US20130233009A1 - Co2 refrigeration system for ice-playing surface - Google Patents

Co2 refrigeration system for ice-playing surface Download PDF

Info

Publication number
US20130233009A1
US20130233009A1 US13/790,660 US201313790660A US2013233009A1 US 20130233009 A1 US20130233009 A1 US 20130233009A1 US 201313790660 A US201313790660 A US 201313790660A US 2013233009 A1 US2013233009 A1 US 2013233009A1
Authority
US
United States
Prior art keywords
refrigerant
refrigeration system
heat exchanger
cooling
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/790,660
Inventor
Serge Dube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toromont Industries Ltd
Original Assignee
Toromont Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toromont Industries Ltd filed Critical Toromont Industries Ltd
Assigned to TOROMONT INDUSTRIES LTD reassignment TOROMONT INDUSTRIES LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUBE, SERGE
Publication of US20130233009A1 publication Critical patent/US20130233009A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/02Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for ice rinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Definitions

  • the present application relates to refrigeration systems used for cooling ice-playing surfaces such as hockey rinks, skating rinks, curling sheets, etc. and, more particularly, to such refrigeration systems using CO 2 as refrigerant.
  • chlorofluorocarbons CFCs
  • hydrochlorofluorocarbons HCFCs
  • ammonia, hydrocarbons and CO 2 are used as refrigerants. Although ammonia and hydrocarbons have negligible ozone-depletion potential and global-warming potential as does CO 2 , these refrigerants are highly flammable and therefore represent a risk to local safety. On the other hand, CO 2 is environmentally benign and locally safe.
  • CO 2 refrigerant must be compressed to high pressures (e.g., supra-compressed or transcritically compressed) to optimize the efficiency of CO 2 refrigeration systems. Accordingly, existing CO 2 refrigeration systems require numerous components, and this may have an impact on the cost efficiency of such systems. It is therefore desirable to simplify CO 2 refrigeration systems.
  • a CO 2 refrigeration system comprising: a CO 2 circuit comprising a compression stage in which CO 2 refrigerant is compressed to at least a supracompression state, a cooling stage in which the CO 2 refrigerant from the compression stage releases heat, a pressure-regulating unit in a line extending from the cooling stage to one side of a heat exchanger to maintain a pressure differential therebetween; and a cooling circuit in which cycles a second refrigerant between a second side of the heat exchanger and an ice-playing surface, such that the second refrigerant absorbs heat from the ice-playing surface and releases heat to the CO 2 refrigerant in the heat exchanger.
  • FIG. 1 is a block diagram of a CO 2 refrigeration system for an ice-playing surface in accordance with an embodiment of the present disclosure
  • FIG. 2 is a block diagram of the CO 2 refrigeration system of FIG. 1 with additional components.
  • FIG. 1 there is illustrated a CO 2 refrigeration system in accordance with an embodiment of the present disclosure.
  • the CO 2 refrigeration system is of the type used to cool ice-playing surfaces, such as the skating rinks, curling sheets, etc.
  • the CO 2 refrigeration system of FIG. 1 comprises two different circuits in a heat exchange relation.
  • the CO 2 circuit 10 comprises a supra-compression stage 12 .
  • the supra-compression stage 12 comprises one or more compressors that compress CO 2 refrigerant in a gaseous state to a supra-compressed state.
  • the CO 2 refrigerant is compressed to a transcritical state.
  • the CO 2 refrigerant While in the supra-compressed or transcritical state, the CO 2 refrigerant is fed to a gas cooling stage 14 .
  • the CO 2 refrigerant in the supra-compressed or transcritical state releases heat.
  • the heat release may be in some form of heat reclaiming. For instance, heat is reclaimed from the CO 2 refrigerant by heating up water (e.g., water tank), or by heating equipment (e.g., ice melting equipment, hot air blowers, etc.).
  • the gas cooling stage 14 may consists of one or more heat exchangers for the CO 2 refrigerant to be in the heat exchange relation with a secondary refrigerant (e.g., glycol) to recuperate the heat and direct it to remotely located heating equipment.
  • a secondary refrigerant e.g., glycol
  • the gas cooling stage 14 may comprises numerous heat exchange components to remove heat from the CO 2 refrigerant.
  • the coiling stage 14 may comprises a plurality of heating units, with valves provided in relation to the plurality of heating unit to individually control an amount of CO 2 refrigerant directed to each of the heating units.
  • the fan of each heating unit may be controlled by a controller as a function of a temperature demand and of the amount of CO 2 refrigerant fed to each heating unit.
  • a pressure regulating unit 16 is positioned in the circuit 10 downstream of the gas cooling stage 14 , and upstream of a heat exchanger(s) 18 .
  • the pressure regulating unit 16 may be any valve or arrangement of valves, etc. that will maintain a high pressure of CO 2 in the circuit 10 upstream thereof. Therefore, the CO 2 refrigerant is kept in the supra-compressed or transcritical state between the supra compression stage 12 and the pressure regulating unit 16 , to optimize the efficiency of the gas cooling stage 14 . Because of the pressure regulating unit 16 , the CO 2 refrigerant is fed at a lowered pressure to the side of the heat exchanger 18 in the CO 2 circuit 10 . The CO 2 refrigerant is then directed to the supra compression stage 12 , to complete a refrigeration cycle in the circuit 10 .
  • the CO 2 refrigerant in the circuit 10 is in a heat exchange relation with another refrigerant in a cooling circuit 20 , by way of the heat exchanger 18 .
  • the cooling circuit 20 extends from the second side of the heat exchanger 18 to coils or pipes located under an ice-playing surface, or to a heat exchanger that will ultimately absorb heat from the ice-playing surface.
  • the refrigerant circulating in the cooling circuit 20 may be brine, water, glycol or any appropriate refrigerant that is circulated in the coils of pipes of an ice-playing surface.
  • the CO 2 refrigerant and the ice-playing surface refrigerant are solely in a heat exchange relation and, hence, do not mix.
  • the heat exchanger 18 is a shell-and-tube type of heat exchanger. Therefore, the shell of the heat exchanger 18 may act as a reservoir for CO 2 refrigerant of the CO 2 circuit 10 , with the line relating to heat exchanger 18 to the supra compression stage 12 being connected to a top of the reservoir of the heat exchanger 18 for the suction of gaseous CO 2 refrigerant.
  • the tubes would define the second side of the heat exchanger 18 and thus the second refrigerant would circulate therein.
  • the network of pipes relating the heat exchanger 18 to the supra compression stage 12 may act as reservoir. Additional components may be provided to ensure that the CO 2 refrigerant reaching the compressors of the supra-compression stage 12 is in a gaseous state.
  • the CO 2 refrigeration circuit 10 features a condensation reservoir 30 that is positioned between the heat exchanger 18 and the supra-compression stage 12 .
  • the condensation reservoir 30 collects CO 2 in a generally liquid state.
  • the line connecting the condensation reservoir 30 to the supra compression stage 12 are positioned atop the condensation reservoir 30 to collect CO 2 that is in a generally gaseous state.
  • This cooling circuit 20 may feature a pump 32 that will circulate the ice-playing surface refrigerant between the heat exchanger 18 and the coils or pipes of the ice-playing surface 34 .
  • the pump 32 may be positioned either upstream or downstream of the heat exchanger 18 .

Abstract

A CO2 refrigeration system comprises a CO2 circuit. In a compression stage of the circuit, CO2 refrigerant is compressed to a supracompression state. In a cooling stage, the CO2 refrigerant from the compression stage releases heat. A pressure-regulating unit in a line extending from the cooling stage to one side of a heat exchanger maintains a pressure differential. A second refrigerant cycles in a cooling circuit between a second side of the heat exchanger and an ice-playing surface. The second refrigerant absorbs heat from the ice-playing surface and releases heat to the CO2 refrigerant in the heat exchanger.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application claims priority on Canadian Patent Application No. 2,771,113 filed on Mar. 8, 2012, incorporated herewith by reference.
  • FIELD OF THE APPLICATION
  • The present application relates to refrigeration systems used for cooling ice-playing surfaces such as hockey rinks, skating rinks, curling sheets, etc. and, more particularly, to such refrigeration systems using CO2 as refrigerant.
  • BACKGROUND OF THE ART
  • With the growing concern for global warming, the use of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) as refrigerant has been identified as having a negative impact on the environment. These chemicals have non-negligible ozone-depletion potential and/or global-warming potential.
  • As alternatives to CFCs and HCFCs, ammonia, hydrocarbons and CO2 are used as refrigerants. Although ammonia and hydrocarbons have negligible ozone-depletion potential and global-warming potential as does CO2, these refrigerants are highly flammable and therefore represent a risk to local safety. On the other hand, CO2 is environmentally benign and locally safe.
  • However, CO2 refrigerant must be compressed to high pressures (e.g., supra-compressed or transcritically compressed) to optimize the efficiency of CO2 refrigeration systems. Accordingly, existing CO2 refrigeration systems require numerous components, and this may have an impact on the cost efficiency of such systems. It is therefore desirable to simplify CO2 refrigeration systems.
  • SUMMARY OF THE APPLICATION
  • It is therefore an aim of the present disclosure to provide a CO2 refrigeration system for ice-playing surfaces that addresses issues associated with the prior art.
  • Therefore, in accordance with the present application, there is provided a CO2 refrigeration system comprising: a CO2 circuit comprising a compression stage in which CO2 refrigerant is compressed to at least a supracompression state, a cooling stage in which the CO2 refrigerant from the compression stage releases heat, a pressure-regulating unit in a line extending from the cooling stage to one side of a heat exchanger to maintain a pressure differential therebetween; and a cooling circuit in which cycles a second refrigerant between a second side of the heat exchanger and an ice-playing surface, such that the second refrigerant absorbs heat from the ice-playing surface and releases heat to the CO2 refrigerant in the heat exchanger.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a block diagram of a CO2 refrigeration system for an ice-playing surface in accordance with an embodiment of the present disclosure; and
  • FIG. 2 is a block diagram of the CO2 refrigeration system of FIG. 1 with additional components.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • Referring to the drawings and more particularly to FIG. 1, there is illustrated a CO2 refrigeration system in accordance with an embodiment of the present disclosure. The CO2 refrigeration system is of the type used to cool ice-playing surfaces, such as the skating rinks, curling sheets, etc. The CO2 refrigeration system of FIG. 1 comprises two different circuits in a heat exchange relation.
  • One of the circuits is CO2 circuit 10. The CO2 circuit 10 comprises a supra-compression stage 12. The supra-compression stage 12 comprises one or more compressors that compress CO2 refrigerant in a gaseous state to a supra-compressed state. In an embodiment, the CO2 refrigerant is compressed to a transcritical state.
  • While in the supra-compressed or transcritical state, the CO2 refrigerant is fed to a gas cooling stage 14. In the gas cooling stage 14, the CO2 refrigerant in the supra-compressed or transcritical state releases heat. The heat release may be in some form of heat reclaiming. For instance, heat is reclaimed from the CO2 refrigerant by heating up water (e.g., water tank), or by heating equipment (e.g., ice melting equipment, hot air blowers, etc.). The gas cooling stage 14 may consists of one or more heat exchangers for the CO2 refrigerant to be in the heat exchange relation with a secondary refrigerant (e.g., glycol) to recuperate the heat and direct it to remotely located heating equipment. The gas cooling stage 14 may comprises numerous heat exchange components to remove heat from the CO2 refrigerant. For instance, the coiling stage 14 may comprises a plurality of heating units, with valves provided in relation to the plurality of heating unit to individually control an amount of CO2 refrigerant directed to each of the heating units. The fan of each heating unit may be controlled by a controller as a function of a temperature demand and of the amount of CO2 refrigerant fed to each heating unit.
  • A pressure regulating unit 16 is positioned in the circuit 10 downstream of the gas cooling stage 14, and upstream of a heat exchanger(s) 18. The pressure regulating unit 16 may be any valve or arrangement of valves, etc. that will maintain a high pressure of CO2 in the circuit 10 upstream thereof. Therefore, the CO2 refrigerant is kept in the supra-compressed or transcritical state between the supra compression stage 12 and the pressure regulating unit 16, to optimize the efficiency of the gas cooling stage 14. Because of the pressure regulating unit 16, the CO2 refrigerant is fed at a lowered pressure to the side of the heat exchanger 18 in the CO2 circuit 10. The CO2 refrigerant is then directed to the supra compression stage 12, to complete a refrigeration cycle in the circuit 10.
  • The CO2 refrigerant in the circuit 10 is in a heat exchange relation with another refrigerant in a cooling circuit 20, by way of the heat exchanger 18. The cooling circuit 20 extends from the second side of the heat exchanger 18 to coils or pipes located under an ice-playing surface, or to a heat exchanger that will ultimately absorb heat from the ice-playing surface. The refrigerant circulating in the cooling circuit 20 may be brine, water, glycol or any appropriate refrigerant that is circulated in the coils of pipes of an ice-playing surface. In the heat exchanger 18, the CO2 refrigerant and the ice-playing surface refrigerant are solely in a heat exchange relation and, hence, do not mix. In an embodiment, the heat exchanger 18 is a shell-and-tube type of heat exchanger. Therefore, the shell of the heat exchanger 18 may act as a reservoir for CO2 refrigerant of the CO2 circuit 10, with the line relating to heat exchanger 18 to the supra compression stage 12 being connected to a top of the reservoir of the heat exchanger 18 for the suction of gaseous CO2 refrigerant. The tubes would define the second side of the heat exchanger 18 and thus the second refrigerant would circulate therein. Alternatively, the network of pipes relating the heat exchanger 18 to the supra compression stage 12 may act as reservoir. Additional components may be provided to ensure that the CO2 refrigerant reaching the compressors of the supra-compression stage 12 is in a gaseous state.
  • It is observed that the CO2 refrigeration system for the ice-playing surface of FIG. 1 distinguishes by its simplicity and minimum amount of components.
  • Referring to FIG. 2, an alternative embodiment of this CO2 refrigeration system is shown with additional components. The CO2 refrigeration circuit 10 features a condensation reservoir 30 that is positioned between the heat exchanger 18 and the supra-compression stage 12. The condensation reservoir 30 collects CO2 in a generally liquid state. In an embodiment, the line connecting the condensation reservoir 30 to the supra compression stage 12 are positioned atop the condensation reservoir 30 to collect CO2 that is in a generally gaseous state.
  • This cooling circuit 20 may feature a pump 32 that will circulate the ice-playing surface refrigerant between the heat exchanger 18 and the coils or pipes of the ice-playing surface 34. The pump 32 may be positioned either upstream or downstream of the heat exchanger 18.
  • It is within the ambit of the present invention to cover any obvious modifications of the embodiments described herein, provided such modifications fall within the scope of the appended claims.

Claims (20)

1. A CO2 refrigeration system comprising:
a CO2 circuit comprising a compression stage in which CO2 refrigerant is compressed to at least a supracompression state, a cooling stage in which the CO2 refrigerant from the compression stage releases heat, a pressure-regulating unit in a line extending from the cooling stage to one side of a heat exchanger to maintain a pressure differential therebetween; and
a cooling circuit in which cycles a second refrigerant between a second side of the heat exchanger and an ice-playing surface, such that the second refrigerant absorbs heat from the ice-playing surface and releases heat to the CO2 refrigerant in the heat exchanger.
2. The CO2 refrigeration system according to claim 1, wherein the cooling stage comprises at least one of a gas-cooling unit, a heat-reclaim exchanger, and a heating unit.
3. The CO2 refrigeration system according to claim 2, comprising a plurality of the heating unit, with valves provided in relation to the plurality of heating unit to individually control an amount of CO2 refrigerant directed to each said heating unit.
4. The CO2 refrigeration system according to claim 3, wherein a fan of each said heating unit is controlled by a controller as a function of a temperature demand and of said amount of CO2 refrigerant.
5. The CO2 refrigeration system according to claim 1, further comprising at least one pump in the cooling circuit to induce a flow of the CO2 refrigerant therein.
6. The CO2 refrigeration system according to claim 1, further comprising a CO2 condensation reservoir between the heat exchanger and the compression stage.
7. The CO2 refrigeration system according to claim 1, further comprising a line extending directly from the heat exchanger to the compression stage.
8. The CO2 refrigeration system according to claim 1, wherein the heat exchanger is a shell and tube type of heat exchanger, with the CO2 circuit side of the heat exchanger being the shell, the cooling side of the heat exchanger being the tubes.
9. The CO2 refrigeration system according to claim 1, wherein the cooling circuit comprises pipes under the ice-playing surface in which circulates the CO2 refrigerant to refrigerate the ice-playing surface.
10. The CO2 refrigeration system according to claim 1, wherein the CO2 refrigerant in the CO2 circuit is compressed to a transcritical state.
11. A CO2 refrigeration system comprising:
a CO2 circuit comprising a compression stage in which CO2 refrigerant is compressed to at least a supracompression state, a cooling stage in which the CO2 refrigerant from the compression stage releases heat, a pressure-regulating unit in a line extending from the cooling stage to one side of a heat exchanger to maintain a pressure differential therebetween; and
a cooling circuit without a reservoir in which cycles a second refrigerant between a second side of the heat exchanger and an ice-playing surface, such that the second refrigerant absorbs heat from the ice-playing surface and releases heat to the CO2 refrigerant in the heat exchanger.
12. The CO2 refrigeration system according to claim 11, wherein the cooling stage comprises at least one of a gas-cooling unit, a heat-reclaim exchanger, and a heating unit.
13. The CO2 refrigeration system according to claim 12, comprising a plurality of the heating unit, with valves provided in relation to the plurality of heating unit to individually control an amount of CO2 refrigerant directed to each said heating unit.
14. The CO2 refrigeration system according to claim 13, wherein a fan of each said heating unit is controlled by a controller as a function of a temperature demand and of said amount of CO2 refrigerant.
15. The CO2 refrigeration system according to claim 11, further comprising at least one pump in the cooling circuit to induce a flow of the second refrigerant therein.
16. The CO2 refrigeration system according to claim 11, further comprising a CO2 condensation reservoir between the heat exchanger and the compression stage.
17. The CO2 refrigeration system according to claim 11, further comprising a line extending directly from the heat exchanger to the compression stage.
18. The CO2 refrigeration system according to claim 11, wherein the heat exchanger is a shell and tube type of heat exchanger, with the CO2 circuit side of the heat exchanger being the shell, the cooling side of the heat exchanger being the tubes.
19. The CO2 refrigeration system according to claim 11, wherein the cooling circuit comprises pipes under the ice-playing surface in which circulates the CO2 refrigerant to refrigerate the ice-playing surface.
20. The CO2 refrigeration system according to claim 11, wherein the CO2 refrigerant in the CO2 circuit is compressed to a transcritical state.
US13/790,660 2012-03-08 2013-03-08 Co2 refrigeration system for ice-playing surface Abandoned US20130233009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2771113A CA2771113A1 (en) 2012-03-08 2012-03-08 Co2 refrigeration system for ice-playing surface
CA2771113 2012-03-08

Publications (1)

Publication Number Publication Date
US20130233009A1 true US20130233009A1 (en) 2013-09-12

Family

ID=46124967

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/790,660 Abandoned US20130233009A1 (en) 2012-03-08 2013-03-08 Co2 refrigeration system for ice-playing surface

Country Status (2)

Country Link
US (1) US20130233009A1 (en)
CA (1) CA2771113A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
US11029068B2 (en) 2013-05-03 2021-06-08 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
CN114459179A (en) * 2021-12-27 2022-05-10 华北理工大学 Carbon dioxide direct evaporation type ice making system for artificial ice rink and using method thereof
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
CN115060027A (en) * 2022-04-13 2022-09-16 天津大学 Ice rink refrigeration method, device, system and storage medium
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194615B2 (en) 2013-04-05 2015-11-24 Marc-Andre Lesmerises CO2 cooling system and method for operating same
US11656005B2 (en) 2015-04-29 2023-05-23 Gestion Marc-André Lesmerises Inc. CO2 cooling system and method for operating same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010023594A1 (en) * 2000-03-17 2001-09-27 Richard-Charles Ives Refrigeration system
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
US20080202140A1 (en) * 2005-03-18 2008-08-28 Carrier Commercial Refrigeration, Inc. High Side Pressure Regulation For Transcritical Vapor Compression System
WO2008112572A1 (en) * 2007-03-09 2008-09-18 Johnson Controls Technology Company Refrigeration system
US20080264077A1 (en) * 2005-02-18 2008-10-30 Carrier Corporation Method for Controlling High-Pressure in an Intermittently Supercritically Operating Refrigeration Circuit
US20090260389A1 (en) * 2008-04-18 2009-10-22 Serge Dube Co2 refrigeration unit
US8356491B2 (en) * 2006-12-21 2013-01-22 Carrier Corporation Refrigerant system with intercooler utilized for reheat function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010023594A1 (en) * 2000-03-17 2001-09-27 Richard-Charles Ives Refrigeration system
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
US20080264077A1 (en) * 2005-02-18 2008-10-30 Carrier Corporation Method for Controlling High-Pressure in an Intermittently Supercritically Operating Refrigeration Circuit
US20080202140A1 (en) * 2005-03-18 2008-08-28 Carrier Commercial Refrigeration, Inc. High Side Pressure Regulation For Transcritical Vapor Compression System
US8356491B2 (en) * 2006-12-21 2013-01-22 Carrier Corporation Refrigerant system with intercooler utilized for reheat function
WO2008112572A1 (en) * 2007-03-09 2008-09-18 Johnson Controls Technology Company Refrigeration system
US20090260389A1 (en) * 2008-04-18 2009-10-22 Serge Dube Co2 refrigeration unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11029068B2 (en) 2013-05-03 2021-06-08 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11852391B2 (en) 2013-05-03 2023-12-26 Hill Phoenix, Inc. Systems and methods for pressure control in a CO2 refrigeration system
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11892217B2 (en) 2016-06-21 2024-02-06 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US11940186B2 (en) 2018-06-05 2024-03-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
CN114459179A (en) * 2021-12-27 2022-05-10 华北理工大学 Carbon dioxide direct evaporation type ice making system for artificial ice rink and using method thereof
CN115060027A (en) * 2022-04-13 2022-09-16 天津大学 Ice rink refrigeration method, device, system and storage medium

Also Published As

Publication number Publication date
CA2771113A1 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
US20130233009A1 (en) Co2 refrigeration system for ice-playing surface
US10690389B2 (en) CO2 refrigeration system
CA2735347C (en) Co2 refrigeration system for ice-playing surface
US20160245575A1 (en) Co2 refrigeration system for ice-playing surfaces
CN103562648B (en) Conditioner
US20140007603A1 (en) Co2 refrigeration system for ice-playing surface
CN212386270U (en) Large-space vehicle
JP2010271000A (en) Heat storage type refrigerating system
JP2023116735A (en) Refrigeration system and method
TWI781329B (en) Reverse osmosis treatment method and system
US20190137147A1 (en) Refrigeration systems and methods
CA2744858C (en) Co2 refrigeration system
KR102047748B1 (en) Cooling system of air conditioner for vehicle
KR102185416B1 (en) Cooling system
US10429090B2 (en) Closed-loop air-to-water air conditioning system
US20210123637A1 (en) Refrigeration systems and methods
US20180320950A1 (en) Freezer with Evaporative Condensing Arrangement
CN110249181A (en) With built-in compact/light duty compressor water cooler domestic air cooler
CN104613559A (en) Passenger liner and central air-conditioner system thereof
JP3179370U (en) Heat recovery equipment
KR101281187B1 (en) Refrigerants System, and Heating and Cooling Apparatus having the same for recovering a heat of waste water
CN102809192A (en) Indoor unit heat exchange structure and indoor unit provided with same
KR20170000028U (en) cascade heat pump with improvement on heat exchange efficiency
CN205655421U (en) Monomer air conditioner
KR20220074259A (en) the water-cooled air-conditioning and heating equipment for the ship using the seawater

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOROMONT INDUSTRIES LTD, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DUBE, SERGE;REEL/FRAME:030284/0868

Effective date: 20130408

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION