US20130269897A1 - Impregnated blade coating - Google Patents

Impregnated blade coating Download PDF

Info

Publication number
US20130269897A1
US20130269897A1 US13/917,305 US201313917305A US2013269897A1 US 20130269897 A1 US20130269897 A1 US 20130269897A1 US 201313917305 A US201313917305 A US 201313917305A US 2013269897 A1 US2013269897 A1 US 2013269897A1
Authority
US
United States
Prior art keywords
coating
blade according
blade
polymer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/917,305
Other languages
English (en)
Inventor
Jurgen Angerler
Alexander Etschmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45033969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130269897(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Assigned to VOITH PATENT GMBH reassignment VOITH PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANGERLER, JURGEN, ETSCHMAIER, ALEXANDER
Publication of US20130269897A1 publication Critical patent/US20130269897A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G3/00Doctors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/12Crêping
    • B31F1/14Crêping by doctor blades arranged crosswise to the web
    • B31F1/145Blade constructions
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21GCALENDERS; ACCESSORIES FOR PAPER-MAKING MACHINES
    • D21G3/00Doctors
    • D21G3/005Doctor knifes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/08Rearranging applied substances, e.g. metering, smoothing; Removing excess material
    • D21H25/10Rearranging applied substances, e.g. metering, smoothing; Removing excess material with blades
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/32Addition to the formed paper by contacting paper with an excess of material, e.g. from a reservoir or in a manner necessitating removal of applied excess material from the paper

Definitions

  • the present invention relates to blades for machines for the production of paper and, in particular to the configuration of blades for use in creping or coating of a paper web.
  • the fibrous nonwoven web, or the so-called raw paper web, produced in the paper manufacturing process must, as a rule, be subjected to a separate treatment.
  • high quality paper types are coated and hygienic papers are creped.
  • the creping process produces paper types having surface structures. Normally a blade called a creping doctor is applied with its working edge against the surface of a drying cylinder or a Yankee cylinder (steam-heated cylinder, usually having a diameter of several meters), thereby stripping the web off the cylinder. To produce the surface structure, the creping doctor has an abutting surface located near its working edge where the web is backed up and thereby structured at impact.
  • a mostly paste-like coating layer consisting of pigments, binding agents and additives is applied. Coating of the web can occur in a separate process. It is, however, usually integrated into the paper manufacturing process through an in-line coater. Smooth paper surfaces are achieved in a coating process whereby the coating is applied onto the paper and whereby the excess coating medium is subsequently removed by a blade. Due to the pressure exerted by the blade or respectively the doctor blade, recesses in the paper surface are filled with the coating medium, thus achieving a uniform surface of the coated paper.
  • Creping blades and doctor blades are therefore normally equipped with a coating in the affected regions, the coating having a higher wear resistance or respectively a lower wear rate than the base material of the blade.
  • These types of coating are usually produced from an abrasion resistant material by using metal oxides or hard metals in which metal carbide is embedded in a cobalt-, nickel- or iron matrix.
  • thermal spray techniques are preferably used, whereby the coating medium is often applied in several passes. Each of the passes applies a thin layer of coating medium onto the base material of the blade or respectively onto the last coating layer applied thereto. Application of the coating in several thin layers ensures that the components of the coating medium cannot separate during build-up of the coating.
  • a macroscopic homogeneous coating can be produced based on the chemical as well as the physical identity of the individual layers.
  • the present invention provides a blade for treating fibrous nonwoven webs, the blade having a base body and a coating covering at least part of the surface of the base body, wherein the coating forms at least that part of the blade surface which is provided to come into contact with the fibrous web, and whereby the coating on the contact surface consists of an open pored material, the pores of which are filled at least partially with a polymer.
  • a blade according to this specification has good gliding properties and a dirt-repellent effect on the contact surface intended for contact with an object traveling along it. These properties diminish the forces acting upon the coating, thereby extending the lifetime of the coating and reducing the risk of damage during service of the blade.
  • the dirt repelling effect of the contact surface prevents agglomeration of particles on or near the coating surface which is in contact with the paper web and thereby improves the produced paper quality.
  • the polymer includes an epoxy resin, because this effectively moistens the open pored coating material in its non-cross-linked or partially cross-linked condition, thereby being able to penetrate deeply into the pores of the coating.
  • the polymer advantageously includes a silicone-polyester resin, since this combines very good anti-sticking properties and thereby sliding properties with an excellent dirt repellent effect.
  • fillers may be embedded into the polymer, whereby the fillers of preferred design variations thereof contain poly fluorinated ethylene (PFE) and in particular polytetrafluoroethylene (PTFE).
  • the fillers may, for example, be present in the form of particles and particularly in the form of particles having median diameters from within the range of approximately 0.1 to 5 micrometers ( ⁇ m).
  • the polymer may also be formed directly of poly fluorinated ethylene and in particular of polytetrafluoroethylene or a polymer which includes such a substance.
  • polytetrafluoroethylene particles of sizes from within the range of approximately 50 to 100 nanometers (nm) are, for example, prepared into a slurry and the thus obtained dispersion is applied into the pores, for example with the assistance of immersion, spraying or application with a brush or another coating device.
  • a polymer may be used for this which is present in the form of particles in various sizes, whereby at least 65 percent of the particles are of one or more sizes from the range of 50 to 100 nm.
  • the open-pored base material of the coating in all embodiments consists of an oxide ceramic or of a mixture of two or more oxide ceramics. Additional embodiments feature an open pored coating base material which includes one or more oxide ceramics.
  • the oxide ceramics are selected from aluminum oxide, zirconium dioxide, magnesium oxide, chromium (III) oxide, yttrium oxide and titanate, which combine good mechanical stability with high abrasion resistance and which can be applied with modern high speed spray methods, for example High Velocity Oxygen Fuel (HVOF) onto the base body of the blade.
  • the open pored material of the coating includes a hard metal, which can also combine good mechanical stability with high abrasion resistance and which can be effectively and economically applied with modern high speed spray methods.
  • the porosity of the coating material is, for example, between approximately 2 and 10 percent, whereby these values reflect the area proportion of the pores interspersed cross-sectionally in the material.
  • the median pore diameter of the pores of the coating base material may have a value from the range of 5 to 15 ⁇ m.
  • an adhesive layer may be arranged between them.
  • a blade as previously described may be utilized as a creping doctor with a working edge and an abutting surface, or as a doctor blade.
  • FIG. 1 is a schematic cross section through a creping doctor in the region around the working edge
  • FIG. 2 is a schematic cross section through a doctor blade in the region of its facet.
  • Creping doctor 10 has a base body 11 which is formed, for example from steel, onto which coating 12 is applied. Coating 12 occupies at least that part of creping doctor 10 which comes into contact with the dryer- or Yankee cylinder and the fibrous nonwoven material of the web. As shown in FIG. 1 , an intermediate layer 13 may be provided between coating 12 and base body 11 for better adhesion.
  • coating 12 includes two components.
  • One coating matrix or coating support layer 16 formed by a coating base material in which smallest hollow spaces 17 are formed, and one polymer arranged in hollow spaces 17 of coating matrix 16 .
  • the density of the hollow spaces is approximately constant in the illustrated embodiment of the present invention.
  • the hollow spaces develop during application of the coating material onto base body 11 or onto bonding agent layer 13 and are called pores.
  • the density of pores 17 does not have to be approximately constant as shown, but can change from the surface of the coating in the direction toward the base body, for example in order to facilitate a speedy breaking in of creping doctor 10 .
  • the coating matrix is open pored, whereby the term “open pored” is to be understood that hollow spaces positioned lower in the matrix are connected with hollow spaces located on the surface of the coating.
  • the porosity of coating layer 12 that is the ratio of the pore volume relative to the total volume of coating 12 is strongly exaggerated in FIG. 1 for illustrative purposes.
  • coating 12 has a porosity in the range of approximately 2 to 10 percent, whereby these values, as already mentioned, reflect the area proportion of the pores penetrated cross-sectionally in the material.
  • the coating material is first applied onto base body 11 or, if a bonding agent is used, onto bonding agent layer 13 which was applied earlier using a thermal spray process onto base body 11 .
  • the choice of materials suitable to produce the bonding agent layer is determined by the material used for the base body, as well as the base coating material used in a particular instant. If base body 11 consists, for example, of steel at the edge which is to be coated, then the material for bonding agent layer 13 can be selected from the following coating materials: aluminum, nickel, chromium and alloys thereof, for example AlNi or NiCr.
  • a thermal spray process may be used.
  • the spray coating occurs hereby in several passes, for example in 10 to 100 passes. Each pass produces a thin layer of the coating material, whereby the first layer is sprayed directly onto the surface of base body 11 or onto the previously applied bonding agent layer, and additional layers are sprayed onto the respective previously applied layer 13 .
  • the physical homogeneity or vice versa the porosity of the individual layers can be adjusted through the parameters of the used process.
  • HVOF high velocity oxygen fuel
  • the porosity can be adjusted through the ratio of fuel to oxygen and through the feed rate of the powder material used for layer formation.
  • hard metal powders containing approximately 8-10% cobalt and tungsten mono-carbide as hard material are suitable as base coating material.
  • powders of oxide ceramic materials for example, aluminum oxide, zirconium oxide, magnesium oxide, chromium (III) oxide, yttrium oxide and titanate may be used.
  • pores After application of the base coating material its open pores are filled with a polymer. Filling of pores in this application is understood to be the introduction of material into the pores, whereby the introduced material does not necessarily need to fill the respective pore volume, but can do so. When partially filling the pores, the introduced material may settle on the pore walls, however it may also be disposed in the pore volume, totally or partially removed from the pore walls.
  • thermosetting plastics and thermoplastics are suitable as polymers which can be produced on the basis of single component or two-component systems.
  • Exemplary thermoplastics which are suitable are thermosetting plastics whose decomposition temperature is so far above the service temperature of the blade coating that the thermosetting plastic reacts in a flexible manner.
  • 20° C. As a rough reference value for the minimum difference between service temperature and decomposition or glass transition temperature, 20° C. can be cited.
  • Service temperature is to be understood to be the operating temperature of the blade coating during intended use of the blade.
  • Epoxy resins and epoxy resins with filler particles are especially suitable as polymers.
  • PFE poly-fluorinated ethylene
  • PTFE polytetrafluoroethylene
  • epoxy resin in non-cross-linked or partially cross-linked condition shows good wetting of the coating base material it can—for example supported by capillary effect—penetrate deeply into and fill the open pores of said coating base material.
  • the viscosity of the epoxy resin can be reduced by the addition of solvents, for example alcohols or ketones in order to adapt the penetration depth of the polymer to the thickness of the coating.
  • the impregnation process in other words the introduction of the material into the pores of the blade coating, can be conducted with the assistance of immersion, spraying or application with coating devices, for example brushes or spatulas.
  • creping doctor 10 an approximately 50 ⁇ m thick NiAl 5 bonding agent layer 13 is applied onto a surface region of base body 11 consisting of steel, by use of a thermal spray process. Subsequently a Cr 2 O 3 -ceramic is applied onto the free surface of bonding agent layer 13 using a plasma spray process, for example the above referenced HVOF process.
  • the Cr 2 O 3 -powder used for the application has a granular size distribution whereby the granule size which is not exceeded by 90% of the hard material granules is at least twice as large, for example at least three times as large, as the granule size which is not exceeded by 10% of the hard material granules, whereby in particular a granular size distribution of 15/45 wherein 90% of the powder granules are no larger than 45 ⁇ m and 10% of the powder granules are no smaller than 15 ⁇ m is preferred.
  • the thickness of the applied Cr 2 O 3 -layer according to the exemplary embodiments is approximately 300 ⁇ m, the porosity of the layer approximately 2 to 3%, whereby the median pore diameters are in the range of approximately 5 to 15 ⁇ m. Pore diameter is hereby to be understood to be the diameter of a circle whose surface content is consistent with the pore cross section at the respective position.
  • the hardness of a Cr 2 O 3 -coating layer produced in this manner can be specified with approximately 1150 HV 0.3 (Vickers hardness expressed in HV). After application of the Cr 2 O 3 -coating a filler material is introduced into its pores.
  • the filler material consists of silicone-polyester resin mixed with iso-butanol which contains PTFE particles of median sizes of 0.1 to 5 ⁇ m.
  • the proportion of the silicone polyester resin in the filler material is between 40 and 70 weight-%, that of the iso-butanol between 10 and 60 weight-% and that of the PTFE particles between 2 and 20 weight-%.
  • a further embodiment of the present invention differentiates itself from the one described above in the selection of the filler material.
  • the filler material in this embodiment consists of a mixture of epoxy resin and iso-butanol which contains PTFE particles having a median diameter of 0.1 to 5 ⁇ m.
  • the proportion of the epoxy resin in the filler material is again between 40 and 70 weight-%, that of the iso-butanol between 10 and 60 weight-% and that of the PTFE particles between 2 and 20 weight-%.
  • the depth to which the filler material penetrates into coating matrix 16 is influenced by the viscosity of the filler material and the temperature of the coating matrix during the filling process. In the case of high solvent contents the viscosity of the filler material is low, whereby the pores can be filled to great depth.
  • the maximum penetration depth of the filler material can be further increased provided that the temperature is sufficiently below the cross-linking temperature.
  • Penetration temperatures in the range of approximately 70 to approximately 90° C., for example around 80° C. are suitable for the specified filler material systems, whereby with the above specified median pore diameters of approximately 5 to 15 ⁇ m, penetration depths of approximately 800 to approximately 1000 ⁇ m can be achieved.
  • the impregnation of coating matrix 16 is concluded.
  • the free surface of the impregnated coating 12 is fine ground in order to provide a smooth abutting surface and a smooth working edge. In such a grinding process, approximately 50 ⁇ m coating material are normally removed.
  • the described sequence of impregnation and fine grinding is not mandatory and can, if necessary, also be carried out in reverse.
  • fibrous nonwoven web and dryer- or Yankee cylinder can slide along the respective contact surfaces of the creping doctor with low friction.
  • the abrasion of the coating is reduced due to the increased gliding quality of the contact surfaces.
  • the contact surfaces moreover achieve a dirt-repellent effect, thereby reducing damage caused by particles carried along by the fibrous nonwoven or the dryer- or Yankee cylinder and reducing contamination, thereby improving the quality of the crepe paper.
  • FIG. 2 shows a cross section through the front region of doctor blade 20 with coating 22 .
  • the doctor blade has base body 21 which may, for example, consist of steel, as well as coating 22 and bonding agent layer 23 arranged in some of the embodiments between them.
  • Coating 22 occupies at least that region of doctor blade 20 which comes into contact with the fibrous nonwoven web or respectively with a coating material applied thereon.
  • Doctor blade 20 moreover has a chamfer which is generally referred to as the facet of the blade.
  • coating 22 covers base body 21 as shown in the drawing, also in the area of the facet.
  • the coating structure of the doctor blade is consistent with that of the creping doctor.
  • the coating consists of a porous coating matrix as described above whose pores are filled at least partially with a polymer, also as specified above.
  • the contact surface of the coating toward the web has an improved gliding quality and dirt-repelling effect, thereby reducing the probability of damage to the coating which could manifest itself on the coated paper in the form of line-type irregularities or micro-lining.
  • Blades according to the described invention have an improved abrasion resistance due to the better gliding properties on the coating surface, than blades with coatings that are not accordingly impregnated.
  • the impregnation also reduces the probability of damage to the coating during operation and due to its dirt-repellent effect improves the quality of a paper web being processed with the blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)
US13/917,305 2010-12-13 2013-06-13 Impregnated blade coating Abandoned US20130269897A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010062901A DE102010062901A1 (de) 2010-12-13 2010-12-13 Imprägnierte Klingenbeschichtung
DE102010062901.4 2010-12-13
PCT/EP2011/070659 WO2012079923A1 (de) 2010-12-13 2011-11-22 Imprägnierte klingenbeschichtung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070659 Continuation WO2012079923A1 (de) 2010-12-13 2011-11-22 Imprägnierte klingenbeschichtung

Publications (1)

Publication Number Publication Date
US20130269897A1 true US20130269897A1 (en) 2013-10-17

Family

ID=45033969

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/917,305 Abandoned US20130269897A1 (en) 2010-12-13 2013-06-13 Impregnated blade coating

Country Status (5)

Country Link
US (1) US20130269897A1 (de)
EP (1) EP2651632B1 (de)
CN (1) CN103347688A (de)
DE (1) DE102010062901A1 (de)
WO (1) WO2012079923A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210202434A1 (en) * 2018-08-30 2021-07-01 Siemens Aktiengesellschaft Method for Producing Conductive Tracks, and Electronic Module
EP4137304A1 (de) * 2021-08-16 2023-02-22 Voith Patent GmbH Klinge und kreppanordnung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062901A1 (de) * 2010-12-13 2012-06-14 Voith Patent Gmbh Imprägnierte Klingenbeschichtung
DE102014012738B4 (de) * 2014-08-27 2023-03-30 Rampf Formen Gmbh Form, Rüttelbare Unterlage und Ziehblech mit beschichteten Oberflächen, Verfahren zu deren Herstellung sowie Verwendung der Beschichtungen
CN106182906A (zh) * 2016-07-13 2016-12-07 北京华恩表面工程技术有限公司 一种起皱刀及其制备方法
CN106493437A (zh) * 2016-12-29 2017-03-15 泰州前进科技有限公司 一种刮刀
DE112018001654T5 (de) * 2017-03-29 2019-12-24 Kyocera Corporation Beschichtetes werkzeug und schneidwerkzeug

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703019A (en) * 1970-10-15 1972-11-21 Norton Co Surface conforming wear resistant doctor blade for rolls
JPS56120349A (en) * 1980-02-27 1981-09-21 Dainippon Printing Co Ltd Doctor blade for printing gravure
GB2295400A (en) * 1994-11-01 1996-05-29 Plasma Coatings Ltd Blade and manufacture thereof using high velocity flame spraying
US6207021B1 (en) * 1996-05-02 2001-03-27 Btg Eclepens S.A. Creping blade
US20020098376A1 (en) * 2000-10-20 2002-07-25 Morris Harry C. Friction guard blade and a method of production thereof
US6687950B1 (en) * 1998-06-09 2004-02-10 Metso Paper, Inc. Doctor blade and blade holder comprising composite material and ceramic coating
US6841264B2 (en) * 2000-12-07 2005-01-11 Swedev Aktiebolag Doctor or coater blade and method in connection with its manufacturing
US20050051292A1 (en) * 2003-09-08 2005-03-10 Btg Eclepens S.A. Creping blade
US20050064215A1 (en) * 2003-08-12 2005-03-24 Sandvik Ab Metal strip product
US20050089706A1 (en) * 2002-01-29 2005-04-28 Kazuya Urata Surface treated doctor blade
US20050172444A1 (en) * 2000-12-01 2005-08-11 S.D. Warren Services Company, A Delaware Corporation Method of making composite doctor blades
US6977029B2 (en) * 2001-09-19 2005-12-20 Ichikawa Co., Ltd. Doctor blade
US20060162881A1 (en) * 2005-01-27 2006-07-27 The Procter & Gamble Company Creping blade and method of creping
WO2006134209A1 (en) * 2005-06-14 2006-12-21 Ingmar Westerlund Consulting Oy Method and apparatus for making a wear-resistant coating on a blade for the treatment of a paper web, and blade for the treatment of a paper web
US20070017392A1 (en) * 2005-07-21 2007-01-25 C.B.G. Acciai S.R.L. Doctor blade coated with polymeric material and coating method
US20070158045A1 (en) * 2003-12-19 2007-07-12 Maria Sundqvist Edge-provided tool and method for the manufacture thereof
US7691236B2 (en) * 2006-07-26 2010-04-06 The Procter + Gamble Company Creping blade with a highly smooth bevel surface
DE102010062901A1 (de) * 2010-12-13 2012-06-14 Voith Patent Gmbh Imprägnierte Klingenbeschichtung
US20130014656A1 (en) * 2010-01-20 2013-01-17 Daetwyler Swisstec Ag Doctor blade
US20130071647A1 (en) * 2009-09-23 2013-03-21 Wolfgang Peter Mayr Spray powder for cermet-coating of doctor blades
US20130174779A1 (en) * 2009-09-23 2013-07-11 Hubert Bischof Blade coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731360A (en) * 1951-04-06 1956-01-17 Glacier Co Ltd Method for incorporating a solid lubricant into a porous metallic surface
GB978988A (en) * 1962-12-14 1965-01-01 Lodding Engineering Corp Doctor blade
FR2780318B1 (fr) * 1998-06-29 2000-09-08 Radiance Lame composite, pouvant trouver application dans differents domaines techniques ou industriels, notamment dans l'industrie papetiere et l'imprimerie
CH699702A1 (de) * 2008-10-07 2010-04-15 Daetwyler Swisstec Ag Diamantbeschichtete Rakel.

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703019A (en) * 1970-10-15 1972-11-21 Norton Co Surface conforming wear resistant doctor blade for rolls
JPS56120349A (en) * 1980-02-27 1981-09-21 Dainippon Printing Co Ltd Doctor blade for printing gravure
GB2295400A (en) * 1994-11-01 1996-05-29 Plasma Coatings Ltd Blade and manufacture thereof using high velocity flame spraying
US6207021B1 (en) * 1996-05-02 2001-03-27 Btg Eclepens S.A. Creping blade
US6687950B1 (en) * 1998-06-09 2004-02-10 Metso Paper, Inc. Doctor blade and blade holder comprising composite material and ceramic coating
US20020098376A1 (en) * 2000-10-20 2002-07-25 Morris Harry C. Friction guard blade and a method of production thereof
US20040247928A1 (en) * 2000-10-20 2004-12-09 Morris Harry C. Friction guard blade and a method of production thereof
US20050172444A1 (en) * 2000-12-01 2005-08-11 S.D. Warren Services Company, A Delaware Corporation Method of making composite doctor blades
US6841264B2 (en) * 2000-12-07 2005-01-11 Swedev Aktiebolag Doctor or coater blade and method in connection with its manufacturing
US6977029B2 (en) * 2001-09-19 2005-12-20 Ichikawa Co., Ltd. Doctor blade
US20050089706A1 (en) * 2002-01-29 2005-04-28 Kazuya Urata Surface treated doctor blade
US20050064215A1 (en) * 2003-08-12 2005-03-24 Sandvik Ab Metal strip product
US20070042204A1 (en) * 2003-08-12 2007-02-22 Sandvik Intellectual Property Ab Metal strip product
US7244340B2 (en) * 2003-09-08 2007-07-17 Btg Eclepens S.A. Creping blade
US20050051292A1 (en) * 2003-09-08 2005-03-10 Btg Eclepens S.A. Creping blade
US20070158045A1 (en) * 2003-12-19 2007-07-12 Maria Sundqvist Edge-provided tool and method for the manufacture thereof
US20060162881A1 (en) * 2005-01-27 2006-07-27 The Procter & Gamble Company Creping blade and method of creping
US7431801B2 (en) * 2005-01-27 2008-10-07 The Procter & Gamble Company Creping blade
WO2006134209A1 (en) * 2005-06-14 2006-12-21 Ingmar Westerlund Consulting Oy Method and apparatus for making a wear-resistant coating on a blade for the treatment of a paper web, and blade for the treatment of a paper web
US20070017392A1 (en) * 2005-07-21 2007-01-25 C.B.G. Acciai S.R.L. Doctor blade coated with polymeric material and coating method
US7632560B2 (en) * 2005-07-21 2009-12-15 C.B.G. Acciai S.R.L. Doctor blade coated with polymeric material and coating method
US7691236B2 (en) * 2006-07-26 2010-04-06 The Procter + Gamble Company Creping blade with a highly smooth bevel surface
US20130071647A1 (en) * 2009-09-23 2013-03-21 Wolfgang Peter Mayr Spray powder for cermet-coating of doctor blades
US20130174779A1 (en) * 2009-09-23 2013-07-11 Hubert Bischof Blade coating
US20130014656A1 (en) * 2010-01-20 2013-01-17 Daetwyler Swisstec Ag Doctor blade
DE102010062901A1 (de) * 2010-12-13 2012-06-14 Voith Patent Gmbh Imprägnierte Klingenbeschichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210202434A1 (en) * 2018-08-30 2021-07-01 Siemens Aktiengesellschaft Method for Producing Conductive Tracks, and Electronic Module
EP4137304A1 (de) * 2021-08-16 2023-02-22 Voith Patent GmbH Klinge und kreppanordnung
WO2023020793A1 (en) * 2021-08-16 2023-02-23 Voith Patent Gmbh Blade and creping arrangement

Also Published As

Publication number Publication date
DE102010062901A1 (de) 2012-06-14
EP2651632B1 (de) 2015-02-25
CN103347688A (zh) 2013-10-09
EP2651632A1 (de) 2013-10-23
WO2012079923A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
US20130269897A1 (en) Impregnated blade coating
US9044777B2 (en) Blade coating
US8070915B2 (en) Static dewatering element for a web forming machine and a method for covering a static dewatering element designed for a web forming machine
CA2570040C (en) Planar elements for use in papermaking machines
JP2007045860A (ja) 湿式摩擦材の製造方法
CN112334286A (zh) 剃刀刀片涂层的变薄
CN101652409B (zh) 轴承构件和用于在纤维素上沉积添加剂特别是含氟聚合物的方法
EP1920112A1 (de) Vorrichtung und verfahren zur beschichtung
JPWO2007018144A1 (ja) ドクターブレード
US20140137361A1 (en) Dirt-repellent cleaning scraper
CA2219249C (en) Method and assembly for coating a moving web of paper or paperboard
JP2973547B2 (ja) プレスロール
US6609996B2 (en) Method for sealing of a coating on a roll
EP3074182A1 (de) Schleifmittelträger, schleifartikel umfassend den schleifmittelträger sowie deren herstellungsverfahren
CN108367565B (zh) 刮刀和用于制造刮刀的方法
RU2686497C2 (ru) Устройство для личной гигиены, имеющее скользящую поверхность
JPH04146290A (ja) 抄紙機用プレスロールの製造方法
CN102575429B (zh) 自处理的辊刮削装置
EP2729614A1 (de) Abzugskraftprofilierter trockenzylinder
DE102011078759A1 (de) Walze mit verschleissbeständiger antihaft-oberfläche
EP3707305B1 (de) Walze mit anti-adhaesiver oberschicht und verfahren zur ausbildung einer solchen
DE102015006672B4 (de) Imprägnierter Schleifmittelträger für feine Körnungen und daraus hergestellter Schleifartikel
TWI532897B (zh) A sheet suitable for a microwave oven, and a method for manufacturing a sheet suitable for a microwave oven
EP4297980A1 (de) Reibungskörper mit anisotroper wärmeleitfähigkeit
FI20185442A1 (en) Elongated member and method of forming a coating layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOITH PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANGERLER, JURGEN;ETSCHMAIER, ALEXANDER;REEL/FRAME:030866/0019

Effective date: 20130618

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION