US20130236829A1 - Super low melt toner with core-shell toner particles - Google Patents
Super low melt toner with core-shell toner particles Download PDFInfo
- Publication number
- US20130236829A1 US20130236829A1 US13/413,251 US201213413251A US2013236829A1 US 20130236829 A1 US20130236829 A1 US 20130236829A1 US 201213413251 A US201213413251 A US 201213413251A US 2013236829 A1 US2013236829 A1 US 2013236829A1
- Authority
- US
- United States
- Prior art keywords
- toner
- toner particle
- shell
- weight
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 173
- 239000011258 core-shell material Substances 0.000 title description 3
- 229920006038 crystalline resin Polymers 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 63
- 229920006127 amorphous resin Polymers 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 7
- 239000000654 additive Substances 0.000 claims description 26
- 239000000839 emulsion Substances 0.000 claims description 20
- 238000004220 aggregation Methods 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 230000002776 aggregation Effects 0.000 claims description 17
- 239000003086 colorant Substances 0.000 claims description 16
- 230000004931 aggregating effect Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 68
- 229920005989 resin Polymers 0.000 description 65
- 239000011347 resin Substances 0.000 description 65
- -1 diacids Chemical class 0.000 description 58
- 239000001993 wax Substances 0.000 description 43
- 229920000728 polyester Polymers 0.000 description 24
- 230000008569 process Effects 0.000 description 23
- 229920001225 polyester resin Polymers 0.000 description 20
- 239000004645 polyester resin Substances 0.000 description 20
- 238000004581 coalescence Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 16
- 239000000049 pigment Substances 0.000 description 16
- 239000000523 sample Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229930185605 Bisphenol Natural products 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 150000005690 diesters Chemical class 0.000 description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000001143 conditioned effect Effects 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 229940116351 sebacate Drugs 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 239000004816 latex Substances 0.000 description 5
- 229920000126 latex Polymers 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 3
- 239000007771 core particle Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- VKWNTWQXVLKCSG-UHFFFAOYSA-N n-ethyl-1-[(4-phenyldiazenylphenyl)diazenyl]naphthalen-2-amine Chemical compound CCNC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 VKWNTWQXVLKCSG-UHFFFAOYSA-N 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- CKRJGDYKYQUNIM-UHFFFAOYSA-N 3-fluoro-2,2-dimethylpropanoic acid Chemical compound FCC(C)(C)C(O)=O CKRJGDYKYQUNIM-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- QFFVPLLCYGOFPU-UHFFFAOYSA-N barium chromate Chemical compound [Ba+2].[O-][Cr]([O-])(=O)=O QFFVPLLCYGOFPU-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- ZLFVRXUOSPRRKQ-UHFFFAOYSA-N chembl2138372 Chemical compound [O-][N+](=O)C1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 ZLFVRXUOSPRRKQ-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- WTXXSZUATXIAJO-OWBHPGMISA-N (Z)-14-methylpentadec-2-enoic acid Chemical compound CC(CCCCCCCCCC\C=C/C(=O)O)C WTXXSZUATXIAJO-OWBHPGMISA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- QYSGMOBJQRGWAP-UHFFFAOYSA-N 2,2,3-trimethylhexane-1,1-diol Chemical compound CCCC(C)C(C)(C)C(O)O QYSGMOBJQRGWAP-UHFFFAOYSA-N 0.000 description 1
- QPYKYDBKQYZEKG-UHFFFAOYSA-N 2,2-dimethylpropane-1,1-diol Chemical compound CC(C)(C)C(O)O QPYKYDBKQYZEKG-UHFFFAOYSA-N 0.000 description 1
- TXWSZJSDZKWQAU-UHFFFAOYSA-N 2,9-dimethyl-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=C(C)C=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1)C)N1)C1=C2 TXWSZJSDZKWQAU-UHFFFAOYSA-N 0.000 description 1
- PWVUXRBUUYZMKM-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCO PWVUXRBUUYZMKM-UHFFFAOYSA-N 0.000 description 1
- VZFCSNRINSYGTH-UHFFFAOYSA-N 2-(2-octadecanoyloxypropoxy)propyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)OCC(C)OC(=O)CCCCCCCCCCCCCCCCC VZFCSNRINSYGTH-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- BEWCNXNIQCLWHP-UHFFFAOYSA-N 2-(tert-butylamino)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCNC(C)(C)C BEWCNXNIQCLWHP-UHFFFAOYSA-N 0.000 description 1
- IAFBRPFISOTXSO-UHFFFAOYSA-N 2-[[2-chloro-4-[3-chloro-4-[[1-(2,4-dimethylanilino)-1,3-dioxobutan-2-yl]diazenyl]phenyl]phenyl]diazenyl]-n-(2,4-dimethylphenyl)-3-oxobutanamide Chemical compound C=1C=C(C)C=C(C)C=1NC(=O)C(C(=O)C)N=NC(C(=C1)Cl)=CC=C1C(C=C1Cl)=CC=C1N=NC(C(C)=O)C(=O)NC1=CC=C(C)C=C1C IAFBRPFISOTXSO-UHFFFAOYSA-N 0.000 description 1
- SVYHMICYJHWXIN-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethyl 2-methylprop-2-enoate Chemical compound CC(C)N(C(C)C)CCOC(=O)C(C)=C SVYHMICYJHWXIN-UHFFFAOYSA-N 0.000 description 1
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 1
- SVYFTMFOIYMVCO-UHFFFAOYSA-N 2-hydroxyiminobutanedioic acid Chemical compound ON=C(C(O)=O)CC(O)=O SVYFTMFOIYMVCO-UHFFFAOYSA-N 0.000 description 1
- FDVCQFAKOKLXGE-UHFFFAOYSA-N 216978-79-9 Chemical compound C1CC(C)(C)C2=CC(C=O)=CC3=C2N1CCC3(C)C FDVCQFAKOKLXGE-UHFFFAOYSA-N 0.000 description 1
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- BPTKLSBRRJFNHJ-UHFFFAOYSA-N 4-phenyldiazenylbenzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1N=NC1=CC=CC=C1 BPTKLSBRRJFNHJ-UHFFFAOYSA-N 0.000 description 1
- XCKGFJPFEHHHQA-UHFFFAOYSA-N 5-methyl-2-phenyl-4-phenyldiazenyl-4h-pyrazol-3-one Chemical compound CC1=NN(C=2C=CC=CC=2)C(=O)C1N=NC1=CC=CC=C1 XCKGFJPFEHHHQA-UHFFFAOYSA-N 0.000 description 1
- PBWGCNFJKNQDGV-UHFFFAOYSA-N 6-phenylimidazo[2,1-b][1,3]thiazol-5-amine Chemical compound N1=C2SC=CN2C(N)=C1C1=CC=CC=C1 PBWGCNFJKNQDGV-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- CFLUVFXTJIEQTE-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCC(O)COCC(O)COC(=O)CCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COCC(O)COC(=O)CCCCCCCCCCCCCCCCC CFLUVFXTJIEQTE-UHFFFAOYSA-N 0.000 description 1
- MJGOCJJXWQQEGJ-FRKPEAEDSA-N COC(C)COC1=CC=C(C(C)(C)C2=CC=C(OCC(C)OC(=O)/C=C/C(C)=O)C=C2)C=C1 Chemical compound COC(C)COC1=CC=C(C(C)(C)C2=CC=C(OCC(C)OC(=O)/C=C/C(C)=O)C=C2)C=C1 MJGOCJJXWQQEGJ-FRKPEAEDSA-N 0.000 description 1
- KYKJYMHUTDGTDW-OUKQBFOZSA-N COCCOC(=O)/C=C/C(=O)OCCOC(=O)CCCCCCCCCCC(=O)O Chemical compound COCCOC(=O)/C=C/C(=O)OCCOC(=O)CCCCCCCCCCC(=O)O KYKJYMHUTDGTDW-OUKQBFOZSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920005692 JONCRYL® Polymers 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- VPWFPZBFBFHIIL-UHFFFAOYSA-L Lithol Rubine Chemical compound OC=1C(=CC2=CC=CC=C2C1N=NC1=C(C=C(C=C1)C)S(=O)(=O)[O-])C(=O)[O-].[Na+].[Na+] VPWFPZBFBFHIIL-UHFFFAOYSA-L 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GWFGDXZQZYMSMJ-UHFFFAOYSA-N Octadecansaeure-heptadecylester Natural products CCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC GWFGDXZQZYMSMJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920000562 Poly(ethylene adipate) Polymers 0.000 description 1
- 229920002347 Polypropylene succinate Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 235000014220 Rhus chinensis Nutrition 0.000 description 1
- 240000003152 Rhus chinensis Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- FHNINJWBTRXEBC-UHFFFAOYSA-N Sudan III Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC(C=C1)=CC=C1N=NC1=CC=CC=C1 FHNINJWBTRXEBC-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- SMLXTTLNOGQHHB-UHFFFAOYSA-N [3-docosanoyloxy-2,2-bis(docosanoyloxymethyl)propyl] docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC SMLXTTLNOGQHHB-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- DYRDKSSFIWVSNM-UHFFFAOYSA-N acetoacetanilide Chemical class CC(=O)CC(=O)NC1=CC=CC=C1 DYRDKSSFIWVSNM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QLJCFNUYUJEXET-UHFFFAOYSA-K aluminum;trinitrite Chemical compound [Al+3].[O-]N=O.[O-]N=O.[O-]N=O QLJCFNUYUJEXET-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940077484 ammonium bromide Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000001000 anthraquinone dye Chemical class 0.000 description 1
- YYGRIGYJXSQDQB-UHFFFAOYSA-N anthrathrene Natural products C1=CC=CC2=CC=C3C4=CC5=CC=CC=C5C=C4C=CC3=C21 YYGRIGYJXSQDQB-UHFFFAOYSA-N 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940090958 behenyl behenate Drugs 0.000 description 1
- WMLFGKCFDKMAKB-UHFFFAOYSA-M benzyl-diethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](CC)(CC)CC1=CC=CC=C1 WMLFGKCFDKMAKB-UHFFFAOYSA-M 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- WIHMDCQAEONXND-UHFFFAOYSA-M butyl-hydroxy-oxotin Chemical compound CCCC[Sn](O)=O WIHMDCQAEONXND-UHFFFAOYSA-M 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- DRVWBEJJZZTIGJ-UHFFFAOYSA-N cerium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Ce+3].[Ce+3] DRVWBEJJZZTIGJ-UHFFFAOYSA-N 0.000 description 1
- JBTHDAVBDKKSRW-UHFFFAOYSA-N chembl1552233 Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 JBTHDAVBDKKSRW-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- XHRPOTDGOASDJS-UHFFFAOYSA-N cholesterol n-octadecanoate Natural products C12CCC3(C)C(C(C)CCCC(C)C)CCC3C2CC=C2C1(C)CCC(OC(=O)CCCCCCCCCCCCCCCCC)C2 XHRPOTDGOASDJS-UHFFFAOYSA-N 0.000 description 1
- XHRPOTDGOASDJS-XNTGVSEISA-N cholesteryl stearate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)CCCCCCCCCCCCCCCCC)C1 XHRPOTDGOASDJS-XNTGVSEISA-N 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- VVOLVFOSOPJKED-UHFFFAOYSA-N copper phthalocyanine Chemical compound [Cu].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 VVOLVFOSOPJKED-UHFFFAOYSA-N 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- JLVWYWVLMFVCDI-UHFFFAOYSA-N diethyl benzene-1,3-dicarboxylate Chemical compound CCOC(=O)C1=CC=CC(C(=O)OCC)=C1 JLVWYWVLMFVCDI-UHFFFAOYSA-N 0.000 description 1
- ONIHPYYWNBVMID-UHFFFAOYSA-N diethyl benzene-1,4-dicarboxylate Chemical compound CCOC(=O)C1=CC=C(C(=O)OCC)C=C1 ONIHPYYWNBVMID-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- HZKZKJNBPVNYJN-UHFFFAOYSA-N dimethyl 2-dodecylbutanedioate Chemical compound CCCCCCCCCCCCC(C(=O)OC)CC(=O)OC HZKZKJNBPVNYJN-UHFFFAOYSA-N 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- FPDLLPXYRWELCU-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC FPDLLPXYRWELCU-UHFFFAOYSA-M 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 229940113120 dipropylene glycol Drugs 0.000 description 1
- FDENMIUNZYEPDD-UHFFFAOYSA-L disodium [2-[4-(10-methylundecyl)-2-sulfonatooxyphenoxy]phenyl] sulfate Chemical compound [Na+].[Na+].CC(C)CCCCCCCCCc1ccc(Oc2ccccc2OS([O-])(=O)=O)c(OS([O-])(=O)=O)c1 FDENMIUNZYEPDD-UHFFFAOYSA-L 0.000 description 1
- SMQZZQFYHUDLSJ-UHFFFAOYSA-L disodium;1-dodecylnaphthalene;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.C1=CC=C2C(CCCCCCCCCCCC)=CC=CC2=C1 SMQZZQFYHUDLSJ-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GTZOYNFRVVHLDZ-UHFFFAOYSA-N dodecane-1,1-diol Chemical compound CCCCCCCCCCCC(O)O GTZOYNFRVVHLDZ-UHFFFAOYSA-N 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- MHIBEGOZTWERHF-UHFFFAOYSA-N heptane-1,1-diol Chemical compound CCCCCCC(O)O MHIBEGOZTWERHF-UHFFFAOYSA-N 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- WNWZKKBGFYKSGA-UHFFFAOYSA-N n-(4-chloro-2,5-dimethoxyphenyl)-2-[[2,5-dimethoxy-4-(phenylsulfamoyl)phenyl]diazenyl]-3-oxobutanamide Chemical compound C1=C(Cl)C(OC)=CC(NC(=O)C(N=NC=2C(=CC(=C(OC)C=2)S(=O)(=O)NC=2C=CC=CC=2)OC)C(C)=O)=C1OC WNWZKKBGFYKSGA-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- NKBWPOSQERPBFI-UHFFFAOYSA-N octadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCCCC NKBWPOSQERPBFI-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 150000004028 organic sulfates Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000012851 printed packaging material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 229940099373 sudan iii Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- AISMNBXOJRHCIA-UHFFFAOYSA-N trimethylazanium;bromide Chemical class Br.CN(C)C AISMNBXOJRHCIA-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000001043 yellow dye Substances 0.000 description 1
- 239000001052 yellow pigment Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 229960001939 zinc chloride Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0819—Developers with toner particles characterised by the dimensions of the particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/14—Transferring a pattern to a second base
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0827—Developers with toner particles characterised by their shape, e.g. degree of sphericity
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/093—Encapsulated toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/093—Encapsulated toner particles
- G03G9/09307—Encapsulated toner particles specified by the shell material
- G03G9/09314—Macromolecular compounds
- G03G9/09328—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/093—Encapsulated toner particles
- G03G9/0935—Encapsulated toner particles specified by the core material
- G03G9/09357—Macromolecular compounds
- G03G9/09371—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/093—Encapsulated toner particles
- G03G9/09392—Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/10—Printing inks based on artificial resins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0825—Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
Definitions
- U.S. patent application Ser. No. 12/559,876 filed on Sep. 15, 2009 discloses a toner comprising a core including at least a first amorphous resin, optionally in combination with at least one crystalline resin, an optional colorant, and an optional wax; and a shell over at least a portion of the core including at least a second amorphous resin, wherein the second amorphous resin included in the shell is present in an amount of from about 30 percent to about 40 percent by weight of the toner, and wherein the first amorphous resin and the second amorphous resin may be the same or different.
- This disclosure is generally directed to toner processes, and more specifically, emulsion aggregation and coalescence processes, as well as toner compositions formed by such processes and development processes using such toners.
- Emulsion aggregation/coalescence processes for the preparation of toners are well known.
- toner images may be applied to substrates.
- the toners may then be fused to the substrate by heating the toner with a contact fuser or a non-contact fuser, wherein the transferred heat melts the toner mixture onto the substrate.
- Addition of crystalline resin to a toner otherwise containing only amorphous resins leads to sharper toner melting and generally lower fusing temperatures. Therefore, toners containing both amorphous and crystalline resins provide energy-efficient printing by allowing low fuser power consumption in comparison to toners comprising exclusively amorphous resins. According to convention, it was thought that the plasticization effect of the crystalline resin occurs only when the crystalline resin is incorporated into the amorphous resin during fusing.
- Toner particles comprising a crystalline resin typically comprise from about 5 to 20% crystalline resin. Further increasing the content of crystalline resin generally provides a correspondingly lower fusing temperature. However, increasing the amount of crystalline resin may result in lower charge maintainability and RH sensitivity. In fact, poor charge maintainability and/or toner charge, especially in humid environments, may be observed in the toner particles comprising more than about 15% crystalline resin because of the low resistivity of the crystalline resin within the toner particles. Thus, decreasing the MFT for toner particles by further increasing the amount of crystalline resin therein may cause the toner particles to exhibit a sharp decrease in charge maintainability and/or toner charge.
- the crystalline resin may migrate into the shell or to the surface of the toner particles if the crystalline resin content is increased. Additionally, during coalescence of the toner particles, the crystalline component may diffuse or compatibilize with the shell resin. Thus, the toner particles having a core-shell structure may still have a surface that includes crystalline resin. As a result, the low resistivity of the crystalline resin that may be present in the shell or at the surface of the toner particles may cause the toner particles to continue to exhibit poor charge maintainability and/or charge, as detailed above.
- the present disclosure provides a toner particle comprising a shell and a core.
- the core may comprise a crystalline resin in an amount of from about 10% to about 35% by weight of the toner particle.
- the shell may be present in an amount from about 45% to about 70% by weight of the toner particle.
- the present disclosure also provides a method of forming an image using the above toner particles.
- FIG. 1 shows plots of print crease area vs. fusing temperature for the toners described in the Examples.
- FIG. 2 shows plots of gloss vs. fusing temperature for the toners described in the Examples.
- the present disclosure provides a toner particle comprising a core and a shell, wherein the core comprises a crystalline resin and optionally an amorphous resin, and the shell comprises an amorphous resin.
- the amount of crystalline resin included in the core is increased as compared to a conventional toner to provide a lower fusing temperature than conventional toners.
- the shell thickness is increased to keep the increased amount of crystalline resin from reaching the surface of the toner particle.
- the shell, or at least the outer surface of the shell, of the toner particles may be substantially to completely free of crystalline resin, and may encapsulate the core. In other words, the crystalline resin remains substantially to completely in the core of the toner particle.
- the present disclosure also provides a method for making the toner particle, including providing toner particles having a core that comprises crystalline resin and optionally an amorphous resin, and having a shell that comprises amorphous resin, wherein the shell of the particles encapsulates the core of the toner particle and may be substantially to completely free of the crystalline resin.
- the plasticization effect in the toner particle according to the present disclosure may occur even when the amorphous resin in the shell of the toner particle is completely free from crystalline resin.
- Processes of the present disclosure may include aggregating particles, such as particles containing crystalline and amorphous polymeric resins, such as polyesters, optionally a wax, and optionally a colorant, in the presence of a coagulant.
- particles such as particles containing crystalline and amorphous polymeric resins, such as polyesters, optionally a wax, and optionally a colorant, in the presence of a coagulant.
- the toner particles of the present disclosure may have a minimum fusing temperature for acceptable crease fix performance of from about 80° C. to about 140° C., or from about 100° C. to about 120° C., or from about 105° C. to about 115° C. Therefore, the minimum fusing temperature may be from about 10° C. to about 30° C. lower than control toners not prepared by the compositions and processes of the present disclosure.
- the toner particles of the present disclosure provide xerographic performance, such as charge maintenance, that is comparable to control toners.
- the toner particles of this disclosure have an increased loading of shell while exhibiting the desired fusing properties, low melt behavior, and charging.
- Toners of the present disclosure may include any resin suitable for use in forming a toner.
- Such resins may be made of any suitable monomer.
- Suitable monomers useful in forming the resin include, but are not limited to, acrylonitriles, diols, diacids, diamines, diesters, diisocyanates, combinations thereof, and the like. Any monomer employed may be selected depending upon the particular polymer to be utilized.
- the polymer utilized to form the resin may be a polyester resin.
- Suitable polyester resins include, for example, sulfonated, non-sulfonated, crystalline, amorphous, combinations thereof, and the like.
- the polyester resins may be linear, branched, combinations thereof, and the like.
- Polyester resins may include, in embodiments, those resins described in U.S. Pat. Nos. 6,593,049 and 6,756,176, the disclosures of each of which are hereby incorporated by reference in their entirety.
- Suitable resins may also include a mixture of an amorphous polyester resin and a crystalline polyester resin as described in U.S. Pat. No. 6,830,860, the disclosure of which is hereby incorporated by reference in its entirety.
- One, two, or more resins may be used in forming a toner.
- the resins may be in any suitable ratio (e.g., weight ratio) such as, for instance, from about 1% (first resin)/99% (second resin) to about 99% (first resin)/1% (second resin), in embodiments from about 10% (first resin)/90% (second resin) to about 90% (first resin)/10% (second resin).
- a suitable toner of the present disclosure may include one or more amorphous polyester resins and a crystalline polyester resin.
- the weight ratio of the resins may be from about 98% amorphous resins/2% crystalline resin, to about 70% amorphous resins/30% crystalline resin, in embodiments from about 90% amorphous resin/10% crystalline resin, to about 85% amorphous resin/25% crystalline resin.
- the resins may be formed by emulsion aggregation methods. Utilizing such methods, the resin may be present in a resin emulsion, which may then be combined with other components and additives to form a toner of the present disclosure.
- the resins may be present in an amount of from about 65 to about 95 percent by weight, or from about 70 to about 90 percent by weight, or from about 75 to about 85 percent by weight of the toner particles (that is, toner particles exclusive of external additives) on a solids basis.
- the ratio of crystalline resin to amorphous resin can be in the range from about 1:99 to about 40:60, such as from about 5:95 to about 35:65, such as from 10:90 to 30:70, such as from about 15:75 to about 30:70, such as from 20:80 to about 25:75, such as from about 25:75 to about 30:70.
- the crystalline resin may be a polyester resin formed by reacting a diol with a diacid or diester in the presence of an optional catalyst.
- suitable organic dials include aliphatic diols having from about 2 to about 36 carbon atoms, such as 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, ethylene glycol, combinations thereof, and the like.
- the aliphatic diol may be, for example, selected in an amount of from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, or from about 45 to about 53 mole percent of the resin
- organic diacids or diesters selected for the preparation of the crystalline resins include oxalic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, fumaric acid, maleic acid, dodecanedioic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, cyclohexane dicarboxylic acid, malonic acid and mesaconic acid, a diester or anhydride thereof, and combinations thereof.
- the organic diacid may be selected in an amount of, for example, from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, for example from about 45 to about 53 mole percent.
- crystalline resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, mixtures thereof, and the like.
- Specific crystalline resins may be polyester based, such as poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), poly(ethylene-succinate), polypropylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), poly(butylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-adipate), poly(decylene-sebacate), poly(decylene-
- the amount of crystalline resin included in the core of the toner particle may be from about 10% to about 35% by weight of the toner particle, such as from about 12% to about 30%, or from about 15% to about 25% by weight of the toner particle.
- the crystalline resin can possess various melting points of, for example, from about 30° C. to about 120° C., in embodiments from about 50° C. to about 90° C.
- the crystalline resin may have a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC) of, for example, from about 1,000 to about 50,000, in embodiments from about 2,000 to about 25,000, and a weight average molecular weight (Mw) of, for example, from about 2,000 to about 100,000, in embodiments from about 3,000 to about 80,000, as determined by Gel Permeation Chromatography using polystyrene standards.
- Mn number average molecular weight
- Mw weight average molecular weight
- the molecular weight distribution (Mw/Mn) of the crystalline resin may be, for example, from about 2 to about 6, in embodiments from about 3 to about 4.
- Polycondensation catalysts that may be utilized for the crystalline polyesters include tetraalkyl titanates, dialkyltin oxides such as dibutyltin oxide, tetraalkyltins such as dibutyltin dilaurate, and dialkyltin oxide hydroxides such as butyltin oxide hydroxide, aluminum alkoxides, alkyl zinc, dialkyl zinc, zinc oxide, stannous oxide, or combinations thereof.
- Such catalysts may be utilized in amounts of, for example, from about 0.01 mole percent to about 5 mole percent based on the starting diacid or diester used to generate the polyester resin.
- Suitable crystalline resins include those disclosed in U.S. Patent Application Publication No. 2006/0222991, the disclosure of which is hereby incorporated by reference in its entirety.
- a suitable crystalline resin may be composed of ethylene glycol and a mixture of dodecanedioic acid and fumaric acid co-monomers with the following formula:
- b is from about 5 to about 2000, such as from about 7 to about 1750, in embodiments from about 10 to about 1500; and d is from about 5 to about 2000, such as from about 7 to about 1750, in embodiments from about 10 to about 1500.
- a suitable crystalline resin utilized in a toner of the present disclosure may have a weight average molecular weight of from about 10,000 to about 100,000, such as from about 12,000 to about 75,000, in embodiments from about 15,000 to about 30,000.
- the amorphous resin may likewise be a polyester resin formed by reacting a diol with a diacid or diester in the presence of an optional catalyst.
- Suitable catalysts include the above-described polycondensation catalysts.
- diacids or diesters selected for the preparation of amorphous polyesters include dicarboxylic acids or diesters such as terephthalic acid, phthalic acid, isophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, succinic acid, succinic anhydride, dodecylsuccinic acid, dodecylsuccinic anhydride, acid, dodecenylsuccinic anhydride, glutaric acid, glutaric anhydride, adipic acid, pimelic acid, suberic acid, azelaic acid, dodecanediacid, dimethyl terephthalate, diethyl terephthalate, dimethylisophthalate, diethylisophthalate, dimethylphthalate, phthalic anhydride, diethylphthalate, dimethylsuccinate, dimethylfumarate, dimethylmaleate, dimethylglutarate, dimethyladipate, dimethyl dodecyl
- diols utilized in generating the amorphous polyester include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, 2,2-dimethylpropanediol, 2,2,3-trimethylhexanediol, heptanediol, dodecanediol, bis(hydroxyethyl)-bisphenol A, bis(2-hydroxypropyl)-bisphenol A, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, xylenedimethanol, cyclohexanediol, diethylene glycol, bis(2-hydroxyethyl) oxide, dipropylene glycol, dibutylene, and combinations thereof.
- the amount of organic dial selected can vary, and may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.
- suitable amorphous resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, combinations thereof, and the like.
- amorphous resins which may be utilized include alkali sulfonated-polyester resins, branched alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, and branched alkali sulfonated-polyimide resins.
- Alkali sulfonated polyester resins may be useful in embodiments, such as the metal or alkali salts of copoly(ethylene-terephthalate)-copoly(ethylene-5-sulfo-isophthalate), copoly(propylene-terephthalate)-copoly(propylene-5-sulfo-isophthalate), copoly(diethylene-terephthalate)-copoly(diethylene-5-sulfo-isophthalate), copoly(propylene-diethylene-terephthalate)-copoly(propylene-diethylene-5-sulfoisophthalate), copoly(propylene-butylene-terephthalate)-copoly(propylene-butylene-5-sulfo-isophthalate), and copoly(propoxylated bisphenol-A-fumarate)-copoly(propoxylated bisphenol A-5-sulfo-isophthalate).
- an unsaturated, amorphous polyester resin may be utilized as a resin.
- resins include those disclosed in U.S. Pat. No. No. 6,063,827, the disclosure of which is hereby incorporated by reference in its entirety.
- Exemplary unsaturated amorphous polyester resins include, but are not limited to, poly(propoxylated bisphenol co-fumarate), poly(ethoxylated bisphenol co-fumarate), poly(butyloxylated bisphenol co-fumarate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-fumarate), poly(1,2-propylene fumarate), poly(propoxylated bisphenol co-maleate), poly(ethoxylated bisphenol co-maleate), poly(butyloxylated bisphenol co-maleate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-maleate), poly(1,2-propylene maleate), poly(propoxylated bisphenol co-it
- a suitable amorphous polyester resin may be a poly(propoxylated bisphenol A co-fumarate) resin having the following formula:
- m may be from about 5 to about 1000, such as from about 7 to about 750, in embodiments from about 10 to about 500.
- resins and processes for their production include those disclosed in U.S. Pat. No. 6,063,827, the disclosure of which is hereby incorporated by reference in its entirety.
- linear propoxylated bisphenol A fumarate resin which may be utilized as a resin is available under the trade name SPARII from Resana S/A Industrias Quimicas, Sao Paulo, Brazil.
- Other propoxylated bisphenol A fumarate resins that may be utilized and are commercially available include GTUF and FPESL-2 from Kao Corporation, Japan, XP777 from Reichhold, Research Triangle Park, N.C. and the like.
- a suitable amorphous resin utilized in a toner of the present disclosure may have a weight average molecular weight of from about 10,000 to about 100,000, such as from about 12,000 to about 75,000, in embodiments from about 15,000 to about 30,000.
- toner compositions may be utilized to form toner compositions.
- toner compositions may include optional colorants, waxes, and other additives.
- Toners may be formed utilizing any method within the purview of those skilled in the art including, but not limited to, emulsion aggregation methods.
- colorants, waxes, and other additives utilized to than toner compositions may be in dispersions including surfactants.
- toner particles may be formed by emulsion aggregation methods where the resin and other components of the toner are placed in one or more surfactants, an emulsion is formed, toner particles are aggregated, coalesced, optionally washed and dried, and recovered.
- the surfactants may be selected from ionic surfactants and nonionic surfactants.
- Anionic surfactants and cationic surfactants are encompassed by the term “ionic surfactants.”
- the surfactant may be utilized so that it is present in an amount of from about 0.01% to about 5% by weight of the toner composition, for example from about 0.75% to about 4% by weight of the toner composition, in embodiments from about 1% to about 3% by weight of the toner composition.
- nonionic surfactants examples include, for example, polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy) ethanol, available from Rhone-Poulenc as IGEPAL CA-210T′, IGEPAL CA-520TM, IGEPAL CA-720TM, IGEPAL CO-890TM, IGEPAL CO-720TM, IGEPAL CO-290TM, IGEPAL CA-210TM, ANTAROX 890TM, and ANTAROX 897TM.
- Anionic surfactants which may be utilized include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abitic acid available from Aldrich, NEOGEN RTM, NEOGEN SCTM obtained from Daiichi Kogyo Seiyaku, combinations thereof, and the like.
- SDS sodium dodecylsulfate
- sodium dodecylbenzene sulfonate sodium dodecylnaphthalene sulfate
- dialkyl benzenealkyl sulfates and sulfonates acids such as abitic acid available from Aldrich, NEOGEN RTM, NEOGEN SCTM obtained from Daiichi Kogyo Seiyaku, combinations thereof, and
- anionic surfactants include, in embodiments, DOWFAXTM 2A 1, an alkyldiphenyloxide disulfonate from The Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates. Combinations of these surfactants and any of the foregoing anionic surfactants may be utilized in embodiments.
- cationic surfactants which are usually positively charged, include, for example, alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C 12 , C 15 , C 17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOLTM and ALKAQUATTM, available from Alkaril Chemical Company, SANIZOLTM (benzalkonium chloride), available from Kao Chemicals, and the like, and mixtures thereof.
- alkylbenzyl dimethyl ammonium chloride dialkyl benzenealkyl ammonium chloride, lauryl trimethyl am
- colorant to be added various known suitable colorants, such as dyes, pigments, mixtures of dyes, mixtures of pigments, mixtures of dyes and pigments, and the like, may be included in the toner.
- the colorant may be included in the toner in an amount of, for example, about 0.1 to about 35 percent by weight of the toner, or from about 1 to about 15 weight percent of the toner, or from about 3 to about 10 percent by weight of the toner.
- colorants examples include carbon black like REGAL 330®; magnetites, such as Mobay magnetites MO8029TM, MO8060TM; Columbian magnetites; MAPICO BLACKSTM and surface treated magnetites; Pfizer magnetites CB4799TM, CB5300TM, CB5600TM, MCX6369TM; Bayer magnetites, BAYFERROX 8600TM, 8610TM; Northern Pigments magnetites, NP-604TM, NP608TM; Magnox magnetites TMB-100TM, or TMB-104TM; and the like.
- colored pigments there can be selected cyan, magenta, yellow, red, green, brown, blue or mixtures thereof. Generally, cyan, magenta, or yellow pigments or dyes, or mixtures thereof, are used.
- the pigment or pigments are generally used as water based pigment dispersions.
- pigments include SUNSPERSE 6000, FLEXIVERSE and AQUATONE water based pigment dispersions from SUN Chemicals, HELIOGEN BLUE L6900TM, D6840TM, D7080TM, D7020TM, PYLAM OIL BLUETM, PYLAM OIL YELLOWTM, PIGMENT BLUE 1TM available from Paul Uhlich & Company, Inc., PIGMENT VIOLET 1TM, PIGMENT RED 48TM, LEMON CHROME YELLOW DCC 1026TM, E.D.
- TOLUIDINE REDTM and BON RED CTM available from Dominion Color Corporation, Ltd., Toronto, Ontario, NOVAPERM YELLOW FGLTM, HOSTAPERM PINK ETM from Hoechst, and CINQUASIA MAGENTATM available from E.I. DuPont de Nemours & Company, and the like.
- colorants that can be selected are black, cyan, magenta, or yellow, and mixtures thereof.
- magentas examples include 2,9-dimethyl-substituted quinacridone and anthraquinone dye identified in the Color Index as CI-60710, CI Dispersed Red 15, diazo dye identified in the Color Index as CI-26050, CI Solvent Red 19, and the like.
- Illustrative examples of cyans include copper tetra(octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI-74160, CI Pigment Blue, Pigment Blue 15:3, and Anthrathrene Blue, identified in the Color Index as CI-69810, Special Blue X-2137, and the like.
- yellows are diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as CI-12700, CI Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, CI Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4′-chloro-2,5-dimethoxy acetoacetanilide, and Permanent Yellow FGL.
- Colored magnetites such as mixtures of MAPICO BLACKTM, and cyan components may also be selected as colorants.
- Colorants can be selected, such as Levanyl Black A-SF (Miles, Bayer) and Sunsperse Carbon Black LHD 9303 (Sun Chemicals), and colored dyes such as Neopen Blue (BASF), Sudan Blue OS (BASF), PV Fast Blue B2G01 (American Hoechst), Sunsperse Blue BHD 6000 (Sun Chemicals), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (Matheson, Coleman, Bell), Sudan II (Matheson, Coleman, Bell), Sudan IV (Matheson, Coleman, Bell), Sudan Orange G (Aldrich), Sudan Orange 220 (BASF), Paliogen Orange 3040 (BASF), Ortho Orange OR 2673 (Paul Uhlich), Paliogen Yellow 152, 1560 (BASF), Lithol Fast Yellow 0991K (BASF), Paliotol Yellow 1840 (BASF), Neopen Yellow (BASF), Novoperm Yellow FG 1 (Hoechst), Permanent Yellow
- Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), combinations of the foregoing, and the like.
- the toners of the present disclosure also optionally contain a wax, which can be either a single type of wax or a mixture of two or more different waxes.
- a single wax can be added to toner formulations, for example, to improve particular toner properties, such as toner particle shape, presence and amount of wax on the toner particle surface, charging and/or fusing characteristics, gloss, stripping, offset properties, and the like.
- a combination of waxes can be added to provide multiple properties to the toner composition.
- a wax may also be combined with the resins in forming toner particles.
- the wax may be present in an amount of, for example, from about 1 weight percent to about 25 weight percent of the toner particles, or from about 2 weight percent to about 25 weight percent, or from about 5 weight percent to about 20 weight percent of the toner particles.
- Waxes that may be selected include waxes having, for example, a weight average molecular weight of from about 500 to about 20,000, such as from about 700 to about 15,000, in embodiments from about 1,000 to about 10,000.
- Waxes that may be used include, for example, polyolefins such as polyethylene, polypropylene, and polybutene waxes such as commercially available from Allied Chemical and Petrolite Corporation, for example POLYWAXTM polyethylene waxes from Baker Petrolite, wax emulsions available from Michaelman, Inc. and the Daniels Products Company, EPOLENE N-15TM commercially available from Eastman Chemical Products, Inc., and VISCOL 550-PTM, a low weight average molecular weight polypropylene available from Sanyo Kasei K.
- plant-based waxes such as carnauba wax, rice wax, candelilla wax, sumacs wax, and jojoba oil
- animal-based waxes such as beeswax
- mineral-based waxes and petroleum-based waxes such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, and Fischer-Tropsch wax
- ester waxes obtained from higher fatty acid and higher alcohol such as stearyl stearate and behenyl behenate
- ester waxes obtained from higher fatty acid and monovalent or multivalent lower alcohol such as butyl stearate, propyl oleate, glyceride monostearate, glyceride distearate, and pentaerythritol tetra behenate
- ester waxes obtained from higher fatty acid and multivalent alcohol multimers such as diethyleneglycol monostearate, dipropyleneglycol distearate, digly
- Examples of functionalized waxes that may be used include, for example, amines, amides, for example AQUA SUPERSLIP 6550TM, SUPERSLIP 6530TM available from Micro Powder Inc., fluorinated waxes, for example POLYFLUO 190TM, POLYFLUO 200TM, POLYSILK 19TM, POLYSILK 14TM available from Micro Powder Inc., mixed fluorinated, amide waxes, for example MICROSPERSION 19TM also available from Micro Powder Inc., imides, esters, quaternary amities, carboxylic acids or acrylic polymer emulsion, for example JONCRYL 74TM, 89TM, 130TM, 537TM, and 538TM, all available from SC Johnson Wax, and chlorinated polypropylenes and polyethylenes available from Allied Chemical and Petrolite Corporation and SC Johnson wax. Mixtures and combinations of the foregoing waxes may also be used in embodiments. Waxes may be included as, for example, fuser roll release agents.
- the toner particles may be prepared by any method within the purview of one skilled in the art. Although embodiments relating to toner particle production are described below with respect to emulsion-aggregation processes, any suitable method of preparing toner particles may be used, including chemical processes, such as suspension and encapsulation processes disclosed in U.S. Pat. Nos. 5,290,654 and 5,302,486, the disclosures of each of which are hereby incorporated by reference in their entirety. In embodiments, toner compositions and toner particles may be prepared by aggregation and coalescence processes in which small-size resin particles are aggregated to the appropriate toner particle size and then coalesced to achieve the final toner-particle shape and morphology.
- toner compositions may be prepared by emulsion-aggregation processes, such as a process that includes aggregating a mixture of an optional wax and any other desired or required additives, and emulsions including the resins described above, optionally in surfactants as described above, and then coalescing the aggregate mixture.
- a mixture may be prepared by adding an optional wax or other materials, which may also be optionally in a dispersion(s) including a surfactant, to the emulsion, which may be a mixture of two or more emulsions containing the resins.
- the pH of the resulting mixture may be adjusted by an acid such as, for example, acetic acid, nitric acid or the like.
- the pH of the mixture may be adjusted to from about 2 to about 4.5. Additionally, in embodiments, the mixture may be homogenized. If the mixture is homogenized, homogenization may be accomplished by mixing at about 600 to about 4,000 revolutions per minute. Homogenization may be accomplished by any suitable means, including, for example, an IKA ULTRA TURRAX T50 probe homogenizer.
- an aggregating agent may be added to the mixture. Any suitable aggregating agent may be utilized to form a toner. Suitable aggregating agents include, for example, aqueous solutions of a divalent cation or a multivalent cation material.
- the aggregating agent may be, for example, polyaluminum halides such as polyaluminum chloride (PAC), or the corresponding bromide, fluoride, or iodide, polyaluminum silicates such as polyaluminum sulfosilicate (PASS), and water soluble metal salts including aluminum chloride, aluminum nitrite, aluminum sulfate, potassium aluminum sulfate, calcium acetate, calcium chloride, calcium nitrite, calcium oxylate, calcium sulfate, magnesium acetate, magnesium nitrate, magnesium sulfate, zinc acetate, zinc nitrate, zinc sulfate, zinc chloride, zinc bromide, magnesium bromide, copper chloride, copper sulfate, and combinations thereof.
- the aggregating agent may be added to the mixture at a temperature that is below the glass transition temperature (Tg) of the resin.
- the aggregating agent may be added to the mixture utilized to form a toner in an amount of, for example, from about 0.1% to about 8% by weight, in embodiments from about 0.2% to about 5% by weight, in other embodiments from about 0.5% to about 5% by weight, of the resin in the mixture, although the amounts can be outside of these ranges. This provides a sufficient amount of agent for aggregation.
- the gloss of a toner may be influenced by the amount of retained metal ion, such as Al 3+ , in the particle.
- the amount of retained metal ion may be further adjusted by the addition of materials such as EDTA.
- the amount of retained crosslinker, for example Al 3+ in toner particles of the present disclosure may be from about 0.1 pph to about 1 pph, in embodiments from about 0.25 pph to about 0.8 pph, in embodiments about 0.5 pph.
- the aggregating agent may be metered into the mixture over time.
- the agent may be metered into the mixture over a period of from about 5 to about 240 minutes, in embodiments from about 30 to about 200 minutes, although more or less time may be used as desired or required.
- the addition of the agent may also be done while the mixture is maintained under stirred conditions, in embodiments from about 50 rpm to about 1,000 rpm, in other embodiments from about 100 rpm to about 500 rpm, and at a temperature that is below the glass transition temperature of the resin as discussed above, in embodiments from about 30° C. to about 90° C., in embodiments from about 35° C. to about 70° C.
- the particles may be permitted to aggregate until a predetermined desired particle size is obtained.
- a predetermined desired size refers to the desired particle size to be obtained as determined prior to formation, and the particle size being monitored during the growth process until such particle size is reached. Samples may be taken during the growth process and analyzed, for example with a Coulter Counter, for average particle size.
- the aggregation thus may proceed by maintaining the elevated temperature, or slowly raising the temperature to, for example, from about 40° C. to about 100° C., and holding the mixture at this temperature for a time from about 0.5 hours to about 6 hours, in embodiments from about hour to about 5 hours, while maintaining stirring, to provide the aggregated particles.
- the predetermined desired particle size is within the toner particle size ranges mentioned above.
- the growth and shaping of the particles following addition of the aggregation agent may be accomplished under any suitable conditions.
- the growth and shaping may be conducted under conditions in which aggregation occurs separate from coalescence.
- the aggregation process may be conducted under shearing conditions at an elevated temperature, for example of from about 40° C. to about 90° C., in embodiments from about 45° C. to about 80° C., which may be below the glass transition temperature of the resin as discussed above.
- a shell is applied to the formed aggregated toner particles.
- Any amorphous resin described above as suitable for the core resin may be utilized as the shell resin.
- the shell resin may be applied to the aggregated particles by any method within the purview of those skilled in the art.
- the shell resin may be in an emulsion including any surfactant described above.
- the aggregated particles described above may be combined with the emulsion so that the resin forms a shell over the formed aggregates.
- an amorphous polyester may be utilized to form a shell over the aggregates to form toner particles having a core-shell configuration.
- the core may comprise a crystalline resin.
- the shell may comprise an amorphous resin that is substantially to completely free of crystalline resin.
- the shell resin may be thick so as to prevent the increased loading of the crystalline resin from reaching the surface of the toner particle.
- the shell resin may be present in an amount of from about 20 percent to about 70 percent by weight of the toner particles, in embodiments from about 30 percent to about 70 percent by weight of the toner particles, such as from about 45 percent to about 70 percent by weight of the toner particles, such as from about 50 percent to about 65 percent by weight of the toner particles, or from about 55 to about 60 percent by weight of the toner particles.
- the toner particle may exhibit a resistivity of about at least 1 ⁇ 10′′ ohm-cm to about 1 ⁇ 10 14 ohm-cm.
- Emulsions of the present disclosure including the resins described above and optional additives may possess particles having a size of from about 100 nm to about 260 nm, in embodiments from about 105 nm to about 155 nm, in some embodiments about 110 nm.
- Emulsions including these resins may have a solids loading of from about 10% solids by weight to about 50% solids by weight, in embodiments from about 15% solids by weight to about 40% solids by weight, in embodiments about 35% solids by weight.
- the pH of the mixture may be adjusted with a base to a value of from about 6 to about 10, and in embodiments from about 6.2 to about 8.
- the adjustment of the pH may be utilized to freeze, that is to stop, toner growth.
- the base utilized to stop toner growth may include any suitable base such as, for example, alkali metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, combinations thereof, and the like.
- a chelating agent may be added to help adjust the pH to the desired values noted above.
- the base may be added in amounts from about 2 to about 25 percent by weight of the mixture, in embodiments from about 4 to about 10 percent by weight of the mixture.
- the chelating agent may be, for example, ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyiminosuccinic acid, and the like.
- the particles may then be coalesced to the desired final shape, the coalescence being achieved by, for example, heating the mixture to a temperature of from about 55° C. to about 100° C., in embodiments from about 65° C. to about 85° C., in embodiments about 70° C., which may be below the melting point of the crystalline resin to prevent plasticization. Higher or lower temperatures may be used, it being understood that the temperature is a function of the resins used for the binder.
- Coalescence may proceed and be accomplished over a period of from about 0.1 to about 9 hours, in embodiments from about 0.5 to about 4 hours, although periods of time outside of these ranges can be used.
- the mixture may be cooled to room temperature, such as from about 20° C. to about 25° C.
- the cooling may be rapid or slow, as desired.
- a suitable cooling method may include introducing cold water to a jacket around the reactor. After cooling, the toner particles may be optionally washed with water, and then dried. Drying may be accomplished by any suitable method for drying including, for example, freeze-drying.
- the toner particles may also contain other optional additives, as desired or required.
- the toner may include positive or negative charge control agents, for example in an amount of from about 0.1 to about 10 percent by weight of the toner, in embodiments from about 1 to about 3 percent by weight of the toner.
- positive or negative charge control agents include quaternary ammonium compounds inclusive of alkyl pyridinium halides; bisulfates; alkyl pyridinium compounds, including those disclosed in U.S. Pat. No. 4,298,672, the disclosure of which is hereby incorporated by reference in its entirety; organic sulfate and sulfonate compositions, including those disclosed in U.S. Pat. No.
- additives can also be blended with the toner particles external additive particles including flow aid additives, which additives may be present on the surface of the toner particles.
- these additives include metal oxides such as titanium oxide, silicon oxide, tin oxide, mixtures thereof, and the like; colloidal and amorphous silicas, such as AEROSIL®, metal salts and metal salts of fatty acids inclusive of zinc stearate, aluminum oxides, cerium oxides, and mixtures thereof.
- Each of these external additives may be present in an amount of from about 0.1 percent by weight to about 5 percent by weight of the toner, in embodiments of from about 0.25 percent by weight to about 3 percent by weight of the toner, although amounts outside these ranges can be used.
- Suitable additives include those disclosed in U.S. Pat. Nos. 3,590,000, 3,800,588, and 6,214,507, the disclosures of each of which are hereby incorporated by reference in their entirety. Again, these additives may be applied simultaneously with a shell resin described above or after application
- the characteristics of the toner particles may be determined by any suitable technique and apparatus. Volume average particle diameter D 50v , GSDv, and GSDn may be measured by means of a measuring instrument such as a Beckman Coulter Multisizer 3, operated in accordance with the manufacturer's instructions. Representative sampling may occur as follows: a small amount of toner sample, about 1 gram, may be obtained and filtered through a 25 micrometer screen, then put in isotonic solution to obtain a concentration of about 10%, with the sample then run in a Beckman Coulter Multisizer 3. Toners produced in accordance with the present disclosure may possess excellent charging characteristics when exposed to extreme relative humidity (RH) conditions.
- RH relative humidity
- the low-humidity zone (C zone) may be about 10° C./15% RH, while the high humidity zone (A zone) may be about 28° C./85% RH.
- Toners of the present disclosure may also possess a parent toner charge per mass ratio (Q/M) of from about ⁇ 3 ⁇ C/g to about ⁇ 45 ⁇ C/g, in embodiments from about ⁇ 10 ⁇ C/g to about ⁇ 40 ⁇ C/g, and a final toner charging after surface additive blending of from ⁇ 10 ⁇ C/g to about ⁇ 45 ⁇ C/g.
- Q/M parent toner charge per mass ratio
- the gloss level of a toner of the present disclosure may have a gloss as measured by Gardner Gloss Units (ggu) of from about 20 ggu to about 100 ggu, in embodiments from about 50 ggu to about 95 ggu, in embodiments from about 60 ggu to about 90 ggu.
- Gardner Gloss Units ggu
- toners of the present disclosure may be utilized as low melt toners.
- the dry toner particles, exclusive of external surface additives may have the following characteristics:
- volume average diameter also referred to as “volume average particle diameter” of from about 2.5 to about 20 microns, in embodiments from about 2.75 to about 10 microns, in other embodiments from about 3 to about 9 microns.
- Circularity of from about 0.9 to about 1 (measured with, for example, a Sysmex FPIA 2100 analyzer), in embodiments form about 0.93 to about 0.99, in other embodiments from about 0.95 to about 0.98.
- Glass transition temperature of from about 45° C. to about 60° C.
- the toner particles can have a surface area, as measured by the well known BET method, of about 1.3 to about 6.5 m 2 /g.
- the BET surface area can be less than 2 m 2 /g, such as from about 1.4 to about 1.8 m 2 /g, and for magenta toner, from about 1.4 to about 6.3 m 2 /g.
- the toner particle possess separate crystalline polyester and wax melting points and amorphous polyester glass transition temperature as measured by DSC, and that the melting temperatures and glass transition temperature are not substantially depressed by plasticization of the amorphous or crystalline polyesters, or by any optional wax.
- the toner particles thus formed may be formulated into a developer composition.
- the toner particles may be mixed with carrier particles to achieve a two-component developer composition.
- the toner concentration in the developer may be from about 1% to about 25% by weight of the total weight of the developer, in embodiments from about 2% to about 15% by weight of the total weight of the developer.
- suitable carrier particles include granular zircon, granular silicon, glass, steel, nickel, ferrites, iron ferrites, silicon dioxide, and the like.
- Other carriers include those disclosed in U.S. Pat. Nos. 3,847,604, 4,937,166, and 4,935,326.
- the selected carrier particles can be used with or without a coating.
- the carrier particles may include a core with a coating thereover which may be formed from a mixture of polymers that are not in close proximity thereto in the triboelectric series.
- the coating may include fluoropolymers, such as polyvinylidene fluoride resins, terpolymers of styrene, methyl methacrylate, and/or silanes, such as triethoxy silane, tetrafluoroethylenes, other known coatings and the like.
- coatings containing polyvinylidenefluoride, available, for example, as KYNAR 301FTM, and/or polymethylmethacrylate, for example having a weight average molecular weight of about 300,000 to about 350,000, such as commercially available from Soken may be used.
- polyvinylidenefluoride and polymethylmethacrylate (PMMA) may be mixed in proportions of from about 30 to about 70 weight % to about 70 to about 30 weight %, in embodiments from about 40 to about 60 weight % to about 60 to about 40 weight %.
- the coating may have a coating weight of, for example, from about 0.1 to about 5% by weight of the carrier, in embodiments from about 0.5 to about 2% by weight of the carrier.
- PMMA may optionally be copolymerized with any desired comonomer, so long as the resulting copolymer retains a suitable particle size.
- Suitable comonomers can include monoalkyl, or dialkyl amines, such as a dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diisopropylaminoethyl methacrylate, or t-butylaminoethyl methacrylate, and the like.
- the carrier particles may be prepared by mixing the carrier core with polymer in an amount from about 0.05 to about 10 percent by weight, in embodiments from about 0.01 percent to about 3 percent by weight, based on the weight of the coated carrier particles, until adherence thereof to the carrier core by mechanical impaction and/or electrostatic attraction.
- Suitable means can be used to apply the polymer to the surface of the carrier core particles, for example, cascade roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, electrostatic curtain, combinations thereof, and the like.
- the mixture of carrier core particles and polymer may then be heated to enable the polymer to melt and fuse to the carrier core particles.
- the coated carrier particles may then be cooled and thereafter classified to a desired particle size.
- suitable carriers may include a steel core, for example of from about 25 to about 100 ⁇ m in size, in embodiments from about 50 to about 75 ⁇ m in size, coated with about 0.5% to about 10% by weight, in embodiments from about 0.7% to about 5% by weight of a conductive polymer mixture including, for example, methylacrylate and carbon black using the process described in U.S. Pat. Nos. 5,236,629 and 5,330,874.
- the carrier particles can be mixed with the toner particles in various suitable combinations.
- concentrations are may be from about 1% to about 20% by weight of the toner composition. However, different toner and carrier percentages may be used to achieve a developer composition with desired characteristics.
- the toners can be utilized for electrophotographic processes, including those disclosed in U.S. Pat. No. 4,295,990, the disclosure of which is hereby incorporated by reference in its entirety.
- any known type of image development system may be used in an image developing device, including, for example, magnetic brush development, jumping single-component development, hybrid scavengeless development (HSD), and the like. These and similar development systems are within the purview of those skilled in the art.
- Imaging processes include, for example, preparing an image with an electrophotographic device including a charging component, an imaging component, a photoconductive component, a developing component, a transfer component, and a fusing component.
- the development component may include a developer prepared by mixing a carrier with a toner composition described herein.
- the electrophotographic device may include a high speed printer, a black and white high speed printer, a color printer, and the like.
- the image may then be transferred to an image receiving medium such as paper and the like.
- the toners may be used in developing an image in an image-developing device utilizing a fuser roll member.
- Fuser roll members are contact fusing devices that are within the purview of those skilled in the art, in which heat and pressure from the roll may be used to fuse the toner to the image-receiving medium.
- the fuser member may be heated to a temperature above the fusing temperature of the toner, for example to temperatures of from about 70° C. to about 160° C., in embodiments from about 80° C. to about 150° C., in other embodiments from about 90° C. to about 140° C., after or during melting onto the image receiving substrate.
- the fusing of the toner image can be conducted by any conventional means, such as combined heat and pressure fusing such as by the use of heated pressure rollers.
- irradiation may also be utilized, for example, in the same fusing housing and/or step where conventional fusing is conducted, or it can be conducted in a separate irradiation fusing mechanism and/or step. In some embodiments, this irradiation step may provide non-contact fusing of the toner, so that conventional pressure fusing may not be required.
- the irradiation can be conducted in the same fusing housing and/or step where conventional fusing is conducted.
- the irradiation fusing can be conducted substantially simultaneously with conventional fusing, such as be locating an irradiation source immediately before or immediately after a heated pressure roll assembly. Desirably, such irradiation is located immediately after the heated pressure roll assembly, such that crosslinking occurs in the already fused image.
- the irradiation can be conducted in a separate fusing housing and/or step from a conventional fusing housing and/or step.
- the irradiation fusing can be conducted in a separate housing from the conventional such as heated pressure roll fusing. That is, the conventionally fused image can be transported to another development device, or another component within the same development device, to conduct the irradiation fusing.
- the irradiation fusing can be conducted as an optional step, for example to irradiation cure images that require improved high temperature document offset properties, but not to irradiation cure images that do not require such improved high temperature document offset properties.
- the conventional fusing step thus provides acceptable fixed image properties for moist applications, while the optional irradiation curing can be conducted for images that may be exposed to more rigorous or higher temperature environments.
- the toner image can be fused by irradiation and optional heat, without conventional pressure fusing.
- This may be referred to, in embodiments, as noncontact fusing.
- the irradiation fusing can be conducted by any suitable irradiation device, and under suitable parameters, to cause the desired degree of crosslinking of the unsaturated polymer.
- Suitable non-contact fusing methods are within the purview of those skilled in the art and include, in embodiments, flash fusing, radiant fusing, and/or steam fusing.
- non-contact fusing may occur by exposing the toner to infrared light at a wavelength of from about 800 to about 1000, in embodiments from about 800 to about 950, for a period of time of from 5 milliseconds to about 2 seconds, in embodiments from about 50 milliseconds to about 1 second.
- the image can be fused by irradiation such as by infrared light, in a heated environment such as from about 100 to about 250° C., such as from about 125 to about 225° C. or from about 150 or about 160 to about 180 or about 190° C.
- Exemplary apparatuses for producing these images may include, in embodiments, a heating device possessing heating elements, an optional contact fuser, a non-contact fuser such as a radiant fuser, an optional substrate pre-heater, an image bearing member pre-heater, and a transfuser.
- a heating device possessing heating elements an optional contact fuser, a non-contact fuser such as a radiant fuser, an optional substrate pre-heater, an image bearing member pre-heater, and a transfuser.
- Examples of such apparatus include those disclosed in U.S. Pat. No. 7,141,761, the disclosure of which is hereby incorporated by reference in its entirety.
- the resultant fused image is provided with non document offset properties, that is, the image does not exhibit document offset, at temperature up to about 90° C., such as up to about 85° C. or up to about 80° C.
- the resultant fused image also exhibits improved abrasion resistance and scratch resistance as compared to conventional fused toner images.
- Such improved abrasion and scratch resistance is beneficial, for example, for use in producing book covers, mailers, and other applications where abrasion and scratches would reduce the visual appearance of the item.
- Improved resistance to solvents is also provided, which is also beneficial for such uses as mailers, and the like. These properties are particularly helpful, for example, for images that must withstand higher temperature environments, such as automobile manuals that typically are exposed to high temperatures in glove compartments or printed packaging materials that must withstand heat sealing treatments.
- toners of the present disclosure may be used in any suitable procedure for forming an image with a toner, including in applications other than xerographic applications.
- room temperature refers to a temperature of from about 2° C. to about 30° C.
- Linear amorphous polyester latex (105 g), branched amorphous polyester latex (99 g), crystalline aliphatic polyester latex (29 g), deionized water (516 g), Dowfax 2A1 (2.6 g), Pigment Blue 15:3 dispersion (52 g), and 101 Wax D1509 dispersion (46 g) were combined and adjusted to pH 4.2 with dilute HNO 3 .
- the mixture was stirred under high-shear mixing from an IKA ULTRA TURRAX homogenizer and a mixture of 2.7 g aluminum sulfate solution (28%) and 72 g water was slowly added at room temperature. The resulting thick mixture was transferred to a heating mantle and stirred at 250-350 rpm while slowly heating to approximately 50° C.
- a shell mixture consisting of deionized water (56 g), linear amorphous polyester latex (58 g), branched amorphous polyester latex (55 g), and DOWFAX 2A1 (1.3 g) was added. The mixture was heated at 50° C. until a particle size of approximately 5.7 ⁇ m had been reached. A solution of 5.8 g DOW VERSENE 100 in 10 ml water was then added and the pH adjusted to 7.8 with dilute NaOH. Stirring was reduced to 180 rpm and the temperature slowly increased to 85° C. After 45 minutes at this temperature, the mixture was acidified by slow portionwise addition of 3M pH 5.7 sodium acetate buffer. When the particles had achieved the desired rounded appearance (by light microscope), heating was discontinued and the mixture was poured onto crushed ice.
- the cooled reaction mixture was passed through a metal sieve with a 25- ⁇ m pore opening, then filtered and re-suspended in deionized water three times.
- the washed toner particles were filtered and freeze-dried to yield parent toner particles with average size of 6.0 ⁇ m, GSDv 1.20, GSDn 1.25, and mean circularity of 0.975.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a final crystalline polyester content of 17%.
- the particles had an average size of 6.3 ⁇ m, GSDv 1.32, GSDn 1.26, and mean circularity of 0.973.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a shell content of 56%.
- the particles had an average size of 5.4 ⁇ m, GSDv 1.23, GSDn 1.26, and mean circularity of 0.958.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the final coalescence stage taking place at 70° C. rather than 85° C.
- the particles had an average size of 5.7 ⁇ m, GSDv 1.24, GSDn 1.29, and mean circularity of 0.968.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a shell content of 56%, and the final coalescence stage taking place at 70° C. rather than 85° C.
- the particles had average size (D50) 6.0 ⁇ m, GSDv 1.25, GSDn 1.23, and mean circularity (SYSMEX FPIA) 0.955.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a crystalline polyester content of 17% and a shell content of 56% and the final coalescence stage taking place at 70° C. rather than 85° C.
- the particles had an average size of 5.9 ⁇ m, GSDv 1.21, GSDn 1.23, and a mean circularity of 0.959.
- Comparative Example 1 The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a crystalline polyester content of 17% and a shell content of 56%.
- the particles had an average size 6.3 ⁇ m, GSDv 1.31, GSDn 1.25, and a mean circularity of 0.985.
- Additives were blended with the parent toner particles for charging assessment. 30-40 g of parent toner was weighed into the sample holder of the lab scale SK-M10 mill, Additives were weighed into the mill in parts per hundred parts of the parent particle weight. The toner was mixed in the mill for 30 seconds at 13.5 Krpm. After the mixing was complete the toner was sieved through a 45 ⁇ m sieve using sonic sieve shaker.
- Developer samples were prepared by weighing 0.5 g of additive toner onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle. Developer samples were prepared in duplicate as above for each toner being evaluated. One sample of the pair was conditioned in the A-zone environment of 28 C/85% RH, and the other was conditioned in the J-zone environment of 21 C/15% RH. The samples were kept in the respective environments over night to fully equilibrate. The following day the developers were charged by agitating the samples for 60 minutes in a Turbula mixer in their respective zone. The q/d charge on the toner particles was measured using a charge spectrograph. The toner charge was calculated as the midpoint of the toner charge trace from the CSG. Q/d is reported in millimeters of displacement from the zero line. The corresponding Q/m in uC/g was also measured for the sample.
- a developer sample was prepared by weighing 0.6 g of additive toner onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle.
- the developer was conditioned in an A-zone environment of 28° C./85% RH overnight to equilibrate fully. The following day the developer was charged by agitating the sample for 2 minutes in a Turbula mixer. The charge per unit mass of the sample was measured using a tribo blow-off. The sample was then returned to the A-zone chamber in an idle position. The charge per unit mass measurement was repeated again after 24 hours and 7 days. Charge maintenance was calculated from the 24-hour and 7-day charge as a percentage of the initial charge.
- a developer sample was prepared by weighing 0.8 g of parent particles onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle. Developer samples were prepared in duplicate as above for each toner being evaluated. One sample of the pair was conditioned in the A-zone environment of 28 C/85% RH, and the other was conditioned in the J-zone environment 21 C/15% RH. The samples were kept in the respective environments overnight to fully equilibrate. The following day the developers were charged by agitating the samples for 60 minutes in a Turbula mixer in their respective zone. The following day the developer was charged by agitating the sample for 10 minutes in a Turbula mixer. The q/d charge on the toner particles was measured using a charge spectrograph. Q/m in uC/g was also measured for the sample.
- the toners of Examples 1 and 2 showed A- and J-zone charging and RH ratio comparable to commercially available Xerox 700 controls and within the acceptable range. Charge maintenance was significantly improved over the toner of Comparative Example 2 and was comparable to commercially available Xerox 700 controls. In particular, the toner of Example 1 had slightly better charge maintenance than the Xerox 700 design control cyan toner.
- Comparative Example 3 Compared to the toner of Comparative Example 1, introducing a thick toner shell and/or lower coalescence temperature in Comparative Examples 3-5: 1) does not have a significant effect on crease fix, gloss mottle, hot offset, or fusing latitude; 2) results in a slight shift in gloss curve to higher temperatures; 3) has a small effect on xerographic charging, with lower 60 minute A-zone Q/d for toner with 56% shell and 70° C. coalescence; and 4) improves charge maintenance.
- Fusing performance of toners with CPE content of 17% and a thick toner shell, as in Examples 1-2, is limited by cold offset rather than crease fix, and yields an effective minimum fusing temperature of about 40° C. lower than the Comparative Examples.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Developing Agents For Electrophotography (AREA)
- Fixing For Electrophotography (AREA)
Abstract
Description
- U.S. patent application Ser. No. 12/559,876 filed on Sep. 15, 2009 discloses a toner comprising a core including at least a first amorphous resin, optionally in combination with at least one crystalline resin, an optional colorant, and an optional wax; and a shell over at least a portion of the core including at least a second amorphous resin, wherein the second amorphous resin included in the shell is present in an amount of from about 30 percent to about 40 percent by weight of the toner, and wherein the first amorphous resin and the second amorphous resin may be the same or different.
- This disclosure is generally directed to toner processes, and more specifically, emulsion aggregation and coalescence processes, as well as toner compositions formed by such processes and development processes using such toners.
- Emulsion aggregation/coalescence processes for the preparation of toners are well known.
- In a number of electrophotographic engines and processes, toner images may be applied to substrates. The toners may then be fused to the substrate by heating the toner with a contact fuser or a non-contact fuser, wherein the transferred heat melts the toner mixture onto the substrate. Addition of crystalline resin to a toner otherwise containing only amorphous resins leads to sharper toner melting and generally lower fusing temperatures. Therefore, toners containing both amorphous and crystalline resins provide energy-efficient printing by allowing low fuser power consumption in comparison to toners comprising exclusively amorphous resins. According to convention, it was thought that the plasticization effect of the crystalline resin occurs only when the crystalline resin is incorporated into the amorphous resin during fusing.
- Toner particles comprising a crystalline resin typically comprise from about 5 to 20% crystalline resin. Further increasing the content of crystalline resin generally provides a correspondingly lower fusing temperature. However, increasing the amount of crystalline resin may result in lower charge maintainability and RH sensitivity. In fact, poor charge maintainability and/or toner charge, especially in humid environments, may be observed in the toner particles comprising more than about 15% crystalline resin because of the low resistivity of the crystalline resin within the toner particles. Thus, decreasing the MFT for toner particles by further increasing the amount of crystalline resin therein may cause the toner particles to exhibit a sharp decrease in charge maintainability and/or toner charge.
- Even when a shell made from an amorphous resin is formed around a crystalline resin-containing core, a portion of the crystalline resin may migrate into the shell or to the surface of the toner particles if the crystalline resin content is increased. Additionally, during coalescence of the toner particles, the crystalline component may diffuse or compatibilize with the shell resin. Thus, the toner particles having a core-shell structure may still have a surface that includes crystalline resin. As a result, the low resistivity of the crystalline resin that may be present in the shell or at the surface of the toner particles may cause the toner particles to continue to exhibit poor charge maintainability and/or charge, as detailed above.
- Thus, a need exists for methods to incorporate a higher amount of crystalline resin into toner particles while avoiding problems associated with the inclusion of the large amounts of crystalline resin.
- The present disclosure provides a toner particle comprising a shell and a core. The core may comprise a crystalline resin in an amount of from about 10% to about 35% by weight of the toner particle. The shell may be present in an amount from about 45% to about 70% by weight of the toner particle. The present disclosure also provides a method of forming an image using the above toner particles.
-
FIG. 1 shows plots of print crease area vs. fusing temperature for the toners described in the Examples. -
FIG. 2 shows plots of gloss vs. fusing temperature for the toners described in the Examples. - The present disclosure provides a toner particle comprising a core and a shell, wherein the core comprises a crystalline resin and optionally an amorphous resin, and the shell comprises an amorphous resin. The amount of crystalline resin included in the core is increased as compared to a conventional toner to provide a lower fusing temperature than conventional toners. In addition, the shell thickness is increased to keep the increased amount of crystalline resin from reaching the surface of the toner particle. The shell, or at least the outer surface of the shell, of the toner particles may be substantially to completely free of crystalline resin, and may encapsulate the core. In other words, the crystalline resin remains substantially to completely in the core of the toner particle.
- The present disclosure also provides a method for making the toner particle, including providing toner particles having a core that comprises crystalline resin and optionally an amorphous resin, and having a shell that comprises amorphous resin, wherein the shell of the particles encapsulates the core of the toner particle and may be substantially to completely free of the crystalline resin. The plasticization effect in the toner particle according to the present disclosure may occur even when the amorphous resin in the shell of the toner particle is completely free from crystalline resin.
- Processes of the present disclosure may include aggregating particles, such as particles containing crystalline and amorphous polymeric resins, such as polyesters, optionally a wax, and optionally a colorant, in the presence of a coagulant.
- A number of advantages are associated with the toner obtained by the processes and toner compositions illustrated herein. For example, the toner particles of the present disclosure may have a minimum fusing temperature for acceptable crease fix performance of from about 80° C. to about 140° C., or from about 100° C. to about 120° C., or from about 105° C. to about 115° C. Therefore, the minimum fusing temperature may be from about 10° C. to about 30° C. lower than control toners not prepared by the compositions and processes of the present disclosure. In addition, the toner particles of the present disclosure provide xerographic performance, such as charge maintenance, that is comparable to control toners.
- Previous core/shell toner particles had limited shell content because of concerns about being able to incorporate the shell into toner without high fines. Also, it was thought that higher loadings of shell would diminish the fusing properties of the toner particle, in part because the crystalline resin would not provide low melt behavior to the extent that it was in the core. However, in embodiments, the toner particles of this disclosure have an increased loading of shell while exhibiting the desired fusing properties, low melt behavior, and charging.
- Toners of the present disclosure may include any resin suitable for use in forming a toner. Such resins, in turn, may be made of any suitable monomer. Suitable monomers useful in forming the resin include, but are not limited to, acrylonitriles, diols, diacids, diamines, diesters, diisocyanates, combinations thereof, and the like. Any monomer employed may be selected depending upon the particular polymer to be utilized.
- In embodiments, the polymer utilized to form the resin may be a polyester resin. Suitable polyester resins include, for example, sulfonated, non-sulfonated, crystalline, amorphous, combinations thereof, and the like. The polyester resins may be linear, branched, combinations thereof, and the like. Polyester resins may include, in embodiments, those resins described in U.S. Pat. Nos. 6,593,049 and 6,756,176, the disclosures of each of which are hereby incorporated by reference in their entirety. Suitable resins may also include a mixture of an amorphous polyester resin and a crystalline polyester resin as described in U.S. Pat. No. 6,830,860, the disclosure of which is hereby incorporated by reference in its entirety.
- One, two, or more resins may be used in forming a toner. In embodiments where two or more resins are used, the resins may be in any suitable ratio (e.g., weight ratio) such as, for instance, from about 1% (first resin)/99% (second resin) to about 99% (first resin)/1% (second resin), in embodiments from about 10% (first resin)/90% (second resin) to about 90% (first resin)/10% (second resin).
- In embodiments, a suitable toner of the present disclosure may include one or more amorphous polyester resins and a crystalline polyester resin. The weight ratio of the resins may be from about 98% amorphous resins/2% crystalline resin, to about 70% amorphous resins/30% crystalline resin, in embodiments from about 90% amorphous resin/10% crystalline resin, to about 85% amorphous resin/25% crystalline resin.
- The resins may be formed by emulsion aggregation methods. Utilizing such methods, the resin may be present in a resin emulsion, which may then be combined with other components and additives to form a toner of the present disclosure.
- The resins may be present in an amount of from about 65 to about 95 percent by weight, or from about 70 to about 90 percent by weight, or from about 75 to about 85 percent by weight of the toner particles (that is, toner particles exclusive of external additives) on a solids basis. The ratio of crystalline resin to amorphous resin can be in the range from about 1:99 to about 40:60, such as from about 5:95 to about 35:65, such as from 10:90 to 30:70, such as from about 15:75 to about 30:70, such as from 20:80 to about 25:75, such as from about 25:75 to about 30:70.
- The crystalline resin may be a polyester resin formed by reacting a diol with a diacid or diester in the presence of an optional catalyst. For forming a crystalline polyester, suitable organic dials include aliphatic diols having from about 2 to about 36 carbon atoms, such as 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, ethylene glycol, combinations thereof, and the like. The aliphatic diol may be, for example, selected in an amount of from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, or from about 45 to about 53 mole percent of the resin.
- Examples of organic diacids or diesters selected for the preparation of the crystalline resins include oxalic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, fumaric acid, maleic acid, dodecanedioic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, cyclohexane dicarboxylic acid, malonic acid and mesaconic acid, a diester or anhydride thereof, and combinations thereof. The organic diacid may be selected in an amount of, for example, from about 40 to about 60 mole percent, in embodiments from about 42 to about 55 mole percent, for example from about 45 to about 53 mole percent.
- Examples of crystalline resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, mixtures thereof, and the like. Specific crystalline resins may be polyester based, such as poly(ethylene-adipate), poly(propylene-adipate), poly(butylene-adipate), poly(pentylene-adipate), poly(hexylene-adipate), poly(octylene-adipate), poly(ethylene-succinate), polypropylene-succinate), poly(butylene-succinate), poly(pentylene-succinate), poly(hexylene-succinate), poly(octylene-succinate), poly(ethylene-sebacate), poly(propylene-sebacate), poly(butylene-sebacate), poly(pentylene-sebacate), poly(hexylene-sebacate), poly(octylene-sebacate), alkali copoly(5-sulfoisophthaloyl)-copoly(ethylene-adipate), poly(decylene-sebacate), poly(decylene-decanoate), poly-(ethylene-decanoate), poly-(ethylene-dodecanoate), poly(nonylene-sebacate), poly (nonylene-decanoate), poly(nonylene-dodecanoate) copoly(ethylene-fumarate)-copoly(ethylene-sebacate), copoly(ethylene-fumarate)-copoly(ethylene-decanoate), copoly(ethylene-fumarate)-copoly(ethylene-dodecanoate), and combinations thereof.
- The amount of crystalline resin included in the core of the toner particle may be from about 10% to about 35% by weight of the toner particle, such as from about 12% to about 30%, or from about 15% to about 25% by weight of the toner particle. The crystalline resin can possess various melting points of, for example, from about 30° C. to about 120° C., in embodiments from about 50° C. to about 90° C. The crystalline resin may have a number average molecular weight (Mn), as measured by gel permeation chromatography (GPC) of, for example, from about 1,000 to about 50,000, in embodiments from about 2,000 to about 25,000, and a weight average molecular weight (Mw) of, for example, from about 2,000 to about 100,000, in embodiments from about 3,000 to about 80,000, as determined by Gel Permeation Chromatography using polystyrene standards. The molecular weight distribution (Mw/Mn) of the crystalline resin may be, for example, from about 2 to about 6, in embodiments from about 3 to about 4.
- Polycondensation catalysts that may be utilized for the crystalline polyesters include tetraalkyl titanates, dialkyltin oxides such as dibutyltin oxide, tetraalkyltins such as dibutyltin dilaurate, and dialkyltin oxide hydroxides such as butyltin oxide hydroxide, aluminum alkoxides, alkyl zinc, dialkyl zinc, zinc oxide, stannous oxide, or combinations thereof. Such catalysts may be utilized in amounts of, for example, from about 0.01 mole percent to about 5 mole percent based on the starting diacid or diester used to generate the polyester resin.
- Suitable crystalline resins include those disclosed in U.S. Patent Application Publication No. 2006/0222991, the disclosure of which is hereby incorporated by reference in its entirety. In embodiments, a suitable crystalline resin may be composed of ethylene glycol and a mixture of dodecanedioic acid and fumaric acid co-monomers with the following formula:
- wherein b is from about 5 to about 2000, such as from about 7 to about 1750, in embodiments from about 10 to about 1500; and d is from about 5 to about 2000, such as from about 7 to about 1750, in embodiments from about 10 to about 1500.
- In embodiments, a suitable crystalline resin utilized in a toner of the present disclosure may have a weight average molecular weight of from about 10,000 to about 100,000, such as from about 12,000 to about 75,000, in embodiments from about 15,000 to about 30,000.
- The amorphous resin may likewise be a polyester resin formed by reacting a diol with a diacid or diester in the presence of an optional catalyst. Suitable catalysts include the above-described polycondensation catalysts.
- Examples of diacids or diesters selected for the preparation of amorphous polyesters include dicarboxylic acids or diesters such as terephthalic acid, phthalic acid, isophthalic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, succinic acid, succinic anhydride, dodecylsuccinic acid, dodecylsuccinic anhydride, acid, dodecenylsuccinic anhydride, glutaric acid, glutaric anhydride, adipic acid, pimelic acid, suberic acid, azelaic acid, dodecanediacid, dimethyl terephthalate, diethyl terephthalate, dimethylisophthalate, diethylisophthalate, dimethylphthalate, phthalic anhydride, diethylphthalate, dimethylsuccinate, dimethylfumarate, dimethylmaleate, dimethylglutarate, dimethyladipate, dimethyl dodecylsuccinate, and combinations thereof. The organic diacid or diester may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.
- Examples of diols utilized in generating the amorphous polyester include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, 2,2-dimethylpropanediol, 2,2,3-trimethylhexanediol, heptanediol, dodecanediol, bis(hydroxyethyl)-bisphenol A, bis(2-hydroxypropyl)-bisphenol A, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, xylenedimethanol, cyclohexanediol, diethylene glycol, bis(2-hydroxyethyl) oxide, dipropylene glycol, dibutylene, and combinations thereof. The amount of organic dial selected can vary, and may be present, for example, in an amount from about 40 to about 60 mole percent of the resin, in embodiments from about 42 to about 55 mole percent of the resin, in embodiments from about 45 to about 53 mole percent of the resin.
- In embodiments, suitable amorphous resins include polyesters, polyamides, polyimides, polyolefins, polyethylene, polybutylene, polyisobutyrate, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, combinations thereof, and the like. Examples of amorphous resins which may be utilized include alkali sulfonated-polyester resins, branched alkali sulfonated-polyester resins, alkali sulfonated-polyimide resins, and branched alkali sulfonated-polyimide resins. Alkali sulfonated polyester resins may be useful in embodiments, such as the metal or alkali salts of copoly(ethylene-terephthalate)-copoly(ethylene-5-sulfo-isophthalate), copoly(propylene-terephthalate)-copoly(propylene-5-sulfo-isophthalate), copoly(diethylene-terephthalate)-copoly(diethylene-5-sulfo-isophthalate), copoly(propylene-diethylene-terephthalate)-copoly(propylene-diethylene-5-sulfoisophthalate), copoly(propylene-butylene-terephthalate)-copoly(propylene-butylene-5-sulfo-isophthalate), and copoly(propoxylated bisphenol-A-fumarate)-copoly(propoxylated bisphenol A-5-sulfo-isophthalate).
- In embodiments, an unsaturated, amorphous polyester resin may be utilized as a resin. Examples of such resins include those disclosed in U.S. Pat. No. No. 6,063,827, the disclosure of which is hereby incorporated by reference in its entirety. Exemplary unsaturated amorphous polyester resins include, but are not limited to, poly(propoxylated bisphenol co-fumarate), poly(ethoxylated bisphenol co-fumarate), poly(butyloxylated bisphenol co-fumarate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-fumarate), poly(1,2-propylene fumarate), poly(propoxylated bisphenol co-maleate), poly(ethoxylated bisphenol co-maleate), poly(butyloxylated bisphenol co-maleate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-maleate), poly(1,2-propylene maleate), poly(propoxylated bisphenol co-itaconate), poly(ethoxylated bisphenol co-itaconate), poly(butyloxylated bisphenol co-itaconate), poly(co-propoxylated bisphenol co-ethoxylated bisphenol co-itaconate), poly(1,2-propylene itaconate), and combinations thereof. In embodiments, the amorphous resin utilized in the core may be linear.
- In embodiments, a suitable amorphous polyester resin may be a poly(propoxylated bisphenol A co-fumarate) resin having the following formula:
- wherein m may be from about 5 to about 1000, such as from about 7 to about 750, in embodiments from about 10 to about 500. Examples of such resins and processes for their production include those disclosed in U.S. Pat. No. 6,063,827, the disclosure of which is hereby incorporated by reference in its entirety.
- An example of a linear propoxylated bisphenol A fumarate resin which may be utilized as a resin is available under the trade name SPARII from Resana S/A Industrias Quimicas, Sao Paulo, Brazil. Other propoxylated bisphenol A fumarate resins that may be utilized and are commercially available include GTUF and FPESL-2 from Kao Corporation, Japan, XP777 from Reichhold, Research Triangle Park, N.C. and the like.
- In embodiments, a suitable amorphous resin utilized in a toner of the present disclosure may have a weight average molecular weight of from about 10,000 to about 100,000, such as from about 12,000 to about 75,000, in embodiments from about 15,000 to about 30,000.
- The resins of the resin emulsions described above, in embodiments an amorphous polyester resin and a crystalline polyester resin, may be utilized to form toner compositions. Such toner compositions may include optional colorants, waxes, and other additives. Toners may be formed utilizing any method within the purview of those skilled in the art including, but not limited to, emulsion aggregation methods.
- In embodiments, colorants, waxes, and other additives utilized to than toner compositions may be in dispersions including surfactants. Moreover, toner particles may be formed by emulsion aggregation methods where the resin and other components of the toner are placed in one or more surfactants, an emulsion is formed, toner particles are aggregated, coalesced, optionally washed and dried, and recovered.
- One, two, or more surfactants may be utilized. The surfactants may be selected from ionic surfactants and nonionic surfactants. Anionic surfactants and cationic surfactants are encompassed by the term “ionic surfactants.” In embodiments, the surfactant may be utilized so that it is present in an amount of from about 0.01% to about 5% by weight of the toner composition, for example from about 0.75% to about 4% by weight of the toner composition, in embodiments from about 1% to about 3% by weight of the toner composition.
- Examples of nonionic surfactants that can be utilized include, for example, polyacrylic acid, methalose, methyl cellulose, ethyl cellulose, propyl cellulose, hydroxy ethyl cellulose, carboxy methyl cellulose, polyoxyethylene cetyl ether, polyoxyethylene lauryl ether, polyoxyethylene octyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitan monolaurate, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, dialkylphenoxy poly(ethyleneoxy) ethanol, available from Rhone-Poulenc as IGEPAL CA-210T′, IGEPAL CA-520™, IGEPAL CA-720™, IGEPAL CO-890™, IGEPAL CO-720™, IGEPAL CO-290™, IGEPAL CA-210™, ANTAROX 890™, and ANTAROX 897™. Other examples of suitable nonionic surfactants include a block copolymer of polyethylene oxide and polypropylene oxide, including those commercially available as SYNPERONIC PE/F, in embodiments SYNPERONIC PE/F 108.
- Anionic surfactants which may be utilized include sulfates and sulfonates, sodium dodecylsulfate (SDS), sodium dodecylbenzene sulfonate, sodium dodecylnaphthalene sulfate, dialkyl benzenealkyl sulfates and sulfonates, acids such as abitic acid available from Aldrich, NEOGEN R™, NEOGEN SC™ obtained from Daiichi Kogyo Seiyaku, combinations thereof, and the like. Other suitable anionic surfactants include, in embodiments,
DOWFAX™ 2A 1, an alkyldiphenyloxide disulfonate from The Dow Chemical Company, and/or TAYCA POWER BN2060 from Tayca Corporation (Japan), which are branched sodium dodecyl benzene sulfonates. Combinations of these surfactants and any of the foregoing anionic surfactants may be utilized in embodiments. - Examples of the cationic surfactants, which are usually positively charged, include, for example, alkylbenzyl dimethyl ammonium chloride, dialkyl benzenealkyl ammonium chloride, lauryl trimethyl ammonium chloride, alkylbenzyl methyl ammonium chloride, alkyl benzyl dimethyl ammonium bromide, benzalkonium chloride, cetyl pyridinium bromide, C12, C15, C17 trimethyl ammonium bromides, halide salts of quaternized polyoxyethylalkylamines, dodecylbenzyl triethyl ammonium chloride, MIRAPOL™ and ALKAQUAT™, available from Alkaril Chemical Company, SANIZOL™ (benzalkonium chloride), available from Kao Chemicals, and the like, and mixtures thereof.
- As the colorant to be added, various known suitable colorants, such as dyes, pigments, mixtures of dyes, mixtures of pigments, mixtures of dyes and pigments, and the like, may be included in the toner. The colorant may be included in the toner in an amount of, for example, about 0.1 to about 35 percent by weight of the toner, or from about 1 to about 15 weight percent of the toner, or from about 3 to about 10 percent by weight of the toner.
- As examples of suitable colorants, mention may be made of carbon black like REGAL 330®; magnetites, such as Mobay magnetites MO8029™, MO8060™; Columbian magnetites; MAPICO BLACKS™ and surface treated magnetites; Pfizer magnetites CB4799™, CB5300™, CB5600™, MCX6369™; Bayer magnetites, BAYFERROX 8600™, 8610™; Northern Pigments magnetites, NP-604™, NP608™; Magnox magnetites TMB-100™, or TMB-104™; and the like. As colored pigments, there can be selected cyan, magenta, yellow, red, green, brown, blue or mixtures thereof. Generally, cyan, magenta, or yellow pigments or dyes, or mixtures thereof, are used. The pigment or pigments are generally used as water based pigment dispersions.
- Specific examples of pigments include SUNSPERSE 6000, FLEXIVERSE and AQUATONE water based pigment dispersions from SUN Chemicals, HELIOGEN BLUE L6900™, D6840™, D7080™, D7020™, PYLAM OIL BLUE™, PYLAM OIL YELLOW™,
PIGMENT BLUE 1™ available from Paul Uhlich & Company, Inc.,PIGMENT VIOLET 1™, PIGMENT RED 48™, LEMON CHROME YELLOW DCC 1026™, E.D. TOLUIDINE RED™ and BON RED C™ available from Dominion Color Corporation, Ltd., Toronto, Ontario, NOVAPERM YELLOW FGL™, HOSTAPERM PINK E™ from Hoechst, and CINQUASIA MAGENTA™ available from E.I. DuPont de Nemours & Company, and the like. Generally, colorants that can be selected are black, cyan, magenta, or yellow, and mixtures thereof. Examples of magentas are 2,9-dimethyl-substituted quinacridone and anthraquinone dye identified in the Color Index as CI-60710, CI Dispersed Red 15, diazo dye identified in the Color Index as CI-26050, CI Solvent Red 19, and the like. Illustrative examples of cyans include copper tetra(octadecyl sulfonamido) phthalocyanine, x-copper phthalocyanine pigment listed in the Color Index as CI-74160, CI Pigment Blue, Pigment Blue 15:3, and Anthrathrene Blue, identified in the Color Index as CI-69810, Special Blue X-2137, and the like. Illustrative examples of yellows are diarylide yellow 3,3-dichlorobenzidene acetoacetanilides, a monoazo pigment identified in the Color Index as CI-12700, CI Solvent Yellow 16, a nitrophenyl amine sulfonamide identified in the Color Index as Foron Yellow SE/GLN, CI Dispersed Yellow 33 2,5-dimethoxy-4-sulfonanilide phenylazo-4′-chloro-2,5-dimethoxy acetoacetanilide, and Permanent Yellow FGL. Colored magnetites, such as mixtures of MAPICO BLACK™, and cyan components may also be selected as colorants. Other known colorants can be selected, such as Levanyl Black A-SF (Miles, Bayer) and Sunsperse Carbon Black LHD 9303 (Sun Chemicals), and colored dyes such as Neopen Blue (BASF), Sudan Blue OS (BASF), PV Fast Blue B2G01 (American Hoechst), Sunsperse Blue BHD 6000 (Sun Chemicals), Irgalite Blue BCA (Ciba-Geigy), Paliogen Blue 6470 (BASF), Sudan III (Matheson, Coleman, Bell), Sudan II (Matheson, Coleman, Bell), Sudan IV (Matheson, Coleman, Bell), Sudan Orange G (Aldrich), Sudan Orange 220 (BASF), Paliogen Orange 3040 (BASF), Ortho Orange OR 2673 (Paul Uhlich), Paliogen Yellow 152, 1560 (BASF), Lithol Fast Yellow 0991K (BASF), Paliotol Yellow 1840 (BASF), Neopen Yellow (BASF), Novoperm Yellow FG 1 (Hoechst), Permanent Yellow YE 0305 (Paul Uhlich), Lumogen Yellow D0790 (BASF), Sunsperse Yellow YHD 6001 (Sun Chemicals), Suco-Gelb L1250 (BASF), Suco-Yellow D1355 (BASF), Hostaperm Pink E (American Hoechst), Fanal Pink D4830 (BASF), Cinquasia Magenta (DuPont), Lithol Scarlet D3700 (BASF), Toluidine Red (Aldrich), Scarlet for Thermoplast NSD PS PA (Ugine Kuhlmann of Canada), E.D. Toluidine Red (Aldrich), Lithol Rubine Toner (Paul Uhlich), Lithol Scarlet 4440 (BASF), Bon Red C (Dominion Color Company), Royal Brilliant Red RD-8192 (Paul Uhlich), Oracet Pink RF (Ciba-Geigy), Paliogen Red 3871K (BASF), Paliogen Red 3340 (BASF), Lithol Fast Scarlet L4300 (BASF), combinations of the foregoing, and the like. - In addition to the polymer binder resin, the toners of the present disclosure also optionally contain a wax, which can be either a single type of wax or a mixture of two or more different waxes. A single wax can be added to toner formulations, for example, to improve particular toner properties, such as toner particle shape, presence and amount of wax on the toner particle surface, charging and/or fusing characteristics, gloss, stripping, offset properties, and the like. Alternatively, a combination of waxes can be added to provide multiple properties to the toner composition.
- Optionally, a wax may also be combined with the resins in forming toner particles. When included, the wax may be present in an amount of, for example, from about 1 weight percent to about 25 weight percent of the toner particles, or from about 2 weight percent to about 25 weight percent, or from about 5 weight percent to about 20 weight percent of the toner particles.
- Waxes that may be selected include waxes having, for example, a weight average molecular weight of from about 500 to about 20,000, such as from about 700 to about 15,000, in embodiments from about 1,000 to about 10,000. Waxes that may be used include, for example, polyolefins such as polyethylene, polypropylene, and polybutene waxes such as commercially available from Allied Chemical and Petrolite Corporation, for example POLYWAX™ polyethylene waxes from Baker Petrolite, wax emulsions available from Michaelman, Inc. and the Daniels Products Company, EPOLENE N-15™ commercially available from Eastman Chemical Products, Inc., and VISCOL 550-P™, a low weight average molecular weight polypropylene available from Sanyo Kasei K. K.; plant-based waxes, such as carnauba wax, rice wax, candelilla wax, sumacs wax, and jojoba oil; animal-based waxes, such as beeswax; mineral-based waxes and petroleum-based waxes, such as montan wax, ozokerite, ceresin, paraffin wax, microcrystalline wax, and Fischer-Tropsch wax; ester waxes obtained from higher fatty acid and higher alcohol, such as stearyl stearate and behenyl behenate; ester waxes obtained from higher fatty acid and monovalent or multivalent lower alcohol, such as butyl stearate, propyl oleate, glyceride monostearate, glyceride distearate, and pentaerythritol tetra behenate; ester waxes obtained from higher fatty acid and multivalent alcohol multimers, such as diethyleneglycol monostearate, dipropyleneglycol distearate, diglyceryl distearate, and triglyceryl tetrastearate; sorbitan higher fatty acid ester waxes, such as sorbitan monostearate, and cholesterol higher fatty acid ester waxes, such as cholesteryl stearate. Examples of functionalized waxes that may be used include, for example, amines, amides, for example AQUA SUPERSLIP 6550™, SUPERSLIP 6530™ available from Micro Powder Inc., fluorinated waxes, for
example POLYFLUO 190™,POLYFLUO 200™, POLYSILK 19™, POLYSILK 14™ available from Micro Powder Inc., mixed fluorinated, amide waxes, for example MICROSPERSION 19™ also available from Micro Powder Inc., imides, esters, quaternary amities, carboxylic acids or acrylic polymer emulsion, for example JONCRYL 74™, 89™, 130™, 537™, and 538™, all available from SC Johnson Wax, and chlorinated polypropylenes and polyethylenes available from Allied Chemical and Petrolite Corporation and SC Johnson wax. Mixtures and combinations of the foregoing waxes may also be used in embodiments. Waxes may be included as, for example, fuser roll release agents. - The toner particles may be prepared by any method within the purview of one skilled in the art. Although embodiments relating to toner particle production are described below with respect to emulsion-aggregation processes, any suitable method of preparing toner particles may be used, including chemical processes, such as suspension and encapsulation processes disclosed in U.S. Pat. Nos. 5,290,654 and 5,302,486, the disclosures of each of which are hereby incorporated by reference in their entirety. In embodiments, toner compositions and toner particles may be prepared by aggregation and coalescence processes in which small-size resin particles are aggregated to the appropriate toner particle size and then coalesced to achieve the final toner-particle shape and morphology.
- In embodiments, toner compositions may be prepared by emulsion-aggregation processes, such as a process that includes aggregating a mixture of an optional wax and any other desired or required additives, and emulsions including the resins described above, optionally in surfactants as described above, and then coalescing the aggregate mixture. A mixture may be prepared by adding an optional wax or other materials, which may also be optionally in a dispersion(s) including a surfactant, to the emulsion, which may be a mixture of two or more emulsions containing the resins. The pH of the resulting mixture may be adjusted by an acid such as, for example, acetic acid, nitric acid or the like. In embodiments, the pH of the mixture may be adjusted to from about 2 to about 4.5. Additionally, in embodiments, the mixture may be homogenized. If the mixture is homogenized, homogenization may be accomplished by mixing at about 600 to about 4,000 revolutions per minute. Homogenization may be accomplished by any suitable means, including, for example, an IKA ULTRA TURRAX T50 probe homogenizer.
- Following the preparation of the above mixture, an aggregating agent may be added to the mixture. Any suitable aggregating agent may be utilized to form a toner. Suitable aggregating agents include, for example, aqueous solutions of a divalent cation or a multivalent cation material. The aggregating agent may be, for example, polyaluminum halides such as polyaluminum chloride (PAC), or the corresponding bromide, fluoride, or iodide, polyaluminum silicates such as polyaluminum sulfosilicate (PASS), and water soluble metal salts including aluminum chloride, aluminum nitrite, aluminum sulfate, potassium aluminum sulfate, calcium acetate, calcium chloride, calcium nitrite, calcium oxylate, calcium sulfate, magnesium acetate, magnesium nitrate, magnesium sulfate, zinc acetate, zinc nitrate, zinc sulfate, zinc chloride, zinc bromide, magnesium bromide, copper chloride, copper sulfate, and combinations thereof. In embodiments, the aggregating agent may be added to the mixture at a temperature that is below the glass transition temperature (Tg) of the resin.
- The aggregating agent may be added to the mixture utilized to form a toner in an amount of, for example, from about 0.1% to about 8% by weight, in embodiments from about 0.2% to about 5% by weight, in other embodiments from about 0.5% to about 5% by weight, of the resin in the mixture, although the amounts can be outside of these ranges. This provides a sufficient amount of agent for aggregation.
- The gloss of a toner may be influenced by the amount of retained metal ion, such as Al3+, in the particle. The amount of retained metal ion may be further adjusted by the addition of materials such as EDTA. In embodiments, the amount of retained crosslinker, for example Al3+, in toner particles of the present disclosure may be from about 0.1 pph to about 1 pph, in embodiments from about 0.25 pph to about 0.8 pph, in embodiments about 0.5 pph.
- In order to control aggregation and coalescence of the particles, in embodiments the aggregating agent may be metered into the mixture over time. For example, the agent may be metered into the mixture over a period of from about 5 to about 240 minutes, in embodiments from about 30 to about 200 minutes, although more or less time may be used as desired or required. The addition of the agent may also be done while the mixture is maintained under stirred conditions, in embodiments from about 50 rpm to about 1,000 rpm, in other embodiments from about 100 rpm to about 500 rpm, and at a temperature that is below the glass transition temperature of the resin as discussed above, in embodiments from about 30° C. to about 90° C., in embodiments from about 35° C. to about 70° C.
- The particles may be permitted to aggregate until a predetermined desired particle size is obtained. A predetermined desired size refers to the desired particle size to be obtained as determined prior to formation, and the particle size being monitored during the growth process until such particle size is reached. Samples may be taken during the growth process and analyzed, for example with a Coulter Counter, for average particle size. The aggregation thus may proceed by maintaining the elevated temperature, or slowly raising the temperature to, for example, from about 40° C. to about 100° C., and holding the mixture at this temperature for a time from about 0.5 hours to about 6 hours, in embodiments from about hour to about 5 hours, while maintaining stirring, to provide the aggregated particles. Once the predetermined desired particle size is reached, then the growth process is halted. In embodiments, the predetermined desired particle size is within the toner particle size ranges mentioned above.
- The growth and shaping of the particles following addition of the aggregation agent may be accomplished under any suitable conditions. For example, the growth and shaping may be conducted under conditions in which aggregation occurs separate from coalescence. For separate aggregation and coalescence stages, the aggregation process may be conducted under shearing conditions at an elevated temperature, for example of from about 40° C. to about 90° C., in embodiments from about 45° C. to about 80° C., which may be below the glass transition temperature of the resin as discussed above.
- In embodiments, a shell is applied to the formed aggregated toner particles. Any amorphous resin described above as suitable for the core resin may be utilized as the shell resin. The shell resin may be applied to the aggregated particles by any method within the purview of those skilled in the art. In embodiments, the shell resin may be in an emulsion including any surfactant described above. The aggregated particles described above may be combined with the emulsion so that the resin forms a shell over the formed aggregates. In embodiments, an amorphous polyester may be utilized to form a shell over the aggregates to form toner particles having a core-shell configuration. The core may comprise a crystalline resin. The shell may comprise an amorphous resin that is substantially to completely free of crystalline resin.
- The shell resin may be thick so as to prevent the increased loading of the crystalline resin from reaching the surface of the toner particle. Thus, the shell resin may be present in an amount of from about 20 percent to about 70 percent by weight of the toner particles, in embodiments from about 30 percent to about 70 percent by weight of the toner particles, such as from about 45 percent to about 70 percent by weight of the toner particles, such as from about 50 percent to about 65 percent by weight of the toner particles, or from about 55 to about 60 percent by weight of the toner particles. By avoiding crystalline resin at the surface of the toner particle, the toner particle may exhibit a resistivity of about at least 1×10″ ohm-cm to about 1×1014 ohm-cm.
- Emulsions of the present disclosure including the resins described above and optional additives may possess particles having a size of from about 100 nm to about 260 nm, in embodiments from about 105 nm to about 155 nm, in some embodiments about 110 nm.
- Emulsions including these resins may have a solids loading of from about 10% solids by weight to about 50% solids by weight, in embodiments from about 15% solids by weight to about 40% solids by weight, in embodiments about 35% solids by weight.
- Once the desired final size of the toner particles is achieved, the pH of the mixture may be adjusted with a base to a value of from about 6 to about 10, and in embodiments from about 6.2 to about 8. The adjustment of the pH may be utilized to freeze, that is to stop, toner growth. The base utilized to stop toner growth may include any suitable base such as, for example, alkali metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, combinations thereof, and the like. In embodiments, a chelating agent may be added to help adjust the pH to the desired values noted above. The base may be added in amounts from about 2 to about 25 percent by weight of the mixture, in embodiments from about 4 to about 10 percent by weight of the mixture. The chelating agent may be, for example, ethylene diamine tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), hydroxyiminosuccinic acid, and the like.
- Following aggregation to the desired particle size, with the formation of an optional shell as described above, the particles may then be coalesced to the desired final shape, the coalescence being achieved by, for example, heating the mixture to a temperature of from about 55° C. to about 100° C., in embodiments from about 65° C. to about 85° C., in embodiments about 70° C., which may be below the melting point of the crystalline resin to prevent plasticization. Higher or lower temperatures may be used, it being understood that the temperature is a function of the resins used for the binder.
- Coalescence may proceed and be accomplished over a period of from about 0.1 to about 9 hours, in embodiments from about 0.5 to about 4 hours, although periods of time outside of these ranges can be used.
- After coalescence, the mixture may be cooled to room temperature, such as from about 20° C. to about 25° C. The cooling may be rapid or slow, as desired. A suitable cooling method may include introducing cold water to a jacket around the reactor. After cooling, the toner particles may be optionally washed with water, and then dried. Drying may be accomplished by any suitable method for drying including, for example, freeze-drying.
- In embodiments, the toner particles may also contain other optional additives, as desired or required. For example, the toner may include positive or negative charge control agents, for example in an amount of from about 0.1 to about 10 percent by weight of the toner, in embodiments from about 1 to about 3 percent by weight of the toner. Examples of suitable charge control agents include quaternary ammonium compounds inclusive of alkyl pyridinium halides; bisulfates; alkyl pyridinium compounds, including those disclosed in U.S. Pat. No. 4,298,672, the disclosure of which is hereby incorporated by reference in its entirety; organic sulfate and sulfonate compositions, including those disclosed in U.S. Pat. No. 4,338,390, the disclosure of which is hereby incorporated by reference in its entirety; cetyl pyridinium tetrafluoroborates; distearyl dimethyl ammonium methyl sulfate; aluminum salts such as BONTRON E84™ or E88™ (Hodogaya Chemical); combinations thereof, and the like. Such charge control agents may be applied simultaneously with the shell resin described above or after application of the shell resin.
- There can also be blended with the toner particles external additive particles including flow aid additives, which additives may be present on the surface of the toner particles. Examples of these additives include metal oxides such as titanium oxide, silicon oxide, tin oxide, mixtures thereof, and the like; colloidal and amorphous silicas, such as AEROSIL®, metal salts and metal salts of fatty acids inclusive of zinc stearate, aluminum oxides, cerium oxides, and mixtures thereof. Each of these external additives may be present in an amount of from about 0.1 percent by weight to about 5 percent by weight of the toner, in embodiments of from about 0.25 percent by weight to about 3 percent by weight of the toner, although amounts outside these ranges can be used. Suitable additives include those disclosed in U.S. Pat. Nos. 3,590,000, 3,800,588, and 6,214,507, the disclosures of each of which are hereby incorporated by reference in their entirety. Again, these additives may be applied simultaneously with a shell resin described above or after application of the shell resin.
- The characteristics of the toner particles may be determined by any suitable technique and apparatus. Volume average particle diameter D50v, GSDv, and GSDn may be measured by means of a measuring instrument such as a
Beckman Coulter Multisizer 3, operated in accordance with the manufacturer's instructions. Representative sampling may occur as follows: a small amount of toner sample, about 1 gram, may be obtained and filtered through a 25 micrometer screen, then put in isotonic solution to obtain a concentration of about 10%, with the sample then run in aBeckman Coulter Multisizer 3. Toners produced in accordance with the present disclosure may possess excellent charging characteristics when exposed to extreme relative humidity (RH) conditions. The low-humidity zone (C zone) may be about 10° C./15% RH, while the high humidity zone (A zone) may be about 28° C./85% RH. Toners of the present disclosure may also possess a parent toner charge per mass ratio (Q/M) of from about −3 μC/g to about −45 μC/g, in embodiments from about −10 μC/g to about −40 μC/g, and a final toner charging after surface additive blending of from −10 μC/g to about −45 μC/g. - Utilizing the methods of the present disclosure, desirable gloss levels may be obtained. Thus, for example, the gloss level of a toner of the present disclosure may have a gloss as measured by Gardner Gloss Units (ggu) of from about 20 ggu to about 100 ggu, in embodiments from about 50 ggu to about 95 ggu, in embodiments from about 60 ggu to about 90 ggu.
- In embodiments, toners of the present disclosure may be utilized as low melt toners. In embodiments, the dry toner particles, exclusive of external surface additives, may have the following characteristics:
- (1) Volume average diameter (also referred to as “volume average particle diameter”) of from about 2.5 to about 20 microns, in embodiments from about 2.75 to about 10 microns, in other embodiments from about 3 to about 9 microns.
(2) Number Average Geometric Standard Deviation (GSDn) and/or Volume Average Geometric Standard Deviation (GSDv) of from about 1.05 to about 1.55, in embodiments from about 1.1 to about 1.4.
(3) Circularity of from about 0.9 to about 1 (measured with, for example, a Sysmex FPIA 2100 analyzer), in embodiments form about 0.93 to about 0.99, in other embodiments from about 0.95 to about 0.98.
(4) Glass transition temperature of from about 45° C. to about 60° C.
(5) The toner particles can have a surface area, as measured by the well known BET method, of about 1.3 to about 6.5 m2/g. For example, for cyan, yellow and black toner particles, the BET surface area can be less than 2 m2/g, such as from about 1.4 to about 1.8 m2/g, and for magenta toner, from about 1.4 to about 6.3 m2/g. - It may be desirable in embodiments that the toner particle possess separate crystalline polyester and wax melting points and amorphous polyester glass transition temperature as measured by DSC, and that the melting temperatures and glass transition temperature are not substantially depressed by plasticization of the amorphous or crystalline polyesters, or by any optional wax. To achieve non-plasticization, it may be desirable to carry out the emulsion aggregation at a coalescence temperature of less than the melting point of the crystalline component and wax components.
- The toner particles thus formed may be formulated into a developer composition. The toner particles may be mixed with carrier particles to achieve a two-component developer composition. The toner concentration in the developer may be from about 1% to about 25% by weight of the total weight of the developer, in embodiments from about 2% to about 15% by weight of the total weight of the developer.
- Examples of carrier particles that can be utilized for mixing with the toner include those particles that are capable of triboelectrically obtaining a charge of opposite polarity to that of the toner particles. Illustrative examples of suitable carrier particles include granular zircon, granular silicon, glass, steel, nickel, ferrites, iron ferrites, silicon dioxide, and the like. Other carriers include those disclosed in U.S. Pat. Nos. 3,847,604, 4,937,166, and 4,935,326.
- The selected carrier particles can be used with or without a coating. In embodiments, the carrier particles may include a core with a coating thereover which may be formed from a mixture of polymers that are not in close proximity thereto in the triboelectric series. The coating may include fluoropolymers, such as polyvinylidene fluoride resins, terpolymers of styrene, methyl methacrylate, and/or silanes, such as triethoxy silane, tetrafluoroethylenes, other known coatings and the like. For example, coatings containing polyvinylidenefluoride, available, for example, as KYNAR 301F™, and/or polymethylmethacrylate, for example having a weight average molecular weight of about 300,000 to about 350,000, such as commercially available from Soken, may be used. In embodiments, polyvinylidenefluoride and polymethylmethacrylate (PMMA) may be mixed in proportions of from about 30 to about 70 weight % to about 70 to about 30 weight %, in embodiments from about 40 to about 60 weight % to about 60 to about 40 weight %. The coating may have a coating weight of, for example, from about 0.1 to about 5% by weight of the carrier, in embodiments from about 0.5 to about 2% by weight of the carrier.
- In embodiments, PMMA may optionally be copolymerized with any desired comonomer, so long as the resulting copolymer retains a suitable particle size. Suitable comonomers can include monoalkyl, or dialkyl amines, such as a dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diisopropylaminoethyl methacrylate, or t-butylaminoethyl methacrylate, and the like. The carrier particles may be prepared by mixing the carrier core with polymer in an amount from about 0.05 to about 10 percent by weight, in embodiments from about 0.01 percent to about 3 percent by weight, based on the weight of the coated carrier particles, until adherence thereof to the carrier core by mechanical impaction and/or electrostatic attraction.
- Various effective suitable means can be used to apply the polymer to the surface of the carrier core particles, for example, cascade roll mixing, tumbling, milling, shaking, electrostatic powder cloud spraying, fluidized bed, electrostatic disc processing, electrostatic curtain, combinations thereof, and the like. The mixture of carrier core particles and polymer may then be heated to enable the polymer to melt and fuse to the carrier core particles. The coated carrier particles may then be cooled and thereafter classified to a desired particle size.
- In embodiments, suitable carriers may include a steel core, for example of from about 25 to about 100 μm in size, in embodiments from about 50 to about 75 μm in size, coated with about 0.5% to about 10% by weight, in embodiments from about 0.7% to about 5% by weight of a conductive polymer mixture including, for example, methylacrylate and carbon black using the process described in U.S. Pat. Nos. 5,236,629 and 5,330,874.
- The carrier particles can be mixed with the toner particles in various suitable combinations. The concentrations are may be from about 1% to about 20% by weight of the toner composition. However, different toner and carrier percentages may be used to achieve a developer composition with desired characteristics.
- The toners can be utilized for electrophotographic processes, including those disclosed in U.S. Pat. No. 4,295,990, the disclosure of which is hereby incorporated by reference in its entirety. In embodiments, any known type of image development system may be used in an image developing device, including, for example, magnetic brush development, jumping single-component development, hybrid scavengeless development (HSD), and the like. These and similar development systems are within the purview of those skilled in the art.
- Imaging processes include, for example, preparing an image with an electrophotographic device including a charging component, an imaging component, a photoconductive component, a developing component, a transfer component, and a fusing component. In embodiments, the development component may include a developer prepared by mixing a carrier with a toner composition described herein. The electrophotographic device may include a high speed printer, a black and white high speed printer, a color printer, and the like.
- Once the image is formed with toners/developers via a suitable image development method such as any one of the aforementioned methods, the image may then be transferred to an image receiving medium such as paper and the like. In embodiments, the toners may be used in developing an image in an image-developing device utilizing a fuser roll member. Fuser roll members are contact fusing devices that are within the purview of those skilled in the art, in which heat and pressure from the roll may be used to fuse the toner to the image-receiving medium. In embodiments, the fuser member may be heated to a temperature above the fusing temperature of the toner, for example to temperatures of from about 70° C. to about 160° C., in embodiments from about 80° C. to about 150° C., in other embodiments from about 90° C. to about 140° C., after or during melting onto the image receiving substrate.
- In embodiments, the fusing of the toner image can be conducted by any conventional means, such as combined heat and pressure fusing such as by the use of heated pressure rollers. In some embodiments, irradiation may also be utilized, for example, in the same fusing housing and/or step where conventional fusing is conducted, or it can be conducted in a separate irradiation fusing mechanism and/or step. In some embodiments, this irradiation step may provide non-contact fusing of the toner, so that conventional pressure fusing may not be required.
- For example, in embodiments, the irradiation can be conducted in the same fusing housing and/or step where conventional fusing is conducted. In embodiments, the irradiation fusing can be conducted substantially simultaneously with conventional fusing, such as be locating an irradiation source immediately before or immediately after a heated pressure roll assembly. Desirably, such irradiation is located immediately after the heated pressure roll assembly, such that crosslinking occurs in the already fused image.
- In other embodiments, the irradiation can be conducted in a separate fusing housing and/or step from a conventional fusing housing and/or step. For example, the irradiation fusing can be conducted in a separate housing from the conventional such as heated pressure roll fusing. That is, the conventionally fused image can be transported to another development device, or another component within the same development device, to conduct the irradiation fusing. In this manner, the irradiation fusing can be conducted as an optional step, for example to irradiation cure images that require improved high temperature document offset properties, but not to irradiation cure images that do not require such improved high temperature document offset properties. The conventional fusing step thus provides acceptable fixed image properties for moist applications, while the optional irradiation curing can be conducted for images that may be exposed to more rigorous or higher temperature environments.
- In other embodiments, the toner image can be fused by irradiation and optional heat, without conventional pressure fusing. This may be referred to, in embodiments, as noncontact fusing. The irradiation fusing can be conducted by any suitable irradiation device, and under suitable parameters, to cause the desired degree of crosslinking of the unsaturated polymer. Suitable non-contact fusing methods are within the purview of those skilled in the art and include, in embodiments, flash fusing, radiant fusing, and/or steam fusing.
- In embodiments, non-contact fusing may occur by exposing the toner to infrared light at a wavelength of from about 800 to about 1000, in embodiments from about 800 to about 950, for a period of time of from 5 milliseconds to about 2 seconds, in embodiments from about 50 milliseconds to about 1 second.
- Where heat is also applied, the image can be fused by irradiation such as by infrared light, in a heated environment such as from about 100 to about 250° C., such as from about 125 to about 225° C. or from about 150 or about 160 to about 180 or about 190° C.
- Exemplary apparatuses for producing these images may include, in embodiments, a heating device possessing heating elements, an optional contact fuser, a non-contact fuser such as a radiant fuser, an optional substrate pre-heater, an image bearing member pre-heater, and a transfuser. Examples of such apparatus include those disclosed in U.S. Pat. No. 7,141,761, the disclosure of which is hereby incorporated by reference in its entirety.
- When the irradiation fusing is applied to the toner composition, the resultant fused image is provided with non document offset properties, that is, the image does not exhibit document offset, at temperature up to about 90° C., such as up to about 85° C. or up to about 80° C. The resultant fused image also exhibits improved abrasion resistance and scratch resistance as compared to conventional fused toner images. Such improved abrasion and scratch resistance is beneficial, for example, for use in producing book covers, mailers, and other applications where abrasion and scratches would reduce the visual appearance of the item. Improved resistance to solvents is also provided, which is also beneficial for such uses as mailers, and the like. These properties are particularly helpful, for example, for images that must withstand higher temperature environments, such as automobile manuals that typically are exposed to high temperatures in glove compartments or printed packaging materials that must withstand heat sealing treatments.
- It is envisioned that the toners of the present disclosure may be used in any suitable procedure for forming an image with a toner, including in applications other than xerographic applications.
- The following Examples are being submitted to illustrate embodiments of the present disclosure. These Examples are intended to be illustrative only and are not intended to limit the scope of the present disclosure. Also, parts and percentages are by weight unless otherwise indicated. As used herein, “room temperature” refers to a temperature of from about 2° C. to about 30° C.
- Linear amorphous polyester latex (105 g), branched amorphous polyester latex (99 g), crystalline aliphatic polyester latex (29 g), deionized water (516 g), Dowfax 2A1 (2.6 g), Pigment Blue 15:3 dispersion (52 g), and 101 Wax D1509 dispersion (46 g) were combined and adjusted to pH 4.2 with dilute HNO3. The mixture was stirred under high-shear mixing from an IKA ULTRA TURRAX homogenizer and a mixture of 2.7 g aluminum sulfate solution (28%) and 72 g water was slowly added at room temperature. The resulting thick mixture was transferred to a heating mantle and stirred at 250-350 rpm while slowly heating to approximately 50° C.
- When the average particle size had reached approximately 5.3 μm, a shell mixture consisting of deionized water (56 g), linear amorphous polyester latex (58 g), branched amorphous polyester latex (55 g), and DOWFAX 2A1 (1.3 g) was added. The mixture was heated at 50° C. until a particle size of approximately 5.7 μm had been reached. A solution of 5.8
g DOW VERSENE 100 in 10 ml water was then added and the pH adjusted to 7.8 with dilute NaOH. Stirring was reduced to 180 rpm and the temperature slowly increased to 85° C. After 45 minutes at this temperature, the mixture was acidified by slow portionwise addition of 3M pH 5.7 sodium acetate buffer. When the particles had achieved the desired rounded appearance (by light microscope), heating was discontinued and the mixture was poured onto crushed ice. - The cooled reaction mixture was passed through a metal sieve with a 25-μm pore opening, then filtered and re-suspended in deionized water three times. The washed toner particles were filtered and freeze-dried to yield parent toner particles with average size of 6.0 μm, GSDv 1.20, GSDn 1.25, and mean circularity of 0.975.
- The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a final crystalline polyester content of 17%. The particles had an average size of 6.3 μm, GSDv 1.32, GSDn 1.26, and mean circularity of 0.973.
- The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a shell content of 56%. The particles had an average size of 5.4 μm, GSDv 1.23, GSDn 1.26, and mean circularity of 0.958.
- The general procedure of Comparative Example 1 was followed, with the final coalescence stage taking place at 70° C. rather than 85° C. The particles had an average size of 5.7 μm, GSDv 1.24, GSDn 1.29, and mean circularity of 0.968.
- The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a shell content of 56%, and the final coalescence stage taking place at 70° C. rather than 85° C. The particles had average size (D50) 6.0 μm, GSDv 1.25, GSDn 1.23, and mean circularity (SYSMEX FPIA) 0.955.
- The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a crystalline polyester content of 17% and a shell content of 56% and the final coalescence stage taking place at 70° C. rather than 85° C. The particles had an average size of 5.9 μm, GSDv 1.21, GSDn 1.23, and a mean circularity of 0.959.
- The general procedure of Comparative Example 1 was followed, with the amount of all polyester latexes adjusted to provide a toner with a crystalline polyester content of 17% and a shell content of 56%. The particles had an average size 6.3 μm, GSDv 1.31, GSDn 1.25, and a mean circularity of 0.985.
- Fusing Assessment
- For this scoping activity the oil-less color fuser in the Patriot fuser (DC250 printer) was used as the test fixture. Unfused images were generated using a modified DC 12 at a 0.50 mg/cm2 and 1.00 mg/cm2 toner mass per unit area onto an uncoated paper, COLOR XPRESSIONS+ (90 gsm) as well as coated paper, DIGITAL COLOR ELITE gloss (120 gsm) before being run through the fuser. Process speed of the fuser was set to 220 mm/s and the fuser roll temperature was varied from gloss offset to where hot offset occurred. Print gloss of the fused prints was then measured using a BYK GARDNER 75o gloss meter. The crease was measured by folding the print and rolling a standard crease tool along the fold. The print was unfolded and the fractured toner was wiped from the print. An image analysis quantifies the amount of toner removed from the print.
- Charging Assessment
- Additives were blended with the parent toner particles for charging assessment. 30-40 g of parent toner was weighed into the sample holder of the lab scale SK-M10 mill, Additives were weighed into the mill in parts per hundred parts of the parent particle weight. The toner was mixed in the mill for 30 seconds at 13.5 Krpm. After the mixing was complete the toner was sieved through a 45 μm sieve using sonic sieve shaker.
- Measurement of Charge with Additives
- Developer samples were prepared by weighing 0.5 g of additive toner onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle. Developer samples were prepared in duplicate as above for each toner being evaluated. One sample of the pair was conditioned in the A-zone environment of 28 C/85% RH, and the other was conditioned in the J-zone environment of 21 C/15% RH. The samples were kept in the respective environments over night to fully equilibrate. The following day the developers were charged by agitating the samples for 60 minutes in a Turbula mixer in their respective zone. The q/d charge on the toner particles was measured using a charge spectrograph. The toner charge was calculated as the midpoint of the toner charge trace from the CSG. Q/d is reported in millimeters of displacement from the zero line. The corresponding Q/m in uC/g was also measured for the sample.
- Measurement of Charge Maintenance with Additives
- A developer sample was prepared by weighing 0.6 g of additive toner onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle. The developer was conditioned in an A-zone environment of 28° C./85% RH overnight to equilibrate fully. The following day the developer was charged by agitating the sample for 2 minutes in a Turbula mixer. The charge per unit mass of the sample was measured using a tribo blow-off. The sample was then returned to the A-zone chamber in an idle position. The charge per unit mass measurement was repeated again after 24 hours and 7 days. Charge maintenance was calculated from the 24-hour and 7-day charge as a percentage of the initial charge.
- Measurement of Heat Cohesion
- About two grams of additive toner was weighed into an open dish and conditioned in an environmental chamber at a specified temperature and 50% relative humidity. After 17 hours the samples were removed and acclimated in ambient conditions for 30 minutes. Each re-acclimated sample was measured by sieving through a stack of two pre-weighed mesh sieves, which were stacked as follows: 1000 μm on top and 106 μm on bottom. The sieves were vibrated for 90 seconds at am amplitude in a Hosokawa flow tester. After the vibration was completed the sieves were reweighed and toner heat cohesion was calculated from the total amount of toner remaining on both sieves as a percentage of the starting weight
- Measurement of Parent Charge
- A developer sample was prepared by weighing 0.8 g of parent particles onto 10 g of Xerox 700 carrier in a washed 60 ml glass bottle. Developer samples were prepared in duplicate as above for each toner being evaluated. One sample of the pair was conditioned in the A-zone environment of 28 C/85% RH, and the other was conditioned in the J-zone environment 21 C/15% RH. The samples were kept in the respective environments overnight to fully equilibrate. The following day the developers were charged by agitating the samples for 60 minutes in a Turbula mixer in their respective zone. The following day the developer was charged by agitating the sample for 10 minutes in a Turbula mixer. The q/d charge on the toner particles was measured using a charge spectrograph. Q/m in uC/g was also measured for the sample.
- Notable Charging Data
- The toners of Examples 1 and 2 showed A- and J-zone charging and RH ratio comparable to commercially available Xerox 700 controls and within the acceptable range. Charge maintenance was significantly improved over the toner of Comparative Example 2 and was comparable to commercially available Xerox 700 controls. In particular, the toner of Example 1 had slightly better charge maintenance than the Xerox 700 design control cyan toner.
- Summary of Key Results
- Compared to the toner of Comparative Example 1, introducing a thick toner shell and/or lower coalescence temperature in Comparative Examples 3-5: 1) does not have a significant effect on crease fix, gloss mottle, hot offset, or fusing latitude; 2) results in a slight shift in gloss curve to higher temperatures; 3) has a small effect on xerographic charging, with lower 60 minute A-zone Q/d for toner with 56% shell and 70° C. coalescence; and 4) improves charge maintenance.
- Compared to the toner of Comparative Example 1, increasing the CPE content to 17% in Comparative Example 2; 1) reduces minimum fusing temperature by approximately 14° C., slightly increases gloss mottle, and slightly decreases hot offset; 2) results in a shift in gloss curve to lower temperatures; 3) does not have a significant effect on fusing latitude; 4) does not have a significant effect on xerographic charging; and reduces charge maintenance.
- Compared to the above toner with a CPE content of 17%, as in Comparative Example 2, retaining the 17% CPE and introducing a thick toner shell as in Examples 1-2: 1) slightly reduces minimum fusing temperature (at 85° C. coalescence) and peak gloss; does not have a significant effect on cold offset, gloss mottle, or hot offset; improves xerographic charging, especially parent charge; and improves charge maintenance.
- Fusing performance of toners with CPE content of 17% and a thick toner shell, as in Examples 1-2, is limited by cold offset rather than crease fix, and yields an effective minimum fusing temperature of about 40° C. lower than the Comparative Examples.
- It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, it will be appreciated that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Claims (26)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/413,251 US8592119B2 (en) | 2012-03-06 | 2012-03-06 | Super low melt toner with core-shell toner particles |
JP2013030538A JP2013186472A (en) | 2012-03-06 | 2013-02-20 | Super low melt toner with core-shell toner particles |
DE102013203146.7A DE102013203146B4 (en) | 2012-03-06 | 2013-02-26 | TONER PARTICLES, METHOD FOR FORMING A TONER PARTICLE AND METHOD FOR PRODUCING AN IMAGE |
CA2808104A CA2808104C (en) | 2012-03-06 | 2013-02-27 | Super low melt toner with core-shell toner particles |
RU2013109381A RU2619941C2 (en) | 2012-03-06 | 2013-03-04 | Extra fusible toner, having core and particles shell |
MX2013002526A MX344496B (en) | 2012-03-06 | 2013-03-04 | Super low melt toner with core-shell toner particles. |
BR102013005337-6A BR102013005337B1 (en) | 2012-03-06 | 2013-03-05 | toner particle, method for forming an image and method for forming a toner particle |
KR1020130023873A KR20130102020A (en) | 2012-03-06 | 2013-03-06 | Super low melt toner with core-shell toner particles |
CN201310071260.3A CN103309187B (en) | 2012-03-06 | 2013-03-06 | The ultra low melt toner of the toner-particle containing core-shell structure copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/413,251 US8592119B2 (en) | 2012-03-06 | 2012-03-06 | Super low melt toner with core-shell toner particles |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130236829A1 true US20130236829A1 (en) | 2013-09-12 |
US8592119B2 US8592119B2 (en) | 2013-11-26 |
Family
ID=49029730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/413,251 Active 2032-03-09 US8592119B2 (en) | 2012-03-06 | 2012-03-06 | Super low melt toner with core-shell toner particles |
Country Status (9)
Country | Link |
---|---|
US (1) | US8592119B2 (en) |
JP (1) | JP2013186472A (en) |
KR (1) | KR20130102020A (en) |
CN (1) | CN103309187B (en) |
BR (1) | BR102013005337B1 (en) |
CA (1) | CA2808104C (en) |
DE (1) | DE102013203146B4 (en) |
MX (1) | MX344496B (en) |
RU (1) | RU2619941C2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015114459A (en) * | 2013-12-11 | 2015-06-22 | 株式会社リコー | Developer, developer for replenishment, and process cartridge |
JP6055426B2 (en) * | 2014-01-23 | 2016-12-27 | 京セラドキュメントソリューションズ株式会社 | Toner and method for producing the same |
JP6050767B2 (en) * | 2014-01-27 | 2016-12-21 | 京セラドキュメントソリューションズ株式会社 | toner |
US9971265B1 (en) * | 2017-02-23 | 2018-05-15 | Xerox Corporation | Toner compositions and processes |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3590000A (en) | 1967-06-05 | 1971-06-29 | Xerox Corp | Solid developer for latent electrostatic images |
US3800588A (en) | 1971-04-30 | 1974-04-02 | Mts System Corp | Multiple axis control system for vibration test apparatus |
US3847604A (en) | 1971-06-10 | 1974-11-12 | Xerox Corp | Electrostatic imaging process using nodular carriers |
US4298672A (en) | 1978-06-01 | 1981-11-03 | Xerox Corporation | Toners containing alkyl pyridinium compounds and their hydrates |
DE2966986D1 (en) | 1979-07-26 | 1984-06-20 | Baker Chem Co J T | Reagent for the quantitative determination of water, and its use |
US4338390A (en) | 1980-12-04 | 1982-07-06 | Xerox Corporation | Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser |
US4937166A (en) | 1985-10-30 | 1990-06-26 | Xerox Corporation | Polymer coated carrier particles for electrophotographic developers |
US4935326A (en) | 1985-10-30 | 1990-06-19 | Xerox Corporation | Electrophotographic carrier particles coated with polymer mixture |
US5236629A (en) | 1991-11-15 | 1993-08-17 | Xerox Corporation | Conductive composite particles and processes for the preparation thereof |
US5302486A (en) | 1992-04-17 | 1994-04-12 | Xerox Corporation | Encapsulated toner process utilizing phase separation |
RU94046064A (en) * | 1992-05-08 | 1996-09-27 | Майкэп Текнолоджи Корпорейшн (US) | Magnetic particles, method of encapsulating of particles, printing ink, compositions used in manufacture of magnetic recording medium, magnetic recording medium, process of manufacture of ink |
US5290654A (en) | 1992-07-29 | 1994-03-01 | Xerox Corporation | Microsuspension processes for toner compositions |
US5330874A (en) | 1992-09-30 | 1994-07-19 | Xerox Corporation | Dry carrier coating and processes |
US6063827A (en) | 1998-07-22 | 2000-05-16 | Xerox Corporation | Polyester process |
US6214507B1 (en) | 1998-08-11 | 2001-04-10 | Xerox Corporation | Toner compositions |
US6593049B1 (en) | 2001-03-26 | 2003-07-15 | Xerox Corporation | Toner and developer compositions |
US6756176B2 (en) | 2002-09-27 | 2004-06-29 | Xerox Corporation | Toner processes |
US6830860B2 (en) | 2003-01-22 | 2004-12-14 | Xerox Corporation | Toner compositions and processes thereof |
JP2005266565A (en) * | 2004-03-19 | 2005-09-29 | Fuji Xerox Co Ltd | Electrostatic charge image developing toner, toner manufacturing method, and image forming method |
JP4525410B2 (en) * | 2005-03-25 | 2010-08-18 | 富士ゼロックス株式会社 | An electrophotographic toner, an electrophotographic developer, and an image forming method. |
US7329476B2 (en) | 2005-03-31 | 2008-02-12 | Xerox Corporation | Toner compositions and process thereof |
US7141761B1 (en) | 2005-06-02 | 2006-11-28 | Xerox Corporation | Printing device heating element and method of use thereof |
US20080210124A1 (en) * | 2007-03-01 | 2008-09-04 | Xerox Corporation | Core-shell polymer particles |
US7695884B2 (en) * | 2007-08-15 | 2010-04-13 | Xerox Corporation | Toner compositions and processes |
US7939237B2 (en) * | 2007-08-17 | 2011-05-10 | Xerox Corporation | Nano-sized composites containing polymer modified clays and method for making toner particles using same |
US7892714B2 (en) * | 2007-08-17 | 2011-02-22 | Xerox Corporation | Toner particles having nano-sized composites containing polymer modified clays |
US8034527B2 (en) * | 2007-08-23 | 2011-10-11 | Xerox Corporation | Core-shell polymer nanoparticles and method for making emulsion aggregation particles using same |
US20090286176A1 (en) * | 2008-05-16 | 2009-11-19 | Konica Minolta Business Technologies, Inc. | Electrophotographic color toner |
US8084180B2 (en) * | 2008-06-06 | 2011-12-27 | Xerox Corporation | Toner compositions |
US8197998B2 (en) * | 2009-05-20 | 2012-06-12 | Xerox Corporation | Toner compositions |
JP2011027869A (en) * | 2009-07-23 | 2011-02-10 | Fuji Xerox Co Ltd | Toner for developing electrostatic charge image, method for manufacturing toner for developing electrostatic charge image, developer for developing electrostatic charge image, toner cartridge, process cartridge, and image forming apparatus |
US8722299B2 (en) | 2009-09-15 | 2014-05-13 | Xerox Corporation | Curable toner compositions and processes |
JP2011203584A (en) * | 2010-03-26 | 2011-10-13 | Fuji Xerox Co Ltd | Toner for electrostatic charge image development, method for producing toner for electrostatic charge image development, method for forming image and image forming apparatus |
-
2012
- 2012-03-06 US US13/413,251 patent/US8592119B2/en active Active
-
2013
- 2013-02-20 JP JP2013030538A patent/JP2013186472A/en active Pending
- 2013-02-26 DE DE102013203146.7A patent/DE102013203146B4/en active Active
- 2013-02-27 CA CA2808104A patent/CA2808104C/en not_active Expired - Fee Related
- 2013-03-04 RU RU2013109381A patent/RU2619941C2/en not_active IP Right Cessation
- 2013-03-04 MX MX2013002526A patent/MX344496B/en active IP Right Grant
- 2013-03-05 BR BR102013005337-6A patent/BR102013005337B1/en active IP Right Grant
- 2013-03-06 CN CN201310071260.3A patent/CN103309187B/en not_active Expired - Fee Related
- 2013-03-06 KR KR1020130023873A patent/KR20130102020A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
KR20130102020A (en) | 2013-09-16 |
CN103309187B (en) | 2019-06-07 |
DE102013203146A1 (en) | 2013-09-12 |
US8592119B2 (en) | 2013-11-26 |
RU2619941C2 (en) | 2017-05-22 |
BR102013005337A2 (en) | 2015-07-14 |
DE102013203146B4 (en) | 2023-10-05 |
BR102013005337B1 (en) | 2020-10-20 |
RU2013109381A (en) | 2014-09-10 |
CA2808104A1 (en) | 2013-09-06 |
CA2808104C (en) | 2016-04-05 |
JP2013186472A (en) | 2013-09-19 |
CN103309187A (en) | 2013-09-18 |
MX344496B (en) | 2016-12-19 |
MX2013002526A (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8084180B2 (en) | Toner compositions | |
US8703374B2 (en) | Toner composition with charge control agent-treated spacer particles | |
US10372052B2 (en) | Curable toner compositions and processes | |
US8431309B2 (en) | Toner compositions | |
US8722299B2 (en) | Curable toner compositions and processes | |
US20110086302A1 (en) | Toner compositions and processes | |
US8192912B2 (en) | Curable toner compositions and processes | |
US8980520B2 (en) | Toner compositions and processes | |
US8247157B2 (en) | Toner process | |
US8420286B2 (en) | Toner process | |
US8323865B2 (en) | Toner processes | |
US9012118B2 (en) | Toner compositions and processes | |
US20120052429A1 (en) | Toner processes | |
US20100285401A1 (en) | Curable toner compositions and processes | |
US8592119B2 (en) | Super low melt toner with core-shell toner particles | |
US8574804B2 (en) | Toner compositions and processes | |
US8227168B2 (en) | Polyester synthesis | |
US8257895B2 (en) | Toner compositions and processes | |
CA2798783A1 (en) | Toners containing large strontium titanate particles | |
US8367294B2 (en) | Toner process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOSNICK, JORDAN H.;VEREGIN, RICHARD P.N.;ZWARTZ, EDWARD G.;AND OTHERS;SIGNING DATES FROM 20120302 TO 20120305;REEL/FRAME:027844/0823 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS AGENT, DELAWARE Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:062740/0214 Effective date: 20221107 |
|
AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT R/F 062740/0214;ASSIGNOR:CITIBANK, N.A., AS AGENT;REEL/FRAME:063694/0122 Effective date: 20230517 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:064760/0389 Effective date: 20230621 |
|
AS | Assignment |
Owner name: JEFFERIES FINANCE LLC, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:065628/0019 Effective date: 20231117 |
|
AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT RF 064760/0389;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:068261/0001 Effective date: 20240206 Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:066741/0001 Effective date: 20240206 |