US20140120733A1 - Low damage photoresist strip method for low-k dielectrics - Google Patents
Low damage photoresist strip method for low-k dielectrics Download PDFInfo
- Publication number
- US20140120733A1 US20140120733A1 US14/066,587 US201314066587A US2014120733A1 US 20140120733 A1 US20140120733 A1 US 20140120733A1 US 201314066587 A US201314066587 A US 201314066587A US 2014120733 A1 US2014120733 A1 US 2014120733A1
- Authority
- US
- United States
- Prior art keywords
- plasma
- work piece
- temperature
- gas
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 229920002120 photoresistant polymer Polymers 0.000 title claims abstract description 46
- 239000003989 dielectric material Substances 0.000 title abstract description 26
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 33
- 239000011737 fluorine Substances 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000007800 oxidant agent Substances 0.000 claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 210000002381 plasma Anatomy 0.000 claims description 78
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 40
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 21
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 claims description 21
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 6
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 6
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 6
- 229910018503 SF6 Inorganic materials 0.000 claims description 4
- 239000001273 butane Substances 0.000 claims description 4
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 claims description 4
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 3
- 239000001272 nitrous oxide Substances 0.000 claims description 3
- 229910001868 water Inorganic materials 0.000 claims description 3
- WRQGPGZATPOHHX-UHFFFAOYSA-N ethyl 2-oxohexanoate Chemical compound CCCCC(=O)C(=O)OCC WRQGPGZATPOHHX-UHFFFAOYSA-N 0.000 claims description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 5
- 235000012431 wafers Nutrition 0.000 description 44
- 239000010410 layer Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000012159 carrier gas Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000003361 porogen Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/427—Stripping or agents therefor using plasma means only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02046—Dry cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02312—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
- H01L21/02315—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31058—After-treatment of organic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
Definitions
- the present invention pertains to methods for stripping photo-resist material and removing etch-related residues from the surface of a partially fabricated integrated circuit in preparation for further processing.
- Damascene processing techniques are often preferred methods in many modern integrated circuit manufacturing schemes because it requires fewer processing steps and offers a higher yield than other methods.
- Damascene processing involves forming metal conductors on integrated circuits by forming inlaid metal lines in trenches and vias in a dielectric layer (inter-metal dielectric).
- a layer of photoresist is deposited on a dielectric layer.
- the photoresist is a light-sensitive organic polymer which can be “spun on” in liquid form and dries to a solid thin film.
- the photosensitive photoresist is then patterned using light through the mask and wet solvent.
- a plasma etching process (dry etch) is then used to etch exposed portions of dielectric and transfer the pattern into the dielectric, forming vias and trenches in the dielectric layer.
- the photoresist must be stripped and any etch-related residues must be thoroughly removed before subsequent processing to avoid embedding impurities in the device.
- Conventional processes for stripping photoresist employ a plasma formed from a mixture of gases with the presence of oxygen in the plasma. The highly reactive oxygen based plasma reacts with and oxidizes the organic photoresist to form volatile components that are carried away from the wafer surface.
- low-k materials have been used as inter-metal and/or inter-layer dielectrics between conductive interconnects in many modern devices to reduce the delay in signal propagation due to capacitive effects.
- low-k dielectrics are silicon-oxide based materials with some amount of incorporated carbon, commonly referred to as carbon doped oxide (CDO). It is believed, although not necessarily proven, that the oxygen scavenges or removes carbon from the low-k materials.
- the present invention addresses the aforementioned need by providing improved methods for stripping photoresist and removing etch-related residues.
- methods involve removing material using a hydrogen-based etch process employing a weak oxidizing agent and fluorine-containing compound.
- Substrate temperature is maintained at a level of about 160° C. or less, e.g., less than about 90° C.
- the methods involve introducing gas comprising a weak oxidizing agent, fluorine-containing compound and hydrogen into the reaction chamber, and applying RF power to form a plasma within the reaction chamber to convert at least a portion of the material to gaseous form, thereby removing at least a portion of the material from a partially fabricated integrated circuit.
- methods may be used to remove photoresist and/or residues from the etch process. Methods may be effectively implemented on Damascene devices, including single and dual Damascene devices.
- the weak oxidizing agent comprises at least one of carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide and nitrogen dioxide and water.
- the weak oxidizing agent comprises carbon dioxide.
- the gas comprises between about 0.1% to about 10.0% carbon dioxide by volume.
- the gas further comprises at least one inert carrier gas such as helium, argon or nitrogen.
- the gas does not comprise molecular oxygen.
- the fluorine-containing compound comprises at least one of nitrogen trifluoride (NF 3 ), sulfur hexafluoride (SF 6 ), hexafluoroethane (C 2 F 6 ), tetrafluoromethane (CF 4 ), trifluoromethane (CHF 3 ), difluoromethane (CH 2 F 2 ), octofluoropropane (C 3 F 8 ), octofluorocyclobutane (C 4 F 8 ), octofluoro[1-]butane (C 4 F 8 ), octofluoro[2-]butane (C 4 F 8 ), octofluoroisobutylene (C 4 F 8 ), fluorine (F 2 ), and the like.
- the weak oxidizing agent comprises nitrogen trifluoride.
- the gas comprises between about 5 ppm to about 10% nitrogen trifluoride by volume.
- Methods of the invention may be implemented on any size wafer. Most modern wafer fabrication facilities use either 200 mm or 300 mm wafers. Process conditions may vary depending upon the wafer size. If a 300 mm wafer is used, the total flow rate of gas may range between about 1,000 sccm and about 40,000 sccm. If carbon dioxide is used as the weak oxidizing agent, the flow rate of carbon dioxide may range between about 10 sccm and about 2000 sccm, e.g., 800 sccm. If nitrogen trifluoride is used as the fluorine-containing gas, the flow rate of nitrogen trifluoride may range between about 1 and 20 sccm, e.g., 5 sccm. Typically, the RF plasma power for a 300 mm wafer ranges between about 300 Watts to about 3 Kilowatts for a plasma. Methods may be implemented using a direct or remote plasma.
- substrate temperatures can range between about 50° C. degrees and about 160° C. In certain embodiments, work piece temperatures are maintained at about 90° C. or less.
- Example chamber pressures can range between about 300 mTorr and about 2 Torr. In some embodiments, the wafer is held at a bias.
- methods of the invention may be used with low-k dielectric materials, including carbon-doped low-k dielectric materials such as carbon-doped oxides (CDOs).
- CDOs carbon-doped oxides
- Methods of the invention can be implemented on both non-porous and porous dielectric materials, including CDOs and other compositions.
- Methods of the invention may be implemented in any suitable reaction chamber.
- the reaction chamber may be one chamber of a multi-chambered apparatus or it may be part of a single chamber apparatus.
- a multi-stage removal process is used, with the fluoride-containing compound used only a subset of the stages.
- the fluoride-containing compound is used only in a first set of stages, e.g., a first stage.
- the fluoride-containing compound may be used as part of process gas used to generate a plasma in the first station, for example.
- FIG. 1 is a process flow diagram illustrating aspects of some embodiments of the invention employed for stripping photoresist and removing etch-related residue from a partially fabricated integrated circuit.
- FIGS. 2A-2C show cross sectional depictions of a low-k Damascene device during dry etch and photoresist strip processes in accordance with the invention.
- FIGS. 3A and 3B show cross sectional depictions of a low-k device during dry after photoresist strip and HF-test processes in accordance with the invention.
- FIG. 4A is a schematic illustration showing an apparatus suitable for practicing the present invention.
- FIG. 4B is a simple block diagram showing a multi-station stripping tool suitable for practicing the present invention.
- semiconductor wafer semiconductor wafer
- wafer wafer
- partially fabricated integrated circuit can refer to a silicon wafer during any of many stages of integrated circuit fabrication thereon.
- the following detailed description assumes the invention is implemented on a wafer. However, the invention is not so limited.
- the work piece may be of various shapes, sizes, and materials.
- other work pieces that may take advantage of this invention include various articles such as printed circuit boards and the like.
- methods of the invention may be used to efficiently and effectively to remove photoresist and etch-related materials from a low-k dielectric materials.
- Methods of the invention are not limited to low-k dielectrics. Methods are also not limited to any particular category of low-k dielectrics. For instance, described methods may be effectively used on dielectrics with k values less than 4.0, dielectrics with k values less than about 2.8 and dielectrics with k values less than about 2.0 (“ultra-low-k” or ULK dielectrics).
- the low-k dielectric may be porous or non-porous (sometimes referred to as a “dense” low-k dielectric).
- low-k dense dielectrics are those having k values no greater than 2.8 and low-k porous dielectrics are those having k values no greater than 2.2.
- Low-k dielectrics of any suitable composition may be used, including silicon oxide based dielectrics doped with fluorine and/or carbon. Non-silicon oxide based dielectrics, such as polymeric materials, may also be used. Any suitable process may be used to deposit the low-k dielectric, including as spin-on deposit and CVD deposit techniques. In the case of forming porous dielectrics, any suitable method may be used. A typical method involves co-depositing a silicon-based backbone and an organic porogen and subsequently removing the porogen component, leaving a porous dielectric film. Other methods include sol-gel techniques. Specific examples of suitable low-k films are carbon based spin-on type films such as SILKTM and CVD deposited porous films such as CoralTM.
- Methods of the invention use plasmas that are produced from gases that contain hydrogen and a weak oxidizing agent, and in certain processing operations, a fluorine-containing compound.
- the actual species present in the plasma may be a mixture of different ions and molecules derived from the hydrogen, weak oxidizing agent and/or fluorine-containing compound.
- other species may be present in the reaction chamber, such as small hydrocarbons, carbon dioxide, water vapor and other volatile components as the plasma reacts with and breaks down the organic photoresist and other residues.
- reference to the initial gas/gases introduced into the plasma is/are different from other gas/gases that may exist after the plasma is formed.
- FIG. 1 is a flow chart depicting one general high-level process flow in accordance with some embodiments of the present invention. Note that some typical operations related to the methods of the invention involved in integrated circuit (IC) fabrication are also included in FIG. 1 to provide a context for how the invention may be used. To provide a visual context of some embodiments of the invention, FIGS. 2A through 2C show cross-sectional depictions of a portion of a low-k Damascene device during various pertinent fabrication processes.
- FIGS. 2A and 2B depict the forming of a patterned low-k dielectric in the context of processing a Damascene device 200 .
- FIG. 2A shows device 200 before and
- FIG. 2B shows device 200 after a dry etch process.
- FIG. 2B corresponds to the state of the device provided in block 101 of FIG. 1 .
- layer 201 has a low-k dielectric layer 203 deposited thereon, which has portions of photoresist 205 deposited thereon.
- underlying layer 201 may be a metal layer such as copper, an etch stop layer such as silicon carbide or silicon nitride, or another type of layer.
- Photoresist 205 was previously patterned using UV light lithography (or other suitable process) to leave exposed portions of low-k dielectric layer 203 .
- Device 200 is then subjected to a dry etch process, typically one of sputter etching, plasma etching or reactive ion etching.
- the resulting device 200 has features 210 etched within an ultra low-k dielectric layer 203 .
- Photoresist portions 205 must be stripped before further wafer processing. Note that the tops and sides of the exposed photoresist portions 205 have “skins” 207 that are relatively hard portions of the photoresist as a result of some dry etch processes and that can be compositionally different from the bulk photoresist portions 205 .
- the skin is typically composed of dielectric residues re-deposited from low-k dielectric 203 and re-deposited polymer residue from the photoresist 205 .
- a film 209 can also form over exposed sidewalls of low dielectric 203 . This film typically is made of polymer residues and damaged portions of the low-k dielectric from ion bombardment during the dry etch process.
- the photoresist is stripped of a first portion of the photoresist (block 103 ).
- this first portion includes skin that was formed from the etch process and is generally tougher to remove.
- the wafer is exposed to a hydrogen-based plasma with a weak oxidizing agent and a fluorine-containing compound.
- the wafer is exposed to a H2/CO2/NF3 plasma.
- a relatively small amount of fluorine-containing compound is employed in this operation.
- H2 flow rate is about 20,000 sccm (20 slpm)
- the individual flow rates may vary depending on the particular embodiment.
- the H2 flow rate is two orders of magnitude larger than that of the CO2 flow rate, and four orders of magnitude larger than the NF3 flow.
- the CO2 flow rate is at least one order of magnitude larger than the NF3 flow.
- This operation is typically performed in a different reaction chamber from the chamber where the etch took place.
- a reaction chamber may be referred to as a stand-alone “strip unit.” Any apparatus with a suitable plasma reaction chamber can be used.
- the system may provide a direct (in situ plasma) or remote plasma.
- the operation 103 may be used in certain embodiments to replace a conventional oxygen-based strip that is performed in the same reaction chamber in which the etch took place and typically involves exposure to an oxygen-based plasma.
- This oxidizing partial strip operation can damage some low-k dielectric materials, and may not be performed in certain implementations.
- the wafer is provided in operation 101 without having previously undergone such a strip process in the etch chamber.
- the next operation is to expose the wafer to a hydrogen-based plasma with a weak oxidizing agent to strip the bulk photoresist and/or remove etch-related material (block 105 ).
- fluorine is not present in this operation, unlike in the previous operation.
- the bulk of the photoresist and residue is removed in this operation, which may itself include multiple sub-operations.
- the total flow rate of gas, the relative amount of weak oxidizing agent and fluorine-containing compound and other conditions in the strip chamber can vary depending upon, among other factors, plasma type (downstream versus direct), RF power, chamber pressure, substrate (wafer) size and type of weak oxidizing agent used.
- the plasma may comprise between about 0.1% to 10% carbon dioxide by volume and between about 5 ppm to 10% nitrogen trifluoride (if present) by volume.
- a carrier gas such as helium, argon or nitrogen may be used.
- the carrier gas is typically an unreactive gas.
- commercial hydrogen is available in mixtures with noble gases such as helium. These commercially available gas mixtures may be used for the methods of this invention.
- one or more additional plasma strip or wet clean operations may be performed. It should also be noted that in multi-station apparatuses, operations 103 and 105 may each be performed over one or more than one station.
- the wafer is typically temperature controlled during exposure to the plasma.
- the temperature such that it is no more than about 200° C., no more than about 160° C., no more than about 150° C., no more than about 140° C., no more than about 130° C., no more than about 120° C., no more than about 110° C., no more than about 100° C., no more than about 90° C., no more than about 80° C., or no more than about 60° C.
- the substrate is maintained at temperature no more than about 90° C. It has been found that these relatively low temperatures are critical in certain embodiments to preventing significant damage to the ULK film.
- FIG. 3A depicts a patterned ultra low-k dielectric layer 303 , hard mask layer 315 , and silicon carbide layer 301 , after photoresist removal as described above.
- Etched into low-k dielectric layer 303 is recessed feature 310 , which may be a via or trench.
- the feature 310 includes sidewalls 317 and bottom 319 . It has been found that if the photoresist removal occurs at too high of a temperature, the low-k material near the sidewalls 317 is damaged.
- One manner in which this damage is tested is by an HF dip, for example a 100:1 dilution of HF for 45 seconds.
- a photoresist removal process as described above in was performed at 90° C.
- FIG. 3B depicts the results with 317 ′′ showing the profile of the feature stripped at 280° C., and 317 ′ showing the profile of the feature stripped at 90° C. While the profile 317 ′ was found to be substantially unchanged from the as-stripped feature profile, profile 317 ′′ is bowed inward. The region between these two profiles is the area that is damaged under the high temperature stripping process. The higher temperature process may also remove a certain amount of etch stop material from the bottom of the feature.
- Stations 1 - 5 0.9 Torr/90° C./3.5 kW RF plasma/103 seconds per station
- the temperature is raised for one or more operations after exposure to the fluorine-containing plasma.
- a temperature of less than 160° C. or less than 90° C. may be used during exposure to the fluorine-based plasma, and raised prior to or during exposure to the one or more operations that use fluorine-free plasmas.
- Temperature may be raised in stages in certain embodiments, with later stations using higher temperatures than earlier ones. The higher temperature may be within the range described, or may be higher than that described. For example, in certain embodiments, later stations can use higher temperatures such as 285° C. However, in many embodiments, temperature is maintained at a low temperature throughout the strip process.
- the above description provides examples of removing photoresist using low temperature hydrogen-based plasmas, in particular processes that involve exposing photoresist and etch-related residues to a plasma generated from hydrogen gas, wherein the wafer temperature is maintained at a low temperature, e.g., less than about 200° C., less than about 160° C., less than about 150° C., less than about 140° C., less than about 130° C., less than about 120° C., less than about 110° C., less than about 100° C., less than about 90° C., less than about 80° C., or less than about 60° C.
- the gas used to generate the plasma consists essentially of hydrogen gas in one or more operations.
- one or more of a weak oxidizing agent, a fluorine-containing gas and a carrier gas may be added to the hydrogen gas in one or more operations, as described above.
- process gas chemistries that may be employed to generate a plasma for the low-temperature exposure operations include H2; H2/CO2; H2/CO2/NF3 and H2/NF3, with other weak oxidizing agents and fluorine-containing agents described above substituted for or added to CO2 and NF3, respectively.
- process gas chemistries that may be employed to generate a plasma for the low-temperature exposure operations include H2; H2/CO2; H2/CO2/NF3 and H2/NF3, with other weak oxidizing agents and fluorine-containing agents described above substituted for or added to CO2 and NF3, respectively.
- these may be used at any or all of the removal operations depicted in FIGS. 2A-2C .
- the gas used to generate the hydrogen-based plasma may have essentially no CO2 or other weak oxidizing agent present.
- the gas used to generate the hydrogen-based plasma to remove the bulk photoresist may have essentially no CO2 or other weak oxidizing agent present.
- NF3 or other fluorine-containing gas may be present in certain embodiments.
- Suitable plasma chambers and systems include the Gamma 2100, 2130 I 2 CP (Interlaced Inductively Coupled Plasma), G400, and GxT offered by Novellus Systems, Inc. of San Jose, Calif.
- Other systems include the Fusion line from Axcelis Technologies Inc. of Rockville, Md., TERA21 from PSK Tech Inc. in Korea, and the Aspen from Mattson Technology Inc. in Fremont, Calif.
- various strip chambers may be configured onto cluster tools. For example, a strip chamber may be added to a Centura cluster tool available from Applied Materials of Santa Clara, Calif.
- FIG. 4A is a schematic illustration showing aspects of a downstream plasma apparatus 400 suitable for practicing the present invention on wafers.
- Apparatus 400 has a plasma source 411 and an exposure chamber 401 separated by a showerhead assembly 417 . Inside exposure chamber 401 , a wafer 403 rests on a platen (or stage) 405 . Platen 405 is fitted with a heating/cooling element. In some embodiments, platen 405 is also configured for applying a bias to wafer 403 . Low pressure is attained in exposure chamber 401 via vacuum pump via conduit 407 .
- Sources of gaseous hydrogen (with or without dilution/carrier gas), carbon dioxide (or other weak oxidizing agent), and if present nitrogen trifluoride (or other fluorine-containing gas) provide a flow of gas via inlet 409 into plasma source 411 of the apparatus.
- Plasma source 411 is surrounded in part by induction coils 413 , which are in turn connected to a power source 415 .
- gas mixtures are introduced into plasma source 411 , induction coils 413 are energized and a plasma is generated in plasma source 411 .
- showerhead assembly 417 which has an applied voltage, terminates the flow of some ions and allows the flow of neutral species into exposure chamber 401 .
- wafer 403 may be temperature controlled and/or a RF bias may be applied.
- Various configurations and geometries of the plasma source 411 and induction coils 413 may be used.
- induction coils 413 may loop around the plasma source 411 in an interlaced pattern.
- the plasma source 411 may be shaped as a dome instead of a cylinder.
- a controller 450 may be connected to components of the process chamber, and control process gas composition, pressure, temperature and wafer indexing of the stripping operations.
- Machine-readable media may be coupled to the controller and contain instructions for controlling process conditions for these operations.
- the apparatus of the invention is a strip unit dedicated to stripping photoresist from wafers.
- a strip unit tool will have multiple wafer process stations so that multiple wafers may be processes simultaneously.
- FIG. 4B is a simple block diagram showing a top-down view of a multi-station wafer strip unit tool 430 that may be used in accordance with the invention.
- Strip unit tool 430 has five strip stations 433 , 435 , 437 , 439 and 441 and one load station 431 .
- Strip unit tool 430 is configured such that each station is capable of processing one wafer and so all stations may be exposed to a common vacuum.
- Each of strip stations 433 , 435 , 437 , 439 and 441 has its own RF power supply.
- Load station 431 is typically configured with a load-lock station attached thereto to allow the input of wafers into strip unit tool 430 without a break in vacuum.
- Load station 431 may also be configured with a heat lamp to pre-heat wafers before transferring to strip stations and photoresist stripping.
- Strip station 441 is typically configured with a load-lock station attached thereto to allow the output of wafers from strip unit tool 430 without a break in vacuum.
- a robotic arm 443 transfers wafers from station to station.
- a typical batch mode process will proceed as follows: A wafer is first loaded into load station 431 where it is preheated with a heat lamp. Next, robotic arm 443 transfers the wafer to strip station 433 where it is plasma processed using a fluorine-based plasma for a time period sufficient to strip off about 1 ⁇ 5 of the photoresist.
- Robotic arm 443 then transfers the wafer to strip station 435 where it is plasma processed using a non-fluorine process for a time period sufficient to strip off about another 1 ⁇ 5 of the remaining photoresist. This sequence is continued such that the wafer is processed at strip stations 437 , 439 and 441 . At strip station 441 , the photoresist should be largely removed and the wafer is then unloaded from the strip unit tool.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Improved methods for stripping photoresist and removing etch-related residues from dielectric materials are provided. In one aspect of the invention, methods involve removing material from a dielectric layer using a hydrogen-based etch process employing a weak oxidizing agent and fluorine-containing compound. Substrate temperature is maintained at a level of about 160° C. or less, e.g., less than about 90° C.
Description
- This application is a continuation of and claims priority to U.S. application Ser. No. 12/636,601, titled “LOW DAMAGE PHOTORESIST STRIP METHOD FOR LOW-K DIELECTRICS,” filed Dec. 11, 2009, and a continuation-in-part of and claims priority to U.S. application Ser. No. 13/462,660, titled HIGH DOSE IMPLANTATION STRIP (HDIS) IN H2 BASE CHEMISTRY,” filed May 2, 2012, which is a divisional of and claims priority to application Ser. No. 12/251,305, titled “HIGH DOSE IMPLANTATION STRIP (HDIS) IN H2 BASE CHEMISTRY,” filed Oct. 14, 2008 (issued as U.S. Pat. No. 8,193,096), all of which are incorporated herein in their entireties for all purposes.
- The present invention pertains to methods for stripping photo-resist material and removing etch-related residues from the surface of a partially fabricated integrated circuit in preparation for further processing.
- Damascene processing techniques are often preferred methods in many modern integrated circuit manufacturing schemes because it requires fewer processing steps and offers a higher yield than other methods. Damascene processing involves forming metal conductors on integrated circuits by forming inlaid metal lines in trenches and vias in a dielectric layer (inter-metal dielectric). As part of the Damascene process, a layer of photoresist is deposited on a dielectric layer. The photoresist is a light-sensitive organic polymer which can be “spun on” in liquid form and dries to a solid thin film. The photosensitive photoresist is then patterned using light through the mask and wet solvent. A plasma etching process (dry etch) is then used to etch exposed portions of dielectric and transfer the pattern into the dielectric, forming vias and trenches in the dielectric layer.
- Once the dielectric layer is etched, the photoresist must be stripped and any etch-related residues must be thoroughly removed before subsequent processing to avoid embedding impurities in the device. Conventional processes for stripping photoresist employ a plasma formed from a mixture of gases with the presence of oxygen in the plasma. The highly reactive oxygen based plasma reacts with and oxidizes the organic photoresist to form volatile components that are carried away from the wafer surface.
- Highly oxidizing conditions are also generally unsuitable for use on low dielectric constant (low-k) materials. Low-k materials have been used as inter-metal and/or inter-layer dielectrics between conductive interconnects in many modern devices to reduce the delay in signal propagation due to capacitive effects. The lower the dielectric constant of the dielectric material, the lower the capacitance of the dielectric and the lower the RC delay of the integrated circuit. Typically, low-k dielectrics are silicon-oxide based materials with some amount of incorporated carbon, commonly referred to as carbon doped oxide (CDO). It is believed, although not necessarily proven, that the oxygen scavenges or removes carbon from the low-k materials. In many of these materials such as CDOs, the presence of carbon is instrumental in providing a low dielectric constant. Hence, to the extent that the oxygen removes carbon from these materials, it effectively increases the dielectric constant. As processes used to fabricate integrated circuits moves toward smaller and smaller dimensions and requires the use of dielectric materials having lower and lower dielectric constants, it has been found that the conventional strip plasma conditions are not suitable.
- What are needed therefore is improved and more efficient methods for stripping photoresist and etch-related materials from dielectric materials, especially from low-k dielectric materials.
- The present invention addresses the aforementioned need by providing improved methods for stripping photoresist and removing etch-related residues. In one aspect of the invention, methods involve removing material using a hydrogen-based etch process employing a weak oxidizing agent and fluorine-containing compound. Substrate temperature is maintained at a level of about 160° C. or less, e.g., less than about 90° C.
- In certain embodiment, the methods involve introducing gas comprising a weak oxidizing agent, fluorine-containing compound and hydrogen into the reaction chamber, and applying RF power to form a plasma within the reaction chamber to convert at least a portion of the material to gaseous form, thereby removing at least a portion of the material from a partially fabricated integrated circuit. As stated previously, methods may be used to remove photoresist and/or residues from the etch process. Methods may be effectively implemented on Damascene devices, including single and dual Damascene devices.
- According to various embodiments, the weak oxidizing agent comprises at least one of carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide and nitrogen dioxide and water. In a particular embodiment, the weak oxidizing agent comprises carbon dioxide. In certain embodiments, the gas comprises between about 0.1% to about 10.0% carbon dioxide by volume. In some embodiments, the gas further comprises at least one inert carrier gas such as helium, argon or nitrogen. In certain embodiments, the gas does not comprise molecular oxygen.
- According to various embodiments, the fluorine-containing compound comprises at least one of nitrogen trifluoride (NF3), sulfur hexafluoride (SF6), hexafluoroethane (C2F6), tetrafluoromethane (CF4), trifluoromethane (CHF3), difluoromethane (CH2F2), octofluoropropane (C3F8), octofluorocyclobutane (C4F8), octofluoro[1-]butane (C4F8), octofluoro[2-]butane (C4F8), octofluoroisobutylene (C4F8), fluorine (F2), and the like. In a particular embodiment, the weak oxidizing agent comprises nitrogen trifluoride. In certain embodiments, the gas comprises between about 5 ppm to about 10% nitrogen trifluoride by volume.
- Methods of the invention may be implemented on any size wafer. Most modern wafer fabrication facilities use either 200 mm or 300 mm wafers. Process conditions may vary depending upon the wafer size. If a 300 mm wafer is used, the total flow rate of gas may range between about 1,000 sccm and about 40,000 sccm. If carbon dioxide is used as the weak oxidizing agent, the flow rate of carbon dioxide may range between about 10 sccm and about 2000 sccm, e.g., 800 sccm. If nitrogen trifluoride is used as the fluorine-containing gas, the flow rate of nitrogen trifluoride may range between about 1 and 20 sccm, e.g., 5 sccm. Typically, the RF plasma power for a 300 mm wafer ranges between about 300 Watts to about 3 Kilowatts for a plasma. Methods may be implemented using a direct or remote plasma.
- During the application of plasmas to the work piece surface, substrate temperatures can range between about 50° C. degrees and about 160° C. In certain embodiments, work piece temperatures are maintained at about 90° C. or less. Example chamber pressures can range between about 300 mTorr and about 2 Torr. In some embodiments, the wafer is held at a bias.
- As mentioned previously, methods of the invention may be used with low-k dielectric materials, including carbon-doped low-k dielectric materials such as carbon-doped oxides (CDOs). Methods of the invention can be implemented on both non-porous and porous dielectric materials, including CDOs and other compositions.
- Methods of the invention may be implemented in any suitable reaction chamber. The reaction chamber may be one chamber of a multi-chambered apparatus or it may be part of a single chamber apparatus. In some embodiments, a multi-stage removal process is used, with the fluoride-containing compound used only a subset of the stages. In certain embodiments, the fluoride-containing compound is used only in a first set of stages, e.g., a first stage. In embodiments wherein a multi-station apparatus is used, the fluoride-containing compound may be used as part of process gas used to generate a plasma in the first station, for example.
- These and other features and advantages of the present invention will be described in more detail below with reference to the associated drawings.
-
FIG. 1 is a process flow diagram illustrating aspects of some embodiments of the invention employed for stripping photoresist and removing etch-related residue from a partially fabricated integrated circuit. -
FIGS. 2A-2C show cross sectional depictions of a low-k Damascene device during dry etch and photoresist strip processes in accordance with the invention. -
FIGS. 3A and 3B show cross sectional depictions of a low-k device during dry after photoresist strip and HF-test processes in accordance with the invention. -
FIG. 4A is a schematic illustration showing an apparatus suitable for practicing the present invention. -
FIG. 4B is a simple block diagram showing a multi-station stripping tool suitable for practicing the present invention. - In the following detailed description of the present invention, numerous specific embodiments are set forth in order to provide a thorough understanding of the invention. However, as will be apparent to those skilled in the art, the present invention may be practiced without these specific details or by using alternate elements or processes. In other instances well-known processes, procedures and components have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
- In this application, the terms “semiconductor wafer”, “wafer” and “partially fabricated integrated circuit” will be used interchangeably. One skilled in the art would understand that the term “partially fabricated integrated circuit” can refer to a silicon wafer during any of many stages of integrated circuit fabrication thereon. The following detailed description assumes the invention is implemented on a wafer. However, the invention is not so limited. The work piece may be of various shapes, sizes, and materials. In addition to semiconductor wafers, other work pieces that may take advantage of this invention include various articles such as printed circuit boards and the like.
- As mentioned previously, methods of the invention may be used to efficiently and effectively to remove photoresist and etch-related materials from a low-k dielectric materials. Methods of the invention are not limited to low-k dielectrics. Methods are also not limited to any particular category of low-k dielectrics. For instance, described methods may be effectively used on dielectrics with k values less than 4.0, dielectrics with k values less than about 2.8 and dielectrics with k values less than about 2.0 (“ultra-low-k” or ULK dielectrics). The low-k dielectric may be porous or non-porous (sometimes referred to as a “dense” low-k dielectric). Generally, low-k dense dielectrics are those having k values no greater than 2.8 and low-k porous dielectrics are those having k values no greater than 2.2. Low-k dielectrics of any suitable composition may be used, including silicon oxide based dielectrics doped with fluorine and/or carbon. Non-silicon oxide based dielectrics, such as polymeric materials, may also be used. Any suitable process may be used to deposit the low-k dielectric, including as spin-on deposit and CVD deposit techniques. In the case of forming porous dielectrics, any suitable method may be used. A typical method involves co-depositing a silicon-based backbone and an organic porogen and subsequently removing the porogen component, leaving a porous dielectric film. Other methods include sol-gel techniques. Specific examples of suitable low-k films are carbon based spin-on type films such as SILK™ and CVD deposited porous films such as Coral™.
- Methods of the invention use plasmas that are produced from gases that contain hydrogen and a weak oxidizing agent, and in certain processing operations, a fluorine-containing compound. One skilled in the art will recognize that the actual species present in the plasma may be a mixture of different ions and molecules derived from the hydrogen, weak oxidizing agent and/or fluorine-containing compound. It is noted that other species may be present in the reaction chamber, such as small hydrocarbons, carbon dioxide, water vapor and other volatile components as the plasma reacts with and breaks down the organic photoresist and other residues. One of skill in the art will also recognize that reference to the initial gas/gases introduced into the plasma is/are different from other gas/gases that may exist after the plasma is formed.
-
FIG. 1 is a flow chart depicting one general high-level process flow in accordance with some embodiments of the present invention. Note that some typical operations related to the methods of the invention involved in integrated circuit (IC) fabrication are also included inFIG. 1 to provide a context for how the invention may be used. To provide a visual context of some embodiments of the invention,FIGS. 2A through 2C show cross-sectional depictions of a portion of a low-k Damascene device during various pertinent fabrication processes. - Referring to
FIG. 1 , a wafer with exposed regions of a low-k dielectric layer are etched leaving a patterned photoresist layer thereon is provided (block 101).FIGS. 2A and 2B depict the forming of a patterned low-k dielectric in the context of processing aDamascene device 200.FIG. 2A showsdevice 200 before andFIG. 2B showsdevice 200 after a dry etch process.FIG. 2B corresponds to the state of the device provided inblock 101 ofFIG. 1 . - Referring to
FIG. 2A ,layer 201 has a low-k dielectric layer 203 deposited thereon, which has portions ofphotoresist 205 deposited thereon. Depending on the particular integration scheme,underlying layer 201 may be a metal layer such as copper, an etch stop layer such as silicon carbide or silicon nitride, or another type of layer.Photoresist 205 was previously patterned using UV light lithography (or other suitable process) to leave exposed portions of low-k dielectric layer 203.Device 200 is then subjected to a dry etch process, typically one of sputter etching, plasma etching or reactive ion etching. - As shown in
FIG. 2B , after the dry etch process, the resultingdevice 200 hasfeatures 210 etched within an ultra low-k dielectric layer 203.Photoresist portions 205 must be stripped before further wafer processing. Note that the tops and sides of the exposedphotoresist portions 205 have “skins” 207 that are relatively hard portions of the photoresist as a result of some dry etch processes and that can be compositionally different from thebulk photoresist portions 205. The skin is typically composed of dielectric residues re-deposited from low-k dielectric 203 and re-deposited polymer residue from thephotoresist 205. In addition to the skin, afilm 209 can also form over exposed sidewalls oflow dielectric 203. This film typically is made of polymer residues and damaged portions of the low-k dielectric from ion bombardment during the dry etch process. - Referring back to
FIG. 1 , the photoresist is stripped of a first portion of the photoresist (block 103). In certain embodiments, this first portion includes skin that was formed from the etch process and is generally tougher to remove. In this operation the wafer is exposed to a hydrogen-based plasma with a weak oxidizing agent and a fluorine-containing compound. For example, in certain embodiments, the wafer is exposed to a H2/CO2/NF3 plasma. As discussed further below, a relatively small amount of fluorine-containing compound is employed in this operation. In one example, H2 flow rate is about 20,000 sccm (20 slpm), CO2 flow rate 800 sccm (0.8 slpm) andNF3 flow rate 5 sccm. The individual flow rates may vary depending on the particular embodiment. The H2 flow rate is two orders of magnitude larger than that of the CO2 flow rate, and four orders of magnitude larger than the NF3 flow. In certain embodiments, the CO2 flow rate is at least one order of magnitude larger than the NF3 flow. These ranges may be applied to other weak oxidizing agents and fluorine-containing compounds as appropriate. - This operation is typically performed in a different reaction chamber from the chamber where the etch took place. Such a reaction chamber may be referred to as a stand-alone “strip unit.” Any apparatus with a suitable plasma reaction chamber can be used. The system may provide a direct (in situ plasma) or remote plasma.
- It should be noted that the
operation 103 may be used in certain embodiments to replace a conventional oxygen-based strip that is performed in the same reaction chamber in which the etch took place and typically involves exposure to an oxygen-based plasma. This oxidizing partial strip operation can damage some low-k dielectric materials, and may not be performed in certain implementations. Thus in certain embodiments, the wafer is provided inoperation 101 without having previously undergone such a strip process in the etch chamber. - Referring again to
FIG. 1 , the next operation is to expose the wafer to a hydrogen-based plasma with a weak oxidizing agent to strip the bulk photoresist and/or remove etch-related material (block 105). In certain embodiments, fluorine is not present in this operation, unlike in the previous operation. In certain embodiments, the bulk of the photoresist and residue is removed in this operation, which may itself include multiple sub-operations. - The total flow rate of gas, the relative amount of weak oxidizing agent and fluorine-containing compound and other conditions in the strip chamber can vary depending upon, among other factors, plasma type (downstream versus direct), RF power, chamber pressure, substrate (wafer) size and type of weak oxidizing agent used. In some examples using the Novellus Gamma™ system (downstream plasma system), the plasma may comprise between about 0.1% to 10% carbon dioxide by volume and between about 5 ppm to 10% nitrogen trifluoride (if present) by volume.
- In addition to hydrogen, weak oxidizing agent, and fluorine-containing gas, a carrier gas such as helium, argon or nitrogen may be used. The carrier gas is typically an unreactive gas. For shipment and handling safety reasons, commercial hydrogen is available in mixtures with noble gases such as helium. These commercially available gas mixtures may be used for the methods of this invention.
- After the majority of the photoresist and etch residue has been removed during plasma strip in
operation 105, one or more additional plasma strip or wet clean operations may be performed. It should also be noted that in multi-station apparatuses,operations - The wafer is typically temperature controlled during exposure to the plasma. In particular, the temperature such that it is no more than about 200° C., no more than about 160° C., no more than about 150° C., no more than about 140° C., no more than about 130° C., no more than about 120° C., no more than about 110° C., no more than about 100° C., no more than about 90° C., no more than about 80° C., or no more than about 60° C. In particular embodiments, the substrate is maintained at temperature no more than about 90° C. It has been found that these relatively low temperatures are critical in certain embodiments to preventing significant damage to the ULK film.
-
FIG. 3A depicts a patterned ultra low-k dielectric layer 303,hard mask layer 315, andsilicon carbide layer 301, after photoresist removal as described above. Etched into low-k dielectric layer 303 is recessedfeature 310, which may be a via or trench. Thefeature 310 includessidewalls 317 andbottom 319. It has been found that if the photoresist removal occurs at too high of a temperature, the low-k material near thesidewalls 317 is damaged. One manner in which this damage is tested is by an HF dip, for example a 100:1 dilution of HF for 45 seconds. In one example, a photoresist removal process as described above in was performed at 90° C. and compared to a process using the same chemistry, but performed at 280° C.FIG. 3B depicts the results with 317″ showing the profile of the feature stripped at 280° C., and 317′ showing the profile of the feature stripped at 90° C. While theprofile 317′ was found to be substantially unchanged from the as-stripped feature profile,profile 317″ is bowed inward. The region between these two profiles is the area that is damaged under the high temperature stripping process. The higher temperature process may also remove a certain amount of etch stop material from the bottom of the feature. - Higher temperatures allow a faster etch rate; however, it has been found that more fluorine is required to etch as the temperature is increased. As a result, damage to the dielectric is increased. Damage can also occur, however, by long exposure times that come from using low temperatures. However, it has been found that temperatures in the ranges described above can prevent or reduce damage within the constraints of these competing effects.
- In one example, the following process conditions were used to produce a low damage strip:
- Station 1: 20 slpm H2/0.8 slpm CO2/5 sccm NF3
- Station 2-5: 20 slpm H2/0.8 slpm CO2
- Stations 1-5: 0.9 Torr/90° C./3.5 kW RF plasma/103 seconds per station
- In certain embodiments, the temperature is raised for one or more operations after exposure to the fluorine-containing plasma. For example, a temperature of less than 160° C. or less than 90° C. may be used during exposure to the fluorine-based plasma, and raised prior to or during exposure to the one or more operations that use fluorine-free plasmas. Temperature may be raised in stages in certain embodiments, with later stations using higher temperatures than earlier ones. The higher temperature may be within the range described, or may be higher than that described. For example, in certain embodiments, later stations can use higher temperatures such as 285° C. However, in many embodiments, temperature is maintained at a low temperature throughout the strip process.
- The above description provides examples of removing photoresist using low temperature hydrogen-based plasmas, in particular processes that involve exposing photoresist and etch-related residues to a plasma generated from hydrogen gas, wherein the wafer temperature is maintained at a low temperature, e.g., less than about 200° C., less than about 160° C., less than about 150° C., less than about 140° C., less than about 130° C., less than about 120° C., less than about 110° C., less than about 100° C., less than about 90° C., less than about 80° C., or less than about 60° C. In certain embodiments, the gas used to generate the plasma consists essentially of hydrogen gas in one or more operations. In alternate embodiments, one or more of a weak oxidizing agent, a fluorine-containing gas and a carrier gas may be added to the hydrogen gas in one or more operations, as described above. Examples of process gas chemistries that may be employed to generate a plasma for the low-temperature exposure operations include H2; H2/CO2; H2/CO2/NF3 and H2/NF3, with other weak oxidizing agents and fluorine-containing agents described above substituted for or added to CO2 and NF3, respectively. Depending on the characteristics of the photoresist and etch residue present, these may be used at any or all of the removal operations depicted in
FIGS. 2A-2C . - For example, to remove the “skin,” the gas used to generate the hydrogen-based plasma may have essentially no CO2 or other weak oxidizing agent present. Also, in certain embodiments, there may essentially no NF3 or other fluorine-containing gas present. The gas used to generate the hydrogen-based plasma to remove the bulk photoresist may have essentially no CO2 or other weak oxidizing agent present. In many embodiments, there may essentially no NF3 or other fluorine-containing gas present, as described above. However, NF3 or other fluorine-containing gas may be present in certain embodiments.
- As mentioned, any suitable plasma reaction chamber apparatus may be used. Suitable plasma chambers and systems include the Gamma 2100, 2130 I2CP (Interlaced Inductively Coupled Plasma), G400, and GxT offered by Novellus Systems, Inc. of San Jose, Calif. Other systems include the Fusion line from Axcelis Technologies Inc. of Rockville, Md., TERA21 from PSK Tech Inc. in Korea, and the Aspen from Mattson Technology Inc. in Fremont, Calif. Additionally, various strip chambers may be configured onto cluster tools. For example, a strip chamber may be added to a Centura cluster tool available from Applied Materials of Santa Clara, Calif.
-
FIG. 4A is a schematic illustration showing aspects of adownstream plasma apparatus 400 suitable for practicing the present invention on wafers.Apparatus 400 has aplasma source 411 and anexposure chamber 401 separated by ashowerhead assembly 417. Insideexposure chamber 401, awafer 403 rests on a platen (or stage) 405.Platen 405 is fitted with a heating/cooling element. In some embodiments,platen 405 is also configured for applying a bias towafer 403. Low pressure is attained inexposure chamber 401 via vacuum pump viaconduit 407. Sources of gaseous hydrogen (with or without dilution/carrier gas), carbon dioxide (or other weak oxidizing agent), and if present nitrogen trifluoride (or other fluorine-containing gas) provide a flow of gas viainlet 409 intoplasma source 411 of the apparatus.Plasma source 411 is surrounded in part byinduction coils 413, which are in turn connected to apower source 415. During operation, gas mixtures are introduced intoplasma source 411, induction coils 413 are energized and a plasma is generated inplasma source 411.Showerhead assembly 417, which has an applied voltage, terminates the flow of some ions and allows the flow of neutral species intoexposure chamber 401. As mentioned,wafer 403 may be temperature controlled and/or a RF bias may be applied. Various configurations and geometries of theplasma source 411 andinduction coils 413 may be used. For example, induction coils 413 may loop around theplasma source 411 in an interlaced pattern. In another example, theplasma source 411 may be shaped as a dome instead of a cylinder. Acontroller 450 may be connected to components of the process chamber, and control process gas composition, pressure, temperature and wafer indexing of the stripping operations. Machine-readable media may be coupled to the controller and contain instructions for controlling process conditions for these operations. - As mentioned, in some embodiments, the apparatus of the invention is a strip unit dedicated to stripping photoresist from wafers. Generally, such a strip unit tool will have multiple wafer process stations so that multiple wafers may be processes simultaneously.
FIG. 4B is a simple block diagram showing a top-down view of a multi-station waferstrip unit tool 430 that may be used in accordance with the invention.Strip unit tool 430 has fivestrip stations load station 431.Strip unit tool 430 is configured such that each station is capable of processing one wafer and so all stations may be exposed to a common vacuum. Each ofstrip stations Load station 431 is typically configured with a load-lock station attached thereto to allow the input of wafers intostrip unit tool 430 without a break in vacuum.Load station 431 may also be configured with a heat lamp to pre-heat wafers before transferring to strip stations and photoresist stripping.Strip station 441 is typically configured with a load-lock station attached thereto to allow the output of wafers fromstrip unit tool 430 without a break in vacuum. Arobotic arm 443 transfers wafers from station to station. - During typical manufacturing mode, wafers are processed in batch mode. Batch mode processing can increase wafer though-put and is therefore commonly used in manufacturing operation. In batch mode, each wafer is transferred to, and processed in, each of
stations load station 431 where it is preheated with a heat lamp. Next,robotic arm 443 transfers the wafer to stripstation 433 where it is plasma processed using a fluorine-based plasma for a time period sufficient to strip off about ⅕ of the photoresist.Robotic arm 443 then transfers the wafer to stripstation 435 where it is plasma processed using a non-fluorine process for a time period sufficient to strip off about another ⅕ of the remaining photoresist. This sequence is continued such that the wafer is processed atstrip stations strip station 441, the photoresist should be largely removed and the wafer is then unloaded from the strip unit tool. - Although various details have been omitted for clarity's sake, various design alternatives may be implemented. Therefore, the present examples are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope of the appended claims.
Claims (20)
1. A method of removing material from a work piece after an etch process, the method comprising:
forming a first plasma from a gas comprising hydrogen and a fluorine-containing compound;
exposing the work piece to the first plasma;
forming a second plasma from a gas comprising hydrogen; and
exposing the work piece to the second plasma,
wherein the work piece temperature is maintained at a temperature below about 200° C. during exposure to the first plasma, wherein at least some of the material is removed from the dielectric layer by exposure to the first and second plasmas and the removed material comprises one or more of photoresist and residue from the etch process.
2. The method of claim 1 , wherein the material comprises photoresist including a bulk portion and a skin covering the bulk portion.
3. The method of claim 2 , wherein exposure to the first plasma removes the skin.
4. The method of claim 1 , wherein the gas from which the first plasma is formed further comprises an oxidizing agent selected from carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide and nitrogen dioxide and water.
5. The method of claim 1 , wherein the fluorine-containing compound is comprises at least one of nitrogen trifluoride (NF3), sulfur hexafluoride (SF6), hexafluoroethane (C2F6), tetrafluoromethane (CF4), trifluoromethane (CHF3), difluoromethane (CH2F2), octofluoropropane (C3F8), octofluorocyclobutane (C4F8), octofluoro[1-]butane (C4F8), octofluoro[2-]butane (C4F8), octofluoroisobutylene (C4F8), and fluorine (F2).
6. The method of claim 1 , wherein the second plasma is generated from a fluorine-free process gas chemistry.
7. The method of claim 1 , wherein the work piece temperature is maintained at a temperature below about 160° C. during exposure to the first plasma.
8. The method of claim 1 , wherein the work piece temperature is maintained at a temperature below about 120° C. during exposure to the first plasma.
9. The method of claim 1 , wherein the work piece temperature is raised to a second temperature during exposure to the second plasma, the second temperature greater than the workpiece temperature during exposure to the first plasma.
10. The method of claim 9 , wherein the second temperature is no more than about 285° C.
11. The method of claim 1 , wherein the same workpiece temperature is maintained during exposure to the first and second plasmas.
12. The method of claim 1 wherein the work piece has not undergone a previous oxygen-based plasma photoresist stripping operation.
13. The method of claim 1 , wherein the material is removed from a dielectric layer.
14. The method of claim 1 , wherein the material is removed from an oxide.
15. The method of claim 1 , wherein the material is removed from a carbon-doped oxide.
16. A method of removing material from a dielectric layer on a work piece as part of a partially fabricated integrated circuit after an etch process, the method comprising:
forming a first plasma from a gas comprising hydrogen, a fluorine-containing compound, and an oxidizing agent selected from carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide and nitrogen dioxide and water;
exposing the work piece to the first plasma to thereby remove one or more of etch-related residue and photoresist from the dielectric layer, wherein the work piece temperature is maintained at a temperature below about 200° C. during the exposure to the first plasma.
17. The method of claim 16 , wherein the work piece temperature is maintained at a temperature below about 120° C. during the exposure to the first plasma.
18. The method of claim 16 , wherein the volume percentage of the oxidizing agent is between about 0.1% and 10% in the gas and the volume percentage of the fluorine-containing compound in the gas is no more than 10%.
19. The method of claim 16 , wherein the volume percentage of the fluorine-containing compound in the gas is no more than 1%.
20. An apparatus for removing material from a work piece surface comprising:
a reaction chamber comprising:
a plasma source,
a showerhead positioned downstream of the plasma source, and
a work piece support downstream of the showerhead, said work piece support comprising a pedestal and temperature-controlling mechanism to control a temperature of a work piece supported on the work piece support; and
a controller for executing a set of instructions, said set of instruction comprising instructions for forming a first plasma from a gas comprising hydrogen, a weak oxidizing agent and a fluorine-containing compound; exposing the work piece to the first plasma; forming a second plasma from a gas comprising hydrogen and a weak oxidizing agent; exposing the work piece to the second plasma, and maintaining the work piece at a temperature below about 200° C. during the exposure operations.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/066,587 US20140120733A1 (en) | 2008-10-14 | 2013-10-29 | Low damage photoresist strip method for low-k dielectrics |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/251,305 US8193096B2 (en) | 2004-12-13 | 2008-10-14 | High dose implantation strip (HDIS) in H2 base chemistry |
US12/636,601 US8591661B2 (en) | 2009-12-11 | 2009-12-11 | Low damage photoresist strip method for low-K dielectrics |
US13/462,660 US8641862B2 (en) | 2004-12-13 | 2012-05-02 | High dose implantation strip (HDIS) in H2 base chemistry |
US14/066,587 US20140120733A1 (en) | 2008-10-14 | 2013-10-29 | Low damage photoresist strip method for low-k dielectrics |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/636,601 Continuation US8591661B2 (en) | 2008-10-14 | 2009-12-11 | Low damage photoresist strip method for low-K dielectrics |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140120733A1 true US20140120733A1 (en) | 2014-05-01 |
Family
ID=44141528
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/636,601 Expired - Fee Related US8591661B2 (en) | 2008-10-14 | 2009-12-11 | Low damage photoresist strip method for low-K dielectrics |
US14/066,587 Abandoned US20140120733A1 (en) | 2008-10-14 | 2013-10-29 | Low damage photoresist strip method for low-k dielectrics |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/636,601 Expired - Fee Related US8591661B2 (en) | 2008-10-14 | 2009-12-11 | Low damage photoresist strip method for low-K dielectrics |
Country Status (7)
Country | Link |
---|---|
US (2) | US8591661B2 (en) |
JP (1) | JP5911068B2 (en) |
KR (1) | KR101908737B1 (en) |
CN (1) | CN102792423B (en) |
SG (1) | SG181165A1 (en) |
TW (1) | TWI562225B (en) |
WO (1) | WO2011072042A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9373497B2 (en) | 2007-04-04 | 2016-06-21 | Novellus Systems, Inc. | Methods for stripping photoresist and/or cleaning metal regions |
US9514954B2 (en) | 2014-06-10 | 2016-12-06 | Lam Research Corporation | Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films |
US9564344B2 (en) | 2009-12-11 | 2017-02-07 | Novellus Systems, Inc. | Ultra low silicon loss high dose implant strip |
WO2017044154A1 (en) * | 2015-09-09 | 2017-03-16 | International Business Machines Corporation | Hydrofluorocarbon gas-assisted plasma etch for interconnect fabrication |
US9613825B2 (en) | 2011-08-26 | 2017-04-04 | Novellus Systems, Inc. | Photoresist strip processes for improved device integrity |
US9941108B2 (en) | 2004-12-13 | 2018-04-10 | Novellus Systems, Inc. | High dose implantation strip (HDIS) in H2 base chemistry |
US9999278B2 (en) * | 2016-09-23 | 2018-06-19 | Feinstein Patents, Llc | Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting shoe/sneaker/footwear |
US20190362984A1 (en) * | 2018-05-28 | 2019-11-28 | Tokyo Electron Limited | Method of etching film and plasma processing apparatus |
WO2023069346A1 (en) * | 2021-10-22 | 2023-04-27 | Lam Research Corporation | Strip with bevel cleaning |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8129281B1 (en) | 2005-05-12 | 2012-03-06 | Novellus Systems, Inc. | Plasma based photoresist removal system for cleaning post ash residue |
US7740768B1 (en) | 2006-10-12 | 2010-06-22 | Novellus Systems, Inc. | Simultaneous front side ash and backside clean |
US8866065B2 (en) | 2010-12-13 | 2014-10-21 | Zena Technologies, Inc. | Nanowire arrays comprising fluorescent nanowires |
US8519379B2 (en) | 2009-12-08 | 2013-08-27 | Zena Technologies, Inc. | Nanowire structured photodiode with a surrounding epitaxially grown P or N layer |
US8274039B2 (en) | 2008-11-13 | 2012-09-25 | Zena Technologies, Inc. | Vertical waveguides with various functionality on integrated circuits |
US9082673B2 (en) | 2009-10-05 | 2015-07-14 | Zena Technologies, Inc. | Passivated upstanding nanostructures and methods of making the same |
US8507840B2 (en) | 2010-12-21 | 2013-08-13 | Zena Technologies, Inc. | Vertically structured passive pixel arrays and methods for fabricating the same |
US8835831B2 (en) | 2010-06-22 | 2014-09-16 | Zena Technologies, Inc. | Polarized light detecting device and fabrication methods of the same |
US8890271B2 (en) * | 2010-06-30 | 2014-11-18 | Zena Technologies, Inc. | Silicon nitride light pipes for image sensors |
US8229255B2 (en) | 2008-09-04 | 2012-07-24 | Zena Technologies, Inc. | Optical waveguides in image sensors |
US8748799B2 (en) | 2010-12-14 | 2014-06-10 | Zena Technologies, Inc. | Full color single pixel including doublet or quadruplet si nanowires for image sensors |
US8299472B2 (en) | 2009-12-08 | 2012-10-30 | Young-June Yu | Active pixel sensor with nanowire structured photodetectors |
US8546742B2 (en) | 2009-06-04 | 2013-10-01 | Zena Technologies, Inc. | Array of nanowires in a single cavity with anti-reflective coating on substrate |
US9000353B2 (en) | 2010-06-22 | 2015-04-07 | President And Fellows Of Harvard College | Light absorption and filtering properties of vertically oriented semiconductor nano wires |
US9343490B2 (en) | 2013-08-09 | 2016-05-17 | Zena Technologies, Inc. | Nanowire structured color filter arrays and fabrication method of the same |
US8735797B2 (en) | 2009-12-08 | 2014-05-27 | Zena Technologies, Inc. | Nanowire photo-detector grown on a back-side illuminated image sensor |
US8269985B2 (en) | 2009-05-26 | 2012-09-18 | Zena Technologies, Inc. | Determination of optimal diameters for nanowires |
US9406709B2 (en) | 2010-06-22 | 2016-08-02 | President And Fellows Of Harvard College | Methods for fabricating and using nanowires |
US9515218B2 (en) | 2008-09-04 | 2016-12-06 | Zena Technologies, Inc. | Vertical pillar structured photovoltaic devices with mirrors and optical claddings |
US9478685B2 (en) | 2014-06-23 | 2016-10-25 | Zena Technologies, Inc. | Vertical pillar structured infrared detector and fabrication method for the same |
US9299866B2 (en) | 2010-12-30 | 2016-03-29 | Zena Technologies, Inc. | Nanowire array based solar energy harvesting device |
US8791470B2 (en) | 2009-10-05 | 2014-07-29 | Zena Technologies, Inc. | Nano structured LEDs |
US8889455B2 (en) | 2009-12-08 | 2014-11-18 | Zena Technologies, Inc. | Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor |
US8591661B2 (en) | 2009-12-11 | 2013-11-26 | Novellus Systems, Inc. | Low damage photoresist strip method for low-K dielectrics |
US8721797B2 (en) | 2009-12-11 | 2014-05-13 | Novellus Systems, Inc. | Enhanced passivation process to protect silicon prior to high dose implant strip |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US8637411B2 (en) | 2010-04-15 | 2014-01-28 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9373500B2 (en) | 2014-02-21 | 2016-06-21 | Lam Research Corporation | Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications |
US9611544B2 (en) | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
US9892917B2 (en) | 2010-04-15 | 2018-02-13 | Lam Research Corporation | Plasma assisted atomic layer deposition of multi-layer films for patterning applications |
US9997357B2 (en) | 2010-04-15 | 2018-06-12 | Lam Research Corporation | Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors |
US9257274B2 (en) | 2010-04-15 | 2016-02-09 | Lam Research Corporation | Gapfill of variable aspect ratio features with a composite PEALD and PECVD method |
US9685320B2 (en) | 2010-09-23 | 2017-06-20 | Lam Research Corporation | Methods for depositing silicon oxide |
KR101357785B1 (en) * | 2012-09-11 | 2014-02-04 | 피에스케이 주식회사 | Method for treating substrate |
KR102207992B1 (en) | 2012-10-23 | 2021-01-26 | 램 리써치 코포레이션 | Sub-saturated atomic layer deposition and conformal film deposition |
SG2013083654A (en) | 2012-11-08 | 2014-06-27 | Novellus Systems Inc | Methods for depositing films on sensitive substrates |
KR102230529B1 (en) * | 2013-12-27 | 2021-03-19 | 엘지디스플레이 주식회사 | Organic light emitting display device and method for fabricating of the same |
US9214334B2 (en) | 2014-02-18 | 2015-12-15 | Lam Research Corporation | High growth rate process for conformal aluminum nitride |
US9478438B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9570320B2 (en) * | 2014-10-09 | 2017-02-14 | Lam Research Corporation | Method to etch copper barrier film |
US9564312B2 (en) | 2014-11-24 | 2017-02-07 | Lam Research Corporation | Selective inhibition in atomic layer deposition of silicon-containing films |
US10566187B2 (en) | 2015-03-20 | 2020-02-18 | Lam Research Corporation | Ultrathin atomic layer deposition film accuracy thickness control |
US9502238B2 (en) | 2015-04-03 | 2016-11-22 | Lam Research Corporation | Deposition of conformal films by atomic layer deposition and atomic layer etch |
US10526701B2 (en) | 2015-07-09 | 2020-01-07 | Lam Research Corporation | Multi-cycle ALD process for film uniformity and thickness profile modulation |
US9773643B1 (en) | 2016-06-30 | 2017-09-26 | Lam Research Corporation | Apparatus and method for deposition and etch in gap fill |
US10062563B2 (en) | 2016-07-01 | 2018-08-28 | Lam Research Corporation | Selective atomic layer deposition with post-dose treatment |
US10037884B2 (en) | 2016-08-31 | 2018-07-31 | Lam Research Corporation | Selective atomic layer deposition for gapfill using sacrificial underlayer |
CN107015445A (en) * | 2017-03-27 | 2017-08-04 | 武汉新芯集成电路制造有限公司 | Semicon-ductor structure surface processing method |
US10269559B2 (en) | 2017-09-13 | 2019-04-23 | Lam Research Corporation | Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer |
WO2020222853A1 (en) | 2019-05-01 | 2020-11-05 | Lam Research Corporation | Modulated atomic layer deposition |
US11164727B2 (en) | 2019-07-18 | 2021-11-02 | Beijing E-town Semiconductor Technology Co., Ltd. | Processing of workpieces using hydrogen radicals and ozone gas |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020072016A1 (en) * | 2000-12-13 | 2002-06-13 | Applied Materials, Inc. | Substrate cleaning apparatus and method |
Family Cites Families (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4216922B2 (en) * | 1998-05-08 | 2009-01-28 | 東京エレクトロン株式会社 | Oxide film etching method |
US4201579A (en) | 1978-06-05 | 1980-05-06 | Motorola, Inc. | Method for removing photoresist by hydrogen plasma |
US4357203A (en) | 1981-12-30 | 1982-11-02 | Rca Corporation | Plasma etching of polyimide |
US4699689A (en) | 1985-05-17 | 1987-10-13 | Emergent Technologies Corporation | Method and apparatus for dry processing of substrates |
US5292393A (en) | 1986-12-19 | 1994-03-08 | Applied Materials, Inc. | Multichamber integrated process system |
US5158644A (en) | 1986-12-19 | 1992-10-27 | Applied Materials, Inc. | Reactor chamber self-cleaning process |
JPH01200628A (en) * | 1988-02-05 | 1989-08-11 | Toshiba Corp | Dry etching |
US5354386A (en) | 1989-03-24 | 1994-10-11 | National Semiconductor Corporation | Method for plasma etching tapered and stepped vias |
US5122225A (en) | 1990-11-21 | 1992-06-16 | Texas Instruments Incorporated | Selective etch method |
US5716494A (en) | 1992-06-22 | 1998-02-10 | Matsushita Electric Industrial Co., Ltd. | Dry etching method, chemical vapor deposition method, and apparatus for processing semiconductor substrate |
US5522932A (en) | 1993-05-14 | 1996-06-04 | Applied Materials, Inc. | Corrosion-resistant apparatus |
EP0664347A3 (en) | 1994-01-25 | 1997-05-14 | Applied Materials Inc | Apparatus for depositing a uniform layer of material on a substrate. |
US5744049A (en) | 1994-07-18 | 1998-04-28 | Applied Materials, Inc. | Plasma reactor with enhanced plasma uniformity by gas addition, and method of using same |
US5900351A (en) | 1995-01-17 | 1999-05-04 | International Business Machines Corporation | Method for stripping photoresist |
US5817406A (en) | 1995-07-14 | 1998-10-06 | Applied Materials, Inc. | Ceramic susceptor with embedded metal electrode and brazing material connection |
US5633073A (en) | 1995-07-14 | 1997-05-27 | Applied Materials, Inc. | Ceramic susceptor with embedded metal electrode and eutectic connection |
JP3585591B2 (en) | 1995-07-29 | 2004-11-04 | 株式会社半導体エネルギー研究所 | Etching apparatus and etching method |
US6193802B1 (en) | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6187072B1 (en) | 1995-09-25 | 2001-02-13 | Applied Materials, Inc. | Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions |
US6045618A (en) | 1995-09-25 | 2000-04-04 | Applied Materials, Inc. | Microwave apparatus for in-situ vacuum line cleaning for substrate processing equipment |
US6194628B1 (en) | 1995-09-25 | 2001-02-27 | Applied Materials, Inc. | Method and apparatus for cleaning a vacuum line in a CVD system |
US5792269A (en) | 1995-10-31 | 1998-08-11 | Applied Materials, Inc. | Gas distribution for CVD systems |
US5968324A (en) | 1995-12-05 | 1999-10-19 | Applied Materials, Inc. | Method and apparatus for depositing antireflective coating |
US5707485A (en) | 1995-12-20 | 1998-01-13 | Micron Technology, Inc. | Method and apparatus for facilitating removal of material from the backside of wafers via a plasma etch |
JPH09205130A (en) | 1996-01-17 | 1997-08-05 | Applied Materials Inc | Wafer supporting device |
US5660682A (en) | 1996-03-14 | 1997-08-26 | Lsi Logic Corporation | Plasma clean with hydrogen gas |
US5814155A (en) | 1996-06-26 | 1998-09-29 | Vlsi Technology, Inc. | Plasma ashing enhancement |
US6083852A (en) | 1997-05-07 | 2000-07-04 | Applied Materials, Inc. | Method for applying films using reduced deposition rates |
US6127262A (en) | 1996-06-28 | 2000-10-03 | Applied Materials, Inc. | Method and apparatus for depositing an etch stop layer |
US6156149A (en) | 1997-05-07 | 2000-12-05 | Applied Materials, Inc. | In situ deposition of a dielectric oxide layer and anti-reflective coating |
US6129091A (en) | 1996-10-04 | 2000-10-10 | Taiwan Semiconductor Manfacturing Company | Method for cleaning silicon wafers with deep trenches |
US6562544B1 (en) | 1996-11-04 | 2003-05-13 | Applied Materials, Inc. | Method and apparatus for improving accuracy in photolithographic processing of substrates |
US5844195A (en) | 1996-11-18 | 1998-12-01 | Applied Materials, Inc. | Remote plasma source |
US5911834A (en) | 1996-11-18 | 1999-06-15 | Applied Materials, Inc. | Gas delivery system |
US5830775A (en) | 1996-11-26 | 1998-11-03 | Sharp Microelectronics Technology, Inc. | Raised silicided source/drain electrode formation with reduced substrate silicon consumption |
US5811358A (en) | 1997-01-03 | 1998-09-22 | Mosel Vitelic Inc. | Low temperature dry process for stripping photoresist after high dose ion implantation |
US6039834A (en) | 1997-03-05 | 2000-03-21 | Applied Materials, Inc. | Apparatus and methods for upgraded substrate processing system with microwave plasma source |
US6077764A (en) | 1997-04-21 | 2000-06-20 | Applied Materials, Inc. | Process for depositing high deposition rate halogen-doped silicon oxide layer |
US6306564B1 (en) | 1997-05-27 | 2001-10-23 | Tokyo Electron Limited | Removal of resist or residue from semiconductors using supercritical carbon dioxide |
US6177023B1 (en) | 1997-07-11 | 2001-01-23 | Applied Komatsu Technology, Inc. | Method and apparatus for electrostatically maintaining substrate flatness |
JP3317209B2 (en) | 1997-08-12 | 2002-08-26 | 東京エレクトロンエイ・ティー株式会社 | Plasma processing apparatus and plasma processing method |
JPH1187307A (en) * | 1997-09-05 | 1999-03-30 | Sony Corp | Method and apparatus for regist removal |
US5908672A (en) | 1997-10-15 | 1999-06-01 | Applied Materials, Inc. | Method and apparatus for depositing a planarized passivation layer |
US6797188B1 (en) | 1997-11-12 | 2004-09-28 | Meihua Shen | Self-cleaning process for etching silicon-containing material |
WO1999026277A1 (en) | 1997-11-17 | 1999-05-27 | Mattson Technology, Inc. | Systems and methods for plasma enhanced processing of semiconductor wafers |
US6098568A (en) | 1997-12-01 | 2000-08-08 | Applied Materials, Inc. | Mixed frequency CVD apparatus |
US6340435B1 (en) | 1998-02-11 | 2002-01-22 | Applied Materials, Inc. | Integrated low K dielectrics and etch stops |
US6054379A (en) | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
US6413583B1 (en) | 1998-02-11 | 2002-07-02 | Applied Materials, Inc. | Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound |
US6303523B2 (en) | 1998-02-11 | 2001-10-16 | Applied Materials, Inc. | Plasma processes for depositing low dielectric constant films |
US6593247B1 (en) | 1998-02-11 | 2003-07-15 | Applied Materials, Inc. | Method of depositing low k films using an oxidizing plasma |
US6287990B1 (en) | 1998-02-11 | 2001-09-11 | Applied Materials, Inc. | CVD plasma assisted low dielectric constant films |
US6660656B2 (en) | 1998-02-11 | 2003-12-09 | Applied Materials Inc. | Plasma processes for depositing low dielectric constant films |
US6203657B1 (en) | 1998-03-31 | 2001-03-20 | Lam Research Corporation | Inductively coupled plasma downstream strip module |
US5980770A (en) | 1998-04-16 | 1999-11-09 | Siemens Aktiengesellschaft | Removal of post-RIE polymer on Al/Cu metal line |
US6086952A (en) | 1998-06-15 | 2000-07-11 | Applied Materials, Inc. | Chemical vapor deposition of a copolymer of p-xylylene and a multivinyl silicon/oxygen comonomer |
US6800571B2 (en) | 1998-09-29 | 2004-10-05 | Applied Materials Inc. | CVD plasma assisted low dielectric constant films |
US6277733B1 (en) | 1998-10-05 | 2001-08-21 | Texas Instruments Incorporated | Oxygen-free, dry plasma process for polymer removal |
US6342446B1 (en) | 1998-10-06 | 2002-01-29 | Texas Instruments Incorporated | Plasma process for organic residue removal from copper |
US6171945B1 (en) | 1998-10-22 | 2001-01-09 | Applied Materials, Inc. | CVD nanoporous silica low dielectric constant films |
US6245690B1 (en) | 1998-11-04 | 2001-06-12 | Applied Materials, Inc. | Method of improving moisture resistance of low dielectric constant films |
US6107184A (en) | 1998-12-09 | 2000-08-22 | Applied Materials, Inc. | Nano-porous copolymer films having low dielectric constants |
US6417080B1 (en) | 1999-01-28 | 2002-07-09 | Canon Kabushiki Kaisha | Method of processing residue of ion implanted photoresist, and method of producing semiconductor device |
US6130166A (en) | 1999-02-01 | 2000-10-10 | Vlsi Technology, Inc. | Alternative plasma chemistry for enhanced photoresist removal |
US6204192B1 (en) | 1999-03-29 | 2001-03-20 | Lsi Logic Corporation | Plasma cleaning process for openings formed in at least one low dielectric constant insulation layer over copper metallization in integrated circuit structures |
US6709715B1 (en) | 1999-06-17 | 2004-03-23 | Applied Materials Inc. | Plasma enhanced chemical vapor deposition of copolymer of parylene N and comonomers with various double bonds |
US6030901A (en) | 1999-06-24 | 2000-02-29 | Advanced Micro Devices, Inc. | Photoresist stripping without degrading low dielectric constant materials |
US6281135B1 (en) | 1999-08-05 | 2001-08-28 | Axcelis Technologies, Inc. | Oxygen free plasma stripping process |
US6492186B1 (en) * | 1999-08-05 | 2002-12-10 | Eaton Corporation | Method for detecting an endpoint for an oxygen free plasma process |
US6313042B1 (en) | 1999-09-03 | 2001-11-06 | Applied Materials, Inc. | Cleaning contact with successive fluorine and hydrogen plasmas |
US6767698B2 (en) | 1999-09-29 | 2004-07-27 | Tokyo Electron Limited | High speed stripping for damaged photoresist |
JP4221847B2 (en) | 1999-10-25 | 2009-02-12 | パナソニック電工株式会社 | Plasma processing apparatus and plasma lighting method |
JP3366301B2 (en) | 1999-11-10 | 2003-01-14 | 日本電気株式会社 | Plasma CVD equipment |
US6352938B2 (en) | 1999-12-09 | 2002-03-05 | United Microelectronics Corp. | Method of removing photoresist and reducing native oxide in dual damascene copper process |
US6365516B1 (en) | 2000-01-14 | 2002-04-02 | Advanced Micro Devices, Inc. | Advanced cobalt silicidation with in-situ hydrogen plasma clean |
US6184134B1 (en) | 2000-02-18 | 2001-02-06 | Infineon Technologies North America Corp. | Dry process for cleaning residues/polymers after metal etch |
JP4470274B2 (en) | 2000-04-26 | 2010-06-02 | 東京エレクトロン株式会社 | Heat treatment equipment |
JP4371543B2 (en) | 2000-06-29 | 2009-11-25 | 日本電気株式会社 | Remote plasma CVD apparatus and film forming method |
US6426304B1 (en) | 2000-06-30 | 2002-07-30 | Lam Research Corporation | Post etch photoresist strip with hydrogen for organosilicate glass low-κ etch applications |
US20020185226A1 (en) | 2000-08-10 | 2002-12-12 | Lea Leslie Michael | Plasma processing apparatus |
DE10051380C2 (en) | 2000-10-17 | 2002-11-28 | Advanced Micro Devices Inc | Method for manufacturing a semiconductor device using a shrinking process of a structural feature |
US6569257B1 (en) | 2000-11-09 | 2003-05-27 | Applied Materials Inc. | Method for cleaning a process chamber |
US6733594B2 (en) | 2000-12-21 | 2004-05-11 | Lam Research Corporation | Method and apparatus for reducing He backside faults during wafer processing |
US6479391B2 (en) | 2000-12-22 | 2002-11-12 | Intel Corporation | Method for making a dual damascene interconnect using a multilayer hard mask |
US20020127853A1 (en) | 2000-12-29 | 2002-09-12 | Hubacek Jerome S. | Electrode for plasma processes and method for manufacture and use thereof |
US6319842B1 (en) | 2001-01-02 | 2001-11-20 | Novellus Systems Incorporated | Method of cleansing vias in semiconductor wafer having metal conductive layer |
US6589879B2 (en) | 2001-01-18 | 2003-07-08 | Applied Materials, Inc. | Nitride open etch process based on trifluoromethane and sulfur hexafluoride |
US6777344B2 (en) | 2001-02-12 | 2004-08-17 | Lam Research Corporation | Post-etch photoresist strip with O2 and NH3 for organosilicate glass low-K dielectric etch applications |
WO2002065532A1 (en) | 2001-02-15 | 2002-08-22 | Tokyo Electron Limited | Work treating method and treating device |
US7186648B1 (en) | 2001-03-13 | 2007-03-06 | Novellus Systems, Inc. | Barrier first method for single damascene trench applications |
US6764940B1 (en) | 2001-03-13 | 2004-07-20 | Novellus Systems, Inc. | Method for depositing a diffusion barrier for copper interconnect applications |
US6723654B2 (en) | 2001-03-30 | 2004-04-20 | Taiwan Semiconductor Manufacturing Co., Ltd | Method and apparatus for in-situ descum/hot bake/dry etch photoresist/polyimide layer |
US6951823B2 (en) | 2001-05-14 | 2005-10-04 | Axcelis Technologies, Inc. | Plasma ashing process |
US6834656B2 (en) | 2001-05-23 | 2004-12-28 | Axcelis Technology, Inc. | Plasma process for removing polymer and residues from substrates |
US6875702B2 (en) | 2001-06-11 | 2005-04-05 | Lsi Logic Corporation | Plasma treatment system |
US6632735B2 (en) | 2001-08-07 | 2003-10-14 | Applied Materials, Inc. | Method of depositing low dielectric constant carbon doped silicon oxide |
US6872652B2 (en) | 2001-08-28 | 2005-03-29 | Infineon Technologies Ag | Method of cleaning an inter-level dielectric interconnect |
US20030045098A1 (en) | 2001-08-31 | 2003-03-06 | Applied Materials, Inc. | Method and apparatus for processing a wafer |
JP5038567B2 (en) * | 2001-09-26 | 2012-10-03 | 東京エレクトロン株式会社 | Etching method |
JP4838464B2 (en) | 2001-09-26 | 2011-12-14 | 東京エレクトロン株式会社 | Processing method |
US6680164B2 (en) | 2001-11-30 | 2004-01-20 | Applied Materials Inc. | Solvent free photoresist strip and residue removal processing for post etching of low-k films |
US6720132B2 (en) | 2002-01-08 | 2004-04-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Bi-layer photoresist dry development and reactive ion etch method |
US7390755B1 (en) | 2002-03-26 | 2008-06-24 | Novellus Systems, Inc. | Methods for post etch cleans |
US6848455B1 (en) | 2002-04-22 | 2005-02-01 | Novellus Systems, Inc. | Method and apparatus for removing photoresist and post-etch residue from semiconductor substrates by in-situ generation of oxidizing species |
US7074298B2 (en) | 2002-05-17 | 2006-07-11 | Applied Materials | High density plasma CVD chamber |
US7833957B2 (en) | 2002-08-22 | 2010-11-16 | Daikin Industries, Ltd. | Removing solution |
US6900135B2 (en) | 2002-08-27 | 2005-05-31 | Applied Materials, Inc. | Buffer station for wafer backside cleaning and inspection |
US6693043B1 (en) | 2002-09-20 | 2004-02-17 | Novellus Systems, Inc. | Method for removing photoresist from low-k films in a downstream plasma system |
US6837967B1 (en) | 2002-11-06 | 2005-01-04 | Lsi Logic Corporation | Method and apparatus for cleaning deposited films from the edge of a wafer |
US6787452B2 (en) | 2002-11-08 | 2004-09-07 | Chartered Semiconductor Manufacturing Ltd. | Use of amorphous carbon as a removable ARC material for dual damascene fabrication |
US6780782B1 (en) | 2003-02-04 | 2004-08-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bi-level resist structure and fabrication method for contact holes on semiconductor substrates |
US20040195208A1 (en) | 2003-02-15 | 2004-10-07 | Pavel Elizabeth G. | Method and apparatus for performing hydrogen optical emission endpoint detection for photoresist strip and residue removal |
US7205240B2 (en) | 2003-06-04 | 2007-04-17 | Applied Materials, Inc. | HDP-CVD multistep gapfill process |
US7256134B2 (en) | 2003-08-01 | 2007-08-14 | Applied Materials, Inc. | Selective etching of carbon-doped low-k dielectrics |
US6924239B2 (en) | 2003-10-14 | 2005-08-02 | Texas Instruments Incorporated | Method for removal of hydrocarbon contamination on gate oxide prior to non-thermal nitridation using “spike” radical oxidation |
US20050106888A1 (en) | 2003-11-14 | 2005-05-19 | Taiwan Semiconductor Manufacturing Co. | Method of in-situ damage removal - post O2 dry process |
US20050158667A1 (en) | 2004-01-20 | 2005-07-21 | Applied Materials, Inc. | Solvent free photoresist strip and residue removal processing for post etching of low-k films |
WO2005072211A2 (en) | 2004-01-20 | 2005-08-11 | Mattson Technology, Inc. | System and method for removal of photoresist and residues following contact etch with a stop layer present |
JP2005268312A (en) * | 2004-03-16 | 2005-09-29 | Semiconductor Leading Edge Technologies Inc | Resist removing method and semiconductor device manufactured using same |
US7628864B2 (en) | 2004-04-28 | 2009-12-08 | Tokyo Electron Limited | Substrate cleaning apparatus and method |
KR100971799B1 (en) * | 2004-06-21 | 2010-07-22 | 도쿄엘렉트론가부시키가이샤 | Plasma processing device, plasma processing method and computer readable storage medium |
US7288484B1 (en) | 2004-07-13 | 2007-10-30 | Novellus Systems, Inc. | Photoresist strip method for low-k dielectrics |
US7632756B2 (en) | 2004-08-26 | 2009-12-15 | Applied Materials, Inc. | Semiconductor processing using energized hydrogen gas and in combination with wet cleaning |
JP2006073612A (en) * | 2004-08-31 | 2006-03-16 | Rohm Co Ltd | Resist removing method |
US7597816B2 (en) | 2004-09-03 | 2009-10-06 | Lam Research Corporation | Wafer bevel polymer removal |
US20060102197A1 (en) * | 2004-11-16 | 2006-05-18 | Kang-Lie Chiang | Post-etch treatment to remove residues |
US7202176B1 (en) | 2004-12-13 | 2007-04-10 | Novellus Systems, Inc. | Enhanced stripping of low-k films using downstream gas mixing |
US8193096B2 (en) * | 2004-12-13 | 2012-06-05 | Novellus Systems, Inc. | High dose implantation strip (HDIS) in H2 base chemistry |
KR100607777B1 (en) | 2004-12-27 | 2006-08-01 | 동부일렉트로닉스 주식회사 | Method for manufacturing semiconductor device |
DE102004063036A1 (en) * | 2004-12-28 | 2006-07-06 | Advanced Micro Devices, Inc., Sunnyvale | Method for forming contact spots |
US7601272B2 (en) | 2005-01-08 | 2009-10-13 | Applied Materials, Inc. | Method and apparatus for integrating metrology with etch processing |
US7344993B2 (en) | 2005-01-11 | 2008-03-18 | Tokyo Electron Limited, Inc. | Low-pressure removal of photoresist and etch residue |
US7268071B2 (en) | 2005-01-12 | 2007-09-11 | Sony Corporation | Dual damascene interconnections having low K layer with reduced damage arising from photoresist stripping |
JP2006203035A (en) * | 2005-01-21 | 2006-08-03 | Tokyo Electron Ltd | Plasma etching method |
US7432172B2 (en) | 2005-01-21 | 2008-10-07 | Tokyo Electron Limited | Plasma etching method |
US7198677B2 (en) | 2005-03-09 | 2007-04-03 | Wafermasters, Inc. | Low temperature wafer backside cleaning |
US8129281B1 (en) | 2005-05-12 | 2012-03-06 | Novellus Systems, Inc. | Plasma based photoresist removal system for cleaning post ash residue |
JP2007019367A (en) | 2005-07-11 | 2007-01-25 | Ricoh Co Ltd | Method for manufacturing semiconductor device |
US7411298B2 (en) | 2005-08-17 | 2008-08-12 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Source/drain electrodes, thin-film transistor substrates, manufacture methods thereof, and display devices |
US7468326B2 (en) | 2005-08-24 | 2008-12-23 | United Microelectronics Corp. | Method of cleaning a wafer |
US7465680B2 (en) | 2005-09-07 | 2008-12-16 | Applied Materials, Inc. | Post deposition plasma treatment to increase tensile stress of HDP-CVD SIO2 |
US7909960B2 (en) | 2005-09-27 | 2011-03-22 | Lam Research Corporation | Apparatus and methods to remove films on bevel edge and backside of wafer |
JP2007109744A (en) * | 2005-10-11 | 2007-04-26 | Tokuyama Corp | Substrate cleaning liquid |
KR100742279B1 (en) | 2005-12-22 | 2007-07-24 | 삼성전자주식회사 | Apparatus and method for manufacturing semiconductor device |
KR20070069802A (en) | 2005-12-28 | 2007-07-03 | 엘지.필립스 엘시디 주식회사 | Apparatus for fabricating flat panel display and methode for preventing glass damage using it |
US8061459B2 (en) | 2006-01-17 | 2011-11-22 | GM Global Technology Operations LLC | Traction control method for a tracked vehicle |
US7432209B2 (en) | 2006-03-22 | 2008-10-07 | Applied Materials, Inc. | Plasma dielectric etch process including in-situ backside polymer removal for low-dielectric constant material |
US8034176B2 (en) | 2006-03-28 | 2011-10-11 | Tokyo Electron Limited | Gas distribution system for a post-etch treatment system |
US7851369B2 (en) | 2006-06-05 | 2010-12-14 | Lam Research Corporation | Hardmask trim method |
US7740768B1 (en) | 2006-10-12 | 2010-06-22 | Novellus Systems, Inc. | Simultaneous front side ash and backside clean |
US7655571B2 (en) | 2006-10-26 | 2010-02-02 | Applied Materials, Inc. | Integrated method and apparatus for efficient removal of halogen residues from etched substrates |
US7595005B2 (en) | 2006-12-11 | 2009-09-29 | Tokyo Electron Limited | Method and apparatus for ashing a substrate using carbon dioxide |
US8083963B2 (en) * | 2007-02-08 | 2011-12-27 | Applied Materials, Inc. | Removal of process residues on the backside of a substrate |
US8435895B2 (en) | 2007-04-04 | 2013-05-07 | Novellus Systems, Inc. | Methods for stripping photoresist and/or cleaning metal regions |
KR101440282B1 (en) * | 2007-07-11 | 2014-09-17 | 주성엔지니어링(주) | Plasma cleaing method |
US20090061623A1 (en) * | 2007-09-05 | 2009-03-05 | United Microelectronics Corp. | Method of forming electrical connection structure |
CN102084468B (en) | 2008-02-08 | 2014-10-29 | 朗姆研究公司 | Adjustable gap capacitively coupled RF plasma reactor including lateral bellows and non-contact particle seal |
JP5102653B2 (en) | 2008-02-29 | 2012-12-19 | 東京エレクトロン株式会社 | Plasma etching method, plasma etching apparatus and computer storage medium |
US20090277871A1 (en) | 2008-03-05 | 2009-11-12 | Axcelis Technologies, Inc. | Plasma mediated ashing processes that include formation of a protective layer before and/or during the plasma mediated ashing process |
US8791001B2 (en) | 2008-09-08 | 2014-07-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | N2 based plasma treatment and ash for HK metal gate protection |
US8591661B2 (en) | 2009-12-11 | 2013-11-26 | Novellus Systems, Inc. | Low damage photoresist strip method for low-K dielectrics |
US20120024314A1 (en) | 2010-07-27 | 2012-02-02 | Axcelis Technologies, Inc. | Plasma mediated ashing processes |
WO2011008436A2 (en) * | 2009-07-13 | 2011-01-20 | Applied Materials, Inc. | Method for removing implanted photo resist from hard disk drive substrates |
US8721797B2 (en) | 2009-12-11 | 2014-05-13 | Novellus Systems, Inc. | Enhanced passivation process to protect silicon prior to high dose implant strip |
US20110143548A1 (en) | 2009-12-11 | 2011-06-16 | David Cheung | Ultra low silicon loss high dose implant strip |
US9613825B2 (en) | 2011-08-26 | 2017-04-04 | Novellus Systems, Inc. | Photoresist strip processes for improved device integrity |
-
2009
- 2009-12-11 US US12/636,601 patent/US8591661B2/en not_active Expired - Fee Related
-
2010
- 2010-12-08 CN CN201080056102.5A patent/CN102792423B/en not_active Expired - Fee Related
- 2010-12-08 JP JP2012543254A patent/JP5911068B2/en not_active Expired - Fee Related
- 2010-12-08 KR KR1020127015129A patent/KR101908737B1/en active IP Right Grant
- 2010-12-08 WO PCT/US2010/059517 patent/WO2011072042A2/en active Application Filing
- 2010-12-08 SG SG2012040929A patent/SG181165A1/en unknown
- 2010-12-10 TW TW099143368A patent/TWI562225B/en not_active IP Right Cessation
-
2013
- 2013-10-29 US US14/066,587 patent/US20140120733A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020072016A1 (en) * | 2000-12-13 | 2002-06-13 | Applied Materials, Inc. | Substrate cleaning apparatus and method |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9941108B2 (en) | 2004-12-13 | 2018-04-10 | Novellus Systems, Inc. | High dose implantation strip (HDIS) in H2 base chemistry |
US9373497B2 (en) | 2007-04-04 | 2016-06-21 | Novellus Systems, Inc. | Methods for stripping photoresist and/or cleaning metal regions |
US9564344B2 (en) | 2009-12-11 | 2017-02-07 | Novellus Systems, Inc. | Ultra low silicon loss high dose implant strip |
US9613825B2 (en) | 2011-08-26 | 2017-04-04 | Novellus Systems, Inc. | Photoresist strip processes for improved device integrity |
US9514954B2 (en) | 2014-06-10 | 2016-12-06 | Lam Research Corporation | Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films |
WO2017044154A1 (en) * | 2015-09-09 | 2017-03-16 | International Business Machines Corporation | Hydrofluorocarbon gas-assisted plasma etch for interconnect fabrication |
US9934984B2 (en) | 2015-09-09 | 2018-04-03 | International Business Machines Corporation | Hydrofluorocarbon gas-assisted plasma etch for interconnect fabrication |
US10121676B2 (en) | 2015-09-09 | 2018-11-06 | International Business Machines Corporation | Interconnects fabricated by hydrofluorocarbon gas-assisted plasma etch |
US10643859B2 (en) | 2015-09-09 | 2020-05-05 | International Business Machines Corporation | Hydrofluorocarbon gas-assisted plasma etch for interconnect fabrication |
US9999278B2 (en) * | 2016-09-23 | 2018-06-19 | Feinstein Patents, Llc | Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting shoe/sneaker/footwear |
US20190362984A1 (en) * | 2018-05-28 | 2019-11-28 | Tokyo Electron Limited | Method of etching film and plasma processing apparatus |
US10923360B2 (en) * | 2018-05-28 | 2021-02-16 | Tokyo Electron Limited | Method of etching film and plasma processing apparatus |
US11664236B2 (en) | 2018-05-28 | 2023-05-30 | Tokyo Electron Limited | Method of etching film and plasma processing apparatus |
WO2023069346A1 (en) * | 2021-10-22 | 2023-04-27 | Lam Research Corporation | Strip with bevel cleaning |
Also Published As
Publication number | Publication date |
---|---|
KR20120098777A (en) | 2012-09-05 |
WO2011072042A2 (en) | 2011-06-16 |
TWI562225B (en) | 2016-12-11 |
JP5911068B2 (en) | 2016-04-27 |
WO2011072042A3 (en) | 2011-09-09 |
SG181165A1 (en) | 2012-07-30 |
CN102792423B (en) | 2016-06-22 |
US20110139176A1 (en) | 2011-06-16 |
CN102792423A (en) | 2012-11-21 |
US8591661B2 (en) | 2013-11-26 |
JP2013513948A (en) | 2013-04-22 |
KR101908737B1 (en) | 2018-10-16 |
TW201137970A (en) | 2011-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8591661B2 (en) | Low damage photoresist strip method for low-K dielectrics | |
US8058178B1 (en) | Photoresist strip method for low-k dielectrics | |
US8664124B2 (en) | Method for etching organic hardmasks | |
US7202176B1 (en) | Enhanced stripping of low-k films using downstream gas mixing | |
US9564344B2 (en) | Ultra low silicon loss high dose implant strip | |
US9941108B2 (en) | High dose implantation strip (HDIS) in H2 base chemistry | |
TWI385728B (en) | Method for removing damaged dielectric material | |
US7300597B2 (en) | Selective etch process of a sacrificial light absorbing material (SLAM) over a dielectric material | |
KR102083680B1 (en) | Method for etching organic hardmasks | |
JP5770740B2 (en) | Method and apparatus for improving the passivation process to protect silicon prior to high dose implant strips | |
JP4825911B2 (en) | Plasma etching and photoresist strip process with defluorination and wafer defluorination steps in intervening chamber | |
KR20080106474A (en) | Plasma dielectric etch process including in-situ backside polymer removal for low dielectric constant material | |
US7288483B1 (en) | Method and system for patterning a dielectric film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |