US20130202462A1 - Motor-driven compressor - Google Patents

Motor-driven compressor Download PDF

Info

Publication number
US20130202462A1
US20130202462A1 US13/751,655 US201313751655A US2013202462A1 US 20130202462 A1 US20130202462 A1 US 20130202462A1 US 201313751655 A US201313751655 A US 201313751655A US 2013202462 A1 US2013202462 A1 US 2013202462A1
Authority
US
United States
Prior art keywords
connection portion
terminal
metal plate
connector
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/751,655
Inventor
Shingo Enami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Assigned to KABUSHIKI KAISHA TOYOTA JIDOSHOKKI reassignment KABUSHIKI KAISHA TOYOTA JIDOSHOKKI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENAMI, SHINGO
Publication of US20130202462A1 publication Critical patent/US20130202462A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/04Pins or blades for co-operation with sockets
    • H01R13/08Resiliently-mounted rigid pins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/629Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
    • H01R13/631Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for engagement only
    • H01R13/6315Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for engagement only allowing relative movement between coupling parts, e.g. floating connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections

Definitions

  • the present invention relates to a motor-driven compressor including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
  • motor-driven compressors including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
  • the compression portion is driven through rotation of a rotary shaft, which is rotated by the electric motor.
  • the electric motor is driven by the motor drive circuit.
  • the motor drive circuit is driven by receiving electricity from an external power source.
  • a tubular connector-receiving portion which protrudes outward from the outer surface of the housing, is formed on the housing.
  • a wiring connection portion is accommodated in the connector-receiving portion to supply electricity from the external power source to the motor drive circuit.
  • a substrate on which electric parts such as a switching element are mounted is located in the motor drive circuit.
  • a conductive member extending into the connector-receiving portion and connecting the substrate with the wiring connection portion is mounted on the substrate.
  • a conventional wiring connection portion 80 is located in a connector-receiving portion 92 , which is formed on an external surface of a housing (not shown).
  • the wiring connection portion 80 is configured by a wire 81 , a first terminal 82 , which is provided at a first end of the wire 81 and electrically connected to an external power source 90 , and a second terminal 83 , which is provided at a second end of the wire 81 and electrically connected to the motor drive circuit (not shown).
  • the wire 81 is formed by covering a lead portion 81 a , which is formed by binding up a plurality of leads with an insulating coating 81 b.
  • a swage portion 82 a (first end-connection portion) is formed at a first end of the first terminal 82 , while a connection portion 82 b (second end-connection portion), which is electrically connected to the external power source 90 , is formed at a second end of the first terminal 82 .
  • a swage portion 83 a (first end-connection portion) is formed at a first end of the second terminal 83 , while a connection portion 83 b (second end-connection portion), which is electrically connected to a conductive member 91 , is formed at a second end of the second terminal 83 .
  • the lead portion 81 a is exposed from the insulating coating 81 b .
  • the first end of the wire 81 and the first terminal 82 are connected by swaging the lead portion 81 a exposed from the insulating coating 81 b at the first end of the wire 81 by the swage portion 82 a of the first terminal 82 .
  • the second end of the wire 81 and the second terminal 83 are connected to each other by swaging the lead portion 81 a exposed from the insulating coating 81 b at the second end of the wire 81 by the swage portion 83 a of the second terminal 83 .
  • the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using, for example, a swage tool while a machine such as a robot arm grasps the wire 81 , the position of the swaging (connecting position) is shifted due to the flexibility of the wire 81 , resulting in poor connecting operability.
  • the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using the swage tool while an operator holds the wire 81 by hand. Accordingly, such manual operation by the operator allows the swage position to be adjusted finely, and the operability of the swaging is improved.
  • An object of the present invention is to provide a motor-driven compressor that can shorten the entire length of a wiring connection portion compared with a wiring connection portion using no wires and absorb dimensional tolerance between a first terminal and an external power source or between a second terminal and a conductive member.
  • a motor-driven compressor that includes a housing, a compression portion, an electric motor, a motor drive circuit, a connector-receiving portion, a wiring connection portion, and a conductive member.
  • the compression portion, the electric motor, and the motor drive circuit are accommodated in the housing.
  • the connector-receiving portion is provided on an outer surface of the housing.
  • the wiring connection portion is provided in the connector-receiving portion and is adapted for supplying electricity from an external power source to the motor drive circuit.
  • the conductive member is provided on the motor drive circuit and extends toward a space in the connector-receiving portion. The conductive member electrically connects the motor drive circuit and the wiring connection portion with each other.
  • the wiring connection portion includes a first terminal, a second terminal and a coupling member for coupling the first terminal with the second terminal.
  • the first terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof.
  • the second end-connection portion is electrically connected to the external power source.
  • the second terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof.
  • the second end-connection portion is electrically connected to the conductive member.
  • the coupling member has a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first metal plate and the second metal plate with each other.
  • FIG. 1A is a longitudinal cross-sectional view illustrating a motor-driven compressor according to one embodiment of the present invention
  • FIG. 1B is a partially enlarged longitudinal cross-sectional view illustrating the connector-receiving portion and its surrounding in the motor-driven compressor shown in FIG. 1A ;
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1B ;
  • FIG. 3 is a view schematically showing the state where a first metal plate and a wire mesh are joined by resistance welding;
  • FIG. 4 is a partially enlarged longitudinal cross-sectional view illustrating a connector-receiving portion and its surrounding according to another embodiment of the present invention.
  • FIG. 5 is a partially enlarged lateral cross-sectional view illustrating the connector-receiving portion of a conventional motor-driven compressor and its surroundings.
  • a motor-driven compressor according to one embodiment of the present invention will now be described with reference to FIGS. 1-3 .
  • the motor-driven compressor of the present embodiment is mounted on vehicle, which is a hybrid automobile, and employed for a vehicle air conditioner.
  • a motor-driven compressor 10 includes a housing 11 , which is made of metal (aluminum in the present embodiment).
  • the housing 11 is formed by an intermediate housing member 12 , a discharge housing member 13 , and an inverter housing member 14 .
  • the intermediate housing member 12 constitutes an intermediate part of the housing 11 and is formed to be cylindrical with a closed end.
  • the discharge housing member 13 is joined to the open end of the intermediate housing member 12 .
  • the inverter housing member 14 is joined to the closed end of the intermediate housing member 12 .
  • the intermediate housing member 12 and the discharge housing member 13 are fastened to each other by blots B 1 with a gasket G in between.
  • the intermediate housing member 12 and the inverter housing member 14 are fastened to each other by bolts B 2 .
  • An accommodation space 17 is defined between the intermediate housing member 12 and the inverter housing member 14 .
  • a discharge chamber 15 is defined between the intermediate housing member 12 and the discharge housing member 13 .
  • a discharge port 16 is formed in an end face of the discharge housing member 13 .
  • the discharge chamber 15 is connected to an external refrigerant circuit (not shown) via the discharge port 16 .
  • a suction port (not shown) is formed at a position near the inverter housing 14 in the intermediate housing member 12 .
  • the space in the intermediate housing member 12 is connected to the external refrigerant circuit (not shown) via the suction port.
  • a rotary shaft 23 is rotationally supported in the intermediate housing member 12 .
  • the intermediate housing member 12 accommodates a compression portion 18 for compressing refrigerant and an electric motor 19 for driving the compression portion 18 .
  • the accommodation space 17 accommodates a motor drive circuit 30 , which controls operation of the electric motor 19 . Therefore, the compression portion 18 , the electric motor 19 , and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
  • the compression portion 18 will now be described.
  • the compression portion 18 includes a fixed scroll 20 , which is fixed to the intermediate housing member 12 , and an orbiting scroll 21 , which is arranged to face the fixed scroll 20 .
  • Compression chambers 22 are defined between the fixed scroll 20 and the orbiting scroll 21 .
  • a discharge passage 28 which connects the compression chambers 22 and the discharge chamber 15 to each other, is formed in the fixed scroll 20 .
  • a discharge valve 29 is located at an end face of the fixed scroll 20 .
  • the electric motor 19 includes a rotor 24 , which rotates integrally with the rotary shaft 23 , and a stator 25 , which is fixed to the inner circumferential surface of the intermediate housing member 12 to surround the rotor 24 .
  • the rotor 24 includes a rotor core 24 a , which is fixed to and rotates integrally with the rotary shaft 23 , and permanent magnets 24 b , which are provided on the circumferential surface of the rotor core 24 a .
  • the stator 25 is substantially annular.
  • a stator core 25 a is fixed to the inner circumferential surface of the intermediate housing member 12 .
  • a coil 25 b is wound about each of teeth (not shown) of the stator core 25 a.
  • the motor drive circuit 30 will now be described.
  • the motor drive circuit 30 includes a flat plate-like circuit board 31 and electrical components 32 a to 32 d mounted on the circuit board 31 .
  • the circuit board 31 is located in the accommodation space 17 and fixed to the inner surface of the inverter housing member 14 .
  • the circuit board 31 is arranged in the inverter housing member 14 to extend in a radial direction of the rotary shaft 23 .
  • the motor drive circuit 30 supplies electricity to the stator 25 of the electric motor 19 based on commands from an ECU for controlling the air conditioner (not shown).
  • the circuit board 31 has a conductive member 33 , which protrudes from the outer circumferential surface of the inverter housing member 14 and extends toward a connector-receiving portion 42 .
  • the connector-receiving portion 42 is made of metal (aluminum in the present embodiment).
  • the connector-receiving portion 42 includes a tubular first extended portion 42 a and a tubular second extended portion 42 b .
  • the first extended portion 42 a extends outward from the outer circumferential surface of the inverter housing member 14 in a radial direction of the rotary shaft 23 .
  • the second extended portion 42 b is continuous with the first extended portion 42 a and extends in the axial direction of the rotary shaft 23 and toward the electric motor 19 .
  • the first extended portion 42 a has a connection portion 421 a , which is connected to a connection hole 141 formed in the inverter housing member 14 .
  • the connector-receiving portion 42 is connected to the inverter housing member 14 by joining the connection hole 141 and connection portion 421 a to each other.
  • the length of the second extended portion 42 b in a longitudinal direction is adjusted in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment.
  • a connector housing 44 which is made of plastic, is attached to an opening 421 b of the second extended portion 42 b .
  • the connector housing 44 is tubular and includes a fitting portion 44 a , a contact portion 44 b , and a main body 44 c .
  • the fitting portion 44 a is fitted in the opening 421 b .
  • the contact portion 44 b is continuous with the fitting portion 44 a and contacts an open end 422 b of the second extended portion 42 b .
  • the main body 44 c is continuous with the contact portion 44 b and is connected to an external power source 40 .
  • Wiring connection portions 50 are accommodated in the second extended portion 42 b and the connector housing 44 to supply electricity from the external power source 40 to the motor drive circuit 30 .
  • Each of the wiring connection portions 50 includes a first terminal 51 electrically connected to the external power source 40 , a second terminal 52 electrically connected to the motor drive circuit 30 and a coupling member 56 coupling the first terminal 51 with the second terminal 52 .
  • the coupling member 56 includes a first metal plate 53 , a second metal plate 54 , and a wire mesh 55 .
  • the wire mesh 55 is configured by a woven metallic braid.
  • a first end-connection portion 51 a is formed at a first end of the first terminal 51
  • a second end-connection portion 51 b which is electrically connected to the external power source 40
  • a first end-connection portion 52 a is formed at a first end of the second terminal 52
  • a second end-connection portion 52 b which is electrically connected to the conductive member 33
  • the first metal plate 53 and the second metal plate 54 are elongated boards.
  • the first end of the first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 are joined to each other; that is, connected to each other by welding (in the present embodiment, resistance welding).
  • the second end of the first metal plate 53 and the first end of the wire mesh 55 are joined to each other; that is connected to each other by welding (in the present embodiment, resistance welding).
  • the first end of the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 are joined to each other by welding (in the present embodiment, resistance welding).
  • the second end of the second metal plate 54 and the second end of the wire mesh 55 are joined to each other by welding (in the present embodiment, resistance welding). Accordingly, the wire mesh 55 couples the first metal plate 53 and the second metal plate 54 with each other.
  • the first metal plate 53 , the second metal plate 54 and the wire mesh 55 connect the first terminal 51 and the second terminal 52 with each other.
  • the total length of the first metal plate 53 , the second metal plate 54 and the wire mesh 55 added together is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends.
  • the motor-driven compressor 10 is provided with two wiring connection portions 50 , which are arranged side by side.
  • the second terminal 52 , the second metal plate 54 and the wire mesh 55 of each wiring connection portion 50 are located in a plastic cluster block 45 having shape of a rectangular box accommodated in the second extended portion 42 b .
  • the inside of the cluster block 45 is sectioned into a first accommodation section 45 a and a second accommodation section 45 b .
  • the first accommodation section 45 a accommodates the second terminal 52 , the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50 .
  • the second accommodation section 45 b accommodates the second terminal 52 , the second metal plate 54 and the wire mesh 55 of the other one of the wiring connection portions 50 .
  • the cluster block 45 ensures insulation between i) the second terminal 52 , the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50 and ii) the second terminal 52 , the second metal plate 54 and the wire mesh 55 of the other wiring connection portion 50 . Further, the cluster block 45 ensures insulation between each of the wiring connection portions 50 and the connector-receiving portion 42 . Therefore, in the present embodiment, the cluster block 45 functions as an insulating member.
  • the connector housing 44 accommodates the first terminals 51 and the first metal plates 53 of the wiring connection portions 50 .
  • a space in the connector housing 44 is sectioned into a first accommodation section 441 and a second accommodation section 442 .
  • the first accommodation section 441 accommodates the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50 .
  • the second accommodation section 442 accommodates the first terminal 51 and the first metal plate 53 of the other wiring connection portion 50 .
  • the connector housing 44 ensures insulation between i) the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50 and ii) the first terminal 51 and the first metal plate 53 of the other one of the wiring connection portions 50 . Further, the connector housing 44 ensures insulation between each wiring connection portion 50 and the connector-receiving portion 42 . Therefore, in the present embodiment, the connector housing 44 functions as an insulating member.
  • the second end-connection portions 52 b of the second terminals 52 and the conductive members 33 are electrically connected to each other, and the second end-connection portions 51 b of the first terminals 51 and the external power source 40 are electrically connected to each other, so that the external power source 40 and the motor drive circuit 30 are electrically connected to each other via the wiring connection portions 50 and the conductive members 33 .
  • the refrigerant that has been compressed in the compression chambers 22 is discharged to the discharge chamber 15 via the discharge passage 28 , while flexing the discharge valve 29 .
  • the refrigerant discharged to the discharge chamber 15 is conducted to the external refrigerant circuit via the discharge port 16 and then returned to the intermediate housing member 12 .
  • a case is considered where a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 to connect the first end of the first metal plate 53 to the first end-connection portion 51 a of the first terminal 51 or the first end of the second metal plate 54 is connected to the first end-connection portion 52 a of the second terminal 52 .
  • the first metal plate 53 and the second metal plate are more rigid than a wire used in a conventional motor-driven compressor, the likelihood of shifting of the connecting position of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 is reduced.
  • the total length of the first metal plate 53 , the second metal plate 54 , and the wire mesh 55 is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends.
  • the length of the second extended portion 42 b is shortened in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment. This facilitates mounting of the motor-driven compressor 10 on a hybrid car.
  • the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33 . The flexing of the wire mesh 55 absorbs the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33 .
  • a part of the wire mesh 55 is brought into contact with a plane part 53 a of the first metal plate 53 , and then the first metal plate 53 and the wire mesh 55 are sandwiched by a pair of welding electrodes T 1 and T 2 .
  • the welding electrode T 1 is arranged at a part opposite to a part in contact with the first metal plate 53 in the wire mesh 55
  • the welding electrode T 2 is arranged on a surface opposite to the plane part 53 a in the first metal plate 53 . Then, current is supplied to flow between the welding electrodes T 1 and T 2 .
  • the current from the welding electrode T 1 flows into the welding electrode T 2 through the wire mesh 55 and the first metal plate 53 .
  • resistance heat is generated in the contacting part between the wire mesh 55 and the first metal plate 53 .
  • the part of the wire mesh 55 in contact with the first metal plate 53 and the part of the first metal plate 53 in contact with the wire mesh 55 are respectively heated to be melted.
  • the first metal plate 53 and the wire mesh 55 are joined with each other. Since the method for welding the second metal plate 54 with the wire mesh 55 is the same as the method for welding the first metal plate 53 with the wire mesh 55 , the detailed explanation thereof is omitted.
  • Each of the wiring connection portions 50 is formed by the first terminal 51 , the second terminal 52 the first metal plate 53 , the second metal plate 54 , and the wire mesh 55 . Accordingly, the first metal plate 53 and the second metal plate 54 are more rigid than the wire used in the conventional motor-driven compressor. Therefore, the likelihood of shifting of the connecting positions of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 can be reduced.
  • the first end-connection portion 51 a of the first terminal 51 can be easily connected to the first metal plate 53 and the first end-connection portion 52 a of the second terminal 52 can be easily connected to the second metal plate 54 .
  • the lengths of the first metal plate 53 and the second metal plate 54 can be shortened as much as possible; that is, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
  • the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33 . Thereby, the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33 can be absorbed. As a result, the second end-connection portion 51 b of the first terminal 51 can be easily connected with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 can be easily connected with the conductive member 33 .
  • the connector-receiving portion 42 is made of metal, and the cluster block 45 and the connector housing 44 are located between the wiring connection portions 50 and the connector-receiving portion 42 .
  • the cluster block 45 and the connector housing 44 can ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 . Since the positions of the wiring connection portions 50 are determined by the cluster block 45 and the connector housing 44 in the connector-receiving portion 42 , movement of the wiring connection portions 50 in the connector-receiving portion 42 due to vibration of the running hybrid car is reduced.
  • the cluster block 45 and the connector housing 44 ensure insulation between one of the wiring connection portions 50 and the other one of the wiring connection portions 50 . Accordingly, for example, the wiring connection portions 50 are prevented from contacting each other to be conductive with each other due to vibration of the running hybrid car.
  • the first metal plate 53 is provided between the wire mesh 55 and the first end-connection portion 51 a of the first terminal 51 and the plane part 53 a of the first metal plate 53 and a part of the wire mesh 55 are joined with each other according to resistance welding. Thereby, a current path (shown by an arrow E in FIG. 3 ) is formed by the welding electrode T 1 , the wire mesh 55 , the first metal plate 53 and the welding electrode T 2 in this order. Accordingly, the wire mesh 55 can be easily welded to the first metal plate 53 . The same may be applied to the relationship between the second metal plate 54 and the wire mesh 55 . Accordingly, the flexible wire mesh 55 can be easily provided at a part of each wiring connection portion 50 .
  • the second extended portion 42 b of the connector-receiving portion 42 is arranged to extend in the axial direction of the rotary shaft 23 .
  • the invention is not limited to this, and as shown in FIG. 4 , for example, the second extended portion 42 b of the connector-receiving portion 42 may be arranged to extend in the radial direction of the rotary shaft 23 . That is, the direction in which the connector-receiving portion extends may be changed as necessary in accordance with the configurations such as the position and size of a space in the vehicle allotted for the motor-driven compressor.
  • the connector-receiving portion 42 may be simultaneously formed when the inverter housing member 14 is formed.
  • the connector-receiving portion 42 may be made of plastic, for example.
  • the insulating member for ensuring the insulation between the wiring connection portions 50 and the connector-receiving portion may be omitted.
  • the first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 may be connected to each other by swaging, and the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 may be connected to each other by swaging. Even in this case, when the first metal plate 53 is swaged to the first end-connection portion 51 a of the first terminal 51 and the second metal plate 54 is swaged to the first end-connection portion 52 a of the second terminal 52 , the likelihood of shifting the swaging position, as in the case where a wire is used, can be reduced.
  • the swage tool it is possible to perform a swaging operation by the swage tool while a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 , for example.
  • a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 , for example.
  • the swaging operation is not difficult. Accordingly, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
  • the wiring connection portions 50 may be entirely accommodated in the cluster block 45 to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 .
  • the connector housing 44 may accommodate the wiring connection portions 50 entirely to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 .
  • wire mesh 55 is located in the cluster block 45 , the wire mesh 55 may be located in the connector housing 44 .
  • the two wiring connection portions 50 are provided side by side. However, for example, three wiring connection portions 50 may be arranged side by side. That is, the number of the wiring connection portions 50 , which are arranged side by side, is not particularly limited.
  • the compression portion 18 , the electric motor 19 , and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
  • the present invention is not limited to this.
  • the electric motor 19 , the compression portion 18 , and the motor drive circuit 30 may be accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
  • the compression portion 18 is not limited to a type that is configured by the fixed scroll 20 and the orbiting scroll 21 , but may be a piston type or a vane type.
  • the present invention may be applied to other types of air conditioners.
  • the present invention is applied to the motor-driven compressor 10 , which is mounted on a hybrid automobile and used in a vehicle air conditioner.
  • the present invention may be applied to a motor-driven compressor that is used in a vehicle air conditioner mounted on an automobile driven only by gasoline or on an electric car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A motor-driven compressor includes a wiring connection portion provided in a connector-receiving portion and adapted for supplying electricity from an external power source to a motor drive circuit. The wiring connection portion includes first and second terminals, each of which has a first end-connection portion at an end and a second end-connection portion at another end. The second end-connection portion of the first terminal is electrically connected to the external power source, while the second end-connection portion of the second terminal is electrically connected to a conductive member. The wiring connection portion further includes a coupling member coupling the first and second terminals. The coupling member includes a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first and second metal plates.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a motor-driven compressor including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
  • Conventionally, motor-driven compressors including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing, have been known. The compression portion is driven through rotation of a rotary shaft, which is rotated by the electric motor. The electric motor is driven by the motor drive circuit. For example, refer to Japanese Laid-Open Patent Publication No. 2009-74517. The motor drive circuit is driven by receiving electricity from an external power source. A tubular connector-receiving portion, which protrudes outward from the outer surface of the housing, is formed on the housing. A wiring connection portion is accommodated in the connector-receiving portion to supply electricity from the external power source to the motor drive circuit. A substrate on which electric parts such as a switching element are mounted is located in the motor drive circuit. A conductive member extending into the connector-receiving portion and connecting the substrate with the wiring connection portion is mounted on the substrate.
  • As shown in FIG. 5, a conventional wiring connection portion 80 is located in a connector-receiving portion 92, which is formed on an external surface of a housing (not shown). The wiring connection portion 80 is configured by a wire 81, a first terminal 82, which is provided at a first end of the wire 81 and electrically connected to an external power source 90, and a second terminal 83, which is provided at a second end of the wire 81 and electrically connected to the motor drive circuit (not shown). The wire 81 is formed by covering a lead portion 81 a, which is formed by binding up a plurality of leads with an insulating coating 81 b.
  • A swage portion 82 a (first end-connection portion) is formed at a first end of the first terminal 82, while a connection portion 82 b (second end-connection portion), which is electrically connected to the external power source 90, is formed at a second end of the first terminal 82. A swage portion 83 a (first end-connection portion) is formed at a first end of the second terminal 83, while a connection portion 83 b (second end-connection portion), which is electrically connected to a conductive member 91, is formed at a second end of the second terminal 83.
  • At the opposite ends of the wire 81, the lead portion 81 a is exposed from the insulating coating 81 b. The first end of the wire 81 and the first terminal 82 are connected by swaging the lead portion 81 a exposed from the insulating coating 81 b at the first end of the wire 81 by the swage portion 82 a of the first terminal 82. Also, the second end of the wire 81 and the second terminal 83 are connected to each other by swaging the lead portion 81 a exposed from the insulating coating 81 b at the second end of the wire 81 by the swage portion 83 a of the second terminal 83.
  • There is a need for the length in the direction in which the connector-receiving portion 92 extends to be shortened as required in accordance with the position and size of a space in the vehicle allotted for the motor-driven compressor. Therefore, it is also necessary to shorten the length of the wire 81 of the wiring connection portion 80 in accordance with the length of the connector-receiving portion 92.
  • If the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using, for example, a swage tool while a machine such as a robot arm grasps the wire 81, the position of the swaging (connecting position) is shifted due to the flexibility of the wire 81, resulting in poor connecting operability. Therefore, generally, the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using the swage tool while an operator holds the wire 81 by hand. Accordingly, such manual operation by the operator allows the swage position to be adjusted finely, and the operability of the swaging is improved.
  • The shorter the length of the wire 81 becomes, however, the shorter the distance between the operator's hand and the swage tool becomes. Accordingly, such a connecting operation cannot be easily performed, and thus it becomes difficult to shorten the length of the entire wiring connection portion 80. As a result, the length in the direction in which the connector-receiving portion 92 extends cannot be shortened as necessary in accordance with the position and size of an allotted space in the vehicle.
  • Further, for example, dimensional tolerance exists between the connection portion 82 b of the first terminal 82 and the external power source 90 or between the connection portion 83 b of the second terminal 83 and the conductive member 91 when connecting the connection portion 82 b of the first terminal 82 with the external power source 90 or the connection portion 83 b of the second terminal 83 with the conductive member 91. Accordingly, there is a need for the dimensional tolerance to be absorbed between the connection portion 82 b of the first terminal 82 and the external power source 90 or between the connection portion 83 b of the second terminal 83 and the conductive member 91 when connecting the connection portion 82 b of the first terminal 82 with the external power source 90 or the connection portion 83 b of the second terminal 83 with the conductive member 91.
  • An object of the present invention is to provide a motor-driven compressor that can shorten the entire length of a wiring connection portion compared with a wiring connection portion using no wires and absorb dimensional tolerance between a first terminal and an external power source or between a second terminal and a conductive member.
  • SUMMARY OF THE INVENTION
  • To achieve the foregoing objective and in accordance with one aspect of the present invention, a motor-driven compressor is provided that includes a housing, a compression portion, an electric motor, a motor drive circuit, a connector-receiving portion, a wiring connection portion, and a conductive member. The compression portion, the electric motor, and the motor drive circuit are accommodated in the housing. The connector-receiving portion is provided on an outer surface of the housing. The wiring connection portion is provided in the connector-receiving portion and is adapted for supplying electricity from an external power source to the motor drive circuit. The conductive member is provided on the motor drive circuit and extends toward a space in the connector-receiving portion. The conductive member electrically connects the motor drive circuit and the wiring connection portion with each other. The wiring connection portion includes a first terminal, a second terminal and a coupling member for coupling the first terminal with the second terminal. The first terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof. The second end-connection portion is electrically connected to the external power source. The second terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof. The second end-connection portion is electrically connected to the conductive member. The coupling member has a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first metal plate and the second metal plate with each other.
  • Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
  • FIG. 1A is a longitudinal cross-sectional view illustrating a motor-driven compressor according to one embodiment of the present invention;
  • FIG. 1B is a partially enlarged longitudinal cross-sectional view illustrating the connector-receiving portion and its surrounding in the motor-driven compressor shown in FIG. 1A;
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1B;
  • FIG. 3 is a view schematically showing the state where a first metal plate and a wire mesh are joined by resistance welding;
  • FIG. 4 is a partially enlarged longitudinal cross-sectional view illustrating a connector-receiving portion and its surrounding according to another embodiment of the present invention; and
  • FIG. 5 is a partially enlarged lateral cross-sectional view illustrating the connector-receiving portion of a conventional motor-driven compressor and its surroundings.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A motor-driven compressor according to one embodiment of the present invention will now be described with reference to FIGS. 1-3. The motor-driven compressor of the present embodiment is mounted on vehicle, which is a hybrid automobile, and employed for a vehicle air conditioner.
  • As shown in FIG. 1A, a motor-driven compressor 10 includes a housing 11, which is made of metal (aluminum in the present embodiment). The housing 11 is formed by an intermediate housing member 12, a discharge housing member 13, and an inverter housing member 14. The intermediate housing member 12 constitutes an intermediate part of the housing 11 and is formed to be cylindrical with a closed end. The discharge housing member 13 is joined to the open end of the intermediate housing member 12. The inverter housing member 14 is joined to the closed end of the intermediate housing member 12. The intermediate housing member 12 and the discharge housing member 13 are fastened to each other by blots B1 with a gasket G in between. Also, the intermediate housing member 12 and the inverter housing member 14 are fastened to each other by bolts B2. An accommodation space 17 is defined between the intermediate housing member 12 and the inverter housing member 14.
  • A discharge chamber 15 is defined between the intermediate housing member 12 and the discharge housing member 13. A discharge port 16 is formed in an end face of the discharge housing member 13. The discharge chamber 15 is connected to an external refrigerant circuit (not shown) via the discharge port 16. A suction port (not shown) is formed at a position near the inverter housing 14 in the intermediate housing member 12. The space in the intermediate housing member 12 is connected to the external refrigerant circuit (not shown) via the suction port.
  • A rotary shaft 23 is rotationally supported in the intermediate housing member 12. The intermediate housing member 12 accommodates a compression portion 18 for compressing refrigerant and an electric motor 19 for driving the compression portion 18. The accommodation space 17 accommodates a motor drive circuit 30, which controls operation of the electric motor 19. Therefore, the compression portion 18, the electric motor 19, and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23.
  • The compression portion 18 will now be described.
  • The compression portion 18 includes a fixed scroll 20, which is fixed to the intermediate housing member 12, and an orbiting scroll 21, which is arranged to face the fixed scroll 20. Compression chambers 22, the volume of which is variable, are defined between the fixed scroll 20 and the orbiting scroll 21. A discharge passage 28, which connects the compression chambers 22 and the discharge chamber 15 to each other, is formed in the fixed scroll 20. A discharge valve 29 is located at an end face of the fixed scroll 20.
  • Next, the electric motor 19 will be described.
  • The electric motor 19 includes a rotor 24, which rotates integrally with the rotary shaft 23, and a stator 25, which is fixed to the inner circumferential surface of the intermediate housing member 12 to surround the rotor 24. The rotor 24 includes a rotor core 24 a, which is fixed to and rotates integrally with the rotary shaft 23, and permanent magnets 24 b, which are provided on the circumferential surface of the rotor core 24 a. The stator 25 is substantially annular. A stator core 25 a is fixed to the inner circumferential surface of the intermediate housing member 12. A coil 25 b is wound about each of teeth (not shown) of the stator core 25 a.
  • The motor drive circuit 30 will now be described.
  • The motor drive circuit 30 includes a flat plate-like circuit board 31 and electrical components 32 a to 32 d mounted on the circuit board 31. The circuit board 31 is located in the accommodation space 17 and fixed to the inner surface of the inverter housing member 14. The circuit board 31 is arranged in the inverter housing member 14 to extend in a radial direction of the rotary shaft 23. The motor drive circuit 30 supplies electricity to the stator 25 of the electric motor 19 based on commands from an ECU for controlling the air conditioner (not shown). The circuit board 31 has a conductive member 33, which protrudes from the outer circumferential surface of the inverter housing member 14 and extends toward a connector-receiving portion 42.
  • As shown in FIG. 1B, the connector-receiving portion 42 is made of metal (aluminum in the present embodiment). The connector-receiving portion 42 includes a tubular first extended portion 42 a and a tubular second extended portion 42 b. The first extended portion 42 a extends outward from the outer circumferential surface of the inverter housing member 14 in a radial direction of the rotary shaft 23. The second extended portion 42 b is continuous with the first extended portion 42 a and extends in the axial direction of the rotary shaft 23 and toward the electric motor 19. The first extended portion 42 a has a connection portion 421 a, which is connected to a connection hole 141 formed in the inverter housing member 14. The connector-receiving portion 42 is connected to the inverter housing member 14 by joining the connection hole 141 and connection portion 421 a to each other.
  • The length of the second extended portion 42 b in a longitudinal direction is adjusted in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment. A connector housing 44, which is made of plastic, is attached to an opening 421 b of the second extended portion 42 b. The connector housing 44 is tubular and includes a fitting portion 44 a, a contact portion 44 b, and a main body 44 c. The fitting portion 44 a is fitted in the opening 421 b. The contact portion 44 b is continuous with the fitting portion 44 a and contacts an open end 422 b of the second extended portion 42 b. The main body 44 c is continuous with the contact portion 44 b and is connected to an external power source 40.
  • Wiring connection portions 50 are accommodated in the second extended portion 42 b and the connector housing 44 to supply electricity from the external power source 40 to the motor drive circuit 30. Each of the wiring connection portions 50 includes a first terminal 51 electrically connected to the external power source 40, a second terminal 52 electrically connected to the motor drive circuit 30 and a coupling member 56 coupling the first terminal 51 with the second terminal 52. The coupling member 56 includes a first metal plate 53, a second metal plate 54, and a wire mesh 55. The wire mesh 55 is configured by a woven metallic braid.
  • A first end-connection portion 51 a is formed at a first end of the first terminal 51, while a second end-connection portion 51 b, which is electrically connected to the external power source 40, is formed at a second end of the first terminal 51. Also, a first end-connection portion 52 a is formed at a first end of the second terminal 52, while a second end-connection portion 52 b, which is electrically connected to the conductive member 33, is formed at a second end of the second terminal 52. The first metal plate 53 and the second metal plate 54 are elongated boards. The first end of the first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 are joined to each other; that is, connected to each other by welding (in the present embodiment, resistance welding). The second end of the first metal plate 53 and the first end of the wire mesh 55 are joined to each other; that is connected to each other by welding (in the present embodiment, resistance welding). Also, the first end of the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 are joined to each other by welding (in the present embodiment, resistance welding). The second end of the second metal plate 54 and the second end of the wire mesh 55 are joined to each other by welding (in the present embodiment, resistance welding). Accordingly, the wire mesh 55 couples the first metal plate 53 and the second metal plate 54 with each other. The first metal plate 53, the second metal plate 54 and the wire mesh 55 connect the first terminal 51 and the second terminal 52 with each other. The total length of the first metal plate 53, the second metal plate 54 and the wire mesh 55 added together is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends.
  • As shown in FIG. 2, the motor-driven compressor 10 according to the present embodiment is provided with two wiring connection portions 50, which are arranged side by side. The second terminal 52, the second metal plate 54 and the wire mesh 55 of each wiring connection portion 50 are located in a plastic cluster block 45 having shape of a rectangular box accommodated in the second extended portion 42 b. The inside of the cluster block 45 is sectioned into a first accommodation section 45 a and a second accommodation section 45 b. The first accommodation section 45 a accommodates the second terminal 52, the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50. The second accommodation section 45 b accommodates the second terminal 52, the second metal plate 54 and the wire mesh 55 of the other one of the wiring connection portions 50. The cluster block 45 ensures insulation between i) the second terminal 52, the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50 and ii) the second terminal 52, the second metal plate 54 and the wire mesh 55 of the other wiring connection portion 50. Further, the cluster block 45 ensures insulation between each of the wiring connection portions 50 and the connector-receiving portion 42. Therefore, in the present embodiment, the cluster block 45 functions as an insulating member.
  • The connector housing 44 accommodates the first terminals 51 and the first metal plates 53 of the wiring connection portions 50. A space in the connector housing 44 is sectioned into a first accommodation section 441 and a second accommodation section 442. The first accommodation section 441 accommodates the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50. The second accommodation section 442 accommodates the first terminal 51 and the first metal plate 53 of the other wiring connection portion 50. The connector housing 44 ensures insulation between i) the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50 and ii) the first terminal 51 and the first metal plate 53 of the other one of the wiring connection portions 50. Further, the connector housing 44 ensures insulation between each wiring connection portion 50 and the connector-receiving portion 42. Therefore, in the present embodiment, the connector housing 44 functions as an insulating member.
  • The second end-connection portions 52 b of the second terminals 52 and the conductive members 33 are electrically connected to each other, and the second end-connection portions 51 b of the first terminals 51 and the external power source 40 are electrically connected to each other, so that the external power source 40 and the motor drive circuit 30 are electrically connected to each other via the wiring connection portions 50 and the conductive members 33.
  • According to the above described motor-driven compressor 10, electricity from the external power source 40 is supplied to the motor drive circuit 30 via the wiring connection portions 50 and the conductive members 33. When the electricity is supplied to the electric motor 19 from the motor drive circuit 30, the rotor 24 is rotated. Accordingly, the rotary shaft 23 rotates. As the rotary shaft 23 rotates, the volume of each compression chamber 22 between the orbiting scroll 21 and the fixed scroll 20 is reduced in the compression portion 18. Then, refrigerant is drawn into the intermediate housing member 12 from the external refrigerant circuit via the suction port. The refrigerant taken into the intermediate housing member 12 is drawn into the compression chambers 22 in the intermediate housing member 12 via a suction passage 27 provided in the intermediate housing member 12 to be compressed. The refrigerant that has been compressed in the compression chambers 22 is discharged to the discharge chamber 15 via the discharge passage 28, while flexing the discharge valve 29. The refrigerant discharged to the discharge chamber 15 is conducted to the external refrigerant circuit via the discharge port 16 and then returned to the intermediate housing member 12.
  • Operation of the present embodiment will now be described.
  • For example, a case is considered where a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 to connect the first end of the first metal plate 53 to the first end-connection portion 51 a of the first terminal 51 or the first end of the second metal plate 54 is connected to the first end-connection portion 52 a of the second terminal 52. In this case, since the first metal plate 53 and the second metal plate are more rigid than a wire used in a conventional motor-driven compressor, the likelihood of shifting of the connecting position of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 is reduced. As a result, it is not necessary for an operator to perform connecting operation while holding the first metal plate 53 or the second metal plate 54 by hand. Even if the entire length of the first metal plate 53 and the second metal plate 54 is shortened, the operation of connecting the first end of the first metal plate 53 with the first end-connection portion 51 a of the first terminal 51 or the first end of the second metal plate 54 with the first end-connection portion 52 a of the second terminal 52 is facilitated.
  • According to the above described motor-driven compressor 10, the total length of the first metal plate 53, the second metal plate 54, and the wire mesh 55 is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends. As a result, the length of the second extended portion 42 b is shortened in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment. This facilitates mounting of the motor-driven compressor 10 on a hybrid car.
  • Further, the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33. The flexing of the wire mesh 55 absorbs the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33.
  • Next, a method for welding the first metal plate 53 with the wire mesh 55 will be described.
  • As shown in FIG. 3, first, a part of the wire mesh 55 is brought into contact with a plane part 53 a of the first metal plate 53, and then the first metal plate 53 and the wire mesh 55 are sandwiched by a pair of welding electrodes T1 and T2. Specifically, the welding electrode T1 is arranged at a part opposite to a part in contact with the first metal plate 53 in the wire mesh 55, and the welding electrode T2 is arranged on a surface opposite to the plane part 53 a in the first metal plate 53. Then, current is supplied to flow between the welding electrodes T1 and T2.
  • The current from the welding electrode T1 flows into the welding electrode T2 through the wire mesh 55 and the first metal plate 53. Thereby, resistance heat is generated in the contacting part between the wire mesh 55 and the first metal plate 53. With this resistance heat, the part of the wire mesh 55 in contact with the first metal plate 53 and the part of the first metal plate 53 in contact with the wire mesh 55 are respectively heated to be melted. As the melted parts are cooled, the first metal plate 53 and the wire mesh 55 are joined with each other. Since the method for welding the second metal plate 54 with the wire mesh 55 is the same as the method for welding the first metal plate 53 with the wire mesh 55, the detailed explanation thereof is omitted.
  • The above described embodiment has the following advantages.
  • (1) Each of the wiring connection portions 50 is formed by the first terminal 51, the second terminal 52 the first metal plate 53, the second metal plate 54, and the wire mesh 55. Accordingly, the first metal plate 53 and the second metal plate 54 are more rigid than the wire used in the conventional motor-driven compressor. Therefore, the likelihood of shifting of the connecting positions of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 can be reduced. Accordingly, even if the lengths of the first metal plate 53 and the second metal plate 54 are shortened, the first end-connection portion 51 a of the first terminal 51 can be easily connected to the first metal plate 53 and the first end-connection portion 52 a of the second terminal 52 can be easily connected to the second metal plate 54. As a result, the lengths of the first metal plate 53 and the second metal plate 54 can be shortened as much as possible; that is, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
  • Further, the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33. Thereby, the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33 can be absorbed. As a result, the second end-connection portion 51 b of the first terminal 51 can be easily connected with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 can be easily connected with the conductive member 33.
  • (2) The connector-receiving portion 42 is made of metal, and the cluster block 45 and the connector housing 44 are located between the wiring connection portions 50 and the connector-receiving portion 42. In order to ensure the strength of the connector-receiving portion 42, it is preferred to form the connector-receiving portion 42 with metal. Further, the cluster block 45 and the connector housing 44 can ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42. Since the positions of the wiring connection portions 50 are determined by the cluster block 45 and the connector housing 44 in the connector-receiving portion 42, movement of the wiring connection portions 50 in the connector-receiving portion 42 due to vibration of the running hybrid car is reduced.
  • (3) The cluster block 45 and the connector housing 44 ensure insulation between one of the wiring connection portions 50 and the other one of the wiring connection portions 50. Accordingly, for example, the wiring connection portions 50 are prevented from contacting each other to be conductive with each other due to vibration of the running hybrid car.
  • (4) The first metal plate 53 is provided between the wire mesh 55 and the first end-connection portion 51 a of the first terminal 51 and the plane part 53 a of the first metal plate 53 and a part of the wire mesh 55 are joined with each other according to resistance welding. Thereby, a current path (shown by an arrow E in FIG. 3) is formed by the welding electrode T1, the wire mesh 55, the first metal plate 53 and the welding electrode T2 in this order. Accordingly, the wire mesh 55 can be easily welded to the first metal plate 53. The same may be applied to the relationship between the second metal plate 54 and the wire mesh 55. Accordingly, the flexible wire mesh 55 can be easily provided at a part of each wiring connection portion 50.
  • The above described embodiment may be modified as follows.
  • The second extended portion 42 b of the connector-receiving portion 42 is arranged to extend in the axial direction of the rotary shaft 23. The invention is not limited to this, and as shown in FIG. 4, for example, the second extended portion 42 b of the connector-receiving portion 42 may be arranged to extend in the radial direction of the rotary shaft 23. That is, the direction in which the connector-receiving portion extends may be changed as necessary in accordance with the configurations such as the position and size of a space in the vehicle allotted for the motor-driven compressor.
  • The connector-receiving portion 42 may be simultaneously formed when the inverter housing member 14 is formed.
  • The connector-receiving portion 42 may be made of plastic, for example. In this case, the insulating member for ensuring the insulation between the wiring connection portions 50 and the connector-receiving portion may be omitted.
  • The first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 may be connected to each other by swaging, and the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 may be connected to each other by swaging. Even in this case, when the first metal plate 53 is swaged to the first end-connection portion 51 a of the first terminal 51 and the second metal plate 54 is swaged to the first end-connection portion 52 a of the second terminal 52, the likelihood of shifting the swaging position, as in the case where a wire is used, can be reduced. Accordingly, it is possible to perform a swaging operation by the swage tool while a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54, for example. As a result, even if the lengths of the first metal plate 53 and the second metal plate 54 are shortened as much as possible, the swaging operation is not difficult. Accordingly, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
  • The wiring connection portions 50 may be entirely accommodated in the cluster block 45 to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42. Alternatively, the connector housing 44 may accommodate the wiring connection portions 50 entirely to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42.
  • Although the wire mesh 55 is located in the cluster block 45, the wire mesh 55 may be located in the connector housing 44.
  • The two wiring connection portions 50 are provided side by side. However, for example, three wiring connection portions 50 may be arranged side by side. That is, the number of the wiring connection portions 50, which are arranged side by side, is not particularly limited.
  • The compression portion 18, the electric motor 19, and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23. The present invention is not limited to this. For example, the electric motor 19, the compression portion 18, and the motor drive circuit 30 may be accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23.
  • The compression portion 18 is not limited to a type that is configured by the fixed scroll 20 and the orbiting scroll 21, but may be a piston type or a vane type.
  • Instead of a vehicle air conditioner, the present invention may be applied to other types of air conditioners.
  • The present invention is applied to the motor-driven compressor 10, which is mounted on a hybrid automobile and used in a vehicle air conditioner. However, instead of a hybrid automobile, the present invention may be applied to a motor-driven compressor that is used in a vehicle air conditioner mounted on an automobile driven only by gasoline or on an electric car.
  • Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.

Claims (4)

1. A motor-driven compressor, comprising:
a housing;
a compression portion, an electric motor, and a motor drive circuit, which are accommodated in the housing;
a connector-receiving portion provided on an outer surface of the housing; and
a wiring connection portion provided in the connector-receiving portion, the wiring connection portion being adapted for supplying electricity from an external power source to the motor drive circuit; and
a conductive member provided in the motor drive circuit, the conductive member extending into a space in the connector-receiving portion and electrically connecting the motor drive circuit and the wiring connection portion with each other,
wherein the wiring connection portion includes
a first terminal having a first end-connection portion at an end thereof and a second end-connection portion at another end thereof, the second end-connection portion being electrically connected to the external power source,
a second terminal having a first end-connection portion at an end thereof and a second end-connection portion at another end thereof, the second end-connection portion being electrically connected to the conductive member, and
a coupling member, which couples the first terminal with the second terminal, and
wherein the coupling member includes
a first metal plate connected to the first end-connection portion of the first terminal,
a second metal plate connected to the first end-connection portion of the second terminal, and
a wire mesh connecting the first metal plate and the second metal plate with each other.
2. The motor-driven compressor according to claim 1, wherein
the connector-receiving portion is formed of metal, and
the motor-driven compressor further comprises an insulating member located between the wiring connection portion and the connector-receiving portion, which insulating member determines a position of the wiring connection portion in the connector-receiving portion.
3. The motor-driven compressor according to claim 1, wherein the housing accommodates a rotary shaft having an axial direction, and wherein the connector-receiving portion extends in the axial direction of the rotary shaft and toward the electric motor.
4. The motor-driven compressor according to claim 3, wherein the compression portion, the electric motor, and the motor drive circuit are accommodated in the housing to be arranged in that order in the axial direction of the rotary shaft.
US13/751,655 2012-02-02 2013-01-28 Motor-driven compressor Abandoned US20130202462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-021093 2012-02-02
JP2012021093A JP5720593B2 (en) 2012-02-02 2012-02-02 Electric compressor

Publications (1)

Publication Number Publication Date
US20130202462A1 true US20130202462A1 (en) 2013-08-08

Family

ID=47664160

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/751,655 Abandoned US20130202462A1 (en) 2012-02-02 2013-01-28 Motor-driven compressor

Country Status (3)

Country Link
US (1) US20130202462A1 (en)
EP (1) EP2623787B1 (en)
JP (1) JP5720593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072894A (en) * 2016-03-24 2018-12-21 三电汽车部件株式会社 Inverter-integrated type electric compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014166A (en) * 2016-07-19 2018-01-25 住友電装株式会社 connector
JP6927118B2 (en) * 2018-03-29 2021-08-25 株式会社豊田自動織機 In-vehicle electric compressor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160460A (en) * 1962-01-17 1964-12-08 Fusite Corp Terminal assembly having conductor pins and connector block
US4966559A (en) * 1989-10-12 1990-10-30 Tecumseh Products Company Internal terminal block for compressor hermetic terminal
US5488768A (en) * 1993-09-24 1996-02-06 Ventritex, Inc. Method of forming a defibrillation electrode connection
US6321563B1 (en) * 1999-04-07 2001-11-27 Sanden Corporation Motor-driven compressor
US6336827B1 (en) * 1998-08-20 2002-01-08 Fujitsu Takamisawa Component Ltd. Balanced-transmission cable-and-connector unit
JP2004027984A (en) * 2002-06-26 2004-01-29 Denso Corp Hermetic electric compressor
US8007284B2 (en) * 2008-04-01 2011-08-30 Bridgeport Fittings, Inc. Moisture proof telescoping coupler assembly for electric metal tubes with enhanced grounding, sealing, and continuity
US8303270B2 (en) * 2007-12-18 2012-11-06 Kabushiki Kaisha Toyota Jidoshokki Motor-driven compressor
US8303271B2 (en) * 2007-09-25 2012-11-06 Sanden Corporation Electric compressor integral with drive circuit
US9112397B2 (en) * 2009-11-06 2015-08-18 Yazaki Corporation Inverter terminal board installed in motor case

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964788A (en) * 1990-03-21 1990-10-23 Tecumseh Products Company Hermetic terminal with terminal pin assemblies having fusible links and motor compressor unit including same
JP2003097436A (en) * 2001-09-25 2003-04-03 Denso Corp Electric compressor
JP4151510B2 (en) * 2003-08-07 2008-09-17 株式会社豊田自動織機 Shielded cable, method for manufacturing the shielded cable, and compressor unit using the shielded cable
JP2005327557A (en) * 2004-05-13 2005-11-24 Hitachi Cable Ltd Power connection means for case
JP2006283719A (en) * 2005-04-04 2006-10-19 Sanden Corp Motor-driven compressor
JP4799180B2 (en) * 2006-01-05 2011-10-26 サンデン株式会社 Electric compressor
JP5426202B2 (en) * 2009-03-25 2014-02-26 矢崎総業株式会社 connector
JP4998527B2 (en) * 2009-09-08 2012-08-15 株式会社豊田自動織機 Electric compressor
JP5381599B2 (en) * 2009-10-12 2014-01-08 株式会社デンソー Compressor
JP2011144788A (en) * 2010-01-18 2011-07-28 Toyota Industries Corp Motor-driven compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160460A (en) * 1962-01-17 1964-12-08 Fusite Corp Terminal assembly having conductor pins and connector block
US4966559A (en) * 1989-10-12 1990-10-30 Tecumseh Products Company Internal terminal block for compressor hermetic terminal
US5488768A (en) * 1993-09-24 1996-02-06 Ventritex, Inc. Method of forming a defibrillation electrode connection
US6336827B1 (en) * 1998-08-20 2002-01-08 Fujitsu Takamisawa Component Ltd. Balanced-transmission cable-and-connector unit
US6321563B1 (en) * 1999-04-07 2001-11-27 Sanden Corporation Motor-driven compressor
JP2004027984A (en) * 2002-06-26 2004-01-29 Denso Corp Hermetic electric compressor
US8303271B2 (en) * 2007-09-25 2012-11-06 Sanden Corporation Electric compressor integral with drive circuit
US8303270B2 (en) * 2007-12-18 2012-11-06 Kabushiki Kaisha Toyota Jidoshokki Motor-driven compressor
US8007284B2 (en) * 2008-04-01 2011-08-30 Bridgeport Fittings, Inc. Moisture proof telescoping coupler assembly for electric metal tubes with enhanced grounding, sealing, and continuity
US9112397B2 (en) * 2009-11-06 2015-08-18 Yazaki Corporation Inverter terminal board installed in motor case

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of Japanese Document JP2004-27984A, HARAKAWA YOSHIAKI et al., "HERMETIC ELECTRIC COMPRESSOR", 01-2004, Japan *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072894A (en) * 2016-03-24 2018-12-21 三电汽车部件株式会社 Inverter-integrated type electric compressor

Also Published As

Publication number Publication date
JP2013160091A (en) 2013-08-19
EP2623787B1 (en) 2014-07-16
EP2623787A1 (en) 2013-08-07
JP5720593B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US8618703B2 (en) Motor driven compressor
JP6650524B2 (en) Compressor
KR101442101B1 (en) Motor-driven compressor
JP5138551B2 (en) Inverter-integrated electric compressor
US20110211981A1 (en) Inverter-Integrated Electric Compressor
JP5416388B2 (en) Inverter-integrated electric compressor
US20130004345A1 (en) Motor-driven compressor
CN113287233B (en) Device for electrical connection of plug connection
US11670983B2 (en) Motor-driven compressor
US20100141066A1 (en) Inverter connection terminal assembly for electric compressor
US20130202461A1 (en) Motor-driven compressor
US6737773B2 (en) Wiring structure of motor in hybrid compressor
KR20110135221A (en) Stator of electromotive compressor and assembling method of the same
EP2623787B1 (en) Motor-driven compressor
EP2623786B1 (en) Motor-driven compressor
US7049518B2 (en) Shielded cable, process for assembling the same and compressor unit having the same
WO2022202803A1 (en) Electric compressor
CN111756189B (en) Electric compressor
CN107787544A (en) For the device of the electrical connection between electric notor and the power subsystem of the motor, the compressor of motor vehicles is particularly used for
JP2004176682A (en) Electric compressor for coolant
JP2006307646A (en) Hermetic scroll compressor
KR20240097550A (en) Terminal unit and electric compressor including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENAMI, SHINGO;REEL/FRAME:029709/0975

Effective date: 20130115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION