US20140076798A1 - Tribologically Loadable Mixed Noble Metal/Metal Layers - Google Patents
Tribologically Loadable Mixed Noble Metal/Metal Layers Download PDFInfo
- Publication number
- US20140076798A1 US20140076798A1 US13/807,731 US201113807731A US2014076798A1 US 20140076798 A1 US20140076798 A1 US 20140076798A1 US 201113807731 A US201113807731 A US 201113807731A US 2014076798 A1 US2014076798 A1 US 2014076798A1
- Authority
- US
- United States
- Prior art keywords
- bath
- noble metal
- layer
- substrate
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 59
- 239000002184 metal Substances 0.000 title claims abstract description 59
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 106
- 239000000758 substrate Substances 0.000 claims abstract description 73
- 230000008021 deposition Effects 0.000 claims abstract description 56
- 150000002500 ions Chemical class 0.000 claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 147
- 229910052759 nickel Inorganic materials 0.000 claims description 74
- 229910052709 silver Inorganic materials 0.000 claims description 67
- 239000004332 silver Substances 0.000 claims description 67
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 59
- 238000000151 deposition Methods 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 47
- 239000008139 complexing agent Substances 0.000 claims description 32
- 238000000576 coating method Methods 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 claims description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims description 17
- 239000011574 phosphorus Substances 0.000 claims description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 150000003839 salts Chemical class 0.000 description 28
- -1 for example Chemical class 0.000 description 22
- 239000003638 chemical reducing agent Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- 230000003115 biocidal effect Effects 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 125000004430 oxygen atom Chemical group O* 0.000 description 6
- RYKLZUPYJFFNRR-UHFFFAOYSA-N 3-hydroxypiperidin-2-one Chemical compound OC1CCCNC1=O RYKLZUPYJFFNRR-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 125000004434 sulfur atom Chemical group 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 229910001453 nickel ion Inorganic materials 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 150000002898 organic sulfur compounds Chemical class 0.000 description 4
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- DCXDVGKTBDNYRX-UHFFFAOYSA-N 1,2-bis(ethylsulfanyl)ethane Chemical compound CCSCCSCC DCXDVGKTBDNYRX-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- FWLUTJHBRZTAMP-UHFFFAOYSA-N B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+] Chemical compound B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.B([O-])([O-])F.[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+].[Li+] FWLUTJHBRZTAMP-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- 150000003842 bromide salts Chemical class 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- HUQOFZLCQISTTJ-UHFFFAOYSA-N diethylaminoboron Chemical compound CCN([B])CC HUQOFZLCQISTTJ-UHFFFAOYSA-N 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 229910001500 lithium hexafluoroborate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- NUFUGDJGRYGRTL-UHFFFAOYSA-N 1-(2-propylsulfanylethylsulfanyl)propane Chemical compound CCCSCCSCCC NUFUGDJGRYGRTL-UHFFFAOYSA-N 0.000 description 1
- NONBYKDOGYGPFB-UHFFFAOYSA-N 2-[1-(2-hydroxyethylsulfanyl)ethylsulfanyl]ethanol Chemical compound OCCSC(C)SCCO NONBYKDOGYGPFB-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910017937 Ag-Ni Inorganic materials 0.000 description 1
- 229910017984 Ag—Ni Inorganic materials 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910004042 HAuCl4 Inorganic materials 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PHJJWPXKTFKKPD-UHFFFAOYSA-N [Ni+3].[O-]P([O-])[O-] Chemical compound [Ni+3].[O-]P([O-])[O-] PHJJWPXKTFKKPD-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YPTUAQWMBNZZRN-UHFFFAOYSA-N dimethylaminoboron Chemical compound [B]N(C)C YPTUAQWMBNZZRN-UHFFFAOYSA-N 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical class CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- UDGSVBYJWHOHNN-UHFFFAOYSA-N n',n'-diethylethane-1,2-diamine Chemical compound CCN(CC)CCN UDGSVBYJWHOHNN-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910001380 potassium hypophosphite Inorganic materials 0.000 description 1
- CRGPNLUFHHUKCM-UHFFFAOYSA-M potassium phosphinate Chemical compound [K+].[O-]P=O CRGPNLUFHHUKCM-UHFFFAOYSA-M 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 150000003566 thiocarboxylic acids Chemical class 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/627—Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/28—Strainers not provided for elsewhere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/018—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1644—Composition of the substrate porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1664—Process features with additional means during the plating process
- C23C18/1671—Electric field
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/48—Coating with alloys
- C23C18/50—Coating with alloys with alloys based on iron, cobalt or nickel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/18—Electroplating using modulated, pulsed or reversing current
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12361—All metal or with adjacent metals having aperture or cut
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12444—Embodying fibers interengaged or between layers [e.g., paper, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12479—Porous [e.g., foamed, spongy, cracked, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12896—Ag-base component
Definitions
- the invention relates to a method for producing tribologically loadable noble metal/metal layers. These are layers having a thickness of up to 50 ⁇ m.
- the invention also relates to substrates having such a coating and the use thereof.
- noble metal layers containing noble metals are known from the prior art. These layers typically consist of at least one noble metal in a mixture or alloy with at least one metal which is baser in comparison to the noble metal. Such layers allow the properties of the base metal layer to be improved. This improvement can, in this case, be in the corrosion resistance, hardness, conductivity, or the biocidal properties. Simultaneously, a lower noble metal content makes the production of the layers more cost-effective. The layers also partially maintain the advantageous properties of the base metal layers.
- the layers can be deposited either using galvanic or currentless methods.
- noble metal ions are typically added to the known baths for the currentless deposition of a metal. Since the noble metal may be reduced significantly more easily, it is deposited together with the metal as a mixture. However, it is difficult to obtain layers having a high content of noble metal, in particular tribologically loadable layers, using such methods.
- Pure noble metal layers which are deposited without current, are often soft and do not display sufficient abrasion resistance. Contour resolution or accuracy and throwing power are not sufficient for complete and uncorrupted coverage of fabric or gap structures.
- hard metals e.g., cobalt
- the layers are not nonporous and are soon infiltrated or detached.
- the publication DE 10 2006 020 988 A1 describes the production of nickel layers containing noble metals, for example.
- the publication GB 1 222 969 describes the galvanic deposition of a metal from a bath, which is also suitable for the currentless deposition of the same metal.
- the object of the invention is to overcome the disadvantages of the prior art and to provide a method, using which metal layers containing noble metals can be obtained, which have advantageous tribological properties in particular.
- the method should also allow nets or screens to be coated.
- the layers must be produced as nonporous in particular, to prevent infiltration, in particular in the case of use in fluids.
- the object is achieved by a method for depositing a noble metal/metal layer on a substrate, which comprises the following steps:
- a noble metal/metal layer is a layer in which the proportion of noble metal in wt.-% is higher than the proportion of metal. The reverse is true for a metal/noble metal layer.
- a bath for the currentless deposition of a metal layer which additionally contains at least one type of noble metal ions.
- Such baths for currentless deposition are known to a person skilled in the art.
- This is a bath which consists, e.g., of an aqueous solution of a salt of a metal, which is to be deposited on the substrate by reducing the salt. The reduction is performed without current by a reducing agent.
- deposition typically does not begin until specific conditions, typically selected from pH value and/or temperature of the bath, have been achieved.
- Such currentless methods are frequently autocatalytic systems. This means that the deposited metal layer catalyzes the further deposition of metal.
- the thickness of the deposited layer can be controlled via the duration of the deposition.
- metal/reducing agent systems for currentless deposition are known to a person skilled in the art.
- metals deposited without current are nickel, copper, palladium, silver, or gold.
- Aldehydes e.g., formaldehyde, formic acid, borohydride compounds, for example, alkylamine boranes, dimethyl and diethyl aminoborane or sodium borohydride, also hydroxylamine, hydrazine, hydroxycarboxylic acids, the salts thereof, or thiourea or the derivatives thereof, phosphorus compounds, for example, hypophosphites such as sodium hypophosphite, can be used as reducing agents.
- a reducing gas, such as hydrogen, can also be conducted through the bath.
- metal/reducing agent systems are copper/formaldehyde, gold/formaldehyde, palladium/hypophosphite, silver/hypophosphite, nickel/borohydride, and nickel/hypophosphite.
- the proportions of metal and reducing agent in the bath are dependent on the metal and reducing agent used.
- the proportion of metal can thus be between 0.01 and 20 g/l and the content of reducing agent can be between 5 and 50 g/l.
- the solvent of the bath is preferably water.
- organic solvents can also be used or added, if the solubility of the bath components in water is not sufficiently high.
- the organic solvents can also be added proportionally.
- lowmolecular-weight alcohols come into consideration as organic solvents.
- the corresponding chlorides, sulfates, carbonates, acetates, or nitrates are typically used as the metal salts. Mixtures of metal salts with different cations and/or anions can also be used.
- the bath can also contain still further additives.
- oxocarboxylic acids or complexing agents which prevent the decomposition of the bath.
- the bath can also contain complexing agents for the ions of the metal salts to reduce the quantity of free metal ions.
- these can be carboxylic acids, amines, alkyl amines, amino acids, phosphonates, cyanates, isocyanates, thiocyanates, ethers, or thioethers.
- citric acid chelate ligands such as ethylene diamine tetraacetic acid, 1,3-diaminopropane, 1,2-bis- ⁇ -(aminopropylamino)ethane, 2-diethylaminoethylamine, and diethyllene triamine, or polyethylene glycols.
- the bath additionally contains at least one type of noble metal ions.
- Noble metal ions are ions for metals which, according to the electrochemical series, have a greater reducing potential than the other metal salts for currentless deposition in the bath.
- the noble metal ions are preferably selected from the group containing silver, gold, palladium, platinum, rhodium, and copper. In the case of silver, the biocidal effect of silver-containing surfaces can additionally be utilized.
- the noble metals are preferably added as salts or solutions of their salts.
- chlorides, sulfates, carbonates, acetates, nitrates, sulfonates, sulfites, alkyl sulfonates, thioalkane carboxylates, mercaptoalkane sulfonates, phosphates or phosphonates come into consideration as salts.
- the counterions can preferably have alkyl groups or aryl groups, which can in turn advantageously be partially fluorinated.
- the counterions trifluoromethane sulfonate, methane sulfonate, and/or toluene sulfonate are very particularly preferred.
- These can also be salts in which the noble metal ions are complexed with ligands or chelate ligands, such as ethylene diamine, polyethylene glycols or thioethanol derivatives, such as 2,2-ethylen-dithiodiethanol.
- ligands or chelate ligands such as ethylene diamine, polyethylene glycols or thioethanol derivatives, such as 2,2-ethylen-dithiodiethanol.
- Examples of preferred salts of the noble metals are copper sulfate, HAuCl 4 , palladium sulfate, palladium nitrate and palladium acetate, platinum chloride, rhodium chloride, silver nitrate and silver methane sulfonate.
- the bath preferably contains a content of noble metal ions between 0.1 g/l and 3 g/l, preferably between 0.1 g/l and 2 g/l, particularly preferably between 0.1 g/l and 1.8 g/l, very particularly preferably between 0.1 g/l and 1 g/l.
- the noble metal is preferably added as a salt solution of a noble metal salt.
- At least one complexing agent for the noble metal ions can additionally be added to the bath, in order to decrease the quantity of free noble metal ions. The precipitation and the nonspecific deposition of the noble metal on base metals is thus suppressed. Such complexing agents can simultaneously also reduce the required quantity of noble metal.
- the at least one complexing agent is an acid-stable complexing agent.
- such complexing agents are available under the name Slotoloy SNA 33 (Schlatter).
- Preferred complexing agents are the organic sulfur compounds described in the publication WO 01/92606 A1: pages 7 to 9 and preferably in EP 1 285 104 B1 in paragraphs [0025] to [0027], to which reference is explicitly made here.
- organic sulfur compounds preferably have the following general formula:
- n 0 to 20, preferably 0 to 10, particularly preferably 0 to 5
- X and Y independently of one another are each —OH, —SH, or —H
- Z respectively represents a sulfur atom or an oxygen atom
- the radicals Z in the case n>1 in the formula (I) are respectively identical or different
- R 1 , R 2 , and R 3 independently of one another each represent an optionally substituted linear or branched alkylene group and the radicals R 2 in the case n>1 in the formula (I) are each identical or different.
- Z is exclusively an oxygen atom
- at least one of the groups X, Y, R 1 , R 2 and R 3 contains at least one sulfur atom.
- alkylene groups are alkylene groups having 1 to 10, preferably 1 to 5 carbon atoms, e.g., methylene, ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene groups.
- substituents of alkylene groups are —OH, —SH, —SR 4 , where R 4 is an alkyl group having 1 to 10 carbon atoms, e.g., a methyl, ethyl, n-propyl, or iso-propyl group, —OR 4 , —NH 2 , NHR 4 , and NR 4 2 (wherein the two substituents R 4 can be identical or different).
- the sulfurous groups X and/or Y can be an SH group and/or the sulfurous groups R 1 , R 2 , and/or R 3 can represent, e.g., an alkylene group which is substituted with an SH group or with an SR 4 group.
- n: is 1,
- R 1 , R 2 , and R 3 independently of one another are an alkylene group which has at least two carbon atoms,
- X and/or Y is an SH group and for the case that Z exclusively is an oxygen atom, X and Y represent an SH group.
- Z respectively represents a sulfur atom or an oxygen atom and the groups Z are identical or different
- R 1 , R 2 , and R 3 independently of one another respectively represent an alkylene group which has 2 to 10 carbon atoms
- n is 1 to 20
- X and Y independently of one another are each —OH, —SH, or —H
- Z is exclusively an oxygen atom
- X and Y are respectively —SH.
- Alkylene groups having 2 to 5 carbon atoms are preferred, e.g., ethylene n-propylene, iso-propylene, n-butylene, iso-butylene, and tert-butylene groups.
- organic sulfur compounds are preferred:
- the at least one complexing agent is preferably added in a quantity such that the molar ratio of the complexing agent(s) to the noble metal ions (molar quantity of all complexing agents:molar quantity of noble metal ions) is at least 1, preferably 5:1 to 1:1, particularly preferably 1.5:1.
- conductive salts known from galvanic deposition can also be added.
- These are typically alkaline or alkaline earth salts, for example, hydroxides, chlorides, bromides, nitrates, fluoroborates, for example, potassium hydroxide, potassium chloride, sodium chloride, lithium chloride, lithium bromide or lithium hexafluoroborate.
- These salts are preferably provided in a quantity of 0.1 g/l to 1 g/l, preferably 0.4 g/l to 0.8 g/l, in the bath.
- the bath for the currentless deposition of a metal layer is preferably a bath for the deposition of an electroless nickel layer, preferably a nickel/phosphorus and/or nickel/boron layer.
- an electroless nickel layer preferably a nickel/phosphorus and/or nickel/boron layer.
- a nickel salt is used as the metal salt and hypophosphites and/or borates are used as the reducing agents.
- a substrate is introduced into the bath.
- the substrate is preferably a conductive substrate.
- the conductivity can also be achieved by having a conductive layer applied to the substrate.
- Preferred metallic substrates are copper, bronze, aluminum and steel, in particular stainless steel.
- Non-metallic substrates are, for example, plastics, such as polypropylene, polyethylene, polycarbonates, polyimides, polyamides or nylon. It is vital that they survive the conditions of the deposition. These nonmetallic substrates are preferably coated with a metallic layer.
- Nitase it may be necessary to clean, degrease and/or activate the surface of the substrate before carrying out the method.
- This can be performed, for example, by applying a thin metal layer, for example, by a so-called “nickel strike”. This is also referred to as a nickel bond coat.
- a thin nickel film is deposited on the surface in this case.
- the substrate is preferably a net, sieve, or lattice, preferably having a mesh width of less than 1 mm, particularly preferably less than 500 ⁇ m. However, significantly finer nets having a mesh width of less than 100 ⁇ m, preferably less than 50 ⁇ m are also possible.
- the wire thickness is greater than 5 ⁇ m, preferably greater than 10 ⁇ m, for example, between 50 ⁇ m and 1000 ⁇ m.
- the method of the invention also allows the coating of such nets, sieves, or lattices which enclose a cavity, for example, filter elements or V-filters. Because of shielding effects, such structures cannot be coated on the interior using galvanic methods.
- a voltage is applied between the substrate and an electrode.
- an electrode For example, a graphite, nickel, or silver electrode can be used as the electrode. A graphite electrode is preferred.
- the ratio of the area of the anode in the bath and the projected workpiece surface is between 1:0.5 and 1:2, preferably 1:1 (with a deviation of +/ ⁇ 10%).
- the bath is preferably brought to a temperature of greater than 50° C.
- the method can also be carried out at temperatures between 15° C. and 90° C. In particular in the case of a high content of noble metal ions, the temperature must not be excessively high, since otherwise the electrolyte will decompose.
- Temperatures of less than 70° C. are preferred, preferably between 30° C. and 70° C., particularly preferably between 50° C. and 70° C.
- the pH value of the bath is preferably in the acid range below pH 6, preferably between 4.0 and 5.0, particularly preferably between 4.2 and 4.6.
- a voltage is then applied between an electrode and the substrate.
- the electrode is connected as the anode and the substrate is connected as the cathode. It may be necessary to vary the voltage over time, for example, increasing, decreasing, or periodically.
- An auxiliary electrical field is generated by the voltage.
- the voltage is applied in such a manner that a current density between 0.01 and 3 A/dm 2 , preferably between 0.1 and 1 A/dm 2 , particularly preferably between 0.1 and 0.7 A/dm 2 , is set. This current density is significantly less than the typical current density in galvanic methods.
- the method is also very rapid. Thus, a layer thickness of 1 to 5 ⁇ m can already be obtained within 1 to 5 minutes. However, layer thicknesses of 0.1 ⁇ m to 5 ⁇ m are preferred, preferably 0.1 ⁇ m to 1 ⁇ m.
- the obtained layers display a noble metal content of greater than 60 wt.-%, preferably greater than 80 wt.-%, particularly preferably greater than 90 wt.-%.
- Still further treatment steps can follow after the deposition. This includes, for example, heat treatments to harden the layers.
- the substrate is coated with an electroless nickel layer before carrying out the method.
- the substrate is introduced into an electroless nickel bath and an electroless nickel layer is deposited without current before carrying out the method.
- the adhesion of the coating deposited with current assistance on the substrate is thus significantly improved.
- Such a bath contains the above-described components of an electroless nickel bath. These are at least one nickel salt and one reducing agent in the specified quantity ranges.
- the bath can additionally contain complexing agents for nickel ions in the specified ranges.
- the speed of the currentless deposition is essentially determined by the temperature and/or by the pH value of the bath.
- the conditions are determined by the metal/reducing agent system used.
- the temperature is preferably greater than 50° C., preferably greater than 70° C., particularly preferably between 80 and 90° C., very particularly preferably between 86° C. and 90° C., e.g., at 88° C.
- the pH value is preferably between 4.0 and 6.0, preferably between 4.2 and 4.6, very particularly preferably at 4.4.
- the previously deposited electroless nickel layer has a noble metal content of up to 30 wt.-%.
- a bath as already described for the method of the invention is preferably used for this purpose.
- the content of noble metal ions is preferably lower by a factor of 10 to 20.
- This electroless nickel layer thus has a content of noble metal of up to 30 wt.-%, preferably between 1 and 10 wt.-%.
- the content of noble metal is between 0.01 and 0.1 g/l, preferably between 0.01 and 0.06 g/l, particularly preferably between 0.01 and 0.05 g/l or 0.01 and 0.04 g/l.
- the bath also additionally contains at least one complexing agent for the noble metal ions, as already described for the other bath.
- Acid-resistant complexing agents are preferred. These are available in the case of silver, for example, under the designation Slotoloy SNA 33 (Schlatter).
- the at least one complexing agent is preferably added in a quantity such that the molar ratio of the complexing agent(s) to the noble metal ions (molar quantity of all complexing agents:molar quantity of noble metal ions) is at least 1, preferably 10:1 to 1:1, particularly preferably 3:1.
- the stability of the bath during the currentless deposition can be increased.
- a deposition of a high content of noble metal in the deposited layer is achieved with significantly reduced content of noble metal ions.
- this can be performed by measuring the electrochemical potential between electrolyte, i.e., bath, and a reference electrode. Upon change of the potential greater than a threshold value, the added dosing of the noble metal can be triggered.
- the previously deposited layer contains the same noble metal as the layer deposited in the method of the invention.
- the adhesion of the layer deposited in steps a) to c) on the substrate is thus significantly improved.
- the noble metal content provides this first layer with better conductivity, which improves the deposition on this layer in steps a) to c).
- Noble metal doping in the first layer also allows the use of very low field strengths during the voltage-assisted deposition, probably because of the conductivity, which is increased by the noble metal. In spite of the very low field strength in comparison to galvanic deposition, a precisely contoured deposition with good throwing power having a noble metal content of greater than 90 wt.-% can be achieved. This layer simultaneously has high abrasion resistance and a good depot effect in the case of silver.
- the method for producing the first layer can also be used by itself for producing metal layers containing noble metals.
- the noble metal is particularly preferably silver in at least one bath, preferably in both baths. Layers can thus be obtained which display a particularly good biocidal effect and also simultaneously have outstanding tribological properties.
- the noble metal in both layers is silver, particularly preferably, in both layers the noble metal is silver and the metal is nickel, or nickel/phosphorus.
- the invention additionally relates to a coating on a substrate, which has a noble metal/nickel layer on the surface, which has a noble metal content of greater than 60 wt.-%, preferably greater than 80 wt.-%, particularly preferably greater than 90 wt.-%.
- the noble metal/nickel layer is a noble metal/nickel/phosphorus layer or noble metal/nickel/boron layer, preferably a noble metal/nickel/phosphorus layer.
- the content of phosphorus in the respective layer is 0.1 wt.-% to 30 wt.-%, preferably between 0.1 wt.-% and 10 wt.-%, particularly preferably 0.1 wt.-% to 3 wt.-%, in relation to the proportion of nickel and phosphorus in the respective layer.
- This layer is preferably obtained through the above-described currentless method.
- the layer on the surface has a thickness of 0.1 ⁇ m to 5 ⁇ m, preferably 0.1 ⁇ m to 1 ⁇ m, while the layer underneath has a thickness of 0.5 ⁇ m to 50 ⁇ m, preferably 0.5 ⁇ m to 15 ⁇ m.
- the nickel/noble metal layer is a nickel/phosphorus/noble metal or nickel/boron/noble metal layer, preferably a nickel/phosphorus/noble metal layer.
- the content of phosphorus in the layer is 10 wt.-% to 30 wt.-% in relation to the proportion of nickel and phosphorus in the respective layer.
- the noble metal is silver.
- the coating thus has biocidal properties. Due to the multilayered structure with the layer with the highest silver content on the surface, these properties are particularly pronounced. In addition, the multilayered structure of the coating provides particularly good adhesion on the substrate, since the different layers are structurally well matched with one another.
- the coating can also contain still further layers.
- the two described layers preferably form the two uppermost layers of the coating.
- still further electroless nickel layers or also nickel layers, for example, from a preceding actination of the surface by a nickel strike, may be provided underneath.
- the coating is generated according to the method of steps a) to c), wherein previously an electroless nickel layer containing noble metal was deposited, preferably using the method also described.
- the invention additionally relates to a coated substrate, obtainable according to the method of the invention or having a coating corresponding to the invention.
- the coated substrate is a net, sieve, filter, fabric, or sponge.
- the substrate preferably has at least one cavity which is completely or partially enclosed by a net, sieve, filter, fabric, or sponge.
- Examples of such substrates are filter elements, filter inserts, or V-filters.
- the invention additionally relates to the use of the coated substrate in the automotive field, sanitary field, jewelry field, drinking water field, in wastewater treatment, drinking water treatment, the filtering of fluids, in cooling water circuits, in chemical plant construction, or in electrical engineering.
- the coated substrate can be used in an application selected from the group of filters, valves, throttle units, radial and/or filter elements, filter screens, V-filters, architecture, decoration, machines and plants of the chemical industry, and finish in the electrical industry.
- a first aqueous electroless nickel bath having a content of nickel in a range of 1 to 15 g/l and a content of reducing agent in a range from 20 to 50 g/l is provided, this bath is well stirred, and then the pH value is adjusted to a value in the range from 4.0 to 6.0 or 4.5 to 5.0.
- a pH value in the range from 4.2 to 4.6, preferably 4.4 is set.
- the pH value can be adjusted, for example, by adding ammonia solution or hydrochloric acid or sulfuric acid.
- the nickel ions of the bath are typically provided as solutions of the salts nickel chloride, nickel sulfate, nickel carbonate, and/or nickel acetate.
- the nickel content is typically in a range from 3 to 10 g/l.
- a phosphorus or boron compound is preferably used as the reducing agent in the bath.
- the reducing agent in the bath is preferably a hypophosphite.
- the reducing agent is very particularly preferably sodium hypophosphite and/or potassium hypophosphite.
- Dimethyl aminoborane, diethyl aminoborane, or sodium borohydride can be used as boron compound.
- the reducing agent is normally provided in a concentration in a range of 32 to 42 g/l in the bath.
- the bath optionally also contains at least one complexing agent, which is selected in particular from the group of monocarboxylic acids, dicarboxylic acids, hydroxycarboxylic acids, ammonia, and alkanolamines.
- the complexing agent is provided in a concentration in a range from 1 to 15 g/l in the bath. Complexing agents complex nickel ions and thus prevent excessively high concentrations of free nickel ions. The solution is thus stabilized and the precipitation of, for example, nickel phosphite is suppressed.
- the bath optionally also contains at least one accelerator, which is selected in particular from the group containing fluorides, borides, and/or anions of monocarboxylic and dicarboxylic acids.
- the accelerator is typically provided in a concentration in a range from 0.001 to 1 g/l in the bath. Accelerators can activate hypophosphite ions, for example, and thus accelerate the deposition.
- Typical nickel baths can also contain at least one stabilizer, which is selected in particular from the group of lead, tin, arsenic, molybdenum, cadmium, and thallium ions and/or thiourea.
- the stabilizer is typically provided in a concentration in a range from 0.01 to 250 mg/l in the bath. Stabilizers can prevent the decomposition of the solution by masking catalytically active reaction seeds.
- the bath typically also contains at least one pH buffer, which is a sodium salt of a complexing agent and/or the associated corresponding acid in particular.
- the buffer is typically provided in a concentration in a range from 0.5 to 30 g/l in the bath.
- the bath optionally also contains at least one pH regulator, which is selected in particular from the group of sulfuric acid, hydrochloric acid, sodium hydroxide, sodium carbonate, and/or ammonia.
- the pH regulator is advantageously provided in a concentration in a range from 1 to 30 g/l in the bath. pH regulators allow the pH value of the bath to be readjusted.
- the bath can also contain at least one wetting agent, which is selected in particular from the group of ionogenic and/or non-ionogenic surfactants.
- the wetting agent is preferably provided in a concentration in a range from 0.001 to 1 g/l in the bath. Wetting agents increase the wetting of the surface to be nickel plated and allow the production of very uniform layers.
- This first electroless nickel bath additionally contains 0.01 to 0.1 g/l, preferably between 0.01 and 0.06 g/l, particularly preferably between 0.01 and 0.05 g/l or 0.01 and 0.04 g/l of silver or silver ions.
- the silver is preferably added to the bath as a solution of a silver salt. It can be necessary to add the solution very slowly.
- Silver nitrate, silver acetate, or a silver salt of a sulfonic acid or thiocarboxylic acid, for example, silver methane sulfonate, can be used as the silver salt.
- the bath preferably additionally contains at least one complexing agent for silver ions, in order to stabilize the bath.
- Acid-resistant complexing agents are preferred. These are available in the case of silver, for example, under the designation Slotoloy SNA 33 (Schlatter).
- the organic sulfur compounds preferred as the complexing agents were already described.
- the at least one complexing agent is preferably added in a quantity such that the molar ratio of the complexing agent(s) to the noble metal ions (molar quantity of all complexing agents:molar quantity of noble metal ions) is at least 1, preferably 10:1 to 1:1, particularly preferably 3:1.
- a substrate is introduced into this first bath and, at a temperature between 80° C. and 95° C., preferably 80° C. and 90° C., preferably between 86° C. and 90° C., particularly preferably at 88° C., an electroless nickel layer having a silver content of up to 30 wt.-%, preferably between 1 to 10 wt.-%, is deposited.
- the thickness of this layer is between 0.5 ⁇ m and 50 ⁇ m, preferably between 0.5 ⁇ m and 15 ⁇ m.
- the dosing can be performed by individual additions or continuously.
- the additional dosing is controlled by the measurement of the electrochemical potential between electrolyte and a reference electrode.
- the surface of the substrate can be pretreated, for example, by a nickel strike.
- a nickel strike can arise, for example, by treating the surface using a mixture of inorganic acids, nickel chloride, citric acid, and acetic acid while applying a voltage.
- the surface is thus cleaned and simultaneously a thin nickel layer, which is 10 nm to 1 ⁇ m thick, is deposited on the substrate.
- a nickel strike is preferably carried out in the case of metal substrates.
- the compositions are known to a person skilled in the art.
- the substrate is introduced into a second bath.
- This bath also corresponds to a bath for the currentless deposition of nickel, which also additionally contains silver.
- the bath preferably contains a content of silver between 0.1 g/l and 3 g/l, more preferably between 0.1 g/l and 2 g/l, particularly preferably between 0.1 and 1.8 g/l, very particularly preferably between 0.1 and 1 g/l.
- the silver is preferably added as a salt solution of a silver salt.
- the bath can also contain at least one conductive salt.
- These are typically inorganic salts. These are normally alkaline or alkaline earth salts, for example, hydroxides, chlorides, bromides, nitrates, fluoroborates, for example, potassium hydroxide, potassium chloride, sodium chloride, lithium chloride, lithium bromide, or lithium hexafluoroborate.
- the conductive salts are added in the quantity for a content of 0.1 to 1 g/l, preferably between 0.4 to 0.8 g/l.
- Such conductive salts are also available as commercial solutions.
- An example of such a batch solution is Arguna CF (Umicore).
- the substrate between the two baths may be necessary to briefly clean the substrate between the two baths, for example, by plunging it into a cleansing bath, for example, water. Preferably, no cleaning steps are carried out between the two baths.
- the substrates can be transferred directly from one bath into the other bath.
- a voltage is applied between the substrate and an electrode in this bath.
- the electrode is connected as the anode and the substrate is connected as the cathode.
- An auxiliary electrical field is generated by the voltage.
- the voltage is applied in such a manner that a current density between 0.01 and 3 A/dm 2 , preferably between 0.1 and 1 A/dm 2 , particularly preferably between 0.1 and 0.7 A/dm 2 , is set. This current density is significantly less than the typical current density in galvanic methods.
- the deposition is preferably carried out at a temperature between 21° C. and 90° C.
- the temperature is typically less than the transition temperature for the nickel bath, i.e., less than 70° C., preferably between 30° C. and 70° C., particularly preferably between 50° C. and 70° C.
- a higher content of silver ions in the electrolyte is thus possible, without the electrolyte decomposing.
- the pH value of the bath is preferably in the acid range below pH 6, preferably between 4.0 and 5.0, particularly preferably between 4.2 and 4.6.
- a layer which consists of a majority of silver, preferably having a silver content of greater than 60 wt.-%, more preferably having a silver content of greater than 80 wt.-%, very particularly preferably of greater than 90 wt.-%, begins to be deposited on the substrate.
- This deposition is preferably carried out for up to 5 min. Layers having a thickness of up to 5 ⁇ m, preferably up to 1 ⁇ m, particularly preferably between 0.1 ⁇ m and 1 ⁇ m are thus obtained.
- the first deposited silver-containing nickel layer significantly improves the adhesion of this second layer.
- the better conductivity of the nickel layer containing noble metal in combination with the simultaneously occurring currentless deposition promotes uniform deposition even in substrates which cannot be coated solely using galvanic methods.
- Such substrates are in particular nets or sieves which are used in filter elements. These are cavities which are completely or partially enclosed by such sieve or net surfaces. Because of shielding effects, these substrates cannot be uniformly coated on the interior using solely galvanic methods. Using the method of the invention it is possible to apply a uniform layer to both the interior and also the exterior of the substrate.
- FIG. 1 shows a schematic illustration of a filter element
- FIG. 2 shows a schematic illustration of a preferred embodiment of the method of the invention
- FIG. 3 shows a typical structure of a layer of the invention
- FIG. 4A shows light-microscope pictures of an uncoated sieve or screen
- FIG. 4B shows light-microscope pictures of an uncoated sieve or screen
- FIG. 5A shows light-microscope pictures of the sieve or screen from FIGS. 4A and 4B after the coating
- FIG. 5B shows light-microscope pictures of the sieve or screen from FIGS. 4A and 4B after the coating.
- FIG. 1 shows a schematic illustration of a filter element, which can be coated using the method according to the invention, in particular with a nickel/silver layer.
- the filter element consists of a cylindrical filter body 10 . This consists of a net-like structure, which forms a cylinder. The two ends of the cylinder are closed using caps 12 . Connection openings can also be attached to these caps.
- the filter element can also have fasteners for seals. Together with the caps 12 , the filter body encloses a cavity.
- the preferred material for the filter element is stainless steel, e.g., 1.4404, 1.4301, 1.4571 material designation according to AISI.
- FIG. 2 shows the schematic sequence of a preferred embodiment of the invention.
- the substrate surface is first cleaned and optionally pretreated using a nickel strike ( 200 ).
- the substrate is introduced into a first bath.
- This bath is a bath for the currentless deposition of a metal/noble metal layer, as already described.
- a first layer is deposited ( 220 ) without current on the substrate in the first bath.
- This layer is a metal/noble metal layer, wherein the layer has a noble metal content of up to 30 wt.-%.
- the deposition is performed without current, in order to obtain a uniform coating of the substrate.
- the substrate is introduced into a second bath ( 230 ).
- This bath is—as already described—a bath for the currentless deposition of a metal layer which additionally contains noble metal ions.
- a voltage is applied between the substrate and an electrode ( 240 ).
- Deposition of a noble metal/metal layer thus occurs. This is a layer which has a content of noble metal of greater than 60 wt.-%.
- the coating is carried out until a layer having a thickness of up to 5 ⁇ m, preferably up to 1 ⁇ m, is obtained.
- the metal layer stands for a nickel/phosphorus layer and the noble metal stands for silver.
- layers can thus be obtained which consist of a nickel/phosphorus/silver layer and a silver/nickel/phosphorus layer thereon, each ordered according to the proportion in the layer.
- This combination of layers displays a particularly advantageous biocidal effect while simultaneously having very good tribological properties.
- Filter elements coated in this manner are significantly more durable than filter elements only coated without current or those having coatings made of pure silver.
- the method is also significantly more cost-effective to carry out than currentless coating using the pure noble metal.
- the substrate coated in this manner having at least two layers displays particularly high tribological stability and is very well suitable for filter elements in fluids, for example, in cooling water circuits.
- FIG. 3 shows a structure of a preferred embodiment of the invention.
- An electroless nickel/phosphorus/silver layer ( 32 ) having a silver content of ⁇ 10 wt.-% with a thickness between 0.5 and 15 ⁇ m is arranged on a substrate ( 34 ).
- a silver/nickel/phosphorus cover layer having a silver content of >90 wt.-% and a thickness between 0.1 ⁇ m and 1 ⁇ m is located thereon.
- FIG. 4 shows pictures of an uncoated sieve/screen/filter element as shown in FIG. 1 at varying magnification.
- the scale is 200 ⁇ m in each case.
- the thickness of the horizontal wires is approximately 150 ⁇ m and 160 ⁇ m.
- the measured mesh widths are between 85 ⁇ m and 143 ⁇ m.
- FIG. 5 shows light-microscope pictures of the same sieve/screen/filter element from FIG. 4 after application of a coating according to the invention having a nickel/silver and a silver/nickel layer, as shown in FIG. 3 .
- the scale is 200 ⁇ m in each case.
- the thickness of the horizontal wires is now approximately 160 ⁇ m and 170 ⁇ m.
- the measured mesh widths are between 40 ⁇ m and 120 ⁇ m. Uniform coating of the substrate can be clearly recognized. Such coated filters display a biocidal effect during use in cooling circuits over several weeks, without detachment of the coating occurring.
- Silver in the form of silver methane sulfonate corresponding to a silver proportion of 0.025 g/l and an acid-resistant silver complexing agent e.g. Slotoloy SNA 33, producer Schlatter
- an acid-resistant silver complexing agent e.g. Slotoloy SNA 33, producer Schlatter
- the pH value of the bath is adjusted to 4.4 using H 2 SO 4 .
- the bath is then heated to 88° C. and a substrate made of stainless steel is introduced.
- the consumption of silver ions is compensated by continuous additional dosing of silver methane sulfonate. This can be performed such that the dosing is controlled via the measurement of the electrochemical potential between electrolyte and a reference electrode.
- a higher silver content cannot be achieved like this, since the silver content cannot be increased further in relation to the nickel content in the bath. Higher contents of silver result in complete destabilization of the electrolyte (spontaneous self precipitation) at a temperature from approximately 70° C. It is not possible to avoid this effect by increasing the contents of stabilizers or complexing agents, without the nickelphosphorus reduction coming to a stop.
- the ranges of noble metal and noble metal content of the layer specified in DE 10 2006 020 988 A1 are thus not possible for silver.
- the substrate coated in this manner was then provided according to the following specifications with a silver/nickel layer.
- the proportion of silver ions can thus be increased in comparison to the first bath by this composition such that no spontaneous reaction occurs.
- Graphite, nickel, or silver electrodes are introduced into the bath and an electrical voltage is applied, wherein the introduced electrodes are connected as the anode and the workpiece/substrate is connected as the cathode.
- the area of the anode corresponds to approximately the projected workpiece surface (i.e., a ratio of 1:1).
- the current density of the auxiliary field is between 0.1 and 1 A/dm 2 . This is a significantly lower current density than in typical galvanic silver depositions. This is normally at 30 to 100 A/dm 2 .
- a precisely contoured deposition, having good throwing power, of a silver-nickel alloy having a silver content of >90 wt.-% can thus be achieved.
- the layer, or the combination of the nickel/silver and silver/nickel layers, has a high abrasion resistance and depot effect with respect to the silver.
- the coating obtained in the two-step method also still displayed a biocidal effect and outstanding stability after continuous operation over several months in a cooling circuit.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010025684 | 2010-06-30 | ||
DE102010025684.6 | 2010-06-30 | ||
PCT/EP2011/061070 WO2012001132A1 (fr) | 2010-06-30 | 2011-06-30 | Couches de métal noble/métal pouvant subir des contraintes tribologiques |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140076798A1 true US20140076798A1 (en) | 2014-03-20 |
Family
ID=44510897
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/807,732 Active 2032-11-15 US9631282B2 (en) | 2010-06-30 | 2011-06-30 | Method for depositing a nickel-metal layer |
US13/807,731 Abandoned US20140076798A1 (en) | 2010-06-30 | 2011-06-30 | Tribologically Loadable Mixed Noble Metal/Metal Layers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/807,732 Active 2032-11-15 US9631282B2 (en) | 2010-06-30 | 2011-06-30 | Method for depositing a nickel-metal layer |
Country Status (3)
Country | Link |
---|---|
US (2) | US9631282B2 (fr) |
EP (1) | EP2588645B1 (fr) |
WO (1) | WO2012001134A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018133244A1 (de) * | 2018-12-20 | 2020-06-25 | Umicore Galvanotechnik Gmbh | Nickel-Amin-Komplex mit reduzierter Tendenz zur Bildung schädlicher Abbauprodukte |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2374359C2 (ru) * | 2003-05-09 | 2009-11-27 | Басф Акциенгезельшафт | Составы для обесточенного осаждения тройных материалов для промышленности полупроводников |
JP5758557B1 (ja) * | 2013-10-25 | 2015-08-05 | オーエム産業株式会社 | めっき品の製造方法 |
US20160010214A1 (en) | 2014-07-10 | 2016-01-14 | Macdermid Acumen, Inc. | Composite Electroless Nickel Plating |
US10294571B2 (en) * | 2015-12-21 | 2019-05-21 | Legal Manufacturing, LLC | Coloration of electroless nickel plating by application of cold bluing solutions |
CN106282822B (zh) * | 2016-08-24 | 2018-03-13 | 宁波亚大金属表面处理有限公司 | 一种输油管的加工工艺 |
US11246366B2 (en) | 2017-05-31 | 2022-02-15 | Nike, Inc. | Selective deposition of reflective materials for an apparel item |
US20200331050A1 (en) * | 2017-10-11 | 2020-10-22 | The University Of Western Ontario | HIGH TEMPERATURE SUSTAINABLE Zn-Ni COATING ON STEEL SUBSTRATE |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1322203A (en) * | 1969-10-30 | 1973-07-04 | Western Electric Co | Method of electroless plating of gold |
US4431977A (en) * | 1982-02-16 | 1984-02-14 | Motorola, Inc. | Ceramic bandpass filter |
US4778574A (en) * | 1987-09-14 | 1988-10-18 | American Chemical & Refining Company, Inc. | Amine-containing bath for electroplating palladium |
US5158653A (en) * | 1988-09-26 | 1992-10-27 | Lashmore David S | Method for production of predetermined concentration graded alloys |
JPH0565659A (ja) * | 1991-09-06 | 1993-03-19 | Sumitomo Metal Mining Co Ltd | 無電解銅ニツケル合金めつき方法 |
GB2305188A (en) * | 1995-09-16 | 1997-04-02 | Sung Soo Moon | Process for plating palladium or palladium alloy onto iron-nickel alloy substrate |
US5849170A (en) * | 1995-06-19 | 1998-12-15 | Djokic; Stojan | Electroless/electrolytic methods for the preparation of metallized ceramic substrates |
US20030232148A1 (en) * | 2002-06-18 | 2003-12-18 | Shahin George E | Electroless nickel plating solutions |
US20090186240A1 (en) * | 2006-05-04 | 2009-07-23 | Nanogate Ag | Nickel coat containing precious metals |
US7628903B1 (en) * | 2000-05-02 | 2009-12-08 | Ishihara Chemical Co., Ltd. | Silver and silver alloy plating bath |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE564818A (fr) | 1957-02-15 | Mond Nickel Co Ltd | ||
GB931638A (en) | 1961-11-02 | 1963-07-17 | Precious Metal Depositors Ltd | Improvements in or relating to the deposition of gold or gold alloys |
US3303111A (en) * | 1963-08-12 | 1967-02-07 | Arthur L Peach | Electro-electroless plating method |
GB1051383A (fr) | 1965-02-17 | |||
US3485725A (en) | 1965-10-08 | 1969-12-23 | Ibm | Method of increasing the deposition rate of electroless solutions |
GB1222969A (en) | 1967-06-03 | 1971-02-17 | Geigy Uk Ltd | Plating process |
US3902977A (en) | 1973-12-13 | 1975-09-02 | Engelhard Min & Chem | Gold plating solutions and method |
US4086149A (en) | 1976-08-04 | 1978-04-25 | Ppg Industries, Inc. | Cathode electrocatalyst |
US4463060A (en) | 1983-11-15 | 1984-07-31 | E. I. Du Pont De Nemours And Company | Solderable palladium-nickel coatings and method of making said coatings |
US4833041A (en) | 1986-12-08 | 1989-05-23 | Mccomas C Edward | Corrosion/wear-resistant metal alloy coating compositions |
US5019163A (en) | 1986-12-08 | 1991-05-28 | Mccomas C Edward | Corrosion/wear-resistant metal alloy coating compositions |
US4758479A (en) * | 1987-03-30 | 1988-07-19 | General Motors Corporation | Corrosion resistant nickel-zinc-phosphorus coating and method of electroplating said coating |
US5304403A (en) * | 1992-09-04 | 1994-04-19 | General Moors Corporation | Zinc/nickel/phosphorus coatings and elecroless coating method therefor |
JP2901523B2 (ja) * | 1995-08-09 | 1999-06-07 | 日本カニゼン株式会社 | 無電解黒色めっき浴組成と皮膜の形成方法 |
US6071398A (en) * | 1997-10-06 | 2000-06-06 | Learonal, Inc. | Programmed pulse electroplating process |
DE10014852A1 (de) | 2000-03-24 | 2001-09-27 | Enthone Omi Deutschland Gmbh | Verfahren zur Abscheidung einer Silber-Zinn-Legierung |
EP1167582B1 (fr) | 2000-07-01 | 2005-09-14 | Shipley Company LLC | Compositions d'un alliage de metal et méthode de déposition associée |
FR2825721B1 (fr) | 2001-06-12 | 2003-10-03 | Engelhard Clal Sas | Melange utilisable comme brillanteur dans un bain de depot electrolytique d'argent, d'or ou d'un de leurs alliages |
US6875471B2 (en) | 2002-04-30 | 2005-04-05 | General Motors Corporation | Metallization of polymer parts for painting |
US20040011432A1 (en) * | 2002-07-17 | 2004-01-22 | Podlaha Elizabeth J. | Metal alloy electrodeposited microstructures |
US20060228569A1 (en) | 2003-08-08 | 2006-10-12 | Tadaaki Kojima | Production method of substrate with black film and substrate with black film |
US20080202922A1 (en) | 2007-02-22 | 2008-08-28 | Ting Zhong | Hybrid electro-deposition of soft magnetic cobalt alloy films |
US9005420B2 (en) * | 2007-12-20 | 2015-04-14 | Integran Technologies Inc. | Variable property electrodepositing of metallic structures |
US8449948B2 (en) * | 2009-09-10 | 2013-05-28 | Western Digital (Fremont), Llc | Method and system for corrosion protection of layers in a structure of a magnetic recording transducer |
-
2011
- 2011-06-30 EP EP11741138.9A patent/EP2588645B1/fr active Active
- 2011-06-30 US US13/807,732 patent/US9631282B2/en active Active
- 2011-06-30 WO PCT/EP2011/061073 patent/WO2012001134A2/fr active Application Filing
- 2011-06-30 US US13/807,731 patent/US20140076798A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1322203A (en) * | 1969-10-30 | 1973-07-04 | Western Electric Co | Method of electroless plating of gold |
US4431977A (en) * | 1982-02-16 | 1984-02-14 | Motorola, Inc. | Ceramic bandpass filter |
US4778574A (en) * | 1987-09-14 | 1988-10-18 | American Chemical & Refining Company, Inc. | Amine-containing bath for electroplating palladium |
US5158653A (en) * | 1988-09-26 | 1992-10-27 | Lashmore David S | Method for production of predetermined concentration graded alloys |
JPH0565659A (ja) * | 1991-09-06 | 1993-03-19 | Sumitomo Metal Mining Co Ltd | 無電解銅ニツケル合金めつき方法 |
US5849170A (en) * | 1995-06-19 | 1998-12-15 | Djokic; Stojan | Electroless/electrolytic methods for the preparation of metallized ceramic substrates |
GB2305188A (en) * | 1995-09-16 | 1997-04-02 | Sung Soo Moon | Process for plating palladium or palladium alloy onto iron-nickel alloy substrate |
US7628903B1 (en) * | 2000-05-02 | 2009-12-08 | Ishihara Chemical Co., Ltd. | Silver and silver alloy plating bath |
US20030232148A1 (en) * | 2002-06-18 | 2003-12-18 | Shahin George E | Electroless nickel plating solutions |
US20090186240A1 (en) * | 2006-05-04 | 2009-07-23 | Nanogate Ag | Nickel coat containing precious metals |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018133244A1 (de) * | 2018-12-20 | 2020-06-25 | Umicore Galvanotechnik Gmbh | Nickel-Amin-Komplex mit reduzierter Tendenz zur Bildung schädlicher Abbauprodukte |
Also Published As
Publication number | Publication date |
---|---|
US9631282B2 (en) | 2017-04-25 |
WO2012001134A3 (fr) | 2013-02-21 |
US20130202910A1 (en) | 2013-08-08 |
WO2012001134A2 (fr) | 2012-01-05 |
EP2588645B1 (fr) | 2018-05-30 |
EP2588645A2 (fr) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140076798A1 (en) | Tribologically Loadable Mixed Noble Metal/Metal Layers | |
KR101930585B1 (ko) | 니켈층들의 무전해 성막을 위한 도금욕 | |
US10377947B2 (en) | Composition and process for metallizing nonconductive plastic surfaces | |
EP2809825B1 (fr) | Bain de dépôt autocatalytique de nickel | |
US3032436A (en) | Method and composition for plating by chemical reduction | |
US9551073B2 (en) | Method for depositing a first metallic layer onto non-conductive polymers | |
EP2639335B1 (fr) | Bain de placage alcalin pour dépôt anélectrolytique d'alliages de cobalt | |
CN102482780A (zh) | 沉积适用于将电线粘结在印刷电路板导体上的钯层的方法及所述方法中使用的钯浴 | |
EP2588644B1 (fr) | Couches de métal noble/métal pouvant subir des contraintes tribologiques | |
Jothilakshmia et al. | Controlling factors affecting the stability and rate of electroless copper plating | |
Sekar et al. | Autocatalytic deposition of copper from modified electrolytes and its characteristics | |
US20120114870A1 (en) | Manufacturing method of noble metal plating layer | |
WO1990009467A1 (fr) | Composition et procede de revetement | |
JPH0227437B2 (ja) | Mudenkaimetsukihoho | |
MX2011010125A (es) | Proceso de recubrimiento de componentes metálicos con aleaciones níquel-boro por reducción química. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHAUENBURG RUHRKUNSTSTOFF GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOPPE, STEFAN, DR;REEL/FRAME:030238/0643 Effective date: 20130319 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |