US20130285843A1 - Multi-bit per cycle successive approximation register adc - Google Patents

Multi-bit per cycle successive approximation register adc Download PDF

Info

Publication number
US20130285843A1
US20130285843A1 US13/455,515 US201213455515A US2013285843A1 US 20130285843 A1 US20130285843 A1 US 20130285843A1 US 201213455515 A US201213455515 A US 201213455515A US 2013285843 A1 US2013285843 A1 US 2013285843A1
Authority
US
United States
Prior art keywords
input
reference voltage
cycle
per cycle
bit per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/455,515
Other versions
US8570206B1 (en
Inventor
Jin-Fu Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Himax Technologies Ltd
Original Assignee
Himax Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Technologies Ltd filed Critical Himax Technologies Ltd
Priority to US13/455,515 priority Critical patent/US8570206B1/en
Assigned to HIMAX TECHNOLOGIES LIMITED reassignment HIMAX TECHNOLOGIES LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, JIN-FU
Application granted granted Critical
Publication of US8570206B1 publication Critical patent/US8570206B1/en
Publication of US20130285843A1 publication Critical patent/US20130285843A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/144Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in a single stage, i.e. recirculation type

Definitions

  • the present invention generally relates to an analog-to-digital converter (ADC), and more particularly to a multi-bit per cycle successive approximation register (SAR) ADC.
  • ADC analog-to-digital converter
  • SAR successive approximation register
  • a successive approximation register (SAR) analog-to-digital converter is a type of ADC that converts an analog signal to a digital code equivalent of the analog signal.
  • FIG. 1 shows a schematic diagram illustrating a conventional SAR ADC.
  • the SAR ADC performs conversion by comparison and searching through all possible quantization levels, i.e., binary search, to obtain a digital output.
  • the SAR ADC requires less silicon area and the associated cost than other ADC architectures.
  • the conventional SAR ADC as exemplified in FIG. 1 converts one bit per cycle, it therefore does not fit for high speed applications.
  • FIG. 2 shows a block diagram illustrating a conventional 2 b/cycle SAR ADC.
  • the 2 b/cycle SAR ADC involves triple capacitive ADCs (designated as C-net) and thus causes triple loading for a previous stage (e.g., a source follower made of a current source 11 and a p-type transistor 12 ) in the SAR ADC.
  • a previous stage e.g., a source follower made of a current source 11 and a p-type transistor 12
  • mismatch issue among the comparators in the 2 b/cycle SAR ADC need be resolved.
  • SAR successive approximation register
  • ADC analog-to-digital converter
  • a multi-bit per cycle SAR ADC includes a main digital-to-analog converter (DAC), a comparing unit, a SAR unit and a reference generator.
  • the main DAC is coupled to receive at least one input, at least one output node of the main DAC generating an adjusted input.
  • the comparing unit includes a plurality of comparators coupled to receive the adjusted input.
  • the SAR unit is configured to generate a code for controlling the main DAC to generate the adjusted input based on a comparison output of the comparing unit.
  • the reference generator under control of the generated code, generates at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.
  • FIG. 1 shows a schematic diagram illustrating a conventional 1 b/cycle successive approximation register (SAR) analog-to-digital converter (ADC);
  • SAR successive approximation register
  • ADC analog-to-digital converter
  • FIG. 2 shows a block diagram illustrating a conventional 2 b/cycle SAR ADC
  • FIG. 3 shows a block diagram illustrating a multi-bit per cycle SAR ADC according to one embodiment of the present invention
  • FIG. 4A shows a table listing corresponding positive/negative reference voltages in three consecutive phases
  • FIG. 4B designates the various positive/negative reference voltages of FIG. 4A on a scale of full reference-voltage range
  • FIG. 5 illustrates an operation in the 2 b/cycle SAR ADC of FIG. 3 ;
  • FIG. 6A to FIG. 6D schematically show a capacitive DAC implementing the reference generator and its connection
  • FIG. 7 shows an exemplary arrangement of converting an 8-bit input according to another embodiment of the present invention.
  • FIG. 3 shows a block diagram illustrating a multi-bit per cycle successive approximation register (SAR) analog-to-digital converter (ADC) according to one embodiment of the present invention.
  • SAR successive approximation register
  • ADC analog-to-digital converter
  • a main digital-to-analog converter (DAC) 30 is coupled to receive a positive input Vip and a negative input Vin.
  • DAC digital-to-analog converter
  • the main DAC 30 may include two capacitive DACs (i.e., a first capacitive DAC and a second capacitive DAC) similar to the capacitive DACs of a conventional 1-bit per cycle SAR DAC as exemplified in FIG. 1 .
  • the input nodes of the first/ second capacitive DACs are electrically coupled to receive the positive/negative inputs Vip/Vin respectively via switches, and the output nodes of the first/ second capacitive DACs generate a positive adjusted input Vap and a negative adjusted input Van respectively, which are then fed to a comparing unit 31 .
  • the comparing unit 31 includes three (analog) comparators, that is, a first comparator C 1 , a second comparator C 2 and a third comparator C 3 .
  • the comparing unit 31 includes (2 m ⁇ 1) comparators.
  • a SAR unit 32 Based on comparison outputs of the comparing unit 31 , a SAR unit 32 generates a (digital) code for switching the capacitive DACs of the main DAC 30 .
  • the generated code from the SAR unit 32 is also provided to control a reference generator 33 , which generates a positive reference voltage Vrp and a negative reference voltage Vrn forwarding to the comparing unit 31 in each corresponding conversion cycle (or phase).
  • FIG. 4A shows a table listing corresponding positive/negative reference voltages Vrp/Vrn in three consecutive phases (or cycles) (i.e., p 1 , p 2 and p 3 ).
  • an absolute value of the positive/negative reference voltages Vrp/Vrn of a latter phase is less than that of a former phase.
  • the positive reference voltage Vrp may be expressed as Vcm+ ⁇ V/2 2p ⁇ 1 in a phase p
  • the negative reference voltage Vrn may be expressed as Vcm ⁇ V/2 2p ⁇ 1 in a phase p, where Vcm is a base voltage (e.g., a center voltage) in a reference-voltage range (or search range).
  • the first comparator C 1 and the third comparator C 3 each has four input nodes. With respect to the first comparator C 1 , it performs the following four-input comparison: (Vap ⁇ Van) ⁇ (Vrp ⁇ Vrn). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (first) differential adjusted input; the positive reference voltage Vrp is compared with the negative reference voltage Vrn, resulting in a (first) differential reference voltage. Finally, the (first) differential adjusted input is then compared with the (first) differential reference voltage.
  • the third comparator C 3 it performs the following four-input comparison: (Vap ⁇ Van) ⁇ (Vrn ⁇ Vrp). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (third) differential adjusted input; the negative reference voltage Vrn is compared with the positive reference voltage Vrp, resulting in a (third) differential reference voltage. Finally, the (third) differential adjusted input is then compared with the (third) differential reference voltage. With respect to the second comparator C 2 , it performs the following two-input comparison: (Vap ⁇ Van). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (second) differential adjusted input.
  • FIG. 5 illustrates an operation in the 2 b/cycle SAR ADC of FIG. 3 .
  • the reference generator 33 provides a positive reference voltage Vcm+ ⁇ V/2 and a negative reference voltage Vcm ⁇ V/2.
  • the voltages (Vcm+ ⁇ V/2), Vcm and (Vcm ⁇ V/2) equally divides the full reference-voltage range 2 ⁇ V into four segments: 00, 01, 10 and 11.
  • the reference generator 33 provides a positive reference voltage Vcm+ ⁇ V/8 and a negative reference voltage Vcm ⁇ V/8.
  • the voltages (Vcm+ ⁇ V/8), Vcm and (Vcm ⁇ V/8) equally divides the reference-voltage range ⁇ V/2 centered at Vcm into four segments: 00, 01, 10 and 11.
  • the reference generator 33 provides a positive reference voltage Vcm+ ⁇ V/32 and a negative reference voltage Vcm ⁇ V/32.
  • the voltages (Vcm+ ⁇ V/32), Vcm and (Vcm ⁇ V/3 2 ) equally divides the reference-voltage range ⁇ V/8 centered at Vcm into four segments: 00, 01, 10 and 11.
  • the adjusted input Vi′ is subject to binary search through the reduced reference-voltage range ⁇ V/8. According to the result of the binary search, the two least significant bits (B 2 B 1 ) are thus obtained.
  • FIG. 6A schematically shows a capacitive DAC implementing the reference generator 33 in a sample phase, in which all free nodes n 1 -n 5 of the capacitors are connected to Vcm.
  • FIG. 6B schematically shows a capacitive DAC implementing the reference generator 33 in conversion phases p 1 -p 3 , in which the free nodes n 1 -n 5 are connected according to a table in FIG. 6C for generating the positive reference voltage Vrp and according to a table in FIG. 6D for generating the negative reference voltage Vrn.
  • DAC digital-to-analog converter
  • FIG. 7 shows an exemplary arrangement of converting an 8-bit input B 8 B 7 B 6 B 5 B 4 B 3 B 2 B 1 according to another embodiment of the present invention.
  • the present embodiment FIG. 7
  • the present embodiment requires one more cycle (i.e., totaling five cycles) to complete the conversion rather than four cycles as in the previous embodiment.
  • comparators with reduced offset accuracy may be used in the present embodiment.
  • comparators with offset accuracy of 6 bits instead of 8 bits, may be used in the present embodiment.
  • the reason is that, in the last two cycles, only the second comparator C 2 ( FIG. 3 ) is activated for converting bits B 2 and B 1 , the performance of the SAR ADC will not be affected after reducing offset accuracy of the comparators. Therefore, circuit area and associated cost can be substantially reduced.
  • some of its conversion cycles, particularly latter cycles, may be performed to convert n bits (n ⁇ m) per each cycle.
  • comparators in the SAR ADC with reduced offset accuracy may be used without sacrificing performance of the SAR ADC.
  • the embodiments of the present invention require simpler switching scheme, and, more particularly, only one DAC 30 (plus a reference generator 33 ) is required instead of three DACs as in the conventional counterpart. Accordingly, circuit area and power consumption can be substantially reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

A main digital-to-analog converter (DAC) receives at least one input and generates an adjusted input. A SAR unit generates a code for controlling the main DAC based on a comparison output of a comparing unit that receives the adjusted input. A reference generator, under control of the generated code, generates at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to an analog-to-digital converter (ADC), and more particularly to a multi-bit per cycle successive approximation register (SAR) ADC.
  • 2. Description of Related Art
  • A successive approximation register (SAR) analog-to-digital converter (ADC) is a type of ADC that converts an analog signal to a digital code equivalent of the analog signal. FIG. 1 shows a schematic diagram illustrating a conventional SAR ADC. The SAR ADC performs conversion by comparison and searching through all possible quantization levels, i.e., binary search, to obtain a digital output. The SAR ADC requires less silicon area and the associated cost than other ADC architectures. However, as the conventional SAR ADC as exemplified in FIG. 1 converts one bit per cycle, it therefore does not fit for high speed applications.
  • In order to speed up the operation of the SAR ADC, a 2-bit per cycle (or 2 b/cycle) SAR ADC is proposed. FIG. 2 shows a block diagram illustrating a conventional 2 b/cycle SAR ADC. Compared with the 1 b/cycle SAR ADC of FIG. 1, the 2 b/cycle SAR ADC involves triple capacitive ADCs (designated as C-net) and thus causes triple loading for a previous stage (e.g., a source follower made of a current source 11 and a p-type transistor 12) in the SAR ADC. Moreover, as more comparators 13 are used in the 2 b/cycle SAR ADC (FIG. 2) than the 1 b/cycle SAR ADC (FIG. 1), mismatch issue among the comparators in the 2 b/cycle SAR ADC need be resolved.
  • For the foregoing reasons, a need has arisen to propose a novel multi-bit per cycle SAR ADC to overcome the disadvantages as mentioned above.
  • SUMMARY OF THE INVENTION
  • In view of the foregoing, it is an object of the embodiment of the present invention to provide a multi-bit per cycle successive approximation register (SAR) analog-to-digital converter (ADC) such that a higher speed may be acquired, a simpler switching scheme may be needed and comparators with less offset accuracy may be used in the SAR ADC, thereby substantially reducing silicon area, the associated cost and power consumption.
  • According to one embodiment, a multi-bit per cycle SAR ADC includes a main digital-to-analog converter (DAC), a comparing unit, a SAR unit and a reference generator. The main DAC is coupled to receive at least one input, at least one output node of the main DAC generating an adjusted input. The comparing unit includes a plurality of comparators coupled to receive the adjusted input. The SAR unit is configured to generate a code for controlling the main DAC to generate the adjusted input based on a comparison output of the comparing unit. The reference generator, under control of the generated code, generates at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic diagram illustrating a conventional 1 b/cycle successive approximation register (SAR) analog-to-digital converter (ADC);
  • FIG. 2 shows a block diagram illustrating a conventional 2 b/cycle SAR ADC;
  • FIG. 3 shows a block diagram illustrating a multi-bit per cycle SAR ADC according to one embodiment of the present invention;
  • FIG. 4A shows a table listing corresponding positive/negative reference voltages in three consecutive phases;
  • FIG. 4B designates the various positive/negative reference voltages of FIG. 4A on a scale of full reference-voltage range;
  • FIG. 5 illustrates an operation in the 2 b/cycle SAR ADC of FIG. 3;
  • FIG. 6A to FIG. 6D schematically show a capacitive DAC implementing the reference generator and its connection; and
  • FIG. 7 shows an exemplary arrangement of converting an 8-bit input according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 3 shows a block diagram illustrating a multi-bit per cycle successive approximation register (SAR) analog-to-digital converter (ADC) according to one embodiment of the present invention. For better understanding the invention, a 2-bit per cycle (or 2 b/cycle) SAR ADC is illustrated. However, the present invention may generally be adaptable to a multi-bit per cycle SAR ADC.
  • In the embodiment, a main digital-to-analog converter (DAC) 30 is coupled to receive a positive input Vip and a negative input Vin. Although a differential SAR ADC with the differential input pair Vip/Vin is illustrated in the embodiment, it is appreciated that the invention may be well adapted to a single-ended SAR ADC with a single input. The main DAC 30 may include two capacitive DACs (i.e., a first capacitive DAC and a second capacitive DAC) similar to the capacitive DACs of a conventional 1-bit per cycle SAR DAC as exemplified in FIG. 1. The input nodes of the first/ second capacitive DACs are electrically coupled to receive the positive/negative inputs Vip/Vin respectively via switches, and the output nodes of the first/ second capacitive DACs generate a positive adjusted input Vap and a negative adjusted input Van respectively, which are then fed to a comparing unit 31. In the embodiment for a 2 b/cycle SAR ADC, the comparing unit 31 includes three (analog) comparators, that is, a first comparator C1, a second comparator C2 and a third comparator C3. In general, for an m-bit per cycle SAR ADC, the comparing unit 31 includes (2m−1) comparators.
  • Based on comparison outputs of the comparing unit 31, a SAR unit 32 generates a (digital) code for switching the capacitive DACs of the main DAC 30. The generated code from the SAR unit 32 is also provided to control a reference generator 33, which generates a positive reference voltage Vrp and a negative reference voltage Vrn forwarding to the comparing unit 31 in each corresponding conversion cycle (or phase). FIG. 4A shows a table listing corresponding positive/negative reference voltages Vrp/Vrn in three consecutive phases (or cycles) (i.e., p1, p2 and p3). It is noted that an absolute value of the positive/negative reference voltages Vrp/Vrn of a latter phase is less than that of a former phase. Generally speaking, the positive reference voltage Vrp may be expressed as Vcm+Δ V/22p−1 in a phase p, and the negative reference voltage Vrn may be expressed as Vcm−Δ V/22p−1 in a phase p, where Vcm is a base voltage (e.g., a center voltage) in a reference-voltage range (or search range). FIG. 4B designates the various positive/negative reference voltages Vrp/Vrn of FIG. 4A on a scale of full reference-voltage range from a top reference voltage Vrefp (=Vcm+Δ V) to a bottom reference voltage Vrefn (=Vcm−Δ V), with Vcm on the center of the scale.
  • Referring back to FIG. 3, it is noted that the first comparator C1 and the third comparator C3 each has four input nodes. With respect to the first comparator C1, it performs the following four-input comparison: (Vap−Van)−(Vrp−Vrn). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (first) differential adjusted input; the positive reference voltage Vrp is compared with the negative reference voltage Vrn, resulting in a (first) differential reference voltage. Finally, the (first) differential adjusted input is then compared with the (first) differential reference voltage. With respect to the third comparator C3, it performs the following four-input comparison: (Vap−Van)−(Vrn−Vrp). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (third) differential adjusted input; the negative reference voltage Vrn is compared with the positive reference voltage Vrp, resulting in a (third) differential reference voltage. Finally, the (third) differential adjusted input is then compared with the (third) differential reference voltage. With respect to the second comparator C2, it performs the following two-input comparison: (Vap−Van). In other words, the positive adjusted input Vap is compared with the negative adjusted input Van, resulting in a (second) differential adjusted input.
  • FIG. 5 illustrates an operation in the 2 b/cycle SAR ADC of FIG. 3. As a 6-bit SAR ADC is demonstrated, three cycles (or phases) are thus required to complete the conversion to obtain a 6-bit code B6B5B4B3B2B1. In phase 1, the reference generator 33 provides a positive reference voltage Vcm+Δ V/2 and a negative reference voltage Vcm−Δ V/2. The voltages (Vcm+Δ V/2), Vcm and (Vcm−Δ V/2) equally divides the full reference-voltage range 2 Δ V into four segments: 00, 01, 10 and 11. An input Vi is subject to binary search through the full reference-voltage range 2Δ V. According to the result of the binary search, as the input Vi is located in the segment 10, the two most significant bits “10” (=B6B5) are thus obtained.
  • Subsequently, in phase 2, the reference generator 33 provides a positive reference voltage Vcm+α V/8 and a negative reference voltage Vcm−Δ V/8. The voltages (Vcm+Δ V/8), Vcm and (Vcm−Δ V/8) equally divides the reference-voltage range Δ V/2 centered at Vcm into four segments: 00, 01, 10 and 11. Before subjecting the input Vi into binary search, the input Vi should be adjusted according to the search result in the preceding phase (i.e., phase 1). For example, the input Vi is adjusted as follows: Vi′=Vi−BmΔ V/2−Bm−1 Δ V/4, where Bm and Bm−1 are more significant bits obtained from the preceding phase. The adjusted input Vi′ is then subject to binary search through the reduced reference-voltage range Δ V/2. According to the result of the binary search, as the adjusted input Vi′ is located in the segment 10, the two next significant bits “10” (=B4B3) are thus obtained.
  • In final phase 3 (not shown in FIG. 5), the reference generator 33 provides a positive reference voltage Vcm+Δ V/32 and a negative reference voltage Vcm−Δ V/32. The voltages (Vcm+Δ V/32), Vcm and (Vcm−Δ V/32) equally divides the reference-voltage range Δ V/8 centered at Vcm into four segments: 00, 01, 10 and 11. The adjusted input Vi′ is subject to binary search through the reduced reference-voltage range Δ V/8. According to the result of the binary search, the two least significant bits (B2B1) are thus obtained.
  • The reference generator 33 discussed above may, but not necessarily, be implemented by a digital-to-analog converter (DAC), such as a capacitive DAC. FIG. 6A schematically shows a capacitive DAC implementing the reference generator 33 in a sample phase, in which all free nodes n1-n5 of the capacitors are connected to Vcm. FIG. 6B schematically shows a capacitive DAC implementing the reference generator 33 in conversion phases p1-p3, in which the free nodes n1-n5 are connected according to a table in FIG. 6C for generating the positive reference voltage Vrp and according to a table in FIG. 6D for generating the negative reference voltage Vrn.
  • According to one aspect of the present invention, the offset accuracy of the comparators C1-C3 can be reduced without sacrificing performance of the SAR ADC. FIG. 7 shows an exemplary arrangement of converting an 8-bit input B8B7B6B5B4B3B2B1 according to another embodiment of the present invention. In the first three cycles, two bits are converted in each cycle; while, in the last two cycles, only one bit is converted in each cycle. Compared with the previous embodiment as discussed above, the present embodiment (FIG. 7) requires one more cycle (i.e., totaling five cycles) to complete the conversion rather than four cycles as in the previous embodiment. However, comparators with reduced offset accuracy may be used in the present embodiment. For example, comparators with offset accuracy of 6 bits, instead of 8 bits, may be used in the present embodiment. The reason is that, in the last two cycles, only the second comparator C2 (FIG. 3) is activated for converting bits B2 and B1, the performance of the SAR ADC will not be affected after reducing offset accuracy of the comparators. Therefore, circuit area and associated cost can be substantially reduced. Generally speaking, for an m-bit per cycle SAR ADC, some of its conversion cycles, particularly latter cycles, may be performed to convert n bits (n<m) per each cycle. As a result, comparators in the SAR ADC with reduced offset accuracy may be used without sacrificing performance of the SAR ADC.
  • Compared with the conventional multi-bit per cycle SAR ADC as exemplified in FIG. 2, the embodiments of the present invention require simpler switching scheme, and, more particularly, only one DAC 30 (plus a reference generator 33) is required instead of three DACs as in the conventional counterpart. Accordingly, circuit area and power consumption can be substantially reduced.
  • Although specific embodiments have been illustrated and described, it will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the present invention, which is intended to be limited solely by the appended claims.

Claims (11)

What is claimed is:
1. A multi-bit per cycle successive approximation register (SAR) analog-to-digital converter (ADC), comprising:
a main digital-to-analog converter (DAC) coupled to receive at least one input, at least one output node of the main DAC generating an adjusted input;
a comparing unit including a plurality of comparators coupled to receive the adjusted input;
a SAR unit configured to generate a code for controlling the main DAC to generate the adjusted input based on a comparison output of the comparing unit; and
a reference generator under control of the generated code for generating at least one reference voltage, which is then forwarded to the comparing unit in each corresponding cycle for defining a search range of each cycle, wherein an absolute value of the reference voltage of a latter cycle is less than the reference voltage of a former cycle such that the search range of the latter cycle is smaller than the search range of the former cycle, and search ranges of all the cycles are centered at a base voltage.
2. The multi-bit per cycle SAR ADC of claim 1, wherein the at least one input comprises a positive input and a negative input; and the main DAC comprises a first capacitive DAC and a second capacitive DAC, input nodes of which being electrically coupled to receive the positive input and the negative inputs respectively via switches.
3. The multi-bit per cycle SAR ADC of claim 2, wherein the output nodes of the first and the second capacitive DACs generate a positive adjusted input and a negative adjusted input respectively, which are then fed to the comparing unit.
4. The multi-bit per cycle SAR ADC of claim 1, wherein the comparing unit comprises (2m−1) of the comparators for an m-bit per cycle SAR ADC.
5. The multi-bit per cycle SAR ADC of claim 3, wherein the reference generator generates a positive reference voltage and a negative reference voltage forwarding to the comparing unit in each corresponding cycle; and the positive reference voltage has a value of Vcm+Δ V/22p−1 in a phase p, and the negative reference voltage has a value of Vcm−Δ V/22p−1 in a phase p, where Vcm is the base voltage of the search range.
6. The multi-bit per cycle SAR ADC of claim 5, wherein the comparing unit comprises:
a first comparator which performs a four-input comparison, wherein the positive adjusted input is compared with the negative adjusted input, resulting in a first differential adjusted input; the positive reference voltage is compared with the negative reference voltage, resulting in a first differential reference voltage; and the first differential adjusted input is then compared with the first differential reference voltage;
a second comparator which performs a two-input comparison, wherein the positive adjusted input is compared with the negative adjusted input, resulting in a second differential adjusted input; and
a third comparator which performs a four-input comparison, wherein the positive adjusted input is compared with the negative adjusted input, resulting in a third differential adjusted input; the negative reference voltage is compared with the positive reference voltage, resulting in a third differential reference voltage; and the third differential adjusted input is then compared with the third differential reference voltage.
7. The multi-bit per cycle SAR ADC of claim 1, wherein the reference generator comprises a DAC.
8. The multi-bit per cycle SAR ADC of claim 7, wherein the DAC of the reference generator comprises a capacitive DAC.
9. The multi-bit per cycle SAR ADC of claim 1, wherein some cycles of an m-bit per cycle SAR ADC are performed to convert n bit(s) per cycle, where n<m.
10. The multi-bit per cycle SAR ADC of claim 9, wherein each said comparator has n bit(s) of offset accuracy for the m-bit per cycle SAR ADC, where n<m.
11. The multi-bit per cycle SAR ADC of claim 9, wherein the cycle of converting n bit(s) per cycle is latter than the cycle of converting m bits per cycle.
US13/455,515 2012-04-25 2012-04-25 Multi-bit per cycle successive approximation register ADC Active 2032-04-28 US8570206B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/455,515 US8570206B1 (en) 2012-04-25 2012-04-25 Multi-bit per cycle successive approximation register ADC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/455,515 US8570206B1 (en) 2012-04-25 2012-04-25 Multi-bit per cycle successive approximation register ADC

Publications (2)

Publication Number Publication Date
US8570206B1 US8570206B1 (en) 2013-10-29
US20130285843A1 true US20130285843A1 (en) 2013-10-31

Family

ID=49448614

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/455,515 Active 2032-04-28 US8570206B1 (en) 2012-04-25 2012-04-25 Multi-bit per cycle successive approximation register ADC

Country Status (1)

Country Link
US (1) US8570206B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063709A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Scalable stochastic successive approximation register analog-to-digital converter
US20220209780A1 (en) * 2019-04-05 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) SAR ADC with Alternating Low and High Precision Comparators and Uneven Allocation of Redundancy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608658B1 (en) * 2015-09-25 2017-03-28 Qualcomm Incorporated Segmented successive approximation register (SAR) analog-to-digital converter (ADC) with reduced conversion time
US9520891B1 (en) * 2015-11-17 2016-12-13 International Business Machines Corporation Successive approximation register converter
TWI628919B (en) * 2017-05-12 2018-07-01 國立中山大學 Sar analog to digital converter
CN108075778B (en) * 2017-11-29 2023-10-27 四川知微传感技术有限公司 Pipeline SAR-ADC circuit structure
EP4170910A1 (en) 2018-01-19 2023-04-26 Socionext Inc. Processing circuitry
CN113659988B (en) * 2021-07-09 2023-08-29 西安电子科技大学 Single-period multi-bit quantized successive approximation type analog-to-digital converter
US11811416B2 (en) 2021-12-14 2023-11-07 International Business Machines Corporation Energy-efficient analog-to-digital conversion in mixed signal circuitry
US11831328B2 (en) * 2022-02-07 2023-11-28 Pixart Imaging Inc. Electronic device and method capable of predicting and generating compensation charge amount(s) in response to switching of CDAC
CN114204942B (en) * 2022-02-15 2022-05-17 微龛(广州)半导体有限公司 Successive approximation type analog-to-digital converter and conversion method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157338A (en) * 1999-02-23 2000-12-05 Lucent Technologies Inc. Deterministic successive approximation analog-to-digital converter
US6914550B2 (en) * 2003-10-09 2005-07-05 Texas Instruments Incorporated Differential pipelined analog to digital converter with successive approximation register subconverter stages using thermometer coding
US6879277B1 (en) * 2003-10-09 2005-04-12 Texas Instruments Incorporated Differential pipelined analog to digital converter with successive approximation register subconverter stages
US7956787B2 (en) * 2008-12-19 2011-06-07 Silicon Laboratories Inc. SAR analog-to-digital converter having differing bit modes of operation
JP4884519B2 (en) * 2009-12-03 2012-02-29 株式会社半導体理工学研究センター Analog-to-digital converter
US8284090B2 (en) * 2010-03-22 2012-10-09 Analog Devices, Inc. Method and apparatus for analog to digital conversion of small signals in the presence of a large DC offset
US8618975B2 (en) * 2011-10-26 2013-12-31 Semtech Corporation Multi-bit successive approximation ADC

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063709A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Scalable stochastic successive approximation register analog-to-digital converter
CN109644002A (en) * 2016-09-30 2019-04-16 英特尔公司 Expansible random successive approximation register analog-digital converter
US20220209780A1 (en) * 2019-04-05 2022-06-30 Telefonaktiebolaget Lm Ericsson (Publ) SAR ADC with Alternating Low and High Precision Comparators and Uneven Allocation of Redundancy
US11711089B2 (en) * 2019-04-05 2023-07-25 Telefonaktiebolaget Lm Ericsson (Publ) SAR ADC with alternating low and high precision comparators and uneven allocation of redundancy

Also Published As

Publication number Publication date
US8570206B1 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US8570206B1 (en) Multi-bit per cycle successive approximation register ADC
KR102637630B1 (en) Redundancy scheme for flash assisted successive approximation register(sar) analog-to-digital converter(adc)
TWI452846B (en) Segmented analog-to-digital converter and method thereof
KR101140349B1 (en) The multi-stage successive approximation register analog digital converter
US7233276B1 (en) Pipelined analog to digital converter with capacitor mismatch compensation
US10250277B1 (en) SAR-type analog-digital converter using residue integration
EP3090488B1 (en) Combining a coarse adc and a sar adc
US20120274489A1 (en) Successive approximation register adc with a window predictive function
US10484000B2 (en) Analog-to-digital converters
US8730080B2 (en) Analog-to-digital converters and pipeline analog-to-digital converters
US9467161B1 (en) Low-power, high-speed successive approximation register analog-to-digital converter and conversion method using the same
US7847720B2 (en) Pipelined analog-to-digital converter
KR102017310B1 (en) Successive approximation register analog digital converter and operating method thereof
US20130027232A1 (en) Analog-to-digital converters and analog-to-digital conversion methods
US20060125676A1 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
JP2015103820A (en) Analog/digital converter and analog/digital conversion method
TWI479806B (en) Analog-to-digital converting system
US8493260B2 (en) Successive approximation analog to digital converter
US8159383B2 (en) Switched capacitor circuit and pipelined analog-to-digital conversion circuit with the switched capacitor circuit
US8749412B1 (en) Anti-noise successive approximation analog to digital conversion method
US7821436B2 (en) System and method for reducing power dissipation in an analog to digital converter
US9252800B1 (en) Enhanced resolution successive-approximation register analog-to-digital converter and method
US8487801B2 (en) Analog-to-digital converter and signal processing system
TWI489788B (en) Multi-bit per cycle successive approximation register adc
JP2015177374A (en) AD conversion circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: HIMAX TECHNOLOGIES LIMITED, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIN, JIN-FU;REEL/FRAME:028104/0215

Effective date: 20120411

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8