related US8697198B2 (en) 2011-03-31 2012-03-02 Magnetic field assisted deposition

Country Status (2)

Country Link
US (2) US8697198B2 (en)
KR (1) KR101394820B1 (en)

Families Citing this family (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
KR102007866B1 (en) * 2015-05-07 2019-08-06 에이피시스템 주식회사 Apparatus for atomic layer depositing and the method for atomic layer depositing using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
TWI791689B (en) 2017-11-27 2023-02-11 荷蘭商Asm智慧財產控股私人有限公司 Apparatus including a clean mini environment
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
JP7124098B2 (en) 2018-02-14 2022-08-23 エーエスエム・アイピー・ホールディング・ベー・フェー Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20190128558A (en) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
TW202044325A (en) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210117157A (en) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Method of forming vanadium nitride-containing layers and structures including the same
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
TW202212623A (en) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698812A (en) * 1949-10-21 1955-01-04 Schladitz Hermann Metal deposition process
US4842707A (en) * 1986-06-23 1989-06-27 Oki Electric Industry Co., Ltd. Dry process apparatus
US5560777A (en) * 1992-11-09 1996-10-01 Goldstar Co., Ltd. Apparatus for making a semiconductor
US5908602A (en) * 1994-11-18 1999-06-01 Surfcoat Oy Apparatus for generation of a linear arc discharge for plasma processing
US20010006093A1 (en) * 1999-12-07 2001-07-05 Toshihiro Tabuchi Surface treatment apparatus
US20090165715A1 (en) * 2007-12-27 2009-07-02 Oh Jae-Eung Vapor deposition reactor
US20100041213A1 (en) * 2008-08-13 2010-02-18 Synos Technology, Inc. Vapor Deposition Reactor For Forming Thin Film
US20100310771A1 (en) * 2009-06-08 2010-12-09 Synos Technology, Inc. Vapor deposition reactor and method for forming thin film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668365A (en) * 1984-10-25 1987-05-26 Applied Materials, Inc. Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
DE3719616A1 (en) * 1987-06-12 1988-12-29 Leybold Ag METHOD AND DEVICE FOR COATING A SUBSTRATE
KR100449645B1 (en) 2002-01-23 2004-09-22 주식회사 아이피에스 Method for depositing thin film using magnetic field
US6960528B2 (en) * 2002-09-20 2005-11-01 Academia Sinica Method of forming a nanotip array in a substrate by forming masks on portions of the substrate and etching the unmasked portions
CH707466B1 (en) * 2002-10-03 2014-07-15 Tetra Laval Holdings & Finance Apparatus for performing a plasma-assisted process.
US7413982B2 (en) 2006-03-29 2008-08-19 Eastman Kodak Company Process for atomic layer deposition
US7659158B2 (en) * 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2698812A (en) * 1949-10-21 1955-01-04 Schladitz Hermann Metal deposition process
US4842707A (en) * 1986-06-23 1989-06-27 Oki Electric Industry Co., Ltd. Dry process apparatus
US5560777A (en) * 1992-11-09 1996-10-01 Goldstar Co., Ltd. Apparatus for making a semiconductor
US5908602A (en) * 1994-11-18 1999-06-01 Surfcoat Oy Apparatus for generation of a linear arc discharge for plasma processing
US20010006093A1 (en) * 1999-12-07 2001-07-05 Toshihiro Tabuchi Surface treatment apparatus
US20090165715A1 (en) * 2007-12-27 2009-07-02 Oh Jae-Eung Vapor deposition reactor
US20100041213A1 (en) * 2008-08-13 2010-02-18 Synos Technology, Inc. Vapor Deposition Reactor For Forming Thin Film
US20100310771A1 (en) * 2009-06-08 2010-12-09 Synos Technology, Inc. Vapor deposition reactor and method for forming thin film

Also Published As

Publication number Publication date
KR101394820B1 (en) 2014-05-14
US8697198B2 (en) 2014-04-15
KR20120112118A (en) 2012-10-11
US20120251738A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
US8697198B2 (en) Magnetic field assisted deposition
US9163310B2 (en) Enhanced deposition of layer on substrate using radicals
US20130337172A1 (en) Reactor in deposition device with multi-staged purging structure
US8877300B2 (en) Atomic layer deposition using radicals of gas mixture
US20140030447A1 (en) Deposition of Graphene or Conjugated Carbons Using Radical Reactor
US9376455B2 (en) Molecular layer deposition using reduction process
TWI591198B (en) Methods for depositing group 13 metal or metalloid nitride films
US8470718B2 (en) Vapor deposition reactor for forming thin film
US20150104574A1 (en) Fast atomic layer deposition process using seed precursor
US20100037820A1 (en) Vapor Deposition Reactor
US20120114877A1 (en) Radical Reactor with Multiple Plasma Chambers
JP2009531535A (en) Apparatus and method for chemical vapor deposition processing of a wide range of multilayer atomic layers of thin films
WO2008085467A1 (en) Deposition system and method
US8840958B2 (en) Combined injection module for sequentially injecting source precursor and reactant precursor
WO2012012381A1 (en) Treating surface of substrate using inert gas plasma in atomic layer deposition
KR20120027399A (en) Vapor deposition reactor and method for forming thin film
US20120027953A1 (en) Rotating Reactor Assembly for Depositing Film on Substrate
US20170107614A1 (en) Multi-Step Atomic Layer Deposition Process for Silicon Nitride Film Formation
US20140065307A1 (en) Cooling substrate and atomic layer deposition apparatus using purge gas
KR20100020919A (en) Vapor deposition reactor
US20140037846A1 (en) Enhancing deposition process by heating precursor
KR102007866B1 (en) Apparatus for atomic layer depositing and the method for atomic layer depositing using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SYNOS TECHNOLOGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, SANG IN;REEL/FRAME:035235/0219

Effective date: 20120320

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION