US20130240536A1 - Fuel tank accessory and method for producing a fuel tank accessory - Google Patents

Fuel tank accessory and method for producing a fuel tank accessory Download PDF

Info

Publication number
US20130240536A1
US20130240536A1 US13/516,483 US201013516483A US2013240536A1 US 20130240536 A1 US20130240536 A1 US 20130240536A1 US 201013516483 A US201013516483 A US 201013516483A US 2013240536 A1 US2013240536 A1 US 2013240536A1
Authority
US
United States
Prior art keywords
fuel tank
plastic
accessory
fuel
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/516,483
Other languages
English (en)
Inventor
Reinhard Feichtinger
Simon Amesöder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to FEICHTINGER, REINHARD reassignment FEICHTINGER, REINHARD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMESODER, SIMON
Publication of US20130240536A1 publication Critical patent/US20130240536A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/04Tank inlets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making

Definitions

  • the invention relates to a fuel tank accessory, a fuel tank, in particular, a motor vehicle fuel tank, and to a method for producing a fuel tank accessory.
  • EP 1 108 653 A2 discloses a fuel tank with a container region composed of HDPE and an accessory composed of an immiscible blend of fuel-resistant plastic such as polyamide, HDPE, and a compatibilizer.
  • U.S. 2003/0124281 A1 also discloses an accessory. It has an injection-molded connection nipple made of a glass-filled polyamide that is attached to a coextruded film composed of a polyamide, a functionalized polyethylene, and a polyethylene of higher density. The element thus created is welded onto a single-layer or multilayer tank composed primarily of HDPE. This approach allows only a fluid- or vapor-conducting system with a joining zone composed of a coextruded multilayer laminate to be produced.
  • DE 195 35 413 C1 discloses a component that is composed of a tubular thermoplastic body that features a stepped annular body on one end and a retaining ridge on the opposite end. Opposite the inner diameter of the body, a circular ring with a projection is molded on, offset by the wall thickness of the body. In the stepped annular body, an intermediate layer is incorporated as an adhesion promoter. Below that, enclosing the ring with the projection, an annular body element is molded on. The annular body element, the intermediate layer, and the circular ring of the tubular body, in addition to the mechanical connection that is effected by the circular projection, are joined together by means of heat.
  • the plastic of the annular body element is cross-linked such that a chemical bond is created between the plastics of both parts by means of bridging the interface between the parts.
  • the tubular body is divided into an inner tubular body and an outer tubular body.
  • WO 2008/113821 A1 which the invention uses as a starting point as the closest prior art, discloses a fuel tank accessory that features a first region that is composed of a first plastic, and a second region, whereby the second region features a mixture of the first plastic and a second plastic, whereby the first and second regions are integrally bonded to one another. Due to the second region being composed of the mixture, an integral connection of the fuel tank accessory with an outer wall of the fuel tank is made possible, whereby the outer wall is composed of the second plastic.
  • the disadvantage here in particular is the technical time and effort required to produce such a fuel tank accessory, as this features two different regions composed of different plastics or plastics mixtures, which must be integrally bonded to one another before integral bonding with the fuel tank is possible.
  • the object of the invention is to create an improved fuel tank accessory and the method for its production, as well as a fuel tank system.
  • Embodiments of the invention have the particular advantage that the fuel tank accessory is cost-effective to produce and can be attached to a fuel tank in an operationally reliable manner.
  • fuel tank accessory here is understood to mean all components that are suitable for installation on a fuel tank, in particular spouts, valves, in particular tank venting valves, closing elements, or similar.
  • the first plastic is a fuel-resistant plastic.
  • fuel-resistant plastic refers to a plastic that does not swell, or swells only slightly, and that manifests little to no permeability to fuel or oil when it is exposed to fuel or oil over an extended period of time.
  • fuel-resistant plastic here means one that complies with the Lev II and PZEV standards with regard to emissions.
  • the first, fuel-resistant plastic can be, for example, polyamide (PA), in particular PA 12, or polyoxymethylene (POM).
  • PA polyamide
  • POM polyoxymethylene
  • the first plastic can also be another fuel-resistant thermoplastic or a fuel-resistant mixture of compatible plastics.
  • the second plastic is a non-fuel-resistant plastic.
  • non-fuel-resistant plastic is a plastic that swells or otherwise changes significantly in its dimensions or mechanical characteristics if it comes into contact with fuel for an extended period of time, and/or a plastic that is permeable to fuel or oil.
  • a second, non-fuel-resistant plastic can be polyethylene (PE) or polypropylene (PP).
  • the second plastic can also be another non-fuel-resistant thermoplastic or a mixture of compatible plastics that are not fuel-resistant.
  • the first and second plastics are inherently not miscible.
  • the mixture therefore contains a compatibilizer to make the first and second plastics miscible.
  • Embodiments of the invention are particularly advantageous in that they reduce the costs of a fuel tank accessory.
  • the first fuel-resistant plastic is significantly more expensive than the second, non-fuel-resistant plastic.
  • the first and second plastics are not miscible with one another and therefore normally no integral, impermeable bond can be produced between the two plastics, according to the prior art in general, such a fuel tank accessory consists mainly or entirely of the first plastic, which is correspondingly expensive.
  • those regions of the fuel tank accessory that are exposed to fuel during normal operation, that is, after the accessory is installed on a fuel tank and the fuel tank is filled with fuel, are produced from the first plastic; whereas one or more other regions that normally are not exposed to fuel, or not directly exposed, are produced from the mixture that features only a certain proportion of the first plastic, in order to enable the integral bonding with the first parts.
  • the present invention departs from this basic approach in that not merely a single region that is required for the integral bond with the fuel tank is produced from the mixture of the first and second plastics, but preferably the entire fuel tank accessory is produced from the mixture of the first and second plastics, such as through a 1-component injection molding process, an extrusion process or another molding process.
  • the fuel tank accessory can be produced through a 1-component plastic injection molding process, in which the plasticized mixture, consisting of the first and second plastics and the compatibilizer, is injected into a mold.
  • the fuel tank accessory nevertheless surprisingly achieves sufficient fuel-resistance, due to the first plastic present in the mixture. This makes it possible, on the one hand, for the invention to reduce the production-oriented expense of manufacturing the fuel tank accessory, as the quantity of material of the first plastic is economized due to being partially replaced by the second plastic, and on the other hand for the invention to, surprisingly, still achieve sufficient fuel resistance, even in long-term operation.
  • embodiments of the invention also have mechanical advantages:
  • the compatibilizer is a copolymer of the first and second plastics.
  • the use of such a compatibilizer has the particular advantage that there is no need for a further raw material beyond the first and second plastics to be brought into the mix.
  • Such a third material could namely be problematic in terms of its permeability and long-term durability.
  • the polymer is a “graft copolymer.”
  • graft copolymer means a copolymer that is produced as follows: to manufacture the graft copolymer, one of the first and second plastics is grafted such that the grafted plastic can then form covalent bonds with the other of the two plastics.
  • the grafting of the plastic is effected, for example, with a reactive moiety such as a maleic anhydride or an acetic acid moiety.
  • the copolymer then works similarly to an emulsifier in the mixture of the first and second plastics.
  • the copolymer is produced with the aid of an additional compatibilizer, which is added to a mixture of the first and second plastics in solid or liquid form, and which is at least partially consumed during the copolymerization.
  • the additional compatibilizer thereby reacts with the first as well as the second plastic.
  • the additional compatibilizer contains reactive isocyanate groups and/or oligomers with epoxy groups and/or (maleic acid) anhydride groups or oxazoline groups.
  • the proportion of the first plastic in the mixture is less than the proportion of the second plastic.
  • the portion of the first plastic can be a maximum of 35 wt. %, in particular between 20 and 30 wt. %.
  • the fuel tank accessory is designed at least in one first region for an integral bond with a second area, whereby the second region is located on an outer wall of the fuel tank.
  • the second region consists of the second plastic so that due to the presence of the second plastic in the mixture, the integral bond can be realized.
  • first and second regions are directly connected to one another.
  • the first region is enhanced such that it is fuel-resistant and simultaneously attachable. This attachment is an integral bond.
  • non-fuel-resistant plastic substantially reduces the cost of producing the fuel tank accessory. The higher the portion of non-fuel-resistant plastic is, the more cost-effective becomes the mixture used and therefore also the fuel tank accessory.
  • the mixture can contain at least
  • Approx. here means, for example, a range of +/ ⁇ 5% of the respective value given.
  • the first plastic can be a polyamide and the second plastic a polyethylene.
  • PA6, PA66, PA11, PA12, PA6-T i.e., the entire polyamide palette
  • the entire polyethylene palette can be used.
  • the compatibilizer can be a copolymer of the first and second plastics.
  • the copolymer can be a reactively produced copolymer.
  • the copolymer can also feature an additional compatibilizer.
  • the additives can be stamped metal filters, flame retardants, impact resistance modifiers, static inhibitors, conductivity additives, and similar.
  • the filler materials can be glass fibers, glass beads, mineral compounds, or similar.
  • the copolymer annular element can be located on the tubular body element at a distance from the tube outlet of the tubular body element. This will keep the fuel away from the welded joint.
  • An inner diameter of the tubular body element can be larger than a diameter of the opening of the container.
  • the tubular body element can feature at least one circular connecting rib.
  • the fuel tank accessory can perform a function as, for example, a spout, tank venting valve, closing element or similar.
  • a layer can be applied at least partially to at least one surface element of the copolymer-flange body, that is, to the second component.
  • This layer further strengthens the positive adhesive qualities.
  • the layer can therefore be applied to the complete surface element or only at certain points. Even a selectively applied layer ensures good adhesive qualities.
  • This layer can be approx. 0.001 ⁇ m to 100 ⁇ m thick.
  • the layer can be implemented, for example, by plasma coating, such as that known, for example, from DE 102 23 865 A1.
  • the plasma coating can be effected on a joining surface of the copolymer-flange body with a chemically active layer, whereby the layer can contain, for example, low-molecular-weight polymer fragments.
  • the copolymer-flange body can consist of approx. 10 to 85 wt. % of polyamide and approx. 85 to 10 wt. % of polyethylene as well as approx. 5 wt. % additives.
  • an identical proportion of polyamide to polyethylene is possible. How the proportions are divided up depends on the particular conditions of application. But it is also possible that the flange body can consist of layers having different mixture ratios.
  • a polyethylene flange body can consist of approx. 95 wt. % polyethylene and approx. 5 wt. % additives. These common additives can be stabilizers, lubricants, dyes, metal filters, metallic pigments, stamped metal filters, flame retardants, impact-resistance modifiers, static inhibitors, conductivity additives, and the like.
  • the inner diameter of the flange body can be greater than a diameter of the opening of the tank. This allows the connection area to be at least partially removed from the area of influence of the fuel and its vapors and thus counteract the swelling forces.
  • a first tubular body element can terminate in a connection unit at the end facing away from the tank.
  • the component can be used as a spout.
  • a second tubular body element can be closed with a cover element at the end facing away from the tank.
  • a cover element can be used as a closure element for non-required openings of the tank.
  • At least one connecting tubular element can be located below the cover element of the second tubular body element. This provides a housing for a tank venting valve into which a valve element can be inserted.
  • connection unit and/or the connecting tubular element can terminate in at least one circular connecting rib. This allows a hose to be connected.
  • the invention in another aspect, relates to a fuel tank, in particular a motor vehicle fuel tank such as a fuel tank for a passenger car.
  • the fuel tank has an opening and an outer wall that can consist of the second plastics material.
  • the fuel tank accessory is guided, for example, partially through the opening in the fuel tank and in its first region is integrally bonded with the outer wall of the fuel tank, for example, in that a joining surface of the first region is welded to the outer wall.
  • the welding of one or more fuel tank accessories according to the invention results in a fuel tank system.
  • the invention in another aspect relates to a method for producing a fuel tank accessory.
  • a joining surface of the first region is pretreated in order to increase the reactivity of the joining surface.
  • This can take place through a plasma treatment of the joining surface, for example with the aid of a plasma tip, such as that known from EP 0 986 939 B1.
  • the plasma treatment causes not only an increase in reactivity but also an improvement in compatibility, specifically by removing passivating layers that can adhere to the joining surface.
  • pre-treatment of the joining surface can be effected through plasma coating, flame treatment, chemical etching or a mechanical pre-treatment. The increased reactivity due to such a pre-treatment of the joining surface is particularly advantageous for the realization of the integral bond between the first and second components.
  • the integral bond is generated through two-component or multi-component plastic injection molding.
  • the second component is initially created by injecting the mixture into a mold.
  • the mold is then opened in order to pre-treat a joining surface of the second component, for example, with a plasma treatment or a plasma coating.
  • the first component is produced and integrally bonded to the second component by injecting the first plastic into the mold.
  • Embodiments of the invention are particularly advantageous because the formation and joining together of the first and second components, that is, for example a tubular body element and a flange body, can be effected in a particularly cost-effective manner.
  • At least one surface element, specifically a joining surface, of the flange body can be coated with a plasma, after which the flange body with the plasma-treated surface element is connected in a fluid-tight manner with the annular body element.
  • the coating saves material while simultaneously increasing adhesion.
  • the layer can be created in two different ways:
  • a gas in a gas atmosphere can trigger a discharge, which extracts ions from the flange body, atomizes them and accelerates them a short distance; said ions can be focused as a jet onto the surface element.
  • the discharge can be triggered as gas from air or components of the air, or from a noble gas or a noble gas and its compositions.
  • the noble gas can be helium, neon, argon, krypton, xenon, radon and mixtures and/or compositions thereof.
  • gas can contain components that react in an open state with the surface element of the flange body and can form a second layer.
  • components of an organic type can react in air as gas.
  • components of an inorganic type can also react in air as gas.
  • a surface element of a flange body or the surface elements of a number of flange bodies can be treated. Because the treatment can take place in the open, that is, not in a vacuum, the costs are reduced on a lasting basis.
  • a body can first be formed from a thermoplastic material that can be at least partially coated with a polyamide body.
  • the high-cost material is applied to a cost-effective material in order to use predominantly its positive qualities.
  • thermoplastic material body can be formed from polyester, polyacetate, polyolefin, fluorothermoplastic, polyphenylene sulfide, or a less expensive polyamide that is less resistant to fuel.
  • the flange body can be welded with the tank. Whether spouts or a blank flange or a tank venting valve, all of these components can be tightly welded to the container in the same manner, over the openings at different places. This reduces costs for the final assembly.
  • FIG. 1 is a schematic sectional view that shows a component constructed as a spout attached to a tank;
  • FIG. 2 is a schematic sectional view that shows a component constructed as a tank venting valve attached to a tank;
  • FIG. 3 is a disassembled, sectional, partial schematic view that shows an embodiment of an attachment of a tubular body element of a spout according to FIG. 1 , or a tank venting valve according to FIG. 2 ;
  • FIG. 4 is a schematic illustration that shows embodiments of a first component and of a second component during a pre-treatment prior to integral bonding
  • FIG. 5 is a schematic illustration that shows embodiments of a fuel tank with a fuel tank accessory according to the invention.
  • Fuel tanks are becoming more complex in their shape in order to provide the maximum possible volumetric capacity in cramped spaces.
  • the shape can vary greatly, depending on vehicle type.
  • Fuel tank accessories such as spouts or valves are therefore prefabricated individually in a separate process, and only attached to the tank during final assembly.
  • the tanks are generally composed of multiple layers, of which the outer wall 41 is made of polyethylene.
  • FIG. 1 shows a spout which features
  • annular body element 12 with a thickness D can be extended.
  • the annular body element 12 is located above an opening 5 of tank 4 .
  • annular body element 12 of tubular body element 11 is at a distance a to the tubular outlet opening 18 , distance a being greater than thickness D of the flange-body-shaped extension.
  • tubular body element 11 extends into opening 5 of container 4 .
  • an outer diameter dR of tubular body element 11 is approximately the same size as an inner diameter dB of the opening, but smaller than an inner diameter dF of a flange-body-shaped extension 36 of annular body element 12 (see also 3 ).
  • a connection unit with a circular retaining ridge 13 is located at the opposite end of tubular body element 11 .
  • a valve element shown in FIG. 2 features
  • the flange-body-shaped extension 36 of annular flange body 3 with thickness D is also molded on below annular body element 22 .
  • Annular body element 22 is located above opening 5 of tank 4 .
  • annular body element 22 of tubular body element 21 also has a distance a to its end which is significantly greater than thickness D of flange-body-shaped extension 36 .
  • tubular body element 21 extends far into opening 5 of tank 4 .
  • Tubular outlet openings 28 are located at the end of tubular body element 21 .
  • outer diameter dR of tubular body element 21 is approximately the same size as inner diameter dB of the opening, but smaller than inner diameter dF of the flange-body-shaped extension 36 (see also 3 ).
  • tubular body element 21 is closed with a cover element 24 .
  • Connecting tubular elements 25 and 26 with at least one circular retaining ridge 23 . 1 , 23 . 2 , 23 . 3 , 23 . 4 are located below the cover element on tubular body element 21 .
  • a valve element 27 is arranged in the housing thus prepared.
  • the task now is to attach a fuel tank accessory in the form of a spout 1 or a valve unit 2 with its annular body elements 12 , 22 , hereinafter referred to as component 12 , onto tank 4 above opening 5 .
  • FIG. 4 and FIG. 5 illustrate schematic embodiments of component 12 for fuel tank accessory 1 .
  • Component 12 consists primarily of a mixture 35 of a plastic A and a plastic B.
  • Plastic A is a fuel-resistant plastic such as polyamide, hereinafter referred to as PA, in particular PA12, POM, or another fuel-resistant thermoplastic.
  • Plastic B is a non-fuel-resistant plastic, which is immiscible with plastic A.
  • Plastic B is a polyethylene, hereinafter referred to as PE, in particular High Density PE (HDPE), polypropylene (PP), or another thermoplastic, immiscible plastic material.
  • PE high Density PE
  • PP polypropylene
  • the mixture contains a compatibilizer such as a copolymer of plastics A and B.
  • a compatibilizer such as a copolymer of plastics A and B.
  • the reactively generated copolymer is produced, for example, by providing the PE with a reactive moiety, e.g. with maleic anhydride or an acetic acid moiety, and the PE thus grafted then forms covalent bonds with the PA.
  • the reverse approach is also possible, in that the PA can also be grafted so that it then forms covalent bonds with the PE.
  • the reaction can also take place in one step, that is, plastics A and B combine with each other or by means of the sole compatibilizer in a single reaction step.
  • a joining surface 42 undergoes pre-treatment.
  • the pre-treatment is effected with a plasma 37 .
  • the plasma flows from a plasma nozzle 38 that is moved in the direction of arrow 38 along a joining surface 42 such that the entire joining surface 42 is coated and a plasma layer 43 is formed.
  • fuel tank 4 has an outer wall composed primarily of plastic B. Because mixture 35 , of which component 12 consists, also contains plastic B, an integral bond between the two components 1 and 4 is possible. In particular when, as mentioned, the proportion of plastic B in the mixture is greater than that of plastic A, pre-treatment of joining surface 42 can be omitted. Thus an untreated joining surface 42 is present.
  • Spout 1 according to FIG. 1 and tank venting valve 2 according to FIG. 2 are of similar design in the region of tubular body element 11 , 21 and annular body element 12 , 22 .
  • the annular body element thereby emerges here in a spout-like manner from the tubular body element.
  • the bottom surface element of the annular body element is essentially flat.
  • the outer transitions are rounded, while the inner wall continues through smoothly.
  • Tubular body element 11 , 21 and annular body element 12 , 22 are molded by means of injection molding from mixture 35 of PE and PA, with the reactively generated PEgPA copolymer as compatibilizer, preferably through one-component injection molding of the mixture.
  • Mixture 35 can feature additives such as lubricants, metallic pigments and the like, such as reinforcing agents, in particular glass fibers (see FIGS. 4 and 5 ).
  • the joining surface of the annular body element 12 , 22 can be constructed as
  • Treatment of joining surface 43 is effected by an activation, for example, plasma treatment or a plasma coating.
  • the thickness of the layer can be approx. 0.001 ⁇ m to 100 ⁇ m.
  • tubular body element 11 terminates in the circular retaining ridge 13 .
  • the opposite end 28 from the lower edge of the flange body element, is just long enough that it can extend just beyond the inner wall of tank 4 into the tank.
  • tubular body element 21 is closed with cover element 24 .
  • Connecting tubular elements 25 , 26 with retaining ridges 23 . 1 , . . . , 23 . 4 are molded onto the tubular body element 21 below the cover element.
  • the end of tubular body element 21 opposite cover element 24 is long enough that it can extend far into the tank and can accommodate valve element 27 in its interior.
  • Tubular outlet openings 28 are molded in so that the gases can flow unhindered into the valve element.
  • the plasma is a mixture of positive and negative charge carriers in relatively large concentration, neutral particles, and photons.
  • concentrations of positive ions and electrons are thereby large enough that the charges compensate each other at every point over time.
  • the plasma should be regarded as a separate state of aggregation.
  • a discharge is triggered in a gas atmosphere such as air and its components, or a noble gas atmosphere such as helium, neon, argon, krypton, xenon, radon and components thereof.
  • the ions are extracted from the plasma by the carrier, that is, by surface element 43 of the tubular body element 21 , i.e. the PE-PA mixture as the target, that is, coating material, which is thereby atomized.
  • surface element 43 of the tubular body element 21 i.e. the PE-PA mixture as the target, that is, coating material, which is thereby atomized.
  • a gas can also contain components that react in an open state to the surface element and form plasma layer 43 .
  • the components can be of organic or inorganic type.
  • Plasma layer 43 is thus applied within the thickness range already mentioned of approx. 0.001 ⁇ m to 100 ⁇ m.
  • spout 1 and tank venting valve 2 are welded onto opening 4 provided for them on tank 4 made of PE.
  • Flange body element 12 , 21 and outer wall 41 of tank 4 are attached to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
US13/516,483 2009-12-15 2010-12-02 Fuel tank accessory and method for producing a fuel tank accessory Abandoned US20130240536A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202009016927.8 2009-12-15
DE202009016927U DE202009016927U1 (de) 2009-12-15 2009-12-15 Kraftstoffanbauteil
PCT/EP2010/068729 WO2011082906A1 (de) 2009-12-15 2010-12-02 Kraftstoffanbauteil und verfahren zur herstellung eines kraftstofftankanbauteils

Publications (1)

Publication Number Publication Date
US20130240536A1 true US20130240536A1 (en) 2013-09-19

Family

ID=42134422

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/516,483 Abandoned US20130240536A1 (en) 2009-12-15 2010-12-02 Fuel tank accessory and method for producing a fuel tank accessory

Country Status (4)

Country Link
US (1) US20130240536A1 (de)
EP (1) EP2512857B1 (de)
DE (1) DE202009016927U1 (de)
WO (1) WO2011082906A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344895B2 (en) * 2014-07-25 2019-07-09 Ti Automotive Technology Center Gmbh Lead-through device for a wall
US20230258287A1 (en) * 2022-02-17 2023-08-17 Arctic Cat Inc. Multi-use fuel filler tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204648A1 (de) 2016-03-21 2017-09-21 Kautex Textron Gmbh & Co. Kg Betriebsflüssigkeitsbehälter mit Versteifungselement und Verfahren zum Herstellen eines Betriebsflüssigkeitsbehälters

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535413C1 (de) 1995-09-23 1996-10-02 Rasmussen Gmbh Rohrartiger Stutzen
DE29805999U1 (de) 1998-04-03 1998-06-25 Agrodyn Hochspannungstechnik G Vorrichtung zur Plasmabehandlung von Oberflächen
EP1108653B1 (de) 1999-03-04 2007-05-16 Kuraray Co., Ltd. Brennstofftank
DE10062997A1 (de) 2000-12-16 2002-07-18 Rasmussen Gmbh Rohrartiger Stutzen
DE10164408A1 (de) 2001-12-28 2003-07-17 Degussa Flüssigkeits- oder dampfführendes System mit einer Fügezone aus einem coextrudierten Mehrschichtverbund
JP3821224B2 (ja) * 2002-03-15 2006-09-13 日産自動車株式会社 燃料封入容器と溶着部品の溶着方法
DE10223865B4 (de) 2002-05-29 2007-08-16 Plasmatreat Gmbh Verfahren zur Plasmabeschichtung von Werkstücken
DE10241286B4 (de) * 2002-09-03 2004-07-22 Rasmussen Gmbh Bauteil zum Verbinden einer Fluidleitung mit einer Öffnung eines Kunststoff aufweisenden Behälters oder zum Verschließen der Öffnung
DE102004042847A1 (de) * 2004-09-04 2006-03-09 Rasmussen Gmbh Bauteil mit rohrförmigem Abschnitt
JP2006151365A (ja) 2004-10-26 2006-06-15 Tokai Rubber Ind Ltd 樹脂製燃料タンク用接合部品およびその製法
US20110056966A1 (en) 2007-03-21 2011-03-10 Reinhard Fuel Tank Attachment And Method For Producing A Fuel Tank Attachment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344895B2 (en) * 2014-07-25 2019-07-09 Ti Automotive Technology Center Gmbh Lead-through device for a wall
US20230258287A1 (en) * 2022-02-17 2023-08-17 Arctic Cat Inc. Multi-use fuel filler tube

Also Published As

Publication number Publication date
WO2011082906A1 (de) 2011-07-14
DE202009016927U1 (de) 2010-04-29
EP2512857B1 (de) 2013-11-06
EP2512857A1 (de) 2012-10-24

Similar Documents

Publication Publication Date Title
US7275556B2 (en) Low permeation weldable fuel tank assembly
US8617675B2 (en) Fuel tank attachment and method for producing a fuel tank attachment
US5798048A (en) Multilayer plastic fuel filter having antistatic properties
KR20030057406A (ko) 동시압출된 다층 복합체로부터 제조된 연결 영역을 갖는액체 또는 기체 전도 시스템
US20110056966A1 (en) Fuel Tank Attachment And Method For Producing A Fuel Tank Attachment
EP1814755B2 (de) Kunstadapter für einen krafttofftank
US20010050478A1 (en) Plastic molding having two or more layers and antistatic properties
US20130240536A1 (en) Fuel tank accessory and method for producing a fuel tank accessory
US20060099365A1 (en) Joint part for resin fuel tank and manufacturing method thereof
US7247036B2 (en) Fuel tank component with weldable connector
US20050194711A1 (en) Structure and method of insert mold
US20070181582A1 (en) System for fastening two components, method of fastening by means of this fastening system, and fuel system
CN107921863B (zh) 包括被紧固的构件的液体车辆储箱
US7955675B2 (en) Weld joint for fuel tank
JP2003509305A (ja) タンクの開口部を閉鎖する装置および方法
JP2002337558A (ja) タンク接合部品、リング状樹脂成形品の成形方法
WO2007042536A1 (en) Fuel tank filler pipe
WO2011073146A1 (de) Kraftstoffleitung und kraftstofftanksystem
JP3166495B2 (ja) 積層構造ホース
JP2002276882A (ja) 燃料タンクへの筒状体取付構造
US20040020533A1 (en) Low permeation weldable fuel tank valve
CN113525071A (zh) 车辆油箱和用于制造车辆油箱的方法
JP2008201365A (ja) 樹脂製燃料タンク用接合部品およびその製法

Legal Events

Date Code Title Description
AS Assignment

Owner name: FEICHTINGER, REINHARD, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMESODER, SIMON;REEL/FRAME:030939/0322

Effective date: 20121130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION