US20130236449A1 - Methods of enhancing antibody-dependent cellular cytotoxicity - Google Patents

Methods of enhancing antibody-dependent cellular cytotoxicity Download PDF

Info

Publication number
US20130236449A1
US20130236449A1 US13/642,057 US201113642057A US2013236449A1 US 20130236449 A1 US20130236449 A1 US 20130236449A1 US 201113642057 A US201113642057 A US 201113642057A US 2013236449 A1 US2013236449 A1 US 2013236449A1
Authority
US
United States
Prior art keywords
alkyl
therapeutic
adcc
subject
monoclonal antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/642,057
Other languages
English (en)
Inventor
Robert Hershberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VentiRx Pharmaceuticals Inc
Original Assignee
VentiRx Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VentiRx Pharmaceuticals Inc filed Critical VentiRx Pharmaceuticals Inc
Priority to US13/642,057 priority Critical patent/US20130236449A1/en
Assigned to VENTIRX PHARMACEUTICALS, INC. reassignment VENTIRX PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERSHBERG, ROBERT
Publication of US20130236449A1 publication Critical patent/US20130236449A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/16Benzazepines; Hydrogenated benzazepines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • Embodiments of the present disclosure are directed to methods of enhancing the cytotoxicity of therapeutic monoclonal antibodies for the treatment of cancer and other cellular diseases.
  • Monoclonal antibodies have demonstrated clinical effectiveness in a variety of malignancies. Monoclonal antibodies are now being commonly used as therapeutic agents for the treatment and/or prevention of cancers, autoimmune diseases, thrombosis, inflammation, and infection. However, there are some instances of low antibody activity contributing to insufficient therapeutic effects on cancers, autoimmune diseases, inflammation, and infection. Such insufficient drug action may lead to increased dosages and cost required for treatment. Under these circumstances, enhancement of the therapeutic activity of the monoclonal antibodies is an important objective.
  • Therapeutic monoclonal antibodies are preferably capable of antibody-dependent cellular cytotoxicity (ADCC), particularly when used in the treatment of cancers or other cellular diseases. That is, therapeutic MAbs preferably exert cytotoxic effects against their target cells, such as target cancer cells or lymphocytes. Such antibodies bind to antigens on the surface of target cells, via their Fc domain, to Fc receptors on the surface of effector cells such as NK cells and macrophages, thereby exerting damage on target cells. This mechanism is antibody-dependent cellular cytotoxicity (ADCC). Alternatively, antibodies damage cells by activating complement via the Fc domain. This is called complement-dependent cytotoxicity (CDC). Such antibody activities exerted via Fc domains are called effector activities.
  • ADCC antibody-dependent cellular cytotoxicity
  • effector cells such as monocytes, neutrophils, and natural killer (NK) cells
  • NK natural killer
  • Effector cells for inducing ADCC against a target cell include human leukocytes, macrophages, monocytes, activated neutrophils, and possibly activated natural killer (NK) cells and eosinophils.
  • Preferred effector cells express Fc ⁇ RI and include, for example, monocytes and activated neutrophils.
  • Fc ⁇ RI has been found to be up-regulated by interferon gamma (IFN- ⁇ ). This enhanced expression increases the cytotoxic activity of monocytes and neutrophils against target cells.
  • IFN- ⁇ interferon gamma
  • Fc receptor is a protein found on the surface of certain cells—including natural killer cells, macrophages, neutrophils, and mast cells—that contribute to the protective functions of the immune system.
  • Fc receptors bind to antibodies that are attached to infected cells, invading pathogens, or cancer cells. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, infected cells, or cancer cells by antibody-mediated phagocytosis or ADCC.
  • Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.
  • Fc receptors are involved in ADCC process. For example, during ADCC Fc ⁇ RIII receptors on the surface of natural killer (NK) cells stimulate the NK cells to release cytotoxic molecules from their granules to kill antibody-covered target cells.
  • NK natural killer
  • Fc receptors There are several different types of Fc receptors, which are classified based on the type of antibody that they recognize.
  • Fc ⁇ Rs belong to the immunoglobulin superfamily and are the most important Fc receptors for inducing phagocytosis of opsonized (coated) microbes. They are expressed on leukocytes and are composed of 3 distinct classes: Fc ⁇ RI, Fc ⁇ RII (Fc ⁇ RIIa and Fc ⁇ RIIb), Fc ⁇ RIII (Fc ⁇ RIIIa and Fc ⁇ RIIIb).
  • the receptors are also distinguished by their affinity for IgG.
  • Fc ⁇ RI exhibits high affinity for IgG, whereas Fc ⁇ RII and Fc ⁇ RIII show a weaker affinity.
  • Fc ⁇ RIIa and Fc ⁇ RIIIa are activating Fc ⁇ Rs which are expressed on monocytes/macrophages and monocytes/macrophages/NK cells, respectively, and can trigger cytotoxicity of human targets.
  • Fc ⁇ R3a-V158F and Fc ⁇ R2a-H131R Two functional Fc ⁇ R gene polymorphisms, Fc ⁇ R3a-V158F and Fc ⁇ R2a-H131R, have been identified that affect the binding of IgG, changing ADCC function and affecting clinical tumor response.
  • Fc ⁇ R2a-H131R polymorphism is located at the extracellular ligand-binding domain. It either has a histidine (H) or arginine (R) allele at amino acid position 131.
  • the Fc ⁇ R2a-131H/H genotype has a higher affinity to human IgG2 in an in vitro assay.
  • Fc ⁇ R3a-V158F polymorphism encodes either a valine (V) or phenylalanine (F) at amino acid position 158.
  • the present disclosure relates to methods of enhancing the ADCC activity of therapeutic antibodies in the treatment of cellular diseases such as cancer and immune cell mediated diseases or disorders.
  • the ADCC activity of therapeutic antibodies may be enhanced by the co-administration of the therapeutic antibody with an ADCC enhancer molecule, with the formula I:
  • Y is an aryl ring substituted with C( ⁇ O)R8, and wherein said aryl ring is optionally further substituted with one or more substituents independently selected from F, Cl, CF3, CF3O—, HCF2O—, C1-C6 alkyl, C1-C6 heteroalkyl and ArO—;
  • R1, R3 and R4 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6, OC( ⁇ O)R6,
  • R3 and R4 together with the atom to which they are attached form a saturated or partially unsaturated C3-C6 carbocyclic ring, wherein said carbocyclic ring is optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6, OC( ⁇ O)R6, C( ⁇ O)NR6R7, (C1-C6 alkyl)amino, CH3OCH2O—, R6OC( ⁇ O)CH ⁇ CH—, NR6SO2R7, SR6 and SO2R6;
  • R2 and R8 are independently selected from H, OR6, NR6R7, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from a C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6,
  • R5a, R5b and R5c are independently selected from H, F, Cl, Br, I, OMe, CH3, CH2F, CHF2 and CF3 and
  • R6 and R7 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, O-Alkyl, NH2, —C( ⁇ O)Alkyl, C( ⁇ O)H, C( ⁇
  • R6 and R7 together with the atom to which they are attached form a saturated or partially unsaturated heterocyclic ring with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, wherein said heterocyclic ring is optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NH2, —C( ⁇ O)Alkyl, C( ⁇ O)H, C( ⁇ O)OH, C( ⁇ O)OAlkyl, OC( ⁇ O)H, OC( ⁇ O)Alkyl, (C1-C6alkyl)amino, (C1-C6alkyl)2-amino CH3O CH2O—, and Alkyl-OC( ⁇ O)CH ⁇ CH—.
  • substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C
  • the invention also relates to a metabolite, solvate, tautomer or pharmaceutically acceptable salt of a compound according to formula I.
  • R2 is OR6
  • R6 is C1-C6 alkyl, such as ethyl.
  • the invention relates to a compound of formula I, where R2 is NR6R7.
  • the invention relates to a compound of formula I, where R2 is NR6R7 and R6 and R7 are independently selected from H, C1-C6 alkyl and C1-C6 heteroalkyl, such as, for example, R6 and R7 are H, ethyl, propyl or CH2CH2OCH3.
  • the invention relates to a compound of formula I, where Y is phenyl.
  • the invention relates to a compound of formula I, where R8 is selected from OR6, NR6R7 and heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur
  • the invention relates to a compound of formula I, where R8 is heterocycloalkyl with 5 or 6 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur.
  • R8 is pyrrolidine.
  • the invention relates to a compound of formula I, where R6 and R7 are independently selected from H and C1-C6 alkyl.
  • the invention relates to a compound of formula I, where Y is
  • each of R1, R3, R4, R5a, R5b and R5c is hydrogen.
  • the invention relates to a compound selected from
  • the ADCC enhancer molecule of the present invention is ⁇ 2-amino-8-[4-(pyrrolidinylcarbonyl)phenyl]-(3H-benzo[f]azepin-4-yl) ⁇ -N,N-dipropylcarboxamide, with the chemical structure as follows:
  • the ADCC enhancer molecule enhances or improves the effector activity of an antibody.
  • the methods of the present invention can increase the therapeutic effect of an antibody by enhancing the effector activity exhibited by the antibody.
  • the ADCC enhancer molecule may improve ADCC by activating NK cells or CD56 + cells either directly or indirectly. Additionally, having a greater proportion of activated NK cells may help overcome the poor ADCC observed in a subset of patients that have low affinity Fc receptors.
  • Therapeutic MAbs capable of ADCC are preferred. These include anti-CD20 rituximab (Rituxan®), anti-Her2 trastuzumab (Herceptin®), anti-EGFR cetuximab (Erbitux®), and anti-EGFR panitumumab (Vectibix®).
  • methods are provided for increasing ADCC in a subject receiving therapeutic monoclonal antibody treatment.
  • the method comprises administering to a subject a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • the method of the present invention comprises administering to a subject a therapeutically effective amount of a therapeutic antibody, an ADCC enhancer molecule in an amount sufficient to increase ADCC and one or more chemotherapeutic agents.
  • methods are provided for enhancing the killing of NK sensitive target cells.
  • the method comprises administering to subject a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase killing of NK sensitive target cells.
  • methods are provided for enhancing the effector activity of NK cells or CD56 + cells.
  • the method comprises administering to subject a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase effector activity of NK cells or CD56 + cells.
  • methods are provided for enhancing ADCC in cells of patients.
  • the method comprises administering to subject a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • the subjects that may otherwise not be good therapeutic candidates for MAb therapy because they express only low levels of tumor antigens against which the monoclonal antibody is directed or because they have single nucleotide polymorphisms in their Fc receptors which lower their affinity for the monoclonal antibody.
  • methods are provided for enhancing the therapeutic effectiveness of monoclonal antibodies. According to some embodiments, methods are provided for increasing the efficiency of a therapeutic monoclonal antibody. In some embodiments the method comprises administering to subject a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC. Alternatively, the method of the present invention comprises administering to a subject a therapeutically effective amount of a therapeutic antibody, an ADCC enhancer molecule in an amount sufficient to increase ADCC and one or more chemotherapeutic agents.
  • methods for increasing the clinical effectiveness of a therapeutic anti-ErbB2 monoclonal antibody comprising administering to a subject in need thereof the therapeutic anti-ErbB2 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the method of the present invention comprises administering to a subject in need thereof the therapeutic anti-ErbB 2 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • the anti-ErbB 2 monoclonal is trastuzumab.
  • methods for treating breast cancer comprising administering to a subject in need thereof a therapeutic anti-ErbB2 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the method of the present invention comprises administering to a subject in need thereof a therapeutic anti-ErbB2 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • the anti-ErbB2 monoclonal is trastuzumab.
  • methods for increasing the clinical effectiveness of a therapeutic anti-CD20 monoclonal antibody comprising administering to a subject in need thereof the therapeutic anti-CD20 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the anti-CD 20 monoclonal is rituximab.
  • methods for treating a B-cell disorder comprising administering to a subject in need thereof a therapeutic anti-CD20 monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the anti-CD20 monoclonal is rituximab.
  • the B-cell disorder is lymphoma, leukemia, or rhuematoid arthritis.
  • methods for increasing the clinical effectiveness of a therapeutic anti-EGFR monoclonal antibody comprising administering to a subject in need thereof the therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the methods of the present invention also comprises administering to a subject in need thereof the therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • the anti-EGFR monoclonal is panitumumab, cetuximab, necitumumab, or zalutumumab.
  • methods are provided for treating EGFR-expressing, metastatic colorectal carcinoma comprising administering to a subject in need thereof a therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • methods are provided for treating EGFR-expressing, head and neck cancer comprising administering to a subject in need thereof a therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the present invention also includes methods of treating EGFR-expressing, metastatic colorectal carcinoma comprising administering to a subject in need thereof a therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • methods are also provided for treating EGFR-expressing, head and neck cancer comprising administering to a subject in need thereof a therapeutic anti-EGFR monoclonal antibody in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • the anti-EGFR monoclonal is panitumumab, cetuximab, necitumumab, or zalutumumab.
  • methods for treating KRAS mutant colorectal cancer comprising administering to a subject in need thereof a therapeutic monoclonal antibody in combination with the ADCC enhancer molecule of the present invention.
  • the therapeutic monoclonal antibody is panitumumab or cetuximab.
  • methods for treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • the present invention also includes methods of treating cancer comprising administering to a subject in need thereof a therapeutically effective amount of a therapeutic antibody, an ADCC enhancer molecule in an amount sufficient to increase ADCC and one or more chemotherapeutic agents.
  • methods for treating a B-cell malignancy or B-cell disorder comprising administering to a subject in need thereof a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • methods for treating an autoimmune disorder comprising administering to a subject in need thereof a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • the autoimmune disorder is rheumatoid arthritis.
  • methods for avoiding a tumor relapse in a subject comprising administering to a subject in need thereof a therapeutically effective amount of a therapeutic antibody and an ADCC enhancer molecule in an amount sufficient to increase ADCC.
  • the therapeutic antibodies have a murine, human or non human primate IgG1 or an IgG3 Fc portion.
  • the therapeutic antibody is a chimeric, human or humanized antibody or a fragment thereof.
  • methods for selecting an appropriate therapeutic regimen for a subject in need thereof comprising determining a SNP of FcgR3a at amino acid position 158, wherein a homozygous valine at amino acid position 158 of FcgR3a indicates the subject is predicted to be more responsive to the therapeutic regimen than a subject without the homozygous valine at amino acid position 158 of FcgR3a.
  • methods are also provided for selecting an appropriate therapeutic regimen for a subject in need thereof comprising determining a SNP of FcgR2a at amino acid position 131, wherein a homozygous histidine at amino acid position 131 of FcgR2a indicates the subject is predicted to be more responsive to the therapeutic regimen than a subject without the homozygous histidine at amino acid position 131 of FcgR2a.
  • the present invention provides a pharmaceutical pack or kit comprising one or more containers filled with a liquid or lyophilized ADCC enhancer molecule, optionally a therapeutic antibody, and/or one or more chemotherapeutic agents.
  • FIG. 1 is a line graph showing the lysis of K562 target cells. Calcein AM labeled K562 target cells were incubated with PBMC effector cells that had been previously stimulated with the ADCC enhancer. Percent specific lysis of target cells was evaluated over a range of effector:target cell ratios.
  • FIG. 2 shows that the ADCC enhancer enhances ADCC with Rituxan.
  • Calcein AM labeled HS-Sultan cells coated with Rituxan were incubated with PBMC effector cells that had been previously stimulated with the ADCC enhancer. Percent specific lysis of target cells was evaluated over a range of effector:target cell ratios.
  • FIG. 3 shows that the ADCC enhancer enhances ADCC with Herceptin in both SKBR3 cell line that expresses high levels of the Her2neu tumor antigen and the MDA-MB-231 cell line that expressed lower levels of the tumor antigen.
  • Calcein AM labeled SKBR3 cells (Panel A) or MDA-MB-231 cells (Panel C) coated with Herceptin were incubated with PBMC effector cells that had been previously stimulated with the ADCC enhancer. Percent specific lysis of target cells was evaluated over a range of effector:target cell ratios.
  • Her2neu expression was quantified by flow cytomerty using PE-conguated herceptin (green line) or controls (#1 and #2) in SKBR3 (Panel B) and MDA-MB-231 (Panel D) breast cancer cell lines.
  • FIG. 4 shows that the ADCC enhancer enhances Rituxan-mediated ADCC in cells from patients with high affinity Fc receptors and low affinity Fc receptors. Percent specific lysis is shown for Rituxan-coated HS-Sultan cells incubated with PBMC effector cells at an E:T ratio of 50:1.
  • PBMCs from a patient with the high affinity genotype FcgR2a131 H/H and FcgR3a V/V (solid rectangles) or a patient with the lower affinity genotype FcgR2a131 A/A and FcgR3a V/F (open rectangles) were evaluated for ADCC after stimulation with buffer control (baseline) or stimulation with 500 nM ADCC enhancer.
  • FIG. 5 shows that the patients with FcgR3a FF or FcgR3a FV have significantly reduced rituximab-mediated ADCC activity than individuals with the FcgR3a VV phenotype.
  • the invention is bases upon the discovery that an ADCC enhancer molecule increases the antibody-dependent cellular cytotoxicity (ADCC) activity of antibodies. Accordingly, the invention provides methods of treating cellular diseases such as cancer and immune cell mediated diseases or disorders by administering a therapeutic monoclonal antibody and an ADCC enhancer molecule, a compound with formula I as follows:
  • Y is an aryl ring substituted with C( ⁇ O)R8, and wherein said aryl ring is optionally further substituted with one or more substituents independently selected from F, Cl, CF3, CF3O—, HCF2O—, C1-C6 alkyl, C1-C6 heteroalkyl and ArO—;
  • R1, R3 and R4 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6, OC( ⁇ O)R6,
  • R3 and R4 together with the atom to which they are attached form a saturated or partially unsaturated C3-C6 carbocyclic ring, wherein said carbocyclic ring is optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6, OC( ⁇ O)R6, C( ⁇ O)NR6R7, (C1-C6 alkyl)amino, CH3OCH2O—, R6OC( ⁇ O)CH ⁇ CH—, NR6SO2R7, SR6 and SO2R6;
  • R2 and R8 are independently selected from H, OR6, NR6R7, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from a C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NR6R7, C( ⁇ O)R6, C( ⁇ O)OR6,
  • R5a, R5b and R5c are independently selected from H, F, Cl, Br, I, OMe, CH3, CH2F, CHF2 and CF3 and
  • R6 and R7 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 heteroalkyl, C3-C6 cycloalkyl, C3-C6 cycloalkenyl, heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, aryl and 5-7 membered heteroaryl, wherein said alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl and heteroaryl are optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, O-Alkyl, NH2, —C( ⁇ O)Alkyl, C( ⁇ O)H, C( ⁇
  • R6 and R7 together with the atom to which they are attached form a saturated or partially unsaturated heterocyclic ring with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur, wherein said heterocyclic ring is optionally substituted with one or more substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, F, Cl, Br, I, CN, OR6, NH2, —C( ⁇ O)Alkyl, C( ⁇ O)H, C( ⁇ O)OH, C( ⁇ O)OAlkyl, OC( ⁇ O)H, OC( ⁇ O)Alkyl, (C1-C6alkyl)amino, (C1-C6alkyl)2-amino CH3OCH2O—, and Alkyl-OC( ⁇ O)CH ⁇ CH—.
  • substituents independently selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C
  • the invention also relates to a metabolite, solvate, tautomer or pharmaceutically acceptable salt of a compound according to formula I.
  • R2 is OR6
  • R6 is C1-C6 alkyl, such as ethyl.
  • the invention relates to a compound of formula I, where R2 is NR6R7.
  • the invention relates to a compound of formula I, where R2 is NR6R7 and R6 and R7 are independently selected from H, C1-C6 alkyl and C1-C6 heteroalkyl, such as, for example, R6 and R7 are H, ethyl, propyl or CH2CH2OCH3.
  • the invention relates to a compound of formula I, where Y is phenyl.
  • the invention relates to a compound of formula I, where R8 is selected from OR6, NR6R7 and heterocycloalkyl with 3 to 8 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur
  • the invention relates to a compound of formula I, where R8 is heterocycloalkyl with 5 or 6 ring atoms wherein one atom is selected from nitrogen, oxygen and sulfur.
  • R8 is pyrrolidine.
  • the invention relates to a compound of formula I, where R6 and R7 are independently selected from H and C1-C6 alkyl.
  • the invention relates to a compound of formula I, where Y is
  • each of R1, R3, R4, R5a, R5b and R5c is hydrogen.
  • the invention relates to a compound selected from
  • ADCC enhancers are described in WO2007/024612, the contents of which are hereby incorporated by reference in its entirety.
  • the ADCC enhancer molecule of the present invention is ⁇ 2-amino-8-[4-(pyrrolidinylcarbonyl)phenyl]-(3H-benzo[f]azepin-4-yl) ⁇ -N,N-dipropylcarboxamide with the chemical structure as follows:
  • the ADCC enhancer molecule enhances or improves the effector activity of an antibody.
  • the methods of the present invention can increase the therapeutic effect of an antibody by enhancing the effector activity exhibited by the antibody.
  • the methods of the invention are generally useful for treating or alleviating a symptom of any disorder in which enhanced antibody effector activity is desired in a subject in need thereof.
  • the ADCC enhancer molecule may improve ADCC by activating NK cells or CD56 + cells either directly or indirectly. Additionally, having a greater proportion of activated NK cells may help overcome the poor ADCC observed in a subset of patients that have low affinity Fc receptors.
  • a subject in need thereof includes cancer subjects that have been identified as having a KRAS mutation or an Fc ⁇ R polymorphism, or previously identified as being unresponsive to therapeutic antibody treatment or has impaired ADCC function.
  • the ADCC enhancer molecule of the invention is administered in combination with one or more therapeutic antibodies.
  • the antibodies have in vivo therapeutic and/or prophylactic uses against cancer and other cellular diseases.
  • the ADCC enhancer molecule is administered prior to, concurrently with, or subsequent to the administration of the one or more therapeutic antibodies.
  • the ADCC enhancer molecule is formulated with one or more therapeutic antibodies.
  • the one or more therapeutic antibodies is administered in a separate pharmaceutical composition.
  • the one or more therapeutic antibodies may be administered to a subject by the same or different routes of administration as those used to administer ADCC enhancer molecule.
  • the invention provides a method for killing a cancer cell comprising administering an amount of an ADCC enhancer molecule of the present invention in combination with a therapeutic monoclonal antibody to kill a cancer cell.
  • therapeutic monoclonal antibodies include, but are not limited to, rituximab, cetuximab, panitumumab, and trastuzumab.
  • the term “therapeutic antibody or antibodies” designates more specifically any antibody that functions to deplete target cells in a patient.
  • target cells include tumor cells, virus-infected cells, allogenic cells, pathological immunocompetent cells (e.g., B lymphocytes, T lymphocytes, antigen-presenting cells, etc.) involved in cancers, allergies, autoimmune diseases, allogenic reactions.
  • pathological immunocompetent cells e.g., B lymphocytes, T lymphocytes, antigen-presenting cells, etc.
  • Most preferred target cells within the context of this invention are tumor cells and virus-infected cells.
  • the therapeutic antibodies may, for instance, mediate a cytotoxic effect or cell lysis, particularly by antibody-dependant cell-mediated cytotoxicity (ADCC).
  • ADCC antibody-dependant cell-mediated cytotoxicity
  • ADCC requires leukocyte receptors for the Fc portion of IgG (Fc ⁇ R) whose function is to link the IgG-sensitized antigens to Fc ⁇ R-bearing cytotoxic cells and to trigger the cell activation machinery. While this mechanism of action has not been evidenced in vivo in humans, it may account for the efficacy of such target cell-depleting therapeutic antibodies. Therefore, the therapeutic antibody is capable of forming an immune complex.
  • an immune complex can be a tumoral target covered by therapeutic antibodies.
  • the therapeutic antibodies may by polyclonal or, preferably, monoclonal. They may be produced by hybridomas or by recombinant cells engineered to express the desired variable and constant domains.
  • the antibodies may be single chain antibodies or other antibody derivatives retaining the antigen specificity and the lower hinge region or a variant thereof. These may be polyfunctional antibodies, recombinant antibodies, humanized antibodies, fragments or variants thereof. Said fragment or a derivative thereof is preferably selected from a Fab fragment, a Fab′2 fragment, a CDR and a ScFv. Therapeutic antibodies are specific for surface antigens, e.g., membrane antigens.
  • Most preferred therapeutic antibodies are specific for tumor antigens (e.g., molecules specifically expressed by tumor cells), such as CD20, CD52, ErbB2 (or HER2/Neu), CD33, CD22, CD25, MUC-1, CEA, KDR, ⁇ V ⁇ 33, particularly lymphoma antigens (e.g., CD20).
  • the therapeutic antibodies have preferably human or non human primate IgG1 or IgG3 Fc portion, more preferably human IgG1.
  • therapeutic antibodies of this invention are rituximab, cetuximab, panitumumab, and trastuzumab. Such antibodies may be used according to clinical protocols that have been authorized for use in human subjects. Additional specific examples of therapeutic antibodies include, for instance, alemtuzumab, epratuzumab, basiliximab, daclizmab, labetuzumab, seviumab, tuvurimab, palivizumab, infliximab, omalizumab, efalizuab, natalizumab, and clenoliximab. One skilled in the art would recognize that other therapeutic antibodies are useful in the methods of the invention.
  • the dose for the therapeutic antibody is preferably between 200-600 mg/m 2 . This includes 200 mg/m 2 , 250 mg/m 2 , 300 mg/m 2 , 350 mg/m 2 , 400 mg/m 2 , 450 mg/m 2 , 500 mg/m 2 , 600 mg/m 2 and points in-between.
  • the therapeutic antibody is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of the therapeutic antibody may be 400 mg/m 2 administered as a 120-minute intravenous infusion (e.g., maximum infusion rate 10 mg/min)
  • the dose for the therapeutic antibody is preferably between 1-10 mg/kg. This includes 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 6 mg/kg, 7 mg/kg, 8 mg/kg and points in-between.
  • the therapeutic antibody is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of the therapeutic antibody may be 6 mg/kg administered as a 30-, 60-, or 90-minute intravenous infusion.
  • the therapeutic antibody is an anti-EGFR (epidermal growth factor receptor) monoclonal antibody.
  • the therapeutic antibody is a human or humanized anti-EGFR monoclonal antibody.
  • the therapeutic antibody is a chimeric anti-EGFR monoclonal antibody.
  • the monoclonal antibody is ERBITUX® (cetuximab), a chimeric (mouse/human) monoclonal antibody and epidermal growth factor receptor (EGFR) inhibitor.
  • Cetuximab may be used in combination with the ADCC enhancer of the present invention for the treatment of metastatic colorectal cancer and head and neck cancer.
  • Colorectal cancer includes the well-accepted medical definition that defines colorectal cancer as a medical condition characterized by cancer of cells of the intestinal tract below the small intestine (i.e. the large intestine (colon), including the cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, and rectum).
  • the ADCC enhancer molecule is used in combination with cetuximab for the treatment of EGFR-expressing metastatic colorectal carcinoma.
  • the ADCC enhancer molecule is used in combination with cetuximab for the treatment of EGFR-expressing metastatic colorectal carcinoma in patients who are refractory to irinotecan-based chemotherapy.
  • the head and neck section is an assembly of a plurality of organs, and the primary foci of head and neck cancer include the paranasal sinus, the epipharynx, the oropharynx, the oral cavity, the hypopharynx, the larynx, and the salivary glands.
  • Head and neck cancer includes cancers of the head or neck region of the body. Most head and neck cancers are squamous cell carcinomas, but some may be exophilic or endophilic. Examples of head and neck cancers include but are not limited to the lip, oral cavity (mouth), tongue, throat, trachea, nasal cavity, paranasal sinuses, pharynx, larynx, thyroid, salivary glands and cervical lymph nodes of the neck, and the like.
  • the ADCC enhancer molecule is used in combination with cetuximab for the treatment of locally or regionally advanced squamous cell carcinoma of the head and neck. In some embodiments, the ADCC enhancer molecule is used in combination with cetuximab for the treatment of recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.
  • the invention provides methods of increasing the effectiveness of cetuximab in the treatment of metastatic colorectal cancer or head and neck cancer.
  • some embodiments provide a method for increasing the clinical effectiveness of cetuximab comprising administering to a subject in need thereof cetuximab in combination with the ADCC enhancer molecule of the present invention.
  • the dose for cetuximab is preferably between 200-600 mg/m 2 . This includes 200 mg/m 2 , 250 mg/m 2 , 300 mg/m 2 , 350 mg/m 2 , 400 mg/m 2 , 450 mg/m 2 , 500 mg/m 2 , 600 mg/m 2 and points in-between.
  • cetuximab is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of cetuximab may be 400 mg/m 2 administered as a 120-minute intravenous infusion (e.g., maximum infusion rate 10 mg/min)
  • Cetuximab may be administered with a higher initial dose followed by lower subsequent doses.
  • the frequency of administration is preferably one time weekly. For example, following an initial dose of cetuximab at 400 mg/m 2 administered as a 120-minute intravenous infusion (e.g., maximum infusion rate 10 mg/min), subsequent weekly doses may be at 250 mg/m 2 infused over 60 minutes (e.g., maximum infusion rate 10 mg/min) until disease progression or unacceptable toxicity.
  • HERCEPTIN® trastuzumab
  • the therapeutic antibody is an anti-ErbB2 (HER2/neu) monoclonal antibody. In some embodiment the therapeutic antibody is a human or humanized anti-ErbB2 monoclonal antibody. In some embodiment the therapeutic antibody is a chimeric anti-ErbB2 monoclonal antibody.
  • the therapeutic antibody is HERCEPTIN® (trastuzumab), a humanized monoclonal antibody that interferes with the human epidermal growth factor receptor 2 (HER2/neu receptor).
  • HER2/neu receptor is a member of the ErbB protein family, more commonly known as the epidermal growth factor receptor family.
  • Trastuzumab reverses the effects of an overactive HER2 receptor.
  • trastuzumab is administered in combination with the ADCC enhancer molecule of the present invention for the treatment of breast cancer.
  • the ADCC enhancer molecule is used in combination with cetuximab for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein.
  • the invention provides methods of increasing the effectiveness of trastuzumab in the treatment of breast cancer.
  • some embodiments provide a method for increasing the clinical effectiveness of trastuzumab comprising administering to a subject in need thereof trastuzumab in combination with the ADCC enhancer molecule of the present invention.
  • the dose for trastuzumab is preferably between 1-10 mg/kg. This includes 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 6 mg/kg, 7 mg/kg, 8 mg/kg and points in-between.
  • trastuzumab is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of trastuzumab may be 6 mg/kg administered as a 30-, 60-, or 90-minute intravenous infusion.
  • Trastuzumab may be administered with a higher initial dose followed by lower subsequent doses or maintenance dose.
  • the frequency of administration is preferably one time weekly. For example, following an initial dose of trastuzumab at 4 mg/kg administered as a 90-minute intravenous infusion, subsequent weekly doses may be at 2 mg/kg infused over 30 minutes until disease progression or unacceptable toxicity.
  • the therapeutic antibody is an anti-CD20 monoclonal antibody. In some embodiment the therapeutic antibody is a human or humanized anti-CD20 monoclonal antibody. In some embodiment the therapeutic antibody is a chimeric anti-CD20 monoclonal antibody.
  • the monoclonal antibody against the protein CD20 is RITUXAN® (Rituximab).
  • RITUXAN® Renib-1
  • some embodiments provide a method for increasing the clinical effectiveness of trastuzumab comprising administering to a subject in need thereof trastuzumab in combination with the ADCC enhancer molecule of the present invention.
  • Rituximab may be used in combination with the ADCC enhancer of the present invention for the treatment of B-cell disorders, such as lymphomas, leukemias, and some autoimmune disorders (e.g., rhuematoid arthritis).
  • B-cell disorders such as lymphomas, leukemias, and some autoimmune disorders (e.g., rhuematoid arthritis).
  • Rituximab destroys both normal and malignant B cells that have CD20 on their surfaces.
  • Rituximab may be used in combination with the ADCC enhancer of the present invention to treat diseases which are characterized by having too many B cells, overactive B cells or dysfunctional B cells.
  • the invention provides methods of increasing the effectiveness of rituximab in the treatment of B-cell disorders, such as lymphomas, leukemias, and some autoimmune disorders (e.g., rhuematoid arthritis).
  • some embodiments provide a method of increasing the clinical effectiveness of rituximab comprising administering to a subject in need thereof rituximab in combination with the ADCC enhancer molecule of the present invention.
  • rituximab may be used in combination with the ADCC enhancer of the present invention to treat hematological neoplasms such as leukemias and lymphomas.
  • Rituximab may be used in combination with the ADCC enhancer of the present invention to treat autoimmune diseases, including, but not limited to, idiopathic autoimmune hemolytic anemia, pure red cell aplasia, idiopathic thrombocytopenic purpura (ITP), Evans syndrome, vasculitis (for example Wegener's Granulomatosis), bullous skin disorders (for example pemphigus, pemphigoid), type 1 diabetes mellitus, Sjogren's syndrome, and Devic's disease.
  • autoimmune diseases including, but not limited to, idiopathic autoimmune hemolytic anemia, pure red cell aplasia, idiopathic thrombocytopenic purpura (ITP), Evans syndrome, vasculitis (for example Wegener's Granulomatosis), bullous skin disorders (for example pemphigus, pemphigoid), type 1 diabetes mellitus, Sjogren's syndrome, and Devic's disease.
  • rituximab may be used in combination with the ADCC enhancer of the present invention to treat hematological malignancies.
  • hematological malignancies include, for example, B-cell lymphoma, acute myelogenous leukemia, and chronic lymphocytic leukemia.
  • Such treatment results in, for example, tumor regression in an amimal model or in a human. Tumor regression can include, for example, killing a cancer cell.
  • the invention provides a method for killing a cancer cell comprising administering an amount rituximab and the ADCC enhancer of the present invention in amounts effective to kill a cancer cell of a hematopoietic cancer.
  • the types of hematopoietic cancer include, but are not limited to, B cell lymphoma, chronic lymphocytic leukemia, and acute myelogenous leukemia.
  • rituximab is administered in combination with the ADCC enhancer molecule of the present invention for the treatment of patients with relapsed or refractory, low-grade or follicular, CD20-positive, B-cell, non-Hodgkin's lymphoma.
  • rituximab is administered in combination with the ADCC enhancer molecule of the present invention for the first-line treatment of follicular, CD20-positive, B-cell non-Hodgkin's lymphoma in combination with CVP chemotherapy.
  • rituximab is administered in combination with the ADCC enhancer molecule of the present invention for the treatment rheumatoid arthritis.
  • Methotrexate may further be added to the combination. Accordingly, accordingly, in some embodiments, rituximab is administered in combination with the ADCC enhancer molecule of the present invention and with methotrexate to reduce signs and symptoms in adult patients with moderately—to severely—active rheumatoid arthritis.
  • rituximab is administered in combination with the ADCC enhancer molecule of the present invention and with methotrexate to reduce signs and symptoms in adult patients with moderately—to severely—active rheumatoid arthritis who have had an inadequate response to one or more TNF antagonist therapies.
  • the dose for rituximab is preferably between 200-1200 mg/m 2 . This includes 200 mg/m 2 , 250 mg/m 2 , 300 mg/m 2 , 350 mg/m 2 , 375 mg/m 2 , 400 mg/m 2 , 450 mg/m 2 , 500 mg/m 2 , 600 mg/m 2 700 mg/m 2 , 800 mg/m 2 , 900 mg/m 2 , 1000 mg/m 2 , 1100 mg/m 2 , 1200 mg/m 2 , and points in-between.
  • rituximab is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of rituximab may be 375 mg/m 2 administered as a 120-minute intravenous infusion, preferably within 4 hours.
  • the frequency of administration of rituximab is preferably one time weekly or monthly and may continue until disease progression or unacceptable toxicity.
  • 2-16 does of rituximab is administered (e.g., 2, 4, 6, 8, 10, 12, 14, 16 doses).
  • rituximab is given at 375 mg/m 21 V infusion once weekly for 4 or 8 doses.
  • administration of rituximab is 4 doses every 6 months for up to 16 doses.
  • rituximab is given as two-1000 mg IV infusions separated by 2 weeks.
  • VECTIBIX® (Panitumumab)
  • the therapeutic antibody is Vectibix® (panitumumab).
  • Vectibix® panitumumab
  • EGFR human epidermal growth factor receptor
  • Vectibix® is indicated as a single agent for the treatment of EGFR-expressing, metastatic colorectal carcinoma with disease progression on or following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens.
  • the invention provides methods of increasing the effectiveness of panitumumab in the treatment of EGFR-expressing, metastatic colorectal carcinoma.
  • some embodiments provide a method for increasing the clinical effectiveness of panitumumab comprising administering to a subject in need thereof panitumumab in combination with the ADCC enhancer molecule of the present invention.
  • Other embodiments provide a method for increasing the clinical effectiveness of panitumumab in the treatment of EGFR-expressing, metastatic colorectal carcinoma comprising administering to a subject in need thereof panitumumab in combination with the ADCC enhancer molecule of the present invention.
  • panitumumab is administered in combination with the ADCC enhancer molecule of the present invention for the treatment metastatic colorectal carcinoma. In some embodiments, panitumumab is administered in combination with the ADCC enhancer molecule of the present invention for the treatment metastatic colorectal carcinoma with disease progression on or following fluoropyrimidine, oxaliplatin, and irinotecan chemotherapy regimens.
  • panitumumab is preferably between 1-10 mg/kg. This includes 1 mg/kg, 2 mg/kg, 3 mg/kg, 4 mg/kg, 5 mg/kg, 6 mg/kg, 7 mg/kg, 8 mg/kg, 10 mg/kg and points in-between.
  • panitumumab is administered by intravenous infusion (e.g., as a 30 min., 45 min., 60 min., 90 min, or 120 min infusion).
  • the dose of panitumumab may be 4 mg/kg administered as a 30-, 60-, or 90-minute intravenous infusion. Doses higher than 1000 mg should be administered over 90 minutes.
  • the frequency of administration may be one time every 7 to 21 days (e.g., once every 10, 14, 18, etc days).
  • the frequency of administration is preferably one time every 14 days
  • Panitumumab may be administered with a higher initial dose followed by lower subsequent doses or maintenance dose. For example, following an initial dose of panitumumab at 6 mg/kg administered as a 90-minute intravenous infusion, subsequent weekly doses may be at 2-4 mg/kg infused over 30 minutes until disease progression or unacceptable toxicity.
  • the ADCC enhancer molecule of the invention is administered in combination with one or more therapeutic antibodies and one or more chemotherapeutic agents.
  • a “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer, regardless of mechanism of action.
  • Chemotherapeutic agents include, but are not limited to, the following groups of compounds: cytotoxic antibiotics, antimetabolities, anti-mitotic agents, alkylating agents, platinum containing compounds, arsenic compounds, DNA topoisomerase inhibitors, taxanes, nucleoside analogues, plant alkaloids, and toxins, and synthetic derivatives thereof. The following are non-limiting examples of particular compounds within these groups.
  • Alkylating agents include nitrogen mustards such as cyclophosphamide, ifosfamide, trofosfamide, and chlorambucil; nitrosoureas such as carmustine (BCNU) and lomustine (CCNU); alkylsulphonates such as busulfan and treosulfan; and triazenes such as dacarbazine.
  • Platinum containing compounds include cisplatin, carboplatin, aroplatin, and oxaliplatin.
  • Plant alkaloids include vinca alkaloids such as vincristine, vinblastine, vindesine, and vinorelbine; and taxoids such as paclitaxel and docetaxol.
  • DNA topoisomerase inhibitors include epipodophyllins such as etoposide, teniposide, topotecan, 9-aminocamptothecin, camptothecin, and crisnatol; and mitomycins such as mitomycin C.
  • Anti-folates include DHFR inhibitors such as methotrexate and trimetrexate; IMP dehydrogenase inhibitors such as mycophenolic acid, tiazofurin, ribavirin, hydroxyurea and EICAR; and ribonucleotide reductase inhibitors such as deferoxamine.
  • Pyrimidine analogs include uracil analogs such as 5-fluorouracil, floxuridine, doxifluridine, and ratitrexed; and cytosine analogs such as cytarabine (ara C), cytosine arabinoside, and fludarabine.
  • uracil analogs such as 5-fluorouracil, floxuridine, doxifluridine, and ratitrexed
  • cytosine analogs such as cytarabine (ara C), cytosine arabinoside, and fludarabine.
  • Purine analogs include mercaptopurine and thioguanine DNA antimetabolites include 3-HP, 2′-deoxy-5-fluorouridine, 5-HP, alpha-TGDR, aphidicolin glycinate, ara-C, 5-aza-2′-deoxycytidine, beta-TGDR, cyclocytidine, guanazole, inosine glycodialdehyde, macebecin II, and pyrazoloimidazole.
  • Antimitotic agents include allocolchicine, halichondrin B, colchicine, colchicine derivative, dolstatin 10, maytansine, rhizoxin, thiocolchicine, and trityl cysteine.
  • chemotherapeutic agents for use with the ADCC enhancer molecule of the invention include isoprenylation inhibitors; dopaminergic neurotoxins such as 1-methyl-4-phenylpyridinium ion; cell cycle inhibitors such as staurosporine; actinomycins such as actinomycin D and dactinomycin; bleomycins such as bleomycin A2, bleomycin B2, and peplomycin; anthracyclines such as daunorubicin, doxorubicin (adriamycin), idarubicin, epirubicin, pirarubicin, zorubicin, and mitoxantrone; MDR inhibitors such as verapamil; and Ca 2+ ATPase inhibitors such as thapsigargin.
  • dopaminergic neurotoxins such as 1-methyl-4-phenylpyridinium ion
  • cell cycle inhibitors such as staurosporine
  • actinomycins such as actinomycin D and
  • the ADCC enhancer molecule is administered in combination with one or more of the following: IFN ⁇ , IL-2, dacarbazine (Bayer), Temozolomide (Schering), Tamoxifen (AZ), Carmustine (BMS), Melphalan (GSK), Procarbazine (Sigma-Tau), Vinblastine, carboplatin, cisplatin, taxol, cyclophosphamide, doxorubin, Rituxan (Genentech/Roche), Herceptin (Genentech/Roche), Gleevec, Iressa (AZ), Avastin (Genentech/Roche), Erbitux (ImClone/Merck KGaA), or Tarceva (Genentech/Roche).
  • the ADCC enhancer molecule of the invention is administered in combination with one or more of the following: an enediyne such as calicheamicin and esperamicin; duocarmycin, methotrexate, doxorubicin, melphalan, chlorambucil, Ara-C, vindesine, mitomycin C, cis-platinum, etoposide, bleomycin, and 5-fluorouracil.
  • an enediyne such as calicheamicin and esperamicin
  • duocarmycin methotrexate
  • doxorubicin melphalan
  • chlorambucil Ara-C
  • vindesine mitomycin C
  • cis-platinum etoposide
  • bleomycin bleomycin
  • 5-fluorouracil 5-fluorouracil
  • Suitable toxins and chemotherapeutic agents that can be used in combination with the ADCC enhancer molecule of this invention are described in Remington's Pharmaceutical Sciences, 19th Ed. (Mack Publishing Co. 1995), and in Goodman and Gilman's the Pharmacological Basis of Therapeutics, 7th Ed. (MacMillan Publishing Co. 1985). Other suitable toxins and/or chemotherapeutic agents are known to those of skill in the art.
  • the ADCC enhancer molecule is administered prior to, concurrently with, or subsequent to the administration of the one or more chemotherapeutic agents.
  • the ADCC enhancer molecule is formulated with one or more chemotherapeutic agents.
  • the one or more chemotherapeutic agents is administered in a separate pharmaceutical composition.
  • the one or more chemotherapeutic agents may be administered to a subject by the same or different routes of administration as those used to administer ADCC enhancer molecule.
  • the ADCC enhancer molecule of the present invention is used prior to, concurrently with, or subsequent to the administration of one or more chemotherapeutic agents and a therapeutic antibody.
  • the therapeutic antibody is an anti-EGFR (epidermal growth factor receptor) monoclonal antibody.
  • the therapeutic antibody is a human or humanized anti-EGFR monoclonal antibody.
  • the therapeutic antibody is a chimeric anti-EGFR monoclonal antibody.
  • the monoclonal antibody is ERBITUX® (cetuximab), a chimeric (mouse/human) monoclonal antibody and epidermal growth factor receptor (EGFR) inhibitor.
  • Cetuximab may be used in combination with the ADCC enhancer of the present invention and one or more chemotherapeutic agents for the treatment of head and neck cancer.
  • the ADCC enhancer molecule is used prior to, concurrently with, or subsequent to the administration of one or more chemotherapeutic agents and cetuximab for the treatment of locally or regionally advanced squamous cell carcinoma of the head and neck.
  • the ADCC enhancer molecule is used prior to, concurrently with, or subsequent to the administration of one or more chemotherapeutic agents and cetuximab for the treatment of recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.
  • the invention provides methods of increasing the effectiveness of cetuximab in the treatment of head and neck cancer.
  • some embodiments provide a method of increasing the clinical effectiveness of cetuximab comprising administering to a subject in need thereof cetuximab in combination with one or more chemotherapeutic agents and the ADCC enhancer molecule of the present invention.
  • Cetuximab may be used in combination with the ADCC enhancer of the present invention and one or more chemotherapeutic agents for the treatment of metastatic colorectal cancer.
  • Colorectal cancer includes the well-accepted medical definition that defines colorectal cancer as a medical condition characterized by cancer of cells of the intestinal tract below the small intestine (i.e. the large intestine (colon), including the cecum, ascending colon, transverse colon, descending colon, and sigmoid colon, and rectum).
  • the ADCC enhancer molecule is used prior to, concurrently with, or subsequent to the administration of cetuximab and one or more chemotherapeutic agents for the treatment of EGFR-expressing metastatic colorectal carcinoma.
  • the ADCC enhancer molecule is used prior to, concurrently with, or subsequent to the administration of cetuximab and one or more chemotherapeutic agents for the treatment of EGFR-expressing metastatic colorectal carcinoma in patients who are refractory to irinotecan-based chemotherapy.
  • the invention also provides methods of increasing the effectiveness of cetuximab in the treatment of metastatic colorectal cancer.
  • some embodiments provide a method of increasing the clinical effectiveness of cetuximab comprising administering to a subject in need thereof cetuximab in combination with one or more chemotherapeutic agents and the ADCC enhancer molecule of the present invention.
  • HERCEPTIN® trastuzumab
  • Trastuzumab may be used with the ADCC enhancer of the present invention and one or more chemotherapeutic agents.
  • the ADCC enhancer molecule of the present invention is used prior to, concurrently with, or subsequent to the administration of one or more chemotherapeutic agents and a therapeutic antibody.
  • the therapeutic antibody is an anti-ErbB2 (HER2/neu) monoclonal antibody.
  • the therapeutic antibody is a human or humanized anti-ErbB2 monoclonal antibody.
  • the therapeutic antibody is a chimeric anti-ErbB2 monoclonal antibody.
  • the therapeutic antibody is HERCEPTIN® (trastuzumab), a humanized monoclonal antibody that interferes with the human epidermal growth factor receptor 2 (HER2/neu receptor).
  • HER2/neu receptor is a member of the ErbB protein family, more commonly known as the epidermal growth factor receptor family.
  • Trastuzumab reverses the effects of an overactive HER2 receptor.
  • trastuzumab is administered in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents for the treatment of breast cancer.
  • the ADCC enhancer molecule is used prior to, concurrently with, or subsequent to the administration of cetuximab and one or more chemotherapeutic agents for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein.
  • the invention provides methods of increasing the effectiveness of trastuzumab in the treatment of breast cancer.
  • some embodiments provide a method of increasing the clinical effectiveness of trastuzumab comprising administering to a subject in need thereof trastuzumab in combination with the ADCC enhancer molecule of the present invention and one or more chemotherapeutic agents.
  • methods for controlling solid tumor growth (e.g., breast, prostate, melanoma, renal, colon, cervical tumor growth) and/or metastasis comprising administering an effective amount of a compound of the invention to a subject in need thereof.
  • the subject is a mammal.
  • the mammal is human.
  • tumor is used to denote neoplastic growth which may be benign (e.g., a tumor which does not form metastases and destroy adjacent normal tissue) or malignant/cancer (e.g., a tumor that invades surrounding tissues, and is usually capable of producing metastases, may recur after attempted removal, and is likely to cause death of the host unless adequately treated).
  • tumor e.g., a tumor which does not form metastases and destroy adjacent normal tissue
  • malignant/cancer e.g., a tumor that invades surrounding tissues, and is usually capable of producing metastases, may recur after attempted removal, and is likely to cause death of the host unless adequately treated.
  • tumor tumor growth
  • tumor tissue can be used interchangeably, and refer to an abnormal growth of tissue resulting from uncontrolled progressive multiplication of cells and serving no physiological function.
  • Hematological cancers are the type of cancer that affects blood, bone marrow, or lymph nodes. As the three are intimately connected through the immune system, a disease affecting one of the three will often affect the others as well. Hematological cancers may derive from either of the two major blood cell lineages: myeloid and lymphoid cell lines.
  • the myeloid cell line normally produces granulocytes, erythrocytes, thrombocytes, macrophages and mast cells; the lymphoid cell line produces B, T, NK and plasma cells.
  • Lymphomas lymphocytic leukemias, and myeloma are from the lymphoid line, while acute and chronic myelogenous leukemia, myelodysplastic syndromes and myeloproliferative diseases are myeloid in origin.
  • Hematological cancers which may be treated or ameliorated using compositions of the present invention include, but are not limited to, non-Hodgkin's lymphoma (e.g., small lymphocytic lymphoma, follicular center cell lymphoma, lymphoplasmacytoid lymphoma, marginal zone lymphoma, mantle cell lymphoma, immunoblastic lymphoma, burkitt's lymphoma, lymphoblastic lymphoma, peripheral T-cell lymphoma, anaplastic large cell lymphoma and intestinal T-cell lymphoma), leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia and plasma cell neoplasms including multiple myeloma.
  • non-Hodgkin's lymphoma e.g., small lymphocytic lymphoma, follicular center cell lymphoma, lymphoplasmacytoid lymphoma, marginal zone lymphoma, mant
  • the present invention provides methods of treating or ameliorating hematological cancers comprising administering an effective amount of a compound of the invention to a subject in need thereof.
  • KRAS proto-oncogene encodes K-ras G-protein.
  • This proto-oncogene is a Kirsten ras oncogene homolog from the mammalian ras gene family.
  • a single amino acid substitution, and in particular a single nucleotide substitution, is responsible for an activating mutation.
  • the mutant KRAS protein is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma.
  • Several germline KRAS mutations have been found to be associated with Noonan syndrome and cardio-facio-cutaneous syndrome.
  • Somatic KRAS mutations are found at high rates in Leukemias, colon cancer, pancreatic cancer and lung cancer. Patients with KRAS mutation are predictive of a very poor response to some therapeutic antibodies in the treatment of cancers, such as, colorectal cancer and lung cancer.
  • the invention also provides methods for increasing the clinical effectiveness of a therapeutic monoclonal antibody in treatment of KRAS mutant cancer comprising administering to a subject in need thereof the therapeutic monoclonal antibody, in combination with the ADCC enhancer molecule of the present invention.
  • the therapeutic antibody is for example, panitumumab or cetuximab.
  • a subject in need thereof includes cancer subjects that have been identified as having a KRAS mutation or previously identified as being unresponsive to therapeutic antibody treatment. Subjects having KRAS mutation are identified by methods know in the art such as Pyrosequencing, i.e.
  • nucleotide extension sequencing genotyping, the ribonuclease, denaturing gradient-gel electrophoresis, carbodiimide, chemical cleavage, single-strand conformation polymorphism, heteroduplex and sequencing methods (Ogino et al. Journal of Molecular Diagnostics, 7: 413-421, 2005).
  • KRAS proto-oncogene encodes K-ras G-protein, which plays a critical key role in the Ras/mitogen-activated protein kinase (MAPK) signaling pathway located downstream of many growth factor receptors including EGFR and which is involved in colorectal cancer (CRC) carcinogenesis.
  • MAPK Ras/mitogen-activated protein kinase
  • CRC colorectal cancer
  • KRAS mutation is also implicated in other malignancies, including lung adenocarcinoma, mucinous adenoma, and ductal carcinoma of the pancreas.
  • EGFR epidermal growth factor receptor
  • NSCLC non-small-cell lung cancers
  • the invention also provides methods for increasing the clinical effectiveness of a therapeutic monoclonal antibody in subjects with impaired ADCC function, such as subjects with subjects with Fc ⁇ R polymorphisms by administering to a subject in need thereof the therapeutic monoclonal antibody, in combination with the ADCC enhancer molecule of the present invention.
  • a subject in need thereof includes subjects that have been identified as having a Fc ⁇ R polymorphism such as Fc ⁇ R3a-V158F and Fc ⁇ R2a-H131R, or previously identified as being unresponsive to therapeutic antibody treatment.
  • Subjects having a Fc ⁇ R polymorphisms are identified by methods know in the art such as dynamic allele-specific hybridization (DASH), microplate array diagonal gel electrophoresis (MADGE), pyrosequencing, oligonucleotide-specific ligation, the TaqMan system as well as various DNA “chip” technologies such as the Affymetrix SNP chips. These methods require amplification of the target genetic region, typically by PCR. Still other newly developed methods, based on the generation of small signal molecules by invasive cleavage followed by mass spectrometry or immobilized padlock probes and rolling-circle amplification, might eventually eliminate the need for PCR.
  • DASH dynamic allele-specific hybridization
  • MADGE microplate array diagonal gel electrophoresis
  • pyrosequencing oligonucleotide-specific ligation
  • TaqMan system as well as various DNA “chip” technologies such as the Affymetrix SNP chips.
  • rs396991 is a SNP in the Fc fragment of IgG, low affinity Ma, receptor (CD16a) Fc ⁇ R3a gene.
  • rs396991(T) encodes the phenylalanine (F) allele, with the (G) allele encoding the variant valine (V).
  • methods for selecting an appropriate therapeutic regimen for a subject in need thereof comprising determining a SNP of Fc ⁇ R3a at amino acid position 158, wherein a homozygous valine at amino acid position 158 of Fc ⁇ R3a indicates the subject is predicted to be more responsive to the therapeutic regimen than a subject without the homozygous valine at amino acid position 158 of Fc ⁇ R3a.
  • rs1801274 is a SNP in the Fc fragment of IgG IIa receptor (CD32) Fc ⁇ R2a gene.
  • methods for selecting an appropriate therapeutic regimen for a subject in need thereof comprising determining a SNP of Fc ⁇ R2a at amino acid position 131, wherein a homozygous histidine at amino acid position 131 of Fc ⁇ R2a indicates the subject is predicted to be more responsive to the therapeutic regimen than a subject without the homozygous histidine at amino acid position 131 of Fc ⁇ R2a.
  • the ADCC enhancer molecule of the invention is preferably formulated for injection, most preferably by subcutaneous injection. In certain embodiments, the ADCC enhancer molecule of the invention is formulated for administration by an intradermal, a transdermal, a subcutaneous, or an intramuscular route. In one embodiment, the ADCC enhancer molecule is formulated for intravenous administration.
  • the ADCC enhancer molecule may be formulated for any suitable route of administration, including, by way of example, nasal (e.g., via an aerosol), buccal (e.g., sub-lingual), topical (i.e., administration by either skin and/or mucosal surfaces, including airway surfaces), intrathecal, intra-articular, intraplural, intracerebral, intra-arterial, intraperitoneal, oral, intralymphatic, intranasal, rectal or vaginal administration, by perfusion through a regional catheter, or by direct intralesional injection.
  • nasal e.g., via an aerosol
  • buccal e.g., sub-lingual
  • topical i.e., administration by either skin and/or mucosal surfaces, including airway surfaces
  • intrathecal intra-articular, intraplural, intracerebral, intra-arterial, intraperitoneal
  • oral intralymphatic
  • intranasal rectal or vaginal administration
  • vaginal administration by
  • the formulations of the present invention contain an amount of an ADCC enhancer molecule that is effective for the intended use. Particular dosages are also selected based on a number of other factors including the age, sex, species and/or condition of the patient. Effective amounts can also be extrapolated from dose-response curves derived from in vitro test systems or from animal models.
  • the dose of the ADCC enhancer molecule is measured in units of mg/kg of body weight. In other embodiments, the dose is measured in units of mg/kg of lean body weight (i.e., body weight minus body fat content). In other embodiments, the dose is measured in units of mg/m 2 of body surface area. In other embodiments, the dose is measured in units of mg per dose administered to a patient. Any measurement of dose can be used in conjunction with the compositions and methods of the invention and dosage units can be converted by means standard in the art.
  • the dose for the ADCC enhancer molecule is between 0.1-10 mg/m 2 (e.g., 0.1-3.9 mg/m2, 0.1-1 mg/m 2 , 0.1-2 mg/m 2 , 0.1-4 mg/m 2 , 2-4 mg/m 2 , 2-6 mg/m 2 , 2-8 mg/m 2 ). This includes 0.003 mg/m 2 , 0.1 mg/m 2 , 1 mg/m 2 , 2 mg/m 2 , 3 mg/m 2 , 4 mg/m 2 , 5 mg/m 2 , 6 mg/m 2 , 7 mg/m 2 , 8 mg/m 2 and points in-between.
  • the frequency of administration is preferably once every 7 to 21 days (e.g., once every 7, 10, 14, 18, 21 days). In some embodiments, the frequency of administration is preferably 1, 2, or 3 times every 7 to 21 days (e.g., once every 7, 10, 14, 18, 21 days).
  • the ADCC enhancer molecule may be given until disease progression or unacceptable toxicity. In some embodiments, 2-20 doses are given (e.g., 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 doses).
  • the preferred route of administration is subcutaneous.
  • dosing regimens that can be used in the methods of the invention include, but are not limited to, daily, three times weekly (intermittent), weekly, or every 14 days. In certain embodiments, dosing regimens include, but are not limited to, monthly dosing or dosing every 6-8 weeks.
  • an ADCC enhancer molecule formulation of the present invention is administered by subcutaneous injection weekly or biweekly in combination with a suitable treatment modality for the treatment of cancer or infectious disease in a subject, preferably a human subject.
  • Exemplary doses of an ADCC enhancer molecule include milligram amounts per kilogram of the subject.
  • the dose is from about 0.02 to 10 mg/kg of body weight or about 0.04 to 5 mg/kg of body weight.
  • the dosage is about 0.05 mg/kg, about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, or about 10 mg/kg of the subject's body weight.
  • the ADCC enhancer molecule is administered to the subject at a dose of from about 0.02 to 10 mg/kg of body weight or about 0.04 to 5 mg/kg of body weight of the subject.
  • the ADCC enhancer molecule is administered at a dose of about 0.05 mg/kg, about 0.1 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 5 mg/kg, or about 10 mg/kg of the subject's body weight.
  • the ADCC enhancer molecule formulation is administered to the subject on a weekly or biweekly basis.
  • a daily dose is at least 0.05 mg, 0.50 mg, 1.0 mg, 5.0 mg, 10 mg, 15 mg, 20 mg, 30 mg, or at least 50 mg.
  • dosages for intradermal, intramuscular, intraperitoneal, subcutaneous, epidural, or intravenous administration are in the range of about 0.02 to 10 mg/kg of body weight per day.
  • Suitable doses for topical administration are in the range of about 0.001 milligram to about 50 milligrams per kilogram of body weight per day, depending on the area of administration.
  • dosages are generally higher and/or frequency of administration greater for initial treatment as compared with maintenance regimens.
  • the present invention provides a pharmaceutical pack or kit comprising one or more containers filled with a liquid or lyophilized ADCC enhancer molecule.
  • the liquid or lyophilized formulation is sterile.
  • the kit comprises a liquid or lyophilized formulation of the ADCC enhancer molecule, in one or more containers, and one or more other prophylactic or therapeutic agents useful for the treatment of cancer or B-cell disorders.
  • the one or more other prophylactic or therapeutic agents may be in the same container as the ADCC enhancer molecule or in one or more other containers.
  • the ADCC enhancer molecule is formulated at a concentration of from about 0.5 mg/ml to about 50 mg/ml, from about 1 mg/ml to about 40 mg/ml, or from about 2 mg/ml to about 15 mg/ml, and the formulation is suitable for administration by an intradermal, a transdermal, a subcutaneous, or an intramuscular route.
  • the ADCC enhancer molecule is formulated for intravenous administration.
  • the ADCC enhancer molecule may also be formulated for any suitable route of administration, including, by way of example, nasal (e.g., via an aerosol), buccal (e.g., sub-lingual), topical (i.e., administration by either skin and/or mucosal surfaces, including airway surfaces), intrathecal, intra-articular, intraplural, intracerebral, intra-arterial, intraperitoneal, oral, intralymphatic, intranasal, rectal or vaginal administration, by perfusion through a regional catheter, or by direct intralesional injection.
  • the kit contains the ADCC enhancer molecule in unit dosage form.
  • the unit dosage form is in a form suitable to provide a unit dose of about 0.02 to 10 mg/kg or about 0.04 to 5 mg/kg of body weight of the subject to be treated.
  • the kit further comprises one or more therapeutic monoclonal antibodies, for example, but are not limited to, rituximab, cetuximab, panitumumab, trastuzumab, alemtuzumab, epratuzumab, basiliximab, daclizmab, labetuzumab, seviumab, tuvurimab, palivizumab, infliximab, omalizumab, efalizuab, natalizumab, and clenoliximab.
  • the kit may also comprise one or more chemotherapeutic agents.
  • the kit of the present invention further comprises instructions for use in the treatment of cancer (e.g., using the liquid formulations of the invention alone or in combination with another prophylactic or therapeutic agent), as well as side effects and dosage information for one or more routes of administration.
  • instructions for use in the treatment of cancer e.g., using the liquid formulations of the invention alone or in combination with another prophylactic or therapeutic agent
  • side effects and dosage information for one or more routes of administration.
  • Optionally associated with such container(s) is a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • composition containing an ADCC enhancer molecule and a therapeutic antibody are composition containing an ADCC enhancer molecule and a therapeutic antibody.
  • the therapeutic antibody is for example, but not limited to, rituximab, cetuximab, panitumumab, trastuzumab, alemtuzumab, epratuzumab, basiliximab, daclizmab, labetuzumab, seviumab, tuvurimab, palivizumab, infliximab, omalizumab, efalizuab, natalizumab, or clenoliximab.
  • administration refers to both concurrent and sequential administration of the active agents.
  • a “subject” or “patient” in the context of the present invention is preferably a mammal.
  • the mammal can be a human, non-human primate, mouse, rat, dog, cat, horse, or cow, but are not limited to these examples.
  • a subject can be male or female.
  • ADCC activity refers to an activity to damage a target cell (e.g., tumor cell) by activating an effector cell via the binding of the Fc region of an antibody to an Fc receptor existing on the surface of an effector cell such as a killer cell, a natural killer cell, an activated macrophage or the like.
  • An activity of antibodies of the present invention includes ADCC activity. ADCC activity measurements and antitumor experiments can be carried out in accordance using any assay known in the art.
  • an increase in cell lysis may be by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 325%, 400%, or 500%.
  • monoclonal antibody or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition.
  • a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
  • human antibody is intended to refer to antibodies having variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences. Furthermore, if the antibody contains a constant region, the constant region also is derived from human germline immunoglobulin sequences.
  • the human antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo).
  • human monoclonal antibody refers to antibodies displaying a single binding specificity which have variable regions in which both the framework and CDR regions are derived from human germline immunoglobulin sequences.
  • the human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic nonhuman animal, e.g., a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.
  • human monoclonal antibody also includes all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom (described further below), (b) antibodies isolated from a host cell transformed to express the human antibody, e.g., from a transfectoma, (c) antibodies isolated from a recombinant, combinatorial human antibody library, and (d) antibodies prepared, expressed, created or isolated by any other means that involve splicing of human immunoglobulin gene sequences to other DNA sequences.
  • recombinant means such as (a) antibodies isolated from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin genes or a hybridoma prepared therefrom (described further below), (b) antibodies isolated from a host cell transformed to express the human antibody, e.g.
  • Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences.
  • such recombinant human antibodies can be subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the V H and V L regions of the recombinant antibodies are sequences that, while derived from and related to human germline V H and V L sequences, may not naturally exist within the human antibody germline repertoire in vivo.
  • humanized antibody is intended to refer to antibodies in which CDR sequences derived from the germline of another mammalian species, such as mouse, have been grafted onto human framework sequences. Additional framework region modifications may be made within the human framework sequences.
  • chimeric antibody is intended to refer to antibodies in which the variable region sequences are derived from one species and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody and the constant region sequences are derived from a human antibody.
  • a “mutated gene” or “mutation” or “functional mutation” or “mutant” refers to an allelic form of a gene, which is capable of altering the phenotype of a subject having the mutated gene relative to a subject which does not have the mutated gene.
  • the altered phenotype caused by a mutation can be corrected or compensated for by certain agents. If a subject must be homozygous for this mutation to have an altered phenotype, the mutation is said to be recessive. If one copy of the mutated gene is sufficient to alter the phenotype of the subject, the mutation is said to be dominant. If a subject has one copy of the mutated gene and has a phenotype that is intermediate between that of a homozygous and that of a heterozygous subject (for that gene), the mutation is said to be co-dominant.
  • polymorphism refers to the coexistence of more than one form of a gene or portion (e.g., allelic variant) thereof.
  • a portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a “polymorphic region of a gene”.
  • a specific genetic sequence at a polymorphic region of a gene is an allele.
  • a polymorphic region can be a single nucleotide, the identity of which differs in different alleles.
  • a polymorphic region can also be several nucleotides long.
  • wild-type allele refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.
  • a reference to “a composition” includes a plurality of such compositions, as well as a single composition
  • a reference to “a therapeutic agent” is a reference to one or more therapeutic and/or pharmaceutical agents and equivalents thereof known to those skilled in the art, and so forth.
  • a reference to “a host cell” includes a plurality of such host cells
  • a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
  • the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
  • the term “effective amount” of refers to an amount sufficient to provide the desired anti-cancer effect, anti-tumor effect or anti-disease effect in an animal, preferably a human, suffering from cancer or a cellular disease. Desired anti-tumor effects include, without limitation, the modulation of tumor growth (e.g. tumor growth delay), tumor size, or metastasis, the reduction of toxicity and side effects associated with a particular anti-cancer agent, the amelioration or minimization of the clinical impairment or symptoms of cancer, extending the survival of the subject beyond that which would otherwise be expected in the absence of such treatment, and the prevention of tumor growth in an animal lacking any tumor formation prior to administration, i.e., prophylactic administration.
  • a subcutaneous formulation comprising the ADCC enhancer ⁇ 2-amino-8-[4-(pyrrolidinylcarbonyl)phenyl]-(3H-benzo[f]azepin-4-yl) ⁇ -N,N-dipropylcarboxamide was used for the experiments.
  • the structure for ⁇ 2-amino-8-[4-(pyrrolidinylcarbonyl)phenyl]-(3H-benzo[f]azepin-4-yl) ⁇ -N,N-dipropylcarboxamide is as follows:
  • PBMCs Human Peripheral blood mononuclear cells
  • PBMCs activated with the ADCC enhancer were tested for the ability to enhance killing of the NK sensitive target cell line K562 or various tumor cells coated with monoclonal antibodies.
  • Target cells were labeled with the fluorescent dye Calcein AM for 1 hour at 37° C. in a dark humidified CO 2 incubator.
  • Labeled targets (2 ⁇ 10 5 cells/mL) were then incubated with monoclonal antibodies such as Herceptin, Rituxan, and Erbitux at a concentration of 5 micrograms/mL for 30 minutes at 4C after which any unbound antibody was washed away.
  • Activated effector cells and labeled target cells were incubated in 96-well tissue culture plates at for 4 hours at 37° C.
  • PBMCs Human peripheral blood mononuclear cells
  • the ADCC enhancer enhanced lysis of K562 target cells in a dose dependent fashion.
  • PBMC effector cells that were incubated with buffer control lysed less than 20% of the target cells while PBMCs that had been stimulated with 167 nM ADCC enhancer killed up to 45% of the target cells and PBMC that had been stimulated with 500 nM ADCC enhancer lysed greater than 90% of the target cells.
  • PBMCs stimulated with the ADCC enhancer enhanced antibody dependent cellular cytotoxicity.
  • the ADCC enhancer enhanced Rituxan mediated ADCC of the B cell lymphoma cell line HS-Sultan.
  • E:T ratio effector: target cell ratios
  • cell killing was as high as 80 and 90% when the Rituxan coated target cells were incubated with PBMCs that had been activated by the ADCC enhancer.
  • the enhancement of ADCC was dose dependent and increased as the E:T ratio increased.
  • ADCC is less efficient.
  • the ADCC enhancer enhanced lysis of Herceptin coated target cells from both the breast cancer cell line SKBR3 that expresses high levels of the Her2neu tumor antigen and the breast cancer cell line MDA-MB-231 that expresses lower levels of the tumor antigen.
  • Herceptin coated cells were incubated with unstimulated PBMCs, cell killing was as high as 40% in the SKBR3 cell line but only less that 15% in the MDA-MB-231 cell line.
  • PBMCs with the ADCC enhancer enhanced Herceptin-mediated ADCC in both cells lines, killing greater that 80% of the SKBR3 targets and approximately 40-60% of the MDA-MB-231 targets.
  • the responses were dependent on the concentration of the ADCC enhancer used to stimulate the effector cells and on the ratio of effector cells to target cells.
  • ADCC is mediated through immune effector cells included NK cells that engage the Fc portion of the monoclonal antibody through specific receptors.
  • NK cells that engage the Fc portion of the monoclonal antibody through specific receptors.
  • Patients with single nucleotide polymorphisms in these receptors such as FcRgamma3a position 158 and FcRgamma2a position 131 have a poorer clinical prognosis presumably from poor ADCC due to a lower affinity of the receptor for the monoclonal antibody.
  • Previous studies have found that a polymorphism in the Fc ⁇ R3A molecule (158F/V) that alters the molecule's affinity for IgG1 is an important factor determining the clinical efficacy seen with some monoclonal antibodies (mAbs) used in the treatment of cancer.
  • ADCC antibody-dependent cellular cytoxicity
  • PBMCs from donors were genotyped for the two alleles encoding the F and V isoforms, respectively, and tested in vitro.
  • PBMCs Blood was collected from healthy donors and PBMCs were isolated using a Ficoll gradient. PBMCs were activated by culturing them in the presence of 500 nM VTX-2337 at 37° C. in a humidified 5% CO2 incubator for 48 hours. Activated PBMCs were then incubated with rituximab-coated HS-Sultan cells loaded at a ratio of 100:1 for 4 hours. Lysis was determined by measuring release of the fluorescent dye Calcein AM from the HS-Sultan cells.
  • baseline ADCC in cells from a patient with a high affinity genotype was approximately 30% while baseline ADCC in cells from a patient with a lower affinity genotype was 10%.
  • Stimulation of PBMCs with the ADCC enhancer enhanced ADCC in both patients.
  • ADCC increased from 10% to 30%.
  • the ADCC enhancer “rescued” the poor genotype and increased ADCC to baseline levels of the wild type genotype.
  • PBMC peripheral blood mononuclear cells
  • the resulting levels of ADCC were significantly enhanced, in both FF/FV group and VV group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Rheumatology (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Pain & Pain Management (AREA)
  • Reproductive Health (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hematology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
US13/642,057 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity Abandoned US20130236449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/642,057 US20130236449A1 (en) 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32640610P 2010-04-21 2010-04-21
PCT/US2011/033500 WO2011133819A2 (fr) 2010-04-21 2011-04-21 Procédés d'amélioration de la cytotoxicité cellulaire dépendante des anticorps
US13/642,057 US20130236449A1 (en) 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/033500 A-371-Of-International WO2011133819A2 (fr) 2010-04-21 2011-04-21 Procédés d'amélioration de la cytotoxicité cellulaire dépendante des anticorps

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/290,873 Division US20170027954A1 (en) 2010-04-21 2016-10-11 Methods of enhancing antibody-dependent cellular cytotoxicity

Publications (1)

Publication Number Publication Date
US20130236449A1 true US20130236449A1 (en) 2013-09-12

Family

ID=44834816

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/092,088 Active 2032-03-22 US10016440B2 (en) 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity
US13/642,057 Abandoned US20130236449A1 (en) 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity
US15/290,873 Abandoned US20170027954A1 (en) 2010-04-21 2016-10-11 Methods of enhancing antibody-dependent cellular cytotoxicity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/092,088 Active 2032-03-22 US10016440B2 (en) 2010-04-21 2011-04-21 Methods of enhancing antibody-dependent cellular cytotoxicity

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/290,873 Abandoned US20170027954A1 (en) 2010-04-21 2016-10-11 Methods of enhancing antibody-dependent cellular cytotoxicity

Country Status (12)

Country Link
US (3) US10016440B2 (fr)
EP (1) EP2560658B1 (fr)
JP (2) JP6023699B2 (fr)
CN (2) CN103209696B (fr)
CA (1) CA2797182C (fr)
ES (1) ES2625608T3 (fr)
HR (1) HRP20170714T1 (fr)
HU (1) HUE032774T2 (fr)
PL (1) PL2560658T3 (fr)
PT (1) PT2560658T (fr)
RU (1) RU2627660C2 (fr)
WO (1) WO2011133819A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10016440B2 (en) 2010-04-21 2018-07-10 Ventirx Pharmaceuticals, Inc. Methods of enhancing antibody-dependent cellular cytotoxicity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015009134A2 (pt) * 2012-10-25 2017-07-04 Glaxosmithkline Llc combinação
CN106687124B (zh) * 2014-08-07 2022-03-15 冈村春树 并用il-18与分子靶向抗体的癌治疗药
WO2016165765A1 (fr) * 2015-04-15 2016-10-20 Ganymed Pharmaceuticals Ag Procédés et compositions permettant de prédire l'efficacité thérapeutique des traitements contre le cancer et de pronostiquer un cancer
WO2017096248A1 (fr) * 2015-12-02 2017-06-08 Clearlight Diagnostics Llc Procédés de préparation et d'analyse d'échantillons de tissu tumoral pour la détection et la surveillance de cancers
WO2017100462A2 (fr) 2015-12-11 2017-06-15 The Board Of Trustees Of The Leland Stanford Junior University Traitement anticancéreux à double ciblage de cd47 et de r-egf
CN105753986B (zh) * 2016-04-24 2019-12-10 赵磊 一类抗cd20靶向抗体及用途

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940011791B1 (ko) 1992-04-15 1994-12-26 금성일렉트론주식회사 온도안정화 매스 플로우 컨트롤러 센서
DE59508297D1 (de) 1994-05-26 2000-06-15 Flowtec Ag Massedurchflussaufnehmer nach dem Coriolis-Prinzip
GB9607257D0 (en) 1996-04-04 1996-06-12 British Gas Plc Liquid metering
ES2173391T3 (es) * 1996-08-16 2002-10-16 Pfizer Derivados de 2-aminobenzazepina y su uso para el tratamiento de la inmunodepresion.
US6787524B2 (en) 2000-09-22 2004-09-07 Tanox, Inc. CpG oligonucleotides and related compounds for enhancing ADCC induced by anti-IgE antibodies
EP1501359A4 (fr) 2001-08-03 2007-04-18 Celldex Therapeutics Inc Compositions contenant des oligonucleotides immunostimulants et leurs utilisations pour amplifier des immunotherapies declenchees indirectement par le recepteur fc
EP1478371A4 (fr) 2001-10-12 2007-11-07 Univ Iowa Res Found Methodes et produits permettant d'ameliorer des reponses immunitaires a l'aide de compose d'imidazoquinoline
DE60334247D1 (de) 2002-11-27 2010-10-28 Irm Llc Verfahren und zusammensetzungen zur apoptoseinduktion in krebszellen
US7169904B2 (en) 2002-12-17 2007-01-30 Emd Lexigen Research Center Corp. Immunocytokine sequences and uses thereof
BRPI0412890B8 (pt) * 2003-07-24 2021-05-25 Innate Pharma método de selecionar um anticorpo anti kir2dl1 ou fragmento de anticorpo de ligação de antígeno
US7013714B2 (en) 2003-09-30 2006-03-21 Delphi Technologies, Inc. Viscosity measurement apparatus
EP1675614A2 (fr) 2003-10-11 2006-07-05 Inex Pharmaceuticals Corp. Procedes et compositions permettant de renforcer l'immunite innee et la cytotoxicite cellulaire dependant des anticorps
GB0611907D0 (en) 2006-06-15 2006-07-26 Glaxo Group Ltd Compounds
US20060241076A1 (en) * 2005-04-26 2006-10-26 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
TWI404537B (zh) 2005-08-19 2013-08-11 Array Biopharma Inc 作為類鐸受體(toll-like receptor)調節劑之8-經取代苯并氮雜呯
EP2111869A1 (fr) * 2008-04-23 2009-10-28 Stichting Sanquin Bloedvoorziening Compositions et procédés pour renforcer le système immunitaire
WO2009149306A2 (fr) 2008-06-04 2009-12-10 Incode Biopharmaceutics, Inc. Composés d’appauvrissement de complément et procédés de traitement du cancer comportant une thérapie aux anticorps monoclonaux et lesdits composés d’appauvrissement de complément
ES2438496T3 (es) * 2008-08-01 2014-01-17 Ventirx Pharmaceuticals, Inc. Formulaciones de agonistas de receptores de tipo toll y su uso
EP2358683B1 (fr) * 2008-11-06 2015-04-01 VentiRx Pharmaceuticals, Inc. Procédés de synthèse de dérivés de benzazépine
PL2560658T3 (pl) 2010-04-21 2017-08-31 Ventirx Pharmaceuticals, Inc. Wzmacnianie cytotoksyczności komórkowej zależnej od przeciwciał

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACUC (Surface Area to Weight Ratio Conversion Factor , 2007, https://ncifrederick.cancer.gov/lasp/acuc/frederick/Media/Documents/ACUC42.pdf) *
Friedberg et al. ("Friedberg," Brit. J. of Haematology, 2009, 146, 282-291) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10016440B2 (en) 2010-04-21 2018-07-10 Ventirx Pharmaceuticals, Inc. Methods of enhancing antibody-dependent cellular cytotoxicity

Also Published As

Publication number Publication date
CN103209696B (zh) 2016-02-24
WO2011133819A3 (fr) 2012-03-08
US20170027954A1 (en) 2017-02-02
ES2625608T3 (es) 2017-07-20
JP2013525373A (ja) 2013-06-20
EP2560658A2 (fr) 2013-02-27
JP2016166249A (ja) 2016-09-15
CA2797182C (fr) 2019-02-12
CN103209696A (zh) 2013-07-17
PT2560658T (pt) 2017-05-26
EP2560658A4 (fr) 2014-03-05
EP2560658B1 (fr) 2017-02-22
US20120003213A1 (en) 2012-01-05
CA2797182A1 (fr) 2011-10-27
US10016440B2 (en) 2018-07-10
CN105640964A (zh) 2016-06-08
RU2012149452A (ru) 2014-05-27
RU2627660C2 (ru) 2017-08-09
HRP20170714T1 (hr) 2017-07-14
HUE032774T2 (en) 2017-10-30
JP6023699B2 (ja) 2016-11-09
PL2560658T3 (pl) 2017-08-31
WO2011133819A2 (fr) 2011-10-27

Similar Documents

Publication Publication Date Title
US20170027954A1 (en) Methods of enhancing antibody-dependent cellular cytotoxicity
US11692038B2 (en) Antibodies that bind chemokine (C-C motif) receptor 8 (CCR8)
US20180303845A1 (en) Use of tlr8 agonists to treat cancer
US20230272083A1 (en) Combination of an anti-pd-l1 antibody and a dna-pk inhibitor for the treatment of cancer
CN112566661B (zh) 喹啉衍生物与抗体的药物组合
BR112020008127A2 (pt) anticorpos e conjugados de anticorpo-fármaco específicos para cd123 e seus usos
EP3938396A1 (fr) Anticorps anti-icos pour le traitement du cancer
ES2689269T3 (es) La terapia anti-EMP2 reduce las células madre cancerosas
AU2011242598B2 (en) Methods of enhancing antibody-dependent cellular cytotoxicity
AU2016203581A1 (en) Methods of Enhancing Antibody-Dependent Cellular Cytotoxicity
AU2011242598A2 (en) Methods of enhancing antibody-dependent cellular cytotoxicity
AU2011242598A1 (en) Methods of enhancing antibody-dependent cellular cytotoxicity
RU2789150C2 (ru) Антитела и конъюгаты антитела-лекарственного средства, специфичные к cd123, и их применения
AU2018241774B2 (en) Combination of an anti-PD-L1 antibody and a DNA-PK inhibitor for the treatment of cancer
US20240092912A1 (en) Novel combinations of antibodies and uses thereof
WO2024031032A1 (fr) Anticorps anti-ctla-4 pour le traitement de cancers à mutation kras
TW202419104A (zh) 使用抗ccr8抗體、化學療法、及免疫療法組合之抗癌療法
Neurotoxicity et al. ABBREVIATIONS OSNS

Legal Events

Date Code Title Description
AS Assignment

Owner name: VENTIRX PHARMACEUTICALS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HERSHBERG, ROBERT;REEL/FRAME:030503/0529

Effective date: 20130424

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION