JP5911068B2 - Method and apparatus for removing material from a dielectric layer on a workpiece and method for manufacturing an integrated circuit comprising removing material from a dielectric layer on a workpiece - Google Patents

Method and apparatus for removing material from a dielectric layer on a workpiece and method for manufacturing an integrated circuit comprising removing material from a dielectric layer on a workpiece Download PDF

Info

Publication number
JP5911068B2
JP5911068B2 JP2012543254A JP2012543254A JP5911068B2 JP 5911068 B2 JP5911068 B2 JP 5911068B2 JP 2012543254 A JP2012543254 A JP 2012543254A JP 2012543254 A JP2012543254 A JP 2012543254A JP 5911068 B2 JP5911068 B2 JP 5911068B2
Authority
JP
Japan
Prior art keywords
plasma
workpiece
fluorine
temperature
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012543254A
Other languages
Japanese (ja)
Other versions
JP2013513948A (en
JP2013513948A5 (en
Inventor
チャン、デーヴィッド
リー、テッド
グーア、アニルバン
オストロウスキ、キルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novellus Systems Inc
Original Assignee
Novellus Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novellus Systems Inc filed Critical Novellus Systems Inc
Publication of JP2013513948A publication Critical patent/JP2013513948A/en
Publication of JP2013513948A5 publication Critical patent/JP2013513948A5/ja
Application granted granted Critical
Publication of JP5911068B2 publication Critical patent/JP5911068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、フォトレジスト材料をストリッピング(剥離)して、更なる処理に備えて、製造途中の集積回路の表面からエッチング関連の残留物を除去する方法に関する。   The present invention relates to a method of stripping a photoresist material to remove etch-related residues from the surface of an integrated circuit being fabricated in preparation for further processing.

[関連出願]
本願は、米国特許出願第12/636,601号(出願日:2009年12月11日)に基づき優先権を主張する。当該出願は、参照により本願に組み込まれる。
[Related applications]
This application claims priority based on US patent application Ser. No. 12 / 636,601 (filing date: December 11, 2009). This application is incorporated herein by reference.

ダマシンプロセスは、他の方法に比べると必要な処理工程の数が少なく収率が高いので、多くの最新式集積回路製造方式で好ましい方法として利用されることが多い。ダマシンプロセスでは、誘電体層(金属間誘電体)内のトレンチおよびビアに象嵌的手法で金属ラインを形成することによって、集積回路上に金属導電体を形成する。ダマシンプロセスの一環として、フォトレジスト層を誘電体層上に成膜する。このフォトレジストは、感光性有機ポリマーであり、液体状で「スピニング」されて、乾燥させて、固体薄膜となる。感光性フォトレジストはこの後、マスクを介して露光させるとともに湿潤溶剤を用いてパターニングされる。この後、プラズマエッチングプロセス(ドライエッチング)を用いて、誘電体の露出部分をエッチングして、パターンを誘電体に転写して、誘電体層にビアおよびトレンチを形成する。   Since the damascene process requires fewer processing steps and has a higher yield than other methods, it is often used as a preferred method in many advanced integrated circuit manufacturing methods. In a damascene process, a metal conductor is formed on an integrated circuit by forming metal lines in an inlaid manner in trenches and vias in a dielectric layer (intermetal dielectric). As part of the damascene process, a photoresist layer is deposited on the dielectric layer. The photoresist is a photosensitive organic polymer that is “spun” in liquid form and dried to form a solid film. The photosensitive photoresist is then exposed through a mask and patterned using a wet solvent. Thereafter, by using a plasma etching process (dry etching), the exposed portion of the dielectric is etched, the pattern is transferred to the dielectric, and a via and a trench are formed in the dielectric layer.

誘電体層のエッチングが完了すると、フォトレジストをストリッピングしなければならない。そして、存在すれば、不純物をデバイス内に埋設することを避けるべく、エッチングに関連して発生した残留物を全て、後続処理を実行する前に除去しなければならない。フォトレジストをストリッピングする従来のプロセスでは、複数のガスを混合させた混合ガスから形成されたプラズマを利用している。尚、プラズマには酸素を含めている。反応性が高い酸素をベースとするプラズマは、有機フォトレジストと反応して、有機フォトレジストを酸化して、ウェハ表面から取り去られる揮発性成分を形成する。   When the etching of the dielectric layer is complete, the photoresist must be stripped. And, if present, all residues generated in connection with etching must be removed prior to performing subsequent processing to avoid burying impurities in the device. A conventional process for stripping a photoresist uses a plasma formed from a mixed gas obtained by mixing a plurality of gases. The plasma contains oxygen. The highly reactive oxygen-based plasma reacts with the organic photoresist to oxidize the organic photoresist and form a volatile component that is removed from the wafer surface.

一般的に、酸化性の高い条件もまた、低誘電率(low−k)材料に対して利用するには不向きである。low−k材料は、多くの最新型デバイスにおいて、容量効果に起因する信号伝搬遅延を抑制するべく、導電性インターコネクト同士の間で金属間誘電体および/または層間誘電体として利用されている。誘電体材料の誘電率が低いほど、誘電体の容量が小さくなり、集積回路のRC遅延が小さくなる。low−k誘電体は通常、酸化シリコンをベースとする材料であり、炭素が一定量含まれている。通常、炭素ドープ酸化物(CDO)と呼ばれる。必ずしも証明はされていないが、酸素がlow−k材料から炭素を収集または除去すると考えられている。CDO等の材料の多くでは、誘電率を低くする上で炭素の存在が役に立つ。このため、酸素がこれらの材料から炭素を除去する限り、誘電率が上昇することになる。集積回路を製造するために用いられるプロセスが一層の小型化に傾倒し、利用する誘電体材料の誘電率も一層の低下を要求している中、従来のストリッピング用プラズマ条件は適切でないことが分かった。   In general, highly oxidizing conditions are also unsuitable for use with low dielectric constant (low-k) materials. Low-k materials are utilized in many modern devices as intermetal dielectrics and / or interlayer dielectrics between conductive interconnects to suppress signal propagation delays due to capacitive effects. The lower the dielectric constant of the dielectric material, the smaller the dielectric capacitance and the smaller the RC delay of the integrated circuit. A low-k dielectric is typically a material based on silicon oxide and contains a certain amount of carbon. Usually called carbon doped oxide (CDO). Although not necessarily proven, it is believed that oxygen collects or removes carbon from low-k materials. In many materials such as CDO, the presence of carbon is useful in lowering the dielectric constant. Thus, as long as oxygen removes carbon from these materials, the dielectric constant will increase. While the process used to manufacture integrated circuits tends to further miniaturization and the dielectric constant of the dielectric material used requires further reduction, the conventional stripping plasma conditions may not be appropriate. I understood.

このため、フォトレジストおよびエッチング関連の材料を誘電体材料、特に、low−k誘電体材料からストリッピングする方法を改善して高効率化する必要がある。   For this reason, there is a need to improve the efficiency of stripping photoresist and etch-related materials from dielectric materials, particularly low-k dielectric materials.

本発明は、誘電体材料からフォトレジストをストリッピングして、エッチングに関連する残留物を除去する方法を改善することによって、上記の要望に応えるものである。本発明の一の側面に係る方法では、弱酸化剤およびフッ素含有化合物を採用した水素をベースとするエッチングプロセスを利用して誘電体層から材料を除去する。基板温度は、約摂氏160度以下の水準、例えば、約摂氏90度未満に維持する。   The present invention addresses the above needs by improving the method of stripping photoresist from dielectric material to remove etch-related residues. In one aspect of the invention, a material is removed from a dielectric layer using a hydrogen-based etching process employing a weak oxidant and a fluorine-containing compound. The substrate temperature is maintained at a level below about 160 degrees Celsius, for example, below about 90 degrees Celsius.

特定の実施形態によると、当該方法では、弱酸化剤、フッ素含有化合物および水素を含むガスを反応チャンバに導入して、RF電力を印加して反応チャンバ内にプラズマを形成して、材料のうち少なくとも一部を気体状に変化させて、製造途中の集積回路から材料の少なくとも一部を除去する。前述したように、当該方法は、フォトレジストおよび/またはエッチングプロセスで発生した残留物を除去するために用いられるとしてよい。当該方法は、シングルダマシンデバイスおよびデュアルダマシンデバイス等のダマシンデバイスで実現するとしてよい。   According to certain embodiments, the method includes introducing a gas comprising a weak oxidant, a fluorine-containing compound, and hydrogen into the reaction chamber, applying RF power to form a plasma in the reaction chamber, and At least a portion of the material is changed to a gaseous state to remove at least a portion of the material from the integrated circuit being manufactured. As described above, the method may be used to remove residues generated in the photoresist and / or etching process. The method may be implemented with damascene devices such as single damascene devices and dual damascene devices.

さまざまな実施形態によると、弱酸化剤は、二酸化炭素、一酸化炭素、亜酸化窒素、一酸化窒素、二酸化窒素、および、水のうち少なくとも1つを含む。特定の実施形態によると、弱酸化剤は、二酸化炭素を含む。特定の実施形態によると、ガスは、体積比率で約0.1%から約10.0%の二酸化炭素を含む。一部の実施形態によると、当該ガスはさらに、ヘリウム、アルゴンまたは窒素等の少なくとも1つの不活性のキャリアガスを含む。特定の実施形態によると、ガスは、酸素分子を含まない。   According to various embodiments, the weak oxidant includes at least one of carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide, nitrogen dioxide, and water. According to certain embodiments, the weak oxidant comprises carbon dioxide. According to certain embodiments, the gas comprises from about 0.1% to about 10.0% carbon dioxide by volume. According to some embodiments, the gas further comprises at least one inert carrier gas, such as helium, argon or nitrogen. According to a particular embodiment, the gas does not contain oxygen molecules.

さまざまな実施形態によると、フッ素含有化合物は、三フッ化窒素(NF)、六フッ化硫黄(SF)、ヘキサフルオロエタン(C)、テトラフルオロメタン(CF)、トリフルオロメタン(CHF)、ジフルオロメタン(CH)、オクトフルオロプロパン(C)、オクトフルオロシクロブタン(C)、オクトフルオロ[1−]ブタン(C)、オクトフルオロ[2−]ブタン(C)、オクトフルオロイソブチレン(C)、フッ素(F)等のうち少なくとも1つを含む。特定の実施形態によると、弱酸化剤は、三フッ化窒素を含む。特定の実施形態によると、ガスは、体積比率で約5ppmから約10%の三フッ化窒素を含む。 According to various embodiments, the fluorine-containing compound is nitrogen trifluoride (NF 3 ), sulfur hexafluoride (SF 6 ), hexafluoroethane (C 2 F 6 ), tetrafluoromethane (CF 4 ), trifluoromethane. (CHF 3 ), difluoromethane (CH 2 F 2 ), octofluoropropane (C 3 F 8 ), octofluorocyclobutane (C 4 F 8 ), octofluoro [1-] butane (C 4 F 8 ), octofluoro [2-] Butane (C 4 F 8 ), octofluoroisobutylene (C 4 F 8 ), fluorine (F 2 ) and the like are included. According to certain embodiments, the weak oxidant comprises nitrogen trifluoride. According to certain embodiments, the gas comprises about 5 ppm to about 10% nitrogen trifluoride by volume.

本発明に係る方法は、任意のサイズのウェハに対して実施され得る。大半の最新型のウェハ製造設備では、200mmまたは300mmのウェハを利用している。処理条件は、ウェハサイズに応じて決まるとしてよい。300mmのウェハを利用する場合、ガスの総流量の範囲は約1,000sccmと約40,000sccmとの間であるとしてよい。弱酸化剤として二酸化炭素を用いる場合、二酸化炭素の流量の範囲は、約10sccmと約2000sccmとの間、例えば、800sccmであるとしてよい。フッ素含有ガスとして三フッ化窒素を用いる場合、三フッ化窒素の流量の範囲は、約1sccmと20sccmとの間、例えば、5sccmであるとしてよい。300mmのウェハの場合、プラズマに対するRFプラズマ電力の範囲は通常、約300ワットと約3キロワットの間である。当該方法は、直接プラズマまたは遠隔プラズマで実現されるとしてよい。   The method according to the invention can be performed on wafers of any size. Most modern wafer manufacturing facilities use 200 mm or 300 mm wafers. Processing conditions may be determined according to the wafer size. If a 300 mm wafer is utilized, the total gas flow range may be between about 1,000 sccm and about 40,000 sccm. When carbon dioxide is used as the weak oxidant, the range of carbon dioxide flow may be between about 10 sccm and about 2000 sccm, for example, 800 sccm. When nitrogen trifluoride is used as the fluorine-containing gas, the nitrogen trifluoride flow rate range may be between about 1 sccm and 20 sccm, for example, 5 sccm. For a 300 mm wafer, the range of RF plasma power for the plasma is typically between about 300 watts and about 3 kilowatts. The method may be implemented with direct plasma or remote plasma.

ワークピースの表面にプラズマを当てている間の基板の温度の範囲は、約摂氏50度と約摂氏160度との間である。特定の実施形態によると、ワークピースの温度は、約摂氏90度以下で維持される。チャンバ圧の範囲は、一例として、約300mTorrと約2Torrとの間である。一部の実施形態によると、ウェハは所与のバイアスで保持される。   The temperature range of the substrate while the plasma is being applied to the surface of the workpiece is between about 50 degrees Celsius and about 160 degrees Celsius. According to certain embodiments, the temperature of the workpiece is maintained at about 90 degrees Celsius or less. The range of the chamber pressure is, for example, between about 300 mTorr and about 2 Torr. According to some embodiments, the wafer is held at a given bias.

前述したように、本発明に係る方法は、炭素ドープ酸化物(CDO)等の炭素ドープlow−k誘電体材料を含むlow−k誘電体材料と共に利用されるとしてよい。本発明に係る方法は、非多孔質および多孔質の誘電体材料、例えば、CDOおよびその他の組成に対して実施され得る。   As described above, the method according to the present invention may be utilized with low-k dielectric materials including carbon-doped low-k dielectric materials such as carbon-doped oxide (CDO). The method according to the invention can be carried out on non-porous and porous dielectric materials such as CDO and other compositions.

本発明に係る方法は、任意の適切な反応チャンバで実行されるとしてよい。反応チャンバは、複数のチャンバを備える装置における1つのチャンバであってもよいし、1つのチャンバを備える装置の一部であってもよい。一部の実施形態によると、多段階除去プロセスを利用し、フッ素含有化合物はこのうち一部の段階でのみ利用される。特定の実施形態によると、フッ素含有化合物は、第1の群の段階、例えば、第1の段階でのみ利用される。マルチステーション装置を利用する実施形態によると、フッ素含有化合物は、例えば、第1のステーションでプラズマを生成するために用いられる処理ガスの一部として利用されるとしてよい。   The method according to the invention may be carried out in any suitable reaction chamber. The reaction chamber may be one chamber in an apparatus including a plurality of chambers or may be part of an apparatus including a single chamber. According to some embodiments, a multi-stage removal process is utilized and the fluorine-containing compound is utilized only in some of these stages. According to certain embodiments, the fluorine-containing compound is utilized only in a first group of stages, eg, the first stage. According to embodiments that utilize a multi-station apparatus, the fluorine-containing compound may be utilized as part of a process gas that is used, for example, to generate a plasma at the first station.

本発明の上記およびその他の特徴および利点は、添付図面を参照しつつより詳細に後述する。   These and other features and advantages of the present invention will be described in more detail below with reference to the accompanying drawings.

製造途中の集積回路からフォトレジストをストリッピングし、エッチングに関連する残留物を除去するために利用される、本発明の一部の実施形態の側面を説明するためのプロセスフローチャートである。FIG. 5 is a process flow diagram illustrating aspects of some embodiments of the present invention utilized to strip photoresist from an integrated circuit during fabrication and remove residues associated with etching.

本発明に係るドライエッチングプロセスおよびフォトレジストストリッピングプロセスの間のlow−kダマシンデバイスを示す断面図である。FIG. 4 is a cross-sectional view of a low-k damascene device during a dry etching process and a photoresist stripping process according to the present invention. 本発明に係るドライエッチングプロセスおよびフォトレジストストリッピングプロセスの間のlow−kダマシンデバイスを示す断面図である。FIG. 4 is a cross-sectional view of a low-k damascene device during a dry etching process and a photoresist stripping process according to the present invention. 本発明に係るドライエッチングプロセスおよびフォトレジストストリッピングプロセスの間のlow−kダマシンデバイスを示す断面図である。FIG. 4 is a cross-sectional view of a low-k damascene device during a dry etching process and a photoresist stripping process according to the present invention.

本発明に係るフォトレジストストリッピングプロセスおよびHF試験プロセスの後の乾燥中のlow−kデバイスを示す断面図である。FIG. 6 is a cross-sectional view of a low-k device during drying after a photoresist stripping process and an HF testing process according to the present invention. 本発明に係るフォトレジストストリッピングプロセスおよびHF試験プロセスの後の乾燥中のlow−kデバイスを示す断面図である。FIG. 6 is a cross-sectional view of a low-k device during drying after a photoresist stripping process and an HF testing process according to the present invention.

本発明を実施する上で適切な装置を示す概略図である。1 is a schematic diagram illustrating an apparatus suitable for practicing the present invention.

本発明を実施する上で適切なマルチステーションストリッピングツールを示す簡略ブロック図である。FIG. 3 is a simplified block diagram illustrating a multi-station stripping tool suitable for practicing the present invention.

<序論>
以下に記載する本発明の詳細な説明では、本発明を深く理解していただくべく具体的な実施形態を数多く記載する。しかし、当業者には自明であろうが、本発明は、以下に記載するような具体的且つ詳細な内容を採用することなく実施され得るものであり、別の構成要素または処理を利用しても実施し得るものである。また、公知の処理、手順および構成要素は、本発明の側面を不要にあいまいにすること避けるべく、詳細な説明を省略している。
<Introduction>
In the following detailed description of the invention, numerous specific embodiments are set forth in order to provide a thorough understanding of the present invention. However, as will be apparent to those skilled in the art, the present invention may be practiced without employing specific and detailed content as described below, utilizing other components or processes. Can also be implemented. In other instances, well known processes, procedures, and components have not been described in detail in order not to unnecessarily obscure aspects of the present invention.

本願では、「半導体ウェハ」、「ウェハ」および「製造途中の集積回路」といった用語は、同様の意味を持つものとして用いられる。当業者であれば、「製造途中の集積回路」という用語は集積回路製造プロセスの多くの段階のうち任意の段階が行われている間のシリコンウェハを意味するものと理解されたい。以下に記載する詳細な説明は、本発明がウェハ上で実施されるものと仮定している。しかし、本発明はこれに限定されない。ワークピースは、さまざまな形状、サイズおよび材料であるとしてよい。半導体ウェハ以外に本発明を活用し得る他のワークピースとしては、プリント配線基板等のさまざまな物品が挙げられる。   In this application, the terms “semiconductor wafer”, “wafer”, and “integrated integrated circuit” are used to have the same meaning. Those skilled in the art should understand that the term “in-process integrated circuit” means a silicon wafer during any of the many stages of the integrated circuit manufacturing process. The detailed description set forth below assumes that the present invention is implemented on a wafer. However, the present invention is not limited to this. The workpiece may be of various shapes, sizes and materials. In addition to semiconductor wafers, other workpieces that can utilize the present invention include various articles such as printed wiring boards.

上述したように、本発明に係る方法は、low−k誘電体材料からフォトレジストおよびエッチングに関連する材料を効率的且つ効果的に除去するために用いられるとしてよい。本発明に係る方法は、low−k誘電体に限定されない。方法は、任意の特定のカテゴリのlow−k誘電体に限定されない。例えば、本明細書で説明する方法は、k値が4.0未満の誘電体、k値が約2.8未満の誘電体、k値が約2.0未満の誘電体「超low−k」またはULK誘電体)に利用すると効果的であるとしてよい。low−k誘電体は、多孔質であってもよいし、非多孔質であってもよい(「高密度」low−k誘電体と呼ばれることもある)。一般的に、高密度low−k誘電体は、k値が2.8以下であり、多孔質low−k誘電体は、k値が2.2以下である。任意の適切な組成のlow−k誘電体を利用するとしてよい。例えば、酸化シリコンをベースとする誘電体であって、フッ素および/または炭素をドープしたものを利用するとしてよい。酸化シリコンをベースにしない誘電体、例えば、ポリマー材料を用いるとしてもよい。low−k誘電体を成膜する場合、任意の適切なプロセスを利用するとしてよい。例えば、スピンオン成膜法及びCVD成膜法を利用するとしてよい。多孔質誘電体を形成する場合、任意の適切な方法を利用するとしてよい。通常の方法では、シリコンをベースとするバックボーンおよび有機ポロゲン(porogen)を同時に成膜した後、ポロゲン成分を除去して、残ったものが多孔質誘電体膜となる。他の方法には、ゾルゲル法がある。適切なlow−k膜の具体例を挙げると、SILK(商標)、および、Coral(商標)等のCVDで成膜された多孔質膜等、スピンオン方式で成膜される炭素ベースの膜がある。   As described above, the method according to the present invention may be used to efficiently and effectively remove photoresist and etch related materials from low-k dielectric materials. The method according to the invention is not limited to low-k dielectrics. The method is not limited to any particular category of low-k dielectric. For example, the methods described herein include dielectrics with a k value less than 4.0, dielectrics with a k value less than about 2.8, dielectrics with a k value less than about 2.0, “super low-k”. "Or ULK dielectric) may be effective. The low-k dielectric may be porous or non-porous (sometimes referred to as a “dense” low-k dielectric). In general, a high density low-k dielectric has a k value of 2.8 or less, and a porous low-k dielectric has a k value of 2.2 or less. Any suitable composition of low-k dielectric may be utilized. For example, a dielectric based on silicon oxide and doped with fluorine and / or carbon may be used. A dielectric that is not based on silicon oxide, such as a polymer material, may be used. Any suitable process may be utilized when depositing a low-k dielectric. For example, a spin-on film formation method and a CVD film formation method may be used. Any suitable method may be utilized when forming the porous dielectric. In a normal method, a silicon-based backbone and an organic porogen are simultaneously formed, then the porogen component is removed, and the remaining one becomes a porous dielectric film. Another method is the sol-gel method. Specific examples of suitable low-k films include carbon-based films formed by spin-on methods, such as porous films formed by CVD such as SILK (trademark) and Coral (trademark). .

本発明に係る方法では、水素および弱酸化剤、そして、特定の処理では、フッ素含有化合物を含むガスから生成されるプラズマを利用する。当業者であれば、プラズマ内に存在する実際の種は、水素、弱酸化剤および/またはフッ素含有化合物に由来する複数の異なるイオンおよび分子の混合物であると理解するであろう。尚、プラズマが有機フォトレジストおよびその他の残留物と反応して有機フォトレジストおよびその他の残留物を分解したりすることによって、他の種も反応チャンバ内には存在するものと考えられたい。例えば、少量の炭化水素、二酸化炭素、水蒸気およびその他の揮発性成分が存在すると考えられたい。当業者であれば、プラズマ内に導入される最初の1以上のガスと言う場合、プラズマの形成後に存在する他の1以上のガスとは異なることを認めるであろう。   The method according to the present invention utilizes hydrogen and a weak oxidant and, in certain processes, a plasma generated from a gas containing a fluorine-containing compound. One skilled in the art will understand that the actual species present in the plasma is a mixture of a plurality of different ions and molecules derived from hydrogen, weak oxidants and / or fluorine-containing compounds. It should be noted that other species may also be present in the reaction chamber as the plasma reacts with the organic photoresist and other residues to decompose the organic photoresist and other residues. For example, consider that small amounts of hydrocarbons, carbon dioxide, water vapor and other volatile components are present. One skilled in the art will recognize that the reference to the first one or more gases introduced into the plasma is different from the other one or more gases present after the plasma is formed.

図1は、本発明の一部の実施形態に係る一般的な高位のプロセスフローを示すフローチャートである。尚、図1には、集積回路(IC)製造プロセスにおける本発明に係る方法に関連する一部の一般的な処理も図示して、本発明をどのような場合に利用するかを説明する。本発明の一部の実施形態を視覚的に説明するべく、図2Aから図2Cでは、さまざまな関連する製造プロセス中のlow−kダマシンデバイスの一部の様子を断面図で示す。   FIG. 1 is a flowchart illustrating a general high-level process flow according to some embodiments of the present invention. FIG. 1 also illustrates some general processes related to the method according to the present invention in an integrated circuit (IC) manufacturing process, and explains when to use the present invention. To visually illustrate some embodiments of the present invention, FIGS. 2A-2C show cross-sectional views of some of the low-k damascene devices during various related manufacturing processes.

図1を参照して説明すると、low−k誘電体層が露出している領域を持つウェハをエッチングして、パターニングされたフォトレジスト層を形成する(ブロック101)。図2Aおよび図2Bは、ダマシンデバイス200の処理において、パターニングされたlow−k誘電体を形成する様子を示す図である。図2Aおよび図2Bはそれぞれ、ドライエッチングプロセスの前および後のデバイス200を示す図である。図2Bは、図1のブロック101で得られるデバイスの状態に対応している。   Referring to FIG. 1, a wafer having a region where a low-k dielectric layer is exposed is etched to form a patterned photoresist layer (block 101). 2A and 2B are diagrams illustrating the formation of a patterned low-k dielectric in the processing of the damascene device 200. FIG. 2A and 2B show the device 200 before and after the dry etching process, respectively. FIG. 2B corresponds to the device state obtained in block 101 of FIG.

図2Aを参照しつつ説明すると、層201の上にはlow−k誘電体層203が成膜されている。low−k誘電体層203には、フォトレジスト205の一部分が成膜されている。集積化方式に応じて決まるが、基礎層201は、銅等の金属層、炭化シリコンまたは窒化シリコン等のエッチストップ層、または、その他の種類の層であってよい。フォトレジスト205は、UV光リソグラフィー(またはその他の適切なプロセス)を用いて既にパターニングされていて、low−k誘電体層203の一部が露出している。デバイス200はこの後、ドライエッチングプロセス、通常は、スパッタリングエッチング、プラズマエッチングまたは反応性イオンエッチングのうち1つが実行される。   Referring to FIG. 2A, a low-k dielectric layer 203 is deposited on the layer 201. A part of the photoresist 205 is formed on the low-k dielectric layer 203. Depending on the integration scheme, the base layer 201 may be a metal layer such as copper, an etch stop layer such as silicon carbide or silicon nitride, or other types of layers. Photoresist 205 has already been patterned using UV light lithography (or other suitable process), exposing a portion of low-k dielectric layer 203. Device 200 is then subjected to a dry etching process, typically one of sputtering etching, plasma etching, or reactive ion etching.

図2Bに示すように、ドライエッチングプロセスの後得られるデバイス200は、超low−k誘電体層203にフィーチャ210がエッチングされる。フォトレジスト部分205は、さらにウェハを処理する前にストリッピングしなければならない。尚、露出しているフォトレジスト部分205の上部および側部には、「スキン」207が形成されている。スキン207は、一部のドライエッチングプロセスの結果形成される比較的固いフォトレジスト部分であり、バルクフォトレジスト部分205とは組成が異なる場合がある。スキンは通常、誘電体の残留物がlow−k誘電体203から再堆積されることによって、そして、フォトレジスト205からポリマー残留物が再堆積されることによって形成される。スキンに加えて、low−k誘電体203の露出した側壁には膜209がさらに形成される。この膜は通常、ポリマー残留物から形成されており、ドライエッチングプロセスにおいてイオンが衝突したことによって損傷したlow−k誘電体の一部分である。   As shown in FIG. 2B, the device 200 obtained after the dry etching process has features 210 etched into the ultra-low-k dielectric layer 203. Photoresist portion 205 must be stripped before further processing of the wafer. Note that a “skin” 207 is formed on the upper and side portions of the exposed photoresist portion 205. The skin 207 is a relatively hard photoresist portion that is formed as a result of some dry etching process and may have a different composition than the bulk photoresist portion 205. The skin is typically formed by redepositing the dielectric residue from the low-k dielectric 203 and redepositing the polymer residue from the photoresist 205. In addition to the skin, a film 209 is further formed on the exposed sidewalls of the low-k dielectric 203. This film is typically formed from a polymer residue and is part of a low-k dielectric that has been damaged by ion bombardment in a dry etch process.

図1を再び参照すると、フォトレジストは、第1の部分をストリッピングする(ブロック103)。特定の実施形態によると、この第1の部分は、エッチングプロセスに起因して形成され、除去が比較的困難なことが多いスキンを含む。この処理では、弱酸化剤およびフッ素含有化合物を含む水素ベースのプラズマにウェハを暴露する。例えば、特定の実施形態によると、ウェハをH/CO/NFのプラズマに暴露する。後述するが、この処理では比較的少量のフッ素含有化合物を利用する。一例を挙げると、Hの流量は、約20,000sccm(20slpm)であり、COの流量は、800sccm(0.8slpm)であり、NFの流量は5sccmである。それぞれの流量は、実施形態毎に変化するとしてよい。Hの流量は、COの流量に比べると2ケタ大きく、NFの流量に比べると4ケタ大きい。特定の実施形態によると、COの流量は、NFの流量に比べて少なくとも1ケタ大きい。上記の範囲は、他の弱酸化剤およびフッ素含有化合物についても、適宜適用されるとしてよい。 Referring again to FIG. 1, the photoresist strips the first portion (block 103). According to certain embodiments, this first portion includes a skin that is formed due to the etching process and that is often relatively difficult to remove. In this process, the wafer is exposed to a hydrogen-based plasma containing a weak oxidant and a fluorine-containing compound. For example, according to certain embodiments, exposing the wafer to a plasma of H 2 / CO 2 / NF 3 . As will be described later, a relatively small amount of fluorine-containing compound is used in this treatment. As an example, the flow rate of H 2 is about 20,000 sccm (20 slpm), the flow rate of CO 2 is 800 sccm (0.8 slpm), and the flow rate of NF 3 is 5 sccm. Each flow rate may vary from embodiment to embodiment. The flow rate of H 2 is 2 digits larger than the flow rate of CO 2 and 4 digits larger than the flow rate of NF 3 . According to certain embodiments, the CO 2 flow rate is at least one order of magnitude greater than the NF 3 flow rate. The above range may be appropriately applied to other weak oxidizing agents and fluorine-containing compounds.

この処理は通常、エッチングが行われたチャンバとは別の反応チャンバで実行される。このような反応チャンバは、スタンドアロン型の「ストリッピング部」と呼ばれるとしてよい。適切なプラズマ反応チャンバを持つ装置であればどのような装置を利用するとしてもよい。このシステムでは、直接(インサイチュ)プラズマまたは遠隔プラズマのいずれを供給するとしてよい。   This process is typically performed in a reaction chamber that is separate from the chamber in which the etching was performed. Such a reaction chamber may be referred to as a stand-alone “stripping part”. Any device having an appropriate plasma reaction chamber may be used. In this system, either direct (in situ) plasma or remote plasma may be supplied.

尚、従来の酸素ベースのストリッピングに代えて処理103を特定の実施形態で利用し得ることに留意されたい。従来の酸素ベースのストリッピングは、エッチングが行われたのと同じ反応チャンバで実行され、酸素ベースのプラズマへの暴露を行うのが普通である。このような酸化による部分的なストリッピング処理は、一部のlow−k誘電体材料を損傷する可能性があり、特定の実施例では実行されない。このため、特定の実施形態では、処理101において、エッチングチャンバでこのようなストリッピングプロセスがまだ実施されていないウェハを用意する。   It should be noted that the process 103 may be utilized in certain embodiments instead of conventional oxygen-based stripping. Conventional oxygen-based stripping is typically performed in the same reaction chamber where the etching was performed, and exposure to an oxygen-based plasma is usually performed. Such partial stripping due to oxidation can damage some low-k dielectric materials and is not performed in certain embodiments. Thus, in certain embodiments, in process 101, a wafer that has not yet been subjected to such a stripping process in an etching chamber is provided.

図1を再び参照すると、次の処理では、バルクフォトレジストをストリッピングして、および/または、エッチング関連の材料を除去するべく、弱酸化剤を含む水素ベースのプラズマにウェハを暴露する(ブロック105)。特定の実施形態によると、この処理では、前の処理と違って、フッ素を利用しない。特定の実施形態によると、フォトレジストのバルクおよび残留物をこの処理で除去する。当該処理は、複数の処理を含むとしてよい。   Referring again to FIG. 1, in the next process, the wafer is exposed to a hydrogen-based plasma containing a weak oxidant to strip the bulk photoresist and / or remove etch-related materials (block). 105). According to certain embodiments, this process does not utilize fluorine, unlike the previous process. According to certain embodiments, the bulk and residue of the photoresist is removed in this process. The process may include a plurality of processes.

弱酸化剤およびフッ素含有化合物のガス総流量および相対的な量、ならびに、ストリッピングチャンバ内のその他の条件は、他にも要因はあるが、プラズマの種類(下流か直接か)、RF電力、チャンバ圧、基板(ウェハ)のサイズ、および、利用した弱酸化剤の種類に応じて変化するとしてよい。ノベルス(Novellus)社のGamma(商標)システム(下流プラズマシステム)を利用する一部の例によると、プラズマは、体積比率で約0.1%から10%の間の二酸化炭素を含むとしてよく、体積比率で約5ppmから10%の間の三フッ化窒素(含む場合)を含むとしてよい。   The total gas flow and relative amounts of weak oxidizers and fluorine-containing compounds, and other conditions in the stripping chamber, among other factors, include the type of plasma (downstream or direct), RF power, It may vary depending on the chamber pressure, the size of the substrate (wafer), and the type of weak oxidant utilized. According to some examples utilizing the Novellus Gamma ™ system (downstream plasma system), the plasma may contain between about 0.1% and 10% carbon dioxide by volume, It may contain between about 5 ppm and 10% by volume of nitrogen trifluoride (if included).

水素、弱酸化剤およびフッ素含有ガスに加えて、ヘリウム、アルゴンまたは窒素等のキャリアガスを利用するとしてよい。キャリアガスは通常、非反応性のガスである。出荷および取扱時の安全上の理由から、市販の水素は、ヘリウム等の希ガスと混合された状態で利用可能である。このような市販の混合ガスを本発明に係る方法で利用するとしてよい。   In addition to hydrogen, a weak oxidant and a fluorine-containing gas, a carrier gas such as helium, argon or nitrogen may be used. The carrier gas is usually a non-reactive gas. For safety reasons at the time of shipment and handling, commercially available hydrogen can be used in a state mixed with a rare gas such as helium. Such a commercially available mixed gas may be used in the method according to the present invention.

フォトレジストおよびエッチングの残留物の大半を処理105のプラズマストリッピングで除去した後、1以上のプラズマストリッピング処理または湿式洗浄処理を追加で実行するとしてよい。また、複数のステーションを備える装置では、処理103および105はそれぞれ、1以上のステーションにわたって実行され得ることに留意されたい。   After most of the photoresist and etch residues are removed by plasma stripping in process 105, one or more plasma stripping or wet cleaning processes may be additionally performed. It should also be noted that in devices with multiple stations, processes 103 and 105 can each be performed across one or more stations.

ウェハは通常、プラズマへ暴露されている間は温度が制御される。具体的には、温度は、約摂氏200度以下、約摂氏160度以下、約摂氏150度以下、約摂氏140度以下、約摂氏130度以下、約摂氏120度以下、約摂氏110度以下、約摂氏100度以下、約摂氏90度以下、約摂氏80度以下、または、約摂氏60度以下になるように制御される。特定の実施形態によると、基板の温度は約摂氏90度以下に維持される。このように比較的低い温度が、特定の実施形態では、ULK膜に多大な損傷が受けないようにする上で重要であることが分かっている。   The wafer is typically temperature controlled while it is exposed to the plasma. Specifically, the temperature is about 200 degrees Celsius or less, about 160 degrees Celsius or less, about 150 degrees Celsius or less, about 140 degrees Celsius or less, about 130 degrees Celsius or less, about 120 degrees Celsius or less, about 110 degrees Celsius or less, It is controlled to be about 100 degrees Celsius or less, about 90 degrees Celsius or less, about 80 degrees Celsius or less, or about 60 degrees Celsius or less. According to certain embodiments, the temperature of the substrate is maintained below about 90 degrees Celsius. This relatively low temperature has been found to be important in certain embodiments to prevent significant damage to the ULK membrane.

図3Aは、上述したようにフォトレジストが除去された後のパターニングされた超low−k誘電体層303、ハードマスク層315、および、炭化シリコン層301を示す図である。low−k誘電体層303には、ビアまたはトレンチである凹型フィーチャ310がエッチングされている。フィーチャ310は、側壁317および底部319を持つ。フォトレジストの除去の際の温度が高過ぎる場合、側壁317近傍のlow−k材料が損傷を受けることが分かっている。この損傷を試験する方法の1つとして、HF浸漬がある。例えば、HFの100:1の希釈液に45秒間浸漬させる。一例を挙げると、上述したようなフォトレジスト除去プロセスを摂氏90度で実行し、同じ化学物質を用いるが摂氏280度で実行されるプロセスと比較する。図3Bは、摂氏280度でストリッピングした場合のフィーチャのプロフィールを示すべく317´´で結果を示し、摂氏90度でストリッピングした場合のフィーチャのプロフィールを317´で示す。プロフィール317´は、ストリッピングされた場合のフィーチャのプロフィールとは略変化がないことが分かったが、プロフィール317´´は内側に湾曲している。これら2つのプロフィールの間の領域は、高温ストリッピングプロセスで損傷を受けた領域である。さらに高温のプロセスでは、フィーチャの底部からエッチストップ材料を所定量除去する可能性もある。   FIG. 3A shows the patterned ultra low-k dielectric layer 303, hard mask layer 315, and silicon carbide layer 301 after the photoresist has been removed as described above. The low-k dielectric layer 303 is etched with concave features 310 that are vias or trenches. Feature 310 has a side wall 317 and a bottom 319. It has been found that if the temperature during removal of the photoresist is too high, the low-k material near the sidewall 317 is damaged. One method for testing this damage is HF immersion. For example, it is immersed in a 100: 1 dilution of HF for 45 seconds. As an example, a photoresist removal process as described above is performed at 90 degrees Celsius and compared to a process that uses the same chemistry but is performed at 280 degrees Celsius. FIG. 3B shows the result at 317 ″ to show the profile of the feature when stripped at 280 degrees Celsius and the profile of the feature at 317 ′ when stripped at 90 degrees Celsius. Profile 317 ″ has been found to be substantially unchanged from the profile of the feature when stripped, but profile 317 ″ is curved inward. The area between these two profiles is the area damaged by the high temperature stripping process. Higher temperature processes may also remove a certain amount of etch stop material from the bottom of the feature.

高温になるほど、エッチング速度が高速化するが、温度を昇温させるとエッチングに必要なフッ素の量が増加することが分かっている。この結果、誘電体への損傷が大きくなる。しかし、低温にしたことによって暴露時間が長くなっても損傷は発生し得る。しかし、上述の範囲に温度を設定すれば、このように競合する影響の制約内で、損傷を食い止めるか、または、抑制することができると分かっている。   The higher the temperature, the higher the etching rate, but it has been found that increasing the temperature increases the amount of fluorine required for etching. As a result, damage to the dielectric increases. However, damage can occur even if the exposure time is prolonged due to the low temperature. However, it has been found that if the temperature is set to the above range, damage can be stopped or suppressed within the constraints of such competing effects.

一例を挙げると、損傷の少ないストリッピングを実現するべく以下のような処理条件を採用した。
ステーション1:H 20slpm/CO 0.8slpm/NF 5sccm
ステーション2−5:H 20slpm/CO 0.8slpm
ステーション1−5:0.9Torr/摂氏90度/RFプラズマ 3.5kW/ステーション毎に103秒
For example, the following processing conditions were adopted in order to realize stripping with little damage.
Station 1: H 2 20 slpm / CO 2 0.8 slpm / NF 3 5 sccm
Station 2-5: H 2 20 slpm / CO 2 0.8 slpm
Station 1-5: 0.9 Torr / 90 degrees Celsius / RF plasma 3.5 kW / 103 seconds per station

特定の実施形態によると、1以上の処理について、フッ素含有プラズマに暴露した後、温度を昇温させる。例えば、フッ素ベースのプラズマへ暴露している間の温度は、摂氏160度未満または摂氏90度未満の温度とするとしてよい。フッ素を含まないプラズマを利用する1以上の処理の前またはこれら1以上の処理での暴露の間に、昇温させる。特定の実施形態によると、温度は段階的に昇温させるとしてよく、後のステーションになるほど、前のステーションよりも高い温度となる。昇温後の温度は、上述した範囲内であってもよいし、または、上述した範囲よりも高い温度であってよい。例えば、特定の実施形態によると、後のステーションは摂氏285度等の高温を利用することができる。しかし、多くの実施形態によると、ストリッピングプロセスの間はずっと低温に維持する。   According to certain embodiments, for one or more treatments, the temperature is raised after exposure to the fluorine-containing plasma. For example, the temperature during exposure to the fluorine-based plasma may be a temperature less than 160 degrees Celsius or less than 90 degrees Celsius. The temperature is raised prior to or during exposure to one or more treatments utilizing a fluorine-free plasma. According to certain embodiments, the temperature may be raised in stages, with the later station becoming a higher temperature than the previous station. The temperature after the temperature rise may be within the above-described range, or may be higher than the above-described range. For example, according to certain embodiments, later stations may utilize high temperatures such as 285 degrees Celsius. However, according to many embodiments, it is kept cool throughout the stripping process.

上記の説明では、低温で水素ベースのプラズマを用いてフォトレジストを除去する例を説明した。特に、水素ガスから生成されるプラズマにフォトレジストおよびエッチング関連の残留物を暴露する場合に、ウェハ温度を低温に維持するプロセスを説明した。この低温とは、例えば、約摂氏200度未満、約摂氏160度未満、約摂氏150度未満、約摂氏140度未満、約摂氏130度未満、約摂氏120度未満、約摂氏110度未満、約摂氏100度未満、約摂氏90度未満、約摂氏80度未満、または、約摂氏60度未満である。特定の実施形態によると、プラズマを生成するために用いられるガスは、1以上の処理において、実質的に水素ガスから成る。別の実施形態によると、弱酸化剤、フッ素含有ガスおよびキャリアガスのうち1以上を、上述したように、1以上の処理において、水素ガスに追加するとしてよい。低温暴露処理用のプラズマを生成するべく採用される処理用のガスの化学物質の例を挙げると、H、H/CO、H/CO/NFおよびH/NFがある。COおよびNFに代えて、または、COおよびBFに加えて、上述した他の弱酸化剤およびフッ素含有剤を含める。フォトレジストおよびエッチングの残留物の特性に応じて、図2Aから図2Cで説明した除去処理のうち一部または全てで利用するとしてよい。 In the above description, an example in which the photoresist is removed using hydrogen-based plasma at a low temperature has been described. In particular, a process has been described that maintains the wafer temperature at low temperatures when exposing photoresist and etch-related residues to a plasma generated from hydrogen gas. The low temperature is, for example, less than about 200 degrees Celsius, less than about 160 degrees Celsius, less than about 150 degrees Celsius, less than about 140 degrees Celsius, less than about 130 degrees Celsius, less than about 120 degrees Celsius, less than about 110 degrees Celsius, Less than 100 degrees Celsius, less than about 90 degrees Celsius, less than about 80 degrees Celsius, or less than about 60 degrees Celsius. According to certain embodiments, the gas used to generate the plasma consists essentially of hydrogen gas in one or more processes. According to another embodiment, one or more of the weak oxidant, fluorine-containing gas, and carrier gas may be added to the hydrogen gas in one or more processes, as described above. Examples of processing gas chemicals employed to generate plasma for low temperature exposure processing include H 2 , H 2 / CO 2 , H 2 / CO 2 / NF 3 and H 2 / NF 3. is there. Instead of CO 2 and NF 3 or in addition to CO 2 and BF 3 , other weak oxidants and fluorine-containing agents described above are included. Depending on the characteristics of the photoresist and etching residues, some or all of the removal processes described in FIGS. 2A-2C may be used.

例えば、「スキン」を除去するべく、水素ベースのプラズマを生成するために用いられるガスは、COまたは他の弱酸化剤を実質的に含まないとしてもよい。また、特定の実施形態によると、NFまたはその他のフッ素含有ガスを実質的に含まないとしてもよい。バルクフォトレジストを除去するための水素ベースのプラズマを生成するために用いられるガスは、COまたはその他の弱酸化剤を実質的に含まないとしてよい。多くの実施形態において、上述したように、NFまたはその他のフッ素含有ガスを実質的に含まないとしてよい。しかし、NFまたはその他のフッ素含有ガスは、特定の実施形態において、含まれるとしてよい。 For example, the gas used to generate the hydrogen-based plasma to remove “skins” may be substantially free of CO 2 or other weak oxidants. Also, according to certain embodiments, NF 3 or other fluorine-containing gas may be substantially free. The gas used to generate the hydrogen-based plasma for removing the bulk photoresist may be substantially free of CO 2 or other weak oxidants. In many embodiments, as described above, the NF 3 or other fluorine-containing gas may be substantially free. However, NF 3 or other fluorine-containing gas may be included in certain embodiments.

<装置>
上述したように、任意の適切なプラズマ反応チャンバ装置を利用するとしてよい。適切なプラズマチャンバおよびシステムとしては、Novellus Systems,Inc社(米国カリフォルニア州サンノゼ)製のガンマ2100、2130 ICP(インターレース方式誘導結合プラズマ)G400、および、GxTがある。他のシステムとしては、Axcelis Technologies Inc.社(米国メリーランド州、ロックビル)製のフュージョンライン(Fusion line)、PSK Tech Inc.社(韓国)製のTERA21、Mattson Technology Inc.社(米国カリフォルニア州フリーモント)製のAspenがある。また、さまざまなストリッピングチャンバは、クラスタツール上に構成するとしてもよい。例えば、ストリッピングチャンバは、Applied Materials社(米国カリフォルニア州サンタクラーラ)製のCenturaクラスタツールに追加されるとしてよい。
<Device>
As described above, any suitable plasma reaction chamber apparatus may be utilized. Suitable plasma chambers and systems include the Gamma 2100, 2130 I 2 CP (interlaced inductively coupled plasma) G400, and GxT from Novellus Systems, Inc. (San Jose, Calif.). Other systems include Axcelis Technologies Inc. (Fusion line), PSK Tech Inc. (Rockville, Maryland, USA). TERA21, Mattson Technology Inc. (Korea). There is Aspen manufactured by the company (Fremont, California, USA). Various stripping chambers may also be configured on the cluster tool. For example, the stripping chamber may be added to a Centura cluster tool manufactured by Applied Materials (Santa Clara, Calif., USA).

図4Aは、ウェハに本発明を実施するのに適した下流プラズマ装置400の側面を示す概略図である。装置400では、プラズマ源411および露光チャンバ401がシャワーヘッドアセンブリ417によって分離している。露光チャンバ401において、ウェハ403はプラテン(またはステージ)405上に載置される。プラテン405は、加熱/冷却素子が設けられている。一部の実施形態によると、プラテン405は、ウェハ403にバイアスを印加するように構成されている。コンジット407を介して真空ポンプによって露光チャンバ401内を低圧とする。気体状の水素(希釈ガス/キャリアガスを含んでも含まなくてもよい)、二酸化炭素(またはその他の弱酸化剤)、および、含まれていれば、三フッ化窒素(またはその他のフッ素含有ガス)のソースによって、吸気口409を通って当該装置のプラズマ源411に入るガス流が得られる。プラズマ源411は、一部の周囲が誘導コイル413によって取り囲まれている。誘導コイル413は、電源415に接続されている。動作について説明すると、混合ガスをプラズマ源411に導入して、誘導コイル413にエネルギーを加えると、プラズマ源411でプラズマが生成される。シャワーヘッドアセンブリ417は、電圧が印加されると、一部のイオンの流れを止めて、中性種の流れを露光チャンバ401内へと方向付ける。上述したように、ウェハ403は、温度が制御されるとしてよく、および/または、RFバイアスが印加されるとしてよい。プラズマ源411および誘導コイル413は、さまざまな構成および構造のものを利用するとしてよい。例えば、誘導コイル413は、インターレースパターンでプラズマ源411の周りに巻き回されているとしてよい。別の例によると、プラズマ源411は、円筒形状ではなくドーム形状を持つとしてよい。コントローラ450は、処理チャンバの構成要素に接続されているとしてよく、ストリッピング処理における処理ガスの組成、圧力、温度およびウェハへのインデックス付与を制御するとしてよい。上記の処理の処理条件を制御するための命令を含む機械可読媒体をコントローラに結合するとしてよい。   FIG. 4A is a schematic diagram illustrating a side view of a downstream plasma apparatus 400 suitable for implementing the present invention on a wafer. In the apparatus 400, the plasma source 411 and the exposure chamber 401 are separated by a shower head assembly 417. In the exposure chamber 401, the wafer 403 is placed on a platen (or stage) 405. The platen 405 is provided with a heating / cooling element. According to some embodiments, the platen 405 is configured to apply a bias to the wafer 403. The inside of the exposure chamber 401 is set to a low pressure by a vacuum pump through the conduit 407. Gaseous hydrogen (with or without diluent / carrier gas), carbon dioxide (or other weak oxidant), and, if included, nitrogen trifluoride (or other fluorine-containing gas) ) Provides a gas flow through the inlet 409 and into the plasma source 411 of the apparatus. The plasma source 411 is partially surrounded by the induction coil 413. The induction coil 413 is connected to the power source 415. The operation will be described. When mixed gas is introduced into the plasma source 411 and energy is applied to the induction coil 413, plasma is generated in the plasma source 411. The showerhead assembly 417 stops the flow of some ions and directs the flow of neutral species into the exposure chamber 401 when a voltage is applied. As described above, the temperature of the wafer 403 may be controlled and / or an RF bias may be applied. The plasma source 411 and the induction coil 413 may utilize various configurations and structures. For example, the induction coil 413 may be wound around the plasma source 411 in an interlace pattern. According to another example, the plasma source 411 may have a dome shape instead of a cylindrical shape. The controller 450 may be connected to the components of the processing chamber and may control the composition, pressure, temperature, and indexing of the wafer in the stripping process. A machine readable medium containing instructions for controlling the processing conditions of the above processing may be coupled to the controller.

上述したように、一部の実施形態によると、本発明に係る装置は、ウェハからのフォトレジストのストリッピングに特化しているストリッピング部である。一般的に、このようなストリッピングツールは、複数のウェハ処理ステーションを備えており、複数のウェハを同時に処理可能である。図4Bは、本発明に応じて利用されるマルチステーションウェハストリッピングツール430の上部から見た様子を示す簡略ブロック図である。ストリッピングツール430は、5個のストリッピングステーション433、435、437、439および441、ならびに、1つのロードステーション431を備える。ストリッピングツール430は、ステーション毎に1つのウェハを処理可能であると共に、全てのステーションが共通の真空に暴露されるように構成される。ストリッピングステーション433、435、437、439および441はそれぞれ、独自のRF電源を持つ。ロードステーション431は通常、真空を中断することなく、ストリッピングツール430に複数のウェハを入れるように、ロードロックステーションが取着されている。ロードステーション431はさらに、ストリッピングステーションへと輸送してフォトレジストストリッピングを行う前にウェハを予熱するためのヒートランプを備えるとしてよい。ストリッピングステーション441は通常、真空を中断することなく、ストリッピングツール430から複数のウェハを出すように、ロードロックステーションが取着されている。ロボットアーム443がステーション間でウェハを輸送する。   As described above, according to some embodiments, the apparatus according to the present invention is a stripping section specialized for stripping photoresist from a wafer. In general, such a stripping tool includes a plurality of wafer processing stations and can process a plurality of wafers simultaneously. FIG. 4B is a simplified block diagram illustrating a top view of a multi-station wafer stripping tool 430 utilized in accordance with the present invention. The stripping tool 430 includes five stripping stations 433, 435, 437, 439 and 441, and one load station 431. The stripping tool 430 is configured so that one station can be processed per station and all stations are exposed to a common vacuum. Each of the stripping stations 433, 435, 437, 439 and 441 has its own RF power source. The load station 431 is typically mounted with a load lock station so that a plurality of wafers can be placed in the stripping tool 430 without interrupting the vacuum. The load station 431 may further comprise a heat lamp for preheating the wafer before being transported to the stripping station for photoresist stripping. The stripping station 441 is typically mounted with a load lock station so that a plurality of wafers can be removed from the stripping tool 430 without interrupting the vacuum. A robot arm 443 transports wafers between stations.

通常製造モードでは、ウェハをバッチ方式で処理する。バッチ方式処理によると、ウェハのスループットが向上するので、製造処理でよく用いられる。バッチ方式では、各ウェハを、ステーション431、433、435、437、439および441のそれぞれに、輸送して各ステーションで処理する。例えば、通常バッチ方式プロセスは以下のように進行する。ウェハを最初に、ウェハをヒートランプで予熱するロードステーション431にロードする。続いて、ロボットアーム443によって、フッ素ベースのプラズマを用いてフォトレジストの約5分の1をストリッピングするのに十分な期間にわたってプラズマ処理を行うストリッピングステーション433にウェハを輸送する。ロボットアーム443はこの後、残りのフォトレジストから別の約5分の1をストリッピングするのに十分な期間にわたってフッ素を用いないプロセスでプラズマ処理するストリッピングステーション435にウェハを輸送する。この順序で処理を続けて、ウェハをストリッピングステーション437、439および441で処理する。ストリッピングステーション441において、フォトレジストは大半が除去されるべきであり、ウェハはこの後ストリッピングツールから取り出される。   In the normal manufacturing mode, wafers are processed in a batch mode. Batch processing improves wafer throughput and is often used in manufacturing processes. In the batch method, each wafer is transported to each of the stations 431, 433, 435, 437, 439 and 441 and processed at each station. For example, a normal batch process proceeds as follows. The wafer is first loaded into a load station 431 where the wafer is preheated with a heat lamp. Subsequently, the robot arm 443 transports the wafer to a stripping station 433 that performs plasma processing for a period sufficient to strip about one-fifth of the photoresist using fluorine-based plasma. Robot arm 443 then transports the wafer to a stripping station 435 that is plasma treated in a fluorine-free process for a period sufficient to strip another approximately one fifth from the remaining photoresist. Processing continues in this order, and the wafers are processed in stripping stations 437, 439 and 441. At the stripping station 441, most of the photoresist should be removed and the wafer is then removed from the stripping tool.

説明を分かりやすくするためにさまざまな詳細な事項を省略したが、さまざまな点で構成を変更し得るものとしてよい。このため、上述した例は、本発明を例示するためのものであって限定するものではないと解釈されるべきであり、本発明は、本明細書に記載した詳細な事項に限定されるものではなく、特許請求の範囲において修正し得るものである。   Various details are omitted for the sake of clarity, but the configuration may be changed in various ways. Thus, the above-described examples are to be construed as illustrative and not limiting of the invention, and the invention is limited to the details set forth herein. Rather, it can be modified in the claims.

Claims (12)

エッチングプロセスの後に製造途中の集積回路の一部であるワークピース上の誘電体層から材料を除去する方法であって、
水素およびフッ素含有化合物を含むガスから第1のプラズマを形成する段階と、
前記ワークピースを前記第1のプラズマに暴露する段階と、
水素材料を含むガスから第2のプラズマを形成する段階と、
前記ワークピースを前記第2のプラズマに暴露する段階と
を備え、
前記ワークピースの温度は、摂氏160度未満の温度に維持され、
前記第2のプラズマは、実質的にフッ素を含まず、
前記第1のプラズマおよび前記第2のプラズマは、酸素分子を含まず、かつ、誘電率が4.0未満のlow−k誘電体層からフォトレジストを除去する、方法。
A method of removing material from a dielectric layer on a workpiece that is part of an integrated circuit being fabricated after an etching process, comprising:
Forming a first plasma from a gas comprising hydrogen and a fluorine-containing compound;
Exposing the workpiece to the first plasma;
Forming a second plasma from a gas containing a hydrogen material;
Exposing the workpiece to the second plasma,
Wherein the temperature of the workpiece is maintained at a temperature below Celsius 160 degrees,
The second plasma is substantially free of fluorine,
The method of removing the photoresist from the low-k dielectric layer, wherein the first plasma and the second plasma do not contain oxygen molecules and have a dielectric constant of less than 4.0.
前記ワークピースの温度は、摂氏100度未満の温度に維持される請求項1に記載の方法。 The method of claim 1 wherein the temperature of the workpiece, which is maintained at a temperature below 100 degrees Celsius. 前記ワークピースの温度は、摂氏90度未満の温度に維持される請求項1に記載の方法。 The method of claim 1 wherein the temperature of the workpiece, which is maintained at a temperature below Celsius 90 degrees. 前記第1のプラズマを形成するための前記ガスはさらに、弱酸化剤を含む請求項1から請求項3のうちいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the gas for forming the first plasma further comprises a weak oxidant. 前記弱酸化剤は、二酸化炭素、一酸化炭素、亜酸化窒素、一酸化窒素、二酸化窒素および水のうち少なくとも1つを含む請求項4に記載の方法。   The method of claim 4, wherein the weak oxidant comprises at least one of carbon dioxide, carbon monoxide, nitrous oxide, nitric oxide, nitrogen dioxide, and water. 前記弱酸化剤は、二酸化炭素である請求項4に記載の方法。   The method of claim 4, wherein the weak oxidant is carbon dioxide. 前記フッ素含有化合物は、三フッ化窒素(NF)、六フッ化硫黄(SF)、ヘキサフルオロエタン(C)、テトラフルオロメタン(CF)、トリフルオロメタン(CHF)、ジフルオロメタン(CH)、オクトフルオロプロパン(C)、オクトフルオロシクロブタン(C)、オクトフルオロ[1−]ブタン(C)、オクトフルオロ[2−]ブタン(C4F)、オクトフルオロイソブチレン(C)、およびフッ素(F)のうち少なくとも1つを含む請求項1から請求項6のうちいずれか一項に記載の方法。 The fluorine-containing compound includes nitrogen trifluoride (NF 3 ), sulfur hexafluoride (SF 6 ), hexafluoroethane (C 2 F 6 ), tetrafluoromethane (CF 4 ), trifluoromethane (CHF 3 ), difluoro Methane (CH 2 F 2 ), Octofluoropropane (C 3 F 8 ), Octofluorocyclobutane (C 4 F 8 ), Octofluoro [1-] butane (C 4 F 8 ), Octofluoro [2-] butane ( The method according to any one of claims 1 to 6, comprising at least one of C 4 4F 8 ), octofluoroisobutylene (C 4 F 8 ), and fluorine (F 2 ). 前記フッ素含有化合物は、三フッ化窒素である請求項7に記載の方法。   The method according to claim 7, wherein the fluorine-containing compound is nitrogen trifluoride. 前記ワークピースは、従来の酸素ベースのプラズマフォトレジストストリッピング処理が実行されていない請求項1から請求項のうちいずれか一項に記載の方法。 9. The method according to any one of claims 1 to 8 , wherein the workpiece has not been subjected to a conventional oxygen-based plasma photoresist stripping process. 前記誘電体層から除去される前記材料は、フォトレジストおよび/または前記エッチングプロセスに起因する残留物を含む請求項1から請求項のうちいずれか一項に記載の方法。 10. A method according to any one of claims 1 to 9 , wherein the material removed from the dielectric layer comprises a photoresist and / or residue resulting from the etching process. ワークピースの表面から材料を除去する装置であって、
反応チャンバと、
一連の命令を実行するコントローラと
を備え、
前記反応チャンバは、
プラズマ源と、
前記プラズマ源の下流に位置しているシャワーヘッドと、
前記シャワーヘッドの下流に位置しているワークピース支持部と
を有しており、
前記ワークピース支持部は、前記ワークピース支持部上に支持されているワークピースの温度を制御する温度制御メカニズムおよびペデスタルを含み、
前記一連の命令は、
水素、弱酸化剤およびフッ素含有化合物を含むガスから第1のプラズマを形成するための命令と、
前記ワークピースを前記第1のプラズマに暴露するための命令と、
水素および弱酸化剤を含むガスから第2のプラズマを形成するための命令と、
前記ワークピースを前記第2のプラズマに暴露するための命令と
を含み、
前記第1のプラズマに暴露する段階、および、前記第2のプラズマに暴露する段階において、前記ワークピースの温度は、摂氏160度未満の温度に維持され 前記第2のプラズマは、実質的にフッ素を含まず、
前記第1のプラズマおよび前記第2のプラズマは、酸素分子を含まず、かつ、誘電率が4.0未満のlow−k誘電体層からフォトレジストを除去する、
装置。
An apparatus for removing material from the surface of a workpiece,
A reaction chamber;
A controller that executes a series of instructions,
The reaction chamber comprises
A plasma source;
A showerhead located downstream of the plasma source;
A workpiece support located downstream of the showerhead,
The workpiece support includes a temperature control mechanism and a pedestal for controlling the temperature of the workpiece supported on the workpiece support,
The sequence of instructions is
Instructions for forming a first plasma from a gas comprising hydrogen, a weak oxidant and a fluorine-containing compound;
Instructions for exposing the workpiece to the first plasma;
Instructions for forming a second plasma from a gas comprising hydrogen and a weak oxidant;
Instructions for exposing the workpiece to the second plasma;
The step of exposing said first plasma, and, in the step of exposing the second plasma, the temperature of the workpiece is maintained at a temperature below Celsius 160 degrees, the second plasma is substantially Does not contain fluorine,
The first plasma and the second plasma remove photoresist from a low-k dielectric layer that does not contain oxygen molecules and has a dielectric constant of less than 4.0;
apparatus.
集積回路を製造する方法であって、請求項1から10のいずれか一項に記載の方法のエッチングプロセスの後に、製造途中の集積回路の一部であるワークピース上の誘電体層から材料を除去する段階を備える、集積回路を製造する方法。 A method of manufacturing an integrated circuit, wherein after the etching process of the method according to any one of claims 1 to 10 , material is removed from a dielectric layer on a workpiece that is part of the integrated circuit being manufactured. A method of manufacturing an integrated circuit comprising the step of removing.
JP2012543254A 2009-12-11 2010-12-08 Method and apparatus for removing material from a dielectric layer on a workpiece and method for manufacturing an integrated circuit comprising removing material from a dielectric layer on a workpiece Expired - Fee Related JP5911068B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/636,601 2009-12-11
US12/636,601 US8591661B2 (en) 2009-12-11 2009-12-11 Low damage photoresist strip method for low-K dielectrics
PCT/US2010/059517 WO2011072042A2 (en) 2009-12-11 2010-12-08 Low damage photoresist strip method for low-k dielectrics

Publications (3)

Publication Number Publication Date
JP2013513948A JP2013513948A (en) 2013-04-22
JP2013513948A5 JP2013513948A5 (en) 2014-01-30
JP5911068B2 true JP5911068B2 (en) 2016-04-27

Family

ID=44141528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012543254A Expired - Fee Related JP5911068B2 (en) 2009-12-11 2010-12-08 Method and apparatus for removing material from a dielectric layer on a workpiece and method for manufacturing an integrated circuit comprising removing material from a dielectric layer on a workpiece

Country Status (7)

Country Link
US (2) US8591661B2 (en)
JP (1) JP5911068B2 (en)
KR (1) KR101908737B1 (en)
CN (1) CN102792423B (en)
SG (1) SG181165A1 (en)
TW (1) TWI562225B (en)
WO (1) WO2011072042A2 (en)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193096B2 (en) * 2004-12-13 2012-06-05 Novellus Systems, Inc. High dose implantation strip (HDIS) in H2 base chemistry
US8129281B1 (en) 2005-05-12 2012-03-06 Novellus Systems, Inc. Plasma based photoresist removal system for cleaning post ash residue
US7740768B1 (en) 2006-10-12 2010-06-22 Novellus Systems, Inc. Simultaneous front side ash and backside clean
US8435895B2 (en) * 2007-04-04 2013-05-07 Novellus Systems, Inc. Methods for stripping photoresist and/or cleaning metal regions
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8890271B2 (en) * 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US8721797B2 (en) 2009-12-11 2014-05-13 Novellus Systems, Inc. Enhanced passivation process to protect silicon prior to high dose implant strip
US20110143548A1 (en) 2009-12-11 2011-06-16 David Cheung Ultra low silicon loss high dose implant strip
US9390909B2 (en) 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9373500B2 (en) * 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9685320B2 (en) 2010-09-23 2017-06-20 Lam Research Corporation Methods for depositing silicon oxide
US9613825B2 (en) 2011-08-26 2017-04-04 Novellus Systems, Inc. Photoresist strip processes for improved device integrity
KR101357785B1 (en) * 2012-09-11 2014-02-04 피에스케이 주식회사 Method for treating substrate
TWI595112B (en) 2012-10-23 2017-08-11 蘭姆研究公司 Sub-saturated atomic layer deposition and conformal film deposition
SG2013083654A (en) 2012-11-08 2014-06-27 Novellus Systems Inc Methods for depositing films on sensitive substrates
KR102230529B1 (en) * 2013-12-27 2021-03-19 엘지디스플레이 주식회사 Organic light emitting display device and method for fabricating of the same
US9214334B2 (en) 2014-02-18 2015-12-15 Lam Research Corporation High growth rate process for conformal aluminum nitride
US9514954B2 (en) 2014-06-10 2016-12-06 Lam Research Corporation Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films
US9478438B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor
US9478411B2 (en) 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
US9570320B2 (en) * 2014-10-09 2017-02-14 Lam Research Corporation Method to etch copper barrier film
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9502238B2 (en) 2015-04-03 2016-11-22 Lam Research Corporation Deposition of conformal films by atomic layer deposition and atomic layer etch
US10526701B2 (en) 2015-07-09 2020-01-07 Lam Research Corporation Multi-cycle ALD process for film uniformity and thickness profile modulation
US9934984B2 (en) 2015-09-09 2018-04-03 International Business Machines Corporation Hydrofluorocarbon gas-assisted plasma etch for interconnect fabrication
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US9730494B1 (en) * 2016-09-23 2017-08-15 Feinstein Patents, Llc Self-fitting, self-adjusting, automatically adjusting and/or automatically fitting shoe/sneaker/footwear
CN107015445A (en) * 2017-03-27 2017-08-04 武汉新芯集成电路制造有限公司 Semicon-ductor structure surface processing method
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
JP7022651B2 (en) * 2018-05-28 2022-02-18 東京エレクトロン株式会社 Film etching method and plasma processing equipment
US12040181B2 (en) 2019-05-01 2024-07-16 Lam Research Corporation Modulated atomic layer deposition
EP3999913A4 (en) 2019-07-18 2022-08-10 Mattson Technology, Inc. Processing of workpieces using hydrogen radicals and ozone gas
CN118140293A (en) * 2021-10-22 2024-06-04 朗姆研究公司 Stripping using bevel cleaning

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216922B2 (en) * 1998-05-08 2009-01-28 東京エレクトロン株式会社 Oxide film etching method
US4201579A (en) 1978-06-05 1980-05-06 Motorola, Inc. Method for removing photoresist by hydrogen plasma
US4357203A (en) 1981-12-30 1982-11-02 Rca Corporation Plasma etching of polyimide
US4699689A (en) 1985-05-17 1987-10-13 Emergent Technologies Corporation Method and apparatus for dry processing of substrates
US5292393A (en) 1986-12-19 1994-03-08 Applied Materials, Inc. Multichamber integrated process system
US5158644A (en) 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
JPH01200628A (en) * 1988-02-05 1989-08-11 Toshiba Corp Dry etching
US5354386A (en) 1989-03-24 1994-10-11 National Semiconductor Corporation Method for plasma etching tapered and stepped vias
US5122225A (en) 1990-11-21 1992-06-16 Texas Instruments Incorporated Selective etch method
US5716494A (en) 1992-06-22 1998-02-10 Matsushita Electric Industrial Co., Ltd. Dry etching method, chemical vapor deposition method, and apparatus for processing semiconductor substrate
US5522932A (en) 1993-05-14 1996-06-04 Applied Materials, Inc. Corrosion-resistant apparatus
EP0664347A3 (en) 1994-01-25 1997-05-14 Applied Materials Inc Apparatus for depositing a uniform layer of material on a substrate.
US5744049A (en) 1994-07-18 1998-04-28 Applied Materials, Inc. Plasma reactor with enhanced plasma uniformity by gas addition, and method of using same
US5900351A (en) 1995-01-17 1999-05-04 International Business Machines Corporation Method for stripping photoresist
US5817406A (en) 1995-07-14 1998-10-06 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and brazing material connection
US5633073A (en) 1995-07-14 1997-05-27 Applied Materials, Inc. Ceramic susceptor with embedded metal electrode and eutectic connection
JP3585591B2 (en) 1995-07-29 2004-11-04 株式会社半導体エネルギー研究所 Etching apparatus and etching method
US6187072B1 (en) 1995-09-25 2001-02-13 Applied Materials, Inc. Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions
US6045618A (en) 1995-09-25 2000-04-04 Applied Materials, Inc. Microwave apparatus for in-situ vacuum line cleaning for substrate processing equipment
US6194628B1 (en) 1995-09-25 2001-02-27 Applied Materials, Inc. Method and apparatus for cleaning a vacuum line in a CVD system
US6193802B1 (en) 1995-09-25 2001-02-27 Applied Materials, Inc. Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
US5792269A (en) 1995-10-31 1998-08-11 Applied Materials, Inc. Gas distribution for CVD systems
US5968324A (en) 1995-12-05 1999-10-19 Applied Materials, Inc. Method and apparatus for depositing antireflective coating
US5707485A (en) 1995-12-20 1998-01-13 Micron Technology, Inc. Method and apparatus for facilitating removal of material from the backside of wafers via a plasma etch
JPH09205130A (en) 1996-01-17 1997-08-05 Applied Materials Inc Wafer supporting device
US5660682A (en) 1996-03-14 1997-08-26 Lsi Logic Corporation Plasma clean with hydrogen gas
US5814155A (en) 1996-06-26 1998-09-29 Vlsi Technology, Inc. Plasma ashing enhancement
US6156149A (en) 1997-05-07 2000-12-05 Applied Materials, Inc. In situ deposition of a dielectric oxide layer and anti-reflective coating
US6127262A (en) 1996-06-28 2000-10-03 Applied Materials, Inc. Method and apparatus for depositing an etch stop layer
US6083852A (en) 1997-05-07 2000-07-04 Applied Materials, Inc. Method for applying films using reduced deposition rates
US6129091A (en) 1996-10-04 2000-10-10 Taiwan Semiconductor Manfacturing Company Method for cleaning silicon wafers with deep trenches
US6562544B1 (en) 1996-11-04 2003-05-13 Applied Materials, Inc. Method and apparatus for improving accuracy in photolithographic processing of substrates
US5844195A (en) 1996-11-18 1998-12-01 Applied Materials, Inc. Remote plasma source
US5911834A (en) 1996-11-18 1999-06-15 Applied Materials, Inc. Gas delivery system
US5830775A (en) 1996-11-26 1998-11-03 Sharp Microelectronics Technology, Inc. Raised silicided source/drain electrode formation with reduced substrate silicon consumption
US5811358A (en) 1997-01-03 1998-09-22 Mosel Vitelic Inc. Low temperature dry process for stripping photoresist after high dose ion implantation
US6039834A (en) 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US6077764A (en) 1997-04-21 2000-06-20 Applied Materials, Inc. Process for depositing high deposition rate halogen-doped silicon oxide layer
US6306564B1 (en) 1997-05-27 2001-10-23 Tokyo Electron Limited Removal of resist or residue from semiconductors using supercritical carbon dioxide
US6177023B1 (en) 1997-07-11 2001-01-23 Applied Komatsu Technology, Inc. Method and apparatus for electrostatically maintaining substrate flatness
JP3317209B2 (en) 1997-08-12 2002-08-26 東京エレクトロンエイ・ティー株式会社 Plasma processing apparatus and plasma processing method
JPH1187307A (en) * 1997-09-05 1999-03-30 Sony Corp Method and apparatus for regist removal
US5908672A (en) 1997-10-15 1999-06-01 Applied Materials, Inc. Method and apparatus for depositing a planarized passivation layer
US6797188B1 (en) 1997-11-12 2004-09-28 Meihua Shen Self-cleaning process for etching silicon-containing material
US6536449B1 (en) 1997-11-17 2003-03-25 Mattson Technology Inc. Downstream surface cleaning process
US6098568A (en) 1997-12-01 2000-08-08 Applied Materials, Inc. Mixed frequency CVD apparatus
US6593247B1 (en) 1998-02-11 2003-07-15 Applied Materials, Inc. Method of depositing low k films using an oxidizing plasma
US6660656B2 (en) 1998-02-11 2003-12-09 Applied Materials Inc. Plasma processes for depositing low dielectric constant films
US6340435B1 (en) 1998-02-11 2002-01-22 Applied Materials, Inc. Integrated low K dielectrics and etch stops
US6413583B1 (en) 1998-02-11 2002-07-02 Applied Materials, Inc. Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound
US6287990B1 (en) 1998-02-11 2001-09-11 Applied Materials, Inc. CVD plasma assisted low dielectric constant films
US6054379A (en) 1998-02-11 2000-04-25 Applied Materials, Inc. Method of depositing a low k dielectric with organo silane
US6303523B2 (en) 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6203657B1 (en) 1998-03-31 2001-03-20 Lam Research Corporation Inductively coupled plasma downstream strip module
US5980770A (en) 1998-04-16 1999-11-09 Siemens Aktiengesellschaft Removal of post-RIE polymer on Al/Cu metal line
US6086952A (en) 1998-06-15 2000-07-11 Applied Materials, Inc. Chemical vapor deposition of a copolymer of p-xylylene and a multivinyl silicon/oxygen comonomer
US6800571B2 (en) 1998-09-29 2004-10-05 Applied Materials Inc. CVD plasma assisted low dielectric constant films
US6277733B1 (en) 1998-10-05 2001-08-21 Texas Instruments Incorporated Oxygen-free, dry plasma process for polymer removal
US6342446B1 (en) 1998-10-06 2002-01-29 Texas Instruments Incorporated Plasma process for organic residue removal from copper
US6171945B1 (en) 1998-10-22 2001-01-09 Applied Materials, Inc. CVD nanoporous silica low dielectric constant films
US6245690B1 (en) 1998-11-04 2001-06-12 Applied Materials, Inc. Method of improving moisture resistance of low dielectric constant films
US6107184A (en) 1998-12-09 2000-08-22 Applied Materials, Inc. Nano-porous copolymer films having low dielectric constants
US6417080B1 (en) 1999-01-28 2002-07-09 Canon Kabushiki Kaisha Method of processing residue of ion implanted photoresist, and method of producing semiconductor device
US6130166A (en) 1999-02-01 2000-10-10 Vlsi Technology, Inc. Alternative plasma chemistry for enhanced photoresist removal
US6204192B1 (en) 1999-03-29 2001-03-20 Lsi Logic Corporation Plasma cleaning process for openings formed in at least one low dielectric constant insulation layer over copper metallization in integrated circuit structures
US6709715B1 (en) 1999-06-17 2004-03-23 Applied Materials Inc. Plasma enhanced chemical vapor deposition of copolymer of parylene N and comonomers with various double bonds
US6030901A (en) 1999-06-24 2000-02-29 Advanced Micro Devices, Inc. Photoresist stripping without degrading low dielectric constant materials
US6281135B1 (en) 1999-08-05 2001-08-28 Axcelis Technologies, Inc. Oxygen free plasma stripping process
US6492186B1 (en) * 1999-08-05 2002-12-10 Eaton Corporation Method for detecting an endpoint for an oxygen free plasma process
US6313042B1 (en) 1999-09-03 2001-11-06 Applied Materials, Inc. Cleaning contact with successive fluorine and hydrogen plasmas
US6767698B2 (en) 1999-09-29 2004-07-27 Tokyo Electron Limited High speed stripping for damaged photoresist
JP4221847B2 (en) 1999-10-25 2009-02-12 パナソニック電工株式会社 Plasma processing apparatus and plasma lighting method
JP3366301B2 (en) 1999-11-10 2003-01-14 日本電気株式会社 Plasma CVD equipment
US6352938B2 (en) 1999-12-09 2002-03-05 United Microelectronics Corp. Method of removing photoresist and reducing native oxide in dual damascene copper process
US6365516B1 (en) 2000-01-14 2002-04-02 Advanced Micro Devices, Inc. Advanced cobalt silicidation with in-situ hydrogen plasma clean
US6184134B1 (en) 2000-02-18 2001-02-06 Infineon Technologies North America Corp. Dry process for cleaning residues/polymers after metal etch
JP4470274B2 (en) 2000-04-26 2010-06-02 東京エレクトロン株式会社 Heat treatment equipment
JP4371543B2 (en) 2000-06-29 2009-11-25 日本電気株式会社 Remote plasma CVD apparatus and film forming method
US6426304B1 (en) 2000-06-30 2002-07-30 Lam Research Corporation Post etch photoresist strip with hydrogen for organosilicate glass low-κ etch applications
US20020185226A1 (en) 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
DE10051380C2 (en) 2000-10-17 2002-11-28 Advanced Micro Devices Inc Method for manufacturing a semiconductor device using a shrinking process of a structural feature
US6569257B1 (en) 2000-11-09 2003-05-27 Applied Materials Inc. Method for cleaning a process chamber
US6692903B2 (en) 2000-12-13 2004-02-17 Applied Materials, Inc Substrate cleaning apparatus and method
US6733594B2 (en) 2000-12-21 2004-05-11 Lam Research Corporation Method and apparatus for reducing He backside faults during wafer processing
US6479391B2 (en) 2000-12-22 2002-11-12 Intel Corporation Method for making a dual damascene interconnect using a multilayer hard mask
US20020127853A1 (en) 2000-12-29 2002-09-12 Hubacek Jerome S. Electrode for plasma processes and method for manufacture and use thereof
US6319842B1 (en) 2001-01-02 2001-11-20 Novellus Systems Incorporated Method of cleansing vias in semiconductor wafer having metal conductive layer
US6589879B2 (en) 2001-01-18 2003-07-08 Applied Materials, Inc. Nitride open etch process based on trifluoromethane and sulfur hexafluoride
US6777344B2 (en) 2001-02-12 2004-08-17 Lam Research Corporation Post-etch photoresist strip with O2 and NH3 for organosilicate glass low-K dielectric etch applications
CN101038863B (en) 2001-02-15 2011-07-06 东京毅力科创株式会社 Method and apparatus for processing workpiece
US6764940B1 (en) 2001-03-13 2004-07-20 Novellus Systems, Inc. Method for depositing a diffusion barrier for copper interconnect applications
US7186648B1 (en) 2001-03-13 2007-03-06 Novellus Systems, Inc. Barrier first method for single damascene trench applications
US6723654B2 (en) 2001-03-30 2004-04-20 Taiwan Semiconductor Manufacturing Co., Ltd Method and apparatus for in-situ descum/hot bake/dry etch photoresist/polyimide layer
US6951823B2 (en) * 2001-05-14 2005-10-04 Axcelis Technologies, Inc. Plasma ashing process
US6834656B2 (en) 2001-05-23 2004-12-28 Axcelis Technology, Inc. Plasma process for removing polymer and residues from substrates
US6875702B2 (en) 2001-06-11 2005-04-05 Lsi Logic Corporation Plasma treatment system
US6632735B2 (en) 2001-08-07 2003-10-14 Applied Materials, Inc. Method of depositing low dielectric constant carbon doped silicon oxide
US6872652B2 (en) 2001-08-28 2005-03-29 Infineon Technologies Ag Method of cleaning an inter-level dielectric interconnect
US20030045098A1 (en) 2001-08-31 2003-03-06 Applied Materials, Inc. Method and apparatus for processing a wafer
JP4838464B2 (en) 2001-09-26 2011-12-14 東京エレクトロン株式会社 Processing method
JP5038567B2 (en) * 2001-09-26 2012-10-03 東京エレクトロン株式会社 Etching method
US6680164B2 (en) 2001-11-30 2004-01-20 Applied Materials Inc. Solvent free photoresist strip and residue removal processing for post etching of low-k films
US6720132B2 (en) 2002-01-08 2004-04-13 Taiwan Semiconductor Manufacturing Co., Ltd. Bi-layer photoresist dry development and reactive ion etch method
US7390755B1 (en) 2002-03-26 2008-06-24 Novellus Systems, Inc. Methods for post etch cleans
US6848455B1 (en) 2002-04-22 2005-02-01 Novellus Systems, Inc. Method and apparatus for removing photoresist and post-etch residue from semiconductor substrates by in-situ generation of oxidizing species
US7074298B2 (en) 2002-05-17 2006-07-11 Applied Materials High density plasma CVD chamber
AU2003257636A1 (en) 2002-08-22 2004-03-11 Daikin Industries, Ltd. Removing solution
US6900135B2 (en) 2002-08-27 2005-05-31 Applied Materials, Inc. Buffer station for wafer backside cleaning and inspection
US6693043B1 (en) 2002-09-20 2004-02-17 Novellus Systems, Inc. Method for removing photoresist from low-k films in a downstream plasma system
US6837967B1 (en) 2002-11-06 2005-01-04 Lsi Logic Corporation Method and apparatus for cleaning deposited films from the edge of a wafer
US6787452B2 (en) 2002-11-08 2004-09-07 Chartered Semiconductor Manufacturing Ltd. Use of amorphous carbon as a removable ARC material for dual damascene fabrication
US6780782B1 (en) 2003-02-04 2004-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Bi-level resist structure and fabrication method for contact holes on semiconductor substrates
US20040195208A1 (en) 2003-02-15 2004-10-07 Pavel Elizabeth G. Method and apparatus for performing hydrogen optical emission endpoint detection for photoresist strip and residue removal
US7205240B2 (en) 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process
US7256134B2 (en) 2003-08-01 2007-08-14 Applied Materials, Inc. Selective etching of carbon-doped low-k dielectrics
US6924239B2 (en) 2003-10-14 2005-08-02 Texas Instruments Incorporated Method for removal of hydrocarbon contamination on gate oxide prior to non-thermal nitridation using “spike” radical oxidation
US20050106888A1 (en) 2003-11-14 2005-05-19 Taiwan Semiconductor Manufacturing Co. Method of in-situ damage removal - post O2 dry process
WO2005072211A2 (en) 2004-01-20 2005-08-11 Mattson Technology, Inc. System and method for removal of photoresist and residues following contact etch with a stop layer present
US20050158667A1 (en) 2004-01-20 2005-07-21 Applied Materials, Inc. Solvent free photoresist strip and residue removal processing for post etching of low-k films
JP2005268312A (en) * 2004-03-16 2005-09-29 Semiconductor Leading Edge Technologies Inc Resist removing method and semiconductor device manufactured using same
US7628864B2 (en) 2004-04-28 2009-12-08 Tokyo Electron Limited Substrate cleaning apparatus and method
KR100971799B1 (en) * 2004-06-21 2010-07-22 도쿄엘렉트론가부시키가이샤 Plasma processing device, plasma processing method and computer readable storage medium
US7288484B1 (en) 2004-07-13 2007-10-30 Novellus Systems, Inc. Photoresist strip method for low-k dielectrics
US7632756B2 (en) 2004-08-26 2009-12-15 Applied Materials, Inc. Semiconductor processing using energized hydrogen gas and in combination with wet cleaning
JP2006073612A (en) * 2004-08-31 2006-03-16 Rohm Co Ltd Resist removing method
US7597816B2 (en) 2004-09-03 2009-10-06 Lam Research Corporation Wafer bevel polymer removal
US20060102197A1 (en) 2004-11-16 2006-05-18 Kang-Lie Chiang Post-etch treatment to remove residues
US8193096B2 (en) 2004-12-13 2012-06-05 Novellus Systems, Inc. High dose implantation strip (HDIS) in H2 base chemistry
US7202176B1 (en) 2004-12-13 2007-04-10 Novellus Systems, Inc. Enhanced stripping of low-k films using downstream gas mixing
KR100607777B1 (en) 2004-12-27 2006-08-01 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor device
DE102004063036A1 (en) * 2004-12-28 2006-07-06 Advanced Micro Devices, Inc., Sunnyvale Method for forming contact spots
US7601272B2 (en) 2005-01-08 2009-10-13 Applied Materials, Inc. Method and apparatus for integrating metrology with etch processing
US7344993B2 (en) 2005-01-11 2008-03-18 Tokyo Electron Limited, Inc. Low-pressure removal of photoresist and etch residue
US7268071B2 (en) 2005-01-12 2007-09-11 Sony Corporation Dual damascene interconnections having low K layer with reduced damage arising from photoresist stripping
JP2006203035A (en) * 2005-01-21 2006-08-03 Tokyo Electron Ltd Plasma etching method
US7432172B2 (en) 2005-01-21 2008-10-07 Tokyo Electron Limited Plasma etching method
US7198677B2 (en) 2005-03-09 2007-04-03 Wafermasters, Inc. Low temperature wafer backside cleaning
US8129281B1 (en) 2005-05-12 2012-03-06 Novellus Systems, Inc. Plasma based photoresist removal system for cleaning post ash residue
JP2007019367A (en) 2005-07-11 2007-01-25 Ricoh Co Ltd Method for manufacturing semiconductor device
US7411298B2 (en) 2005-08-17 2008-08-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Source/drain electrodes, thin-film transistor substrates, manufacture methods thereof, and display devices
US7468326B2 (en) 2005-08-24 2008-12-23 United Microelectronics Corp. Method of cleaning a wafer
US7465680B2 (en) 2005-09-07 2008-12-16 Applied Materials, Inc. Post deposition plasma treatment to increase tensile stress of HDP-CVD SIO2
US7909960B2 (en) 2005-09-27 2011-03-22 Lam Research Corporation Apparatus and methods to remove films on bevel edge and backside of wafer
JP2007109744A (en) * 2005-10-11 2007-04-26 Tokuyama Corp Substrate cleaning liquid
KR100742279B1 (en) 2005-12-22 2007-07-24 삼성전자주식회사 Apparatus and method for manufacturing semiconductor device
KR20070069802A (en) 2005-12-28 2007-07-03 엘지.필립스 엘시디 주식회사 Apparatus for fabricating flat panel display and methode for preventing glass damage using it
US8061459B2 (en) 2006-01-17 2011-11-22 GM Global Technology Operations LLC Traction control method for a tracked vehicle
US7432209B2 (en) 2006-03-22 2008-10-07 Applied Materials, Inc. Plasma dielectric etch process including in-situ backside polymer removal for low-dielectric constant material
US8034176B2 (en) 2006-03-28 2011-10-11 Tokyo Electron Limited Gas distribution system for a post-etch treatment system
US7851369B2 (en) 2006-06-05 2010-12-14 Lam Research Corporation Hardmask trim method
US7740768B1 (en) 2006-10-12 2010-06-22 Novellus Systems, Inc. Simultaneous front side ash and backside clean
US7655571B2 (en) 2006-10-26 2010-02-02 Applied Materials, Inc. Integrated method and apparatus for efficient removal of halogen residues from etched substrates
US7595005B2 (en) 2006-12-11 2009-09-29 Tokyo Electron Limited Method and apparatus for ashing a substrate using carbon dioxide
US8083963B2 (en) * 2007-02-08 2011-12-27 Applied Materials, Inc. Removal of process residues on the backside of a substrate
US8435895B2 (en) 2007-04-04 2013-05-07 Novellus Systems, Inc. Methods for stripping photoresist and/or cleaning metal regions
KR101440282B1 (en) * 2007-07-11 2014-09-17 주성엔지니어링(주) Plasma cleaing method
US20090061623A1 (en) * 2007-09-05 2009-03-05 United Microelectronics Corp. Method of forming electrical connection structure
CN102084468B (en) 2008-02-08 2014-10-29 朗姆研究公司 Adjustable gap capacitively coupled RF plasma reactor including lateral bellows and non-contact particle seal
JP5102653B2 (en) 2008-02-29 2012-12-19 東京エレクトロン株式会社 Plasma etching method, plasma etching apparatus and computer storage medium
US20090277871A1 (en) 2008-03-05 2009-11-12 Axcelis Technologies, Inc. Plasma mediated ashing processes that include formation of a protective layer before and/or during the plasma mediated ashing process
US8791001B2 (en) 2008-09-08 2014-07-29 Taiwan Semiconductor Manufacturing Company, Ltd. N2 based plasma treatment and ash for HK metal gate protection
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20120024314A1 (en) 2010-07-27 2012-02-02 Axcelis Technologies, Inc. Plasma mediated ashing processes
WO2011008436A2 (en) * 2009-07-13 2011-01-20 Applied Materials, Inc. Method for removing implanted photo resist from hard disk drive substrates
US8721797B2 (en) 2009-12-11 2014-05-13 Novellus Systems, Inc. Enhanced passivation process to protect silicon prior to high dose implant strip
US20110143548A1 (en) 2009-12-11 2011-06-16 David Cheung Ultra low silicon loss high dose implant strip
US9613825B2 (en) 2011-08-26 2017-04-04 Novellus Systems, Inc. Photoresist strip processes for improved device integrity

Also Published As

Publication number Publication date
US20110139176A1 (en) 2011-06-16
SG181165A1 (en) 2012-07-30
WO2011072042A3 (en) 2011-09-09
CN102792423B (en) 2016-06-22
US20140120733A1 (en) 2014-05-01
TW201137970A (en) 2011-11-01
TWI562225B (en) 2016-12-11
KR101908737B1 (en) 2018-10-16
WO2011072042A2 (en) 2011-06-16
JP2013513948A (en) 2013-04-22
US8591661B2 (en) 2013-11-26
CN102792423A (en) 2012-11-21
KR20120098777A (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5911068B2 (en) Method and apparatus for removing material from a dielectric layer on a workpiece and method for manufacturing an integrated circuit comprising removing material from a dielectric layer on a workpiece
US8058178B1 (en) Photoresist strip method for low-k dielectrics
TWI624024B (en) Methods for pre-cleaning conductive interconnect structures
KR101019931B1 (en) Plasma dielectric etch process including in-situ backside polymer removal for low dielectric constant material
US7202176B1 (en) Enhanced stripping of low-k films using downstream gas mixing
JP5888652B2 (en) Method, apparatus and manufacturing method
US6207583B1 (en) Photoresist ashing process for organic and inorganic polymer dielectric materials
TWI385728B (en) Method for removing damaged dielectric material
US7300597B2 (en) Selective etch process of a sacrificial light absorbing material (SLAM) over a dielectric material
US8664124B2 (en) Method for etching organic hardmasks
US6991739B2 (en) Method of photoresist removal in the presence of a dielectric layer having a low k-value
KR102083680B1 (en) Method for etching organic hardmasks
JP4919871B2 (en) Etching method, semiconductor device manufacturing method, and storage medium
JP5770740B2 (en) Method and apparatus for improving the passivation process to protect silicon prior to high dose implant strips
JP4825911B2 (en) Plasma etching and photoresist strip process with defluorination and wafer defluorination steps in intervening chamber
US20050079717A1 (en) Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
KR20170058282A (en) Ultrahigh selective polysilicon etch with high throughput
KR101179111B1 (en) Etching method and recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5911068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees