US20130202462A1 - Motor-driven compressor - Google Patents
Motor-driven compressor Download PDFInfo
- Publication number
- US20130202462A1 US20130202462A1 US13/751,655 US201313751655A US2013202462A1 US 20130202462 A1 US20130202462 A1 US 20130202462A1 US 201313751655 A US201313751655 A US 201313751655A US 2013202462 A1 US2013202462 A1 US 2013202462A1
- Authority
- US
- United States
- Prior art keywords
- connection portion
- terminal
- metal plate
- connector
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 94
- 239000002184 metal Substances 0.000 claims abstract description 94
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 230000005611 electricity Effects 0.000 claims abstract description 9
- 230000006835 compression Effects 0.000 claims description 21
- 238000007906 compression Methods 0.000 claims description 21
- 238000003466 welding Methods 0.000 description 21
- 230000004308 accommodation Effects 0.000 description 11
- 238000009413 insulation Methods 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/04—Pins or blades for co-operation with sockets
- H01R13/08—Resiliently-mounted rigid pins or blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/121—Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/14—Provisions for readily assembling or disassembling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/62—Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
- H01R13/629—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
- H01R13/631—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for engagement only
- H01R13/6315—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances for engagement only allowing relative movement between coupling parts, e.g. floating connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/803—Electric connectors or cables; Fittings therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
- H01R4/029—Welded connections
Definitions
- the present invention relates to a motor-driven compressor including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
- motor-driven compressors including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
- the compression portion is driven through rotation of a rotary shaft, which is rotated by the electric motor.
- the electric motor is driven by the motor drive circuit.
- the motor drive circuit is driven by receiving electricity from an external power source.
- a tubular connector-receiving portion which protrudes outward from the outer surface of the housing, is formed on the housing.
- a wiring connection portion is accommodated in the connector-receiving portion to supply electricity from the external power source to the motor drive circuit.
- a substrate on which electric parts such as a switching element are mounted is located in the motor drive circuit.
- a conductive member extending into the connector-receiving portion and connecting the substrate with the wiring connection portion is mounted on the substrate.
- a conventional wiring connection portion 80 is located in a connector-receiving portion 92 , which is formed on an external surface of a housing (not shown).
- the wiring connection portion 80 is configured by a wire 81 , a first terminal 82 , which is provided at a first end of the wire 81 and electrically connected to an external power source 90 , and a second terminal 83 , which is provided at a second end of the wire 81 and electrically connected to the motor drive circuit (not shown).
- the wire 81 is formed by covering a lead portion 81 a , which is formed by binding up a plurality of leads with an insulating coating 81 b.
- a swage portion 82 a (first end-connection portion) is formed at a first end of the first terminal 82 , while a connection portion 82 b (second end-connection portion), which is electrically connected to the external power source 90 , is formed at a second end of the first terminal 82 .
- a swage portion 83 a (first end-connection portion) is formed at a first end of the second terminal 83 , while a connection portion 83 b (second end-connection portion), which is electrically connected to a conductive member 91 , is formed at a second end of the second terminal 83 .
- the lead portion 81 a is exposed from the insulating coating 81 b .
- the first end of the wire 81 and the first terminal 82 are connected by swaging the lead portion 81 a exposed from the insulating coating 81 b at the first end of the wire 81 by the swage portion 82 a of the first terminal 82 .
- the second end of the wire 81 and the second terminal 83 are connected to each other by swaging the lead portion 81 a exposed from the insulating coating 81 b at the second end of the wire 81 by the swage portion 83 a of the second terminal 83 .
- the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using, for example, a swage tool while a machine such as a robot arm grasps the wire 81 , the position of the swaging (connecting position) is shifted due to the flexibility of the wire 81 , resulting in poor connecting operability.
- the swaging of the lead portion 81 a by the swage portion 82 a of the first terminal 82 and the swaging of the lead portion 81 a by the swage portion 83 a of the second terminal 83 are performed using the swage tool while an operator holds the wire 81 by hand. Accordingly, such manual operation by the operator allows the swage position to be adjusted finely, and the operability of the swaging is improved.
- An object of the present invention is to provide a motor-driven compressor that can shorten the entire length of a wiring connection portion compared with a wiring connection portion using no wires and absorb dimensional tolerance between a first terminal and an external power source or between a second terminal and a conductive member.
- a motor-driven compressor that includes a housing, a compression portion, an electric motor, a motor drive circuit, a connector-receiving portion, a wiring connection portion, and a conductive member.
- the compression portion, the electric motor, and the motor drive circuit are accommodated in the housing.
- the connector-receiving portion is provided on an outer surface of the housing.
- the wiring connection portion is provided in the connector-receiving portion and is adapted for supplying electricity from an external power source to the motor drive circuit.
- the conductive member is provided on the motor drive circuit and extends toward a space in the connector-receiving portion. The conductive member electrically connects the motor drive circuit and the wiring connection portion with each other.
- the wiring connection portion includes a first terminal, a second terminal and a coupling member for coupling the first terminal with the second terminal.
- the first terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof.
- the second end-connection portion is electrically connected to the external power source.
- the second terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof.
- the second end-connection portion is electrically connected to the conductive member.
- the coupling member has a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first metal plate and the second metal plate with each other.
- FIG. 1A is a longitudinal cross-sectional view illustrating a motor-driven compressor according to one embodiment of the present invention
- FIG. 1B is a partially enlarged longitudinal cross-sectional view illustrating the connector-receiving portion and its surrounding in the motor-driven compressor shown in FIG. 1A ;
- FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1B ;
- FIG. 3 is a view schematically showing the state where a first metal plate and a wire mesh are joined by resistance welding;
- FIG. 4 is a partially enlarged longitudinal cross-sectional view illustrating a connector-receiving portion and its surrounding according to another embodiment of the present invention.
- FIG. 5 is a partially enlarged lateral cross-sectional view illustrating the connector-receiving portion of a conventional motor-driven compressor and its surroundings.
- a motor-driven compressor according to one embodiment of the present invention will now be described with reference to FIGS. 1-3 .
- the motor-driven compressor of the present embodiment is mounted on vehicle, which is a hybrid automobile, and employed for a vehicle air conditioner.
- a motor-driven compressor 10 includes a housing 11 , which is made of metal (aluminum in the present embodiment).
- the housing 11 is formed by an intermediate housing member 12 , a discharge housing member 13 , and an inverter housing member 14 .
- the intermediate housing member 12 constitutes an intermediate part of the housing 11 and is formed to be cylindrical with a closed end.
- the discharge housing member 13 is joined to the open end of the intermediate housing member 12 .
- the inverter housing member 14 is joined to the closed end of the intermediate housing member 12 .
- the intermediate housing member 12 and the discharge housing member 13 are fastened to each other by blots B 1 with a gasket G in between.
- the intermediate housing member 12 and the inverter housing member 14 are fastened to each other by bolts B 2 .
- An accommodation space 17 is defined between the intermediate housing member 12 and the inverter housing member 14 .
- a discharge chamber 15 is defined between the intermediate housing member 12 and the discharge housing member 13 .
- a discharge port 16 is formed in an end face of the discharge housing member 13 .
- the discharge chamber 15 is connected to an external refrigerant circuit (not shown) via the discharge port 16 .
- a suction port (not shown) is formed at a position near the inverter housing 14 in the intermediate housing member 12 .
- the space in the intermediate housing member 12 is connected to the external refrigerant circuit (not shown) via the suction port.
- a rotary shaft 23 is rotationally supported in the intermediate housing member 12 .
- the intermediate housing member 12 accommodates a compression portion 18 for compressing refrigerant and an electric motor 19 for driving the compression portion 18 .
- the accommodation space 17 accommodates a motor drive circuit 30 , which controls operation of the electric motor 19 . Therefore, the compression portion 18 , the electric motor 19 , and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
- the compression portion 18 will now be described.
- the compression portion 18 includes a fixed scroll 20 , which is fixed to the intermediate housing member 12 , and an orbiting scroll 21 , which is arranged to face the fixed scroll 20 .
- Compression chambers 22 are defined between the fixed scroll 20 and the orbiting scroll 21 .
- a discharge passage 28 which connects the compression chambers 22 and the discharge chamber 15 to each other, is formed in the fixed scroll 20 .
- a discharge valve 29 is located at an end face of the fixed scroll 20 .
- the electric motor 19 includes a rotor 24 , which rotates integrally with the rotary shaft 23 , and a stator 25 , which is fixed to the inner circumferential surface of the intermediate housing member 12 to surround the rotor 24 .
- the rotor 24 includes a rotor core 24 a , which is fixed to and rotates integrally with the rotary shaft 23 , and permanent magnets 24 b , which are provided on the circumferential surface of the rotor core 24 a .
- the stator 25 is substantially annular.
- a stator core 25 a is fixed to the inner circumferential surface of the intermediate housing member 12 .
- a coil 25 b is wound about each of teeth (not shown) of the stator core 25 a.
- the motor drive circuit 30 will now be described.
- the motor drive circuit 30 includes a flat plate-like circuit board 31 and electrical components 32 a to 32 d mounted on the circuit board 31 .
- the circuit board 31 is located in the accommodation space 17 and fixed to the inner surface of the inverter housing member 14 .
- the circuit board 31 is arranged in the inverter housing member 14 to extend in a radial direction of the rotary shaft 23 .
- the motor drive circuit 30 supplies electricity to the stator 25 of the electric motor 19 based on commands from an ECU for controlling the air conditioner (not shown).
- the circuit board 31 has a conductive member 33 , which protrudes from the outer circumferential surface of the inverter housing member 14 and extends toward a connector-receiving portion 42 .
- the connector-receiving portion 42 is made of metal (aluminum in the present embodiment).
- the connector-receiving portion 42 includes a tubular first extended portion 42 a and a tubular second extended portion 42 b .
- the first extended portion 42 a extends outward from the outer circumferential surface of the inverter housing member 14 in a radial direction of the rotary shaft 23 .
- the second extended portion 42 b is continuous with the first extended portion 42 a and extends in the axial direction of the rotary shaft 23 and toward the electric motor 19 .
- the first extended portion 42 a has a connection portion 421 a , which is connected to a connection hole 141 formed in the inverter housing member 14 .
- the connector-receiving portion 42 is connected to the inverter housing member 14 by joining the connection hole 141 and connection portion 421 a to each other.
- the length of the second extended portion 42 b in a longitudinal direction is adjusted in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment.
- a connector housing 44 which is made of plastic, is attached to an opening 421 b of the second extended portion 42 b .
- the connector housing 44 is tubular and includes a fitting portion 44 a , a contact portion 44 b , and a main body 44 c .
- the fitting portion 44 a is fitted in the opening 421 b .
- the contact portion 44 b is continuous with the fitting portion 44 a and contacts an open end 422 b of the second extended portion 42 b .
- the main body 44 c is continuous with the contact portion 44 b and is connected to an external power source 40 .
- Wiring connection portions 50 are accommodated in the second extended portion 42 b and the connector housing 44 to supply electricity from the external power source 40 to the motor drive circuit 30 .
- Each of the wiring connection portions 50 includes a first terminal 51 electrically connected to the external power source 40 , a second terminal 52 electrically connected to the motor drive circuit 30 and a coupling member 56 coupling the first terminal 51 with the second terminal 52 .
- the coupling member 56 includes a first metal plate 53 , a second metal plate 54 , and a wire mesh 55 .
- the wire mesh 55 is configured by a woven metallic braid.
- a first end-connection portion 51 a is formed at a first end of the first terminal 51
- a second end-connection portion 51 b which is electrically connected to the external power source 40
- a first end-connection portion 52 a is formed at a first end of the second terminal 52
- a second end-connection portion 52 b which is electrically connected to the conductive member 33
- the first metal plate 53 and the second metal plate 54 are elongated boards.
- the first end of the first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 are joined to each other; that is, connected to each other by welding (in the present embodiment, resistance welding).
- the second end of the first metal plate 53 and the first end of the wire mesh 55 are joined to each other; that is connected to each other by welding (in the present embodiment, resistance welding).
- the first end of the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 are joined to each other by welding (in the present embodiment, resistance welding).
- the second end of the second metal plate 54 and the second end of the wire mesh 55 are joined to each other by welding (in the present embodiment, resistance welding). Accordingly, the wire mesh 55 couples the first metal plate 53 and the second metal plate 54 with each other.
- the first metal plate 53 , the second metal plate 54 and the wire mesh 55 connect the first terminal 51 and the second terminal 52 with each other.
- the total length of the first metal plate 53 , the second metal plate 54 and the wire mesh 55 added together is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends.
- the motor-driven compressor 10 is provided with two wiring connection portions 50 , which are arranged side by side.
- the second terminal 52 , the second metal plate 54 and the wire mesh 55 of each wiring connection portion 50 are located in a plastic cluster block 45 having shape of a rectangular box accommodated in the second extended portion 42 b .
- the inside of the cluster block 45 is sectioned into a first accommodation section 45 a and a second accommodation section 45 b .
- the first accommodation section 45 a accommodates the second terminal 52 , the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50 .
- the second accommodation section 45 b accommodates the second terminal 52 , the second metal plate 54 and the wire mesh 55 of the other one of the wiring connection portions 50 .
- the cluster block 45 ensures insulation between i) the second terminal 52 , the second metal plate 54 and the wire mesh 55 of one of the wiring connection portions 50 and ii) the second terminal 52 , the second metal plate 54 and the wire mesh 55 of the other wiring connection portion 50 . Further, the cluster block 45 ensures insulation between each of the wiring connection portions 50 and the connector-receiving portion 42 . Therefore, in the present embodiment, the cluster block 45 functions as an insulating member.
- the connector housing 44 accommodates the first terminals 51 and the first metal plates 53 of the wiring connection portions 50 .
- a space in the connector housing 44 is sectioned into a first accommodation section 441 and a second accommodation section 442 .
- the first accommodation section 441 accommodates the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50 .
- the second accommodation section 442 accommodates the first terminal 51 and the first metal plate 53 of the other wiring connection portion 50 .
- the connector housing 44 ensures insulation between i) the first terminal 51 and the first metal plate 53 of one of the wiring connection portions 50 and ii) the first terminal 51 and the first metal plate 53 of the other one of the wiring connection portions 50 . Further, the connector housing 44 ensures insulation between each wiring connection portion 50 and the connector-receiving portion 42 . Therefore, in the present embodiment, the connector housing 44 functions as an insulating member.
- the second end-connection portions 52 b of the second terminals 52 and the conductive members 33 are electrically connected to each other, and the second end-connection portions 51 b of the first terminals 51 and the external power source 40 are electrically connected to each other, so that the external power source 40 and the motor drive circuit 30 are electrically connected to each other via the wiring connection portions 50 and the conductive members 33 .
- the refrigerant that has been compressed in the compression chambers 22 is discharged to the discharge chamber 15 via the discharge passage 28 , while flexing the discharge valve 29 .
- the refrigerant discharged to the discharge chamber 15 is conducted to the external refrigerant circuit via the discharge port 16 and then returned to the intermediate housing member 12 .
- a case is considered where a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 to connect the first end of the first metal plate 53 to the first end-connection portion 51 a of the first terminal 51 or the first end of the second metal plate 54 is connected to the first end-connection portion 52 a of the second terminal 52 .
- the first metal plate 53 and the second metal plate are more rigid than a wire used in a conventional motor-driven compressor, the likelihood of shifting of the connecting position of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 is reduced.
- the total length of the first metal plate 53 , the second metal plate 54 , and the wire mesh 55 is less than the length of the second extended portion 42 b in the direction in which the second extended portion 42 b extends.
- the length of the second extended portion 42 b is shortened in accordance with the position and size of a space in a hybrid car allotted for the motor-driven compressor 10 according to the present embodiment. This facilitates mounting of the motor-driven compressor 10 on a hybrid car.
- the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33 . The flexing of the wire mesh 55 absorbs the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33 .
- a part of the wire mesh 55 is brought into contact with a plane part 53 a of the first metal plate 53 , and then the first metal plate 53 and the wire mesh 55 are sandwiched by a pair of welding electrodes T 1 and T 2 .
- the welding electrode T 1 is arranged at a part opposite to a part in contact with the first metal plate 53 in the wire mesh 55
- the welding electrode T 2 is arranged on a surface opposite to the plane part 53 a in the first metal plate 53 . Then, current is supplied to flow between the welding electrodes T 1 and T 2 .
- the current from the welding electrode T 1 flows into the welding electrode T 2 through the wire mesh 55 and the first metal plate 53 .
- resistance heat is generated in the contacting part between the wire mesh 55 and the first metal plate 53 .
- the part of the wire mesh 55 in contact with the first metal plate 53 and the part of the first metal plate 53 in contact with the wire mesh 55 are respectively heated to be melted.
- the first metal plate 53 and the wire mesh 55 are joined with each other. Since the method for welding the second metal plate 54 with the wire mesh 55 is the same as the method for welding the first metal plate 53 with the wire mesh 55 , the detailed explanation thereof is omitted.
- Each of the wiring connection portions 50 is formed by the first terminal 51 , the second terminal 52 the first metal plate 53 , the second metal plate 54 , and the wire mesh 55 . Accordingly, the first metal plate 53 and the second metal plate 54 are more rigid than the wire used in the conventional motor-driven compressor. Therefore, the likelihood of shifting of the connecting positions of the first metal plate 53 and the second metal plate 54 with respect to the first end-connection portion 51 a of the first terminal 51 or to the first end-connection portion 52 a of the second terminal 52 can be reduced.
- the first end-connection portion 51 a of the first terminal 51 can be easily connected to the first metal plate 53 and the first end-connection portion 52 a of the second terminal 52 can be easily connected to the second metal plate 54 .
- the lengths of the first metal plate 53 and the second metal plate 54 can be shortened as much as possible; that is, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
- the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting the second end-connection portion 51 b of the first terminal 51 with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 with the conductive member 33 . Thereby, the dimensional tolerance between the second end-connection portion 51 b of the first terminal 51 and the external power source 40 or between the second end-connection portion 52 b of the second terminal 52 and the conductive member 33 can be absorbed. As a result, the second end-connection portion 51 b of the first terminal 51 can be easily connected with the external power source 40 or the second end-connection portion 52 b of the second terminal 52 can be easily connected with the conductive member 33 .
- the connector-receiving portion 42 is made of metal, and the cluster block 45 and the connector housing 44 are located between the wiring connection portions 50 and the connector-receiving portion 42 .
- the cluster block 45 and the connector housing 44 can ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 . Since the positions of the wiring connection portions 50 are determined by the cluster block 45 and the connector housing 44 in the connector-receiving portion 42 , movement of the wiring connection portions 50 in the connector-receiving portion 42 due to vibration of the running hybrid car is reduced.
- the cluster block 45 and the connector housing 44 ensure insulation between one of the wiring connection portions 50 and the other one of the wiring connection portions 50 . Accordingly, for example, the wiring connection portions 50 are prevented from contacting each other to be conductive with each other due to vibration of the running hybrid car.
- the first metal plate 53 is provided between the wire mesh 55 and the first end-connection portion 51 a of the first terminal 51 and the plane part 53 a of the first metal plate 53 and a part of the wire mesh 55 are joined with each other according to resistance welding. Thereby, a current path (shown by an arrow E in FIG. 3 ) is formed by the welding electrode T 1 , the wire mesh 55 , the first metal plate 53 and the welding electrode T 2 in this order. Accordingly, the wire mesh 55 can be easily welded to the first metal plate 53 . The same may be applied to the relationship between the second metal plate 54 and the wire mesh 55 . Accordingly, the flexible wire mesh 55 can be easily provided at a part of each wiring connection portion 50 .
- the second extended portion 42 b of the connector-receiving portion 42 is arranged to extend in the axial direction of the rotary shaft 23 .
- the invention is not limited to this, and as shown in FIG. 4 , for example, the second extended portion 42 b of the connector-receiving portion 42 may be arranged to extend in the radial direction of the rotary shaft 23 . That is, the direction in which the connector-receiving portion extends may be changed as necessary in accordance with the configurations such as the position and size of a space in the vehicle allotted for the motor-driven compressor.
- the connector-receiving portion 42 may be simultaneously formed when the inverter housing member 14 is formed.
- the connector-receiving portion 42 may be made of plastic, for example.
- the insulating member for ensuring the insulation between the wiring connection portions 50 and the connector-receiving portion may be omitted.
- the first metal plate 53 and the first end-connection portion 51 a of the first terminal 51 may be connected to each other by swaging, and the second metal plate 54 and the first end-connection portion 52 a of the second terminal 52 may be connected to each other by swaging. Even in this case, when the first metal plate 53 is swaged to the first end-connection portion 51 a of the first terminal 51 and the second metal plate 54 is swaged to the first end-connection portion 52 a of the second terminal 52 , the likelihood of shifting the swaging position, as in the case where a wire is used, can be reduced.
- the swage tool it is possible to perform a swaging operation by the swage tool while a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 , for example.
- a machine such as a robot arm grasps the first metal plate 53 or the second metal plate 54 , for example.
- the swaging operation is not difficult. Accordingly, the length of the entire wiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used.
- the wiring connection portions 50 may be entirely accommodated in the cluster block 45 to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 .
- the connector housing 44 may accommodate the wiring connection portions 50 entirely to ensure insulation between the wiring connection portions 50 and the connector-receiving portion 42 .
- wire mesh 55 is located in the cluster block 45 , the wire mesh 55 may be located in the connector housing 44 .
- the two wiring connection portions 50 are provided side by side. However, for example, three wiring connection portions 50 may be arranged side by side. That is, the number of the wiring connection portions 50 , which are arranged side by side, is not particularly limited.
- the compression portion 18 , the electric motor 19 , and the motor drive circuit 30 are accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
- the present invention is not limited to this.
- the electric motor 19 , the compression portion 18 , and the motor drive circuit 30 may be accommodated in the housing 11 to be arranged in that order in the axial direction of the rotary shaft 23 .
- the compression portion 18 is not limited to a type that is configured by the fixed scroll 20 and the orbiting scroll 21 , but may be a piston type or a vane type.
- the present invention may be applied to other types of air conditioners.
- the present invention is applied to the motor-driven compressor 10 , which is mounted on a hybrid automobile and used in a vehicle air conditioner.
- the present invention may be applied to a motor-driven compressor that is used in a vehicle air conditioner mounted on an automobile driven only by gasoline or on an electric car.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
A motor-driven compressor includes a wiring connection portion provided in a connector-receiving portion and adapted for supplying electricity from an external power source to a motor drive circuit. The wiring connection portion includes first and second terminals, each of which has a first end-connection portion at an end and a second end-connection portion at another end. The second end-connection portion of the first terminal is electrically connected to the external power source, while the second end-connection portion of the second terminal is electrically connected to a conductive member. The wiring connection portion further includes a coupling member coupling the first and second terminals. The coupling member includes a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first and second metal plates.
Description
- The present invention relates to a motor-driven compressor including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing.
- Conventionally, motor-driven compressors including a compression portion, an electric motor, and a motor drive circuit, which are accommodated in a housing, have been known. The compression portion is driven through rotation of a rotary shaft, which is rotated by the electric motor. The electric motor is driven by the motor drive circuit. For example, refer to Japanese Laid-Open Patent Publication No. 2009-74517. The motor drive circuit is driven by receiving electricity from an external power source. A tubular connector-receiving portion, which protrudes outward from the outer surface of the housing, is formed on the housing. A wiring connection portion is accommodated in the connector-receiving portion to supply electricity from the external power source to the motor drive circuit. A substrate on which electric parts such as a switching element are mounted is located in the motor drive circuit. A conductive member extending into the connector-receiving portion and connecting the substrate with the wiring connection portion is mounted on the substrate.
- As shown in
FIG. 5 , a conventionalwiring connection portion 80 is located in a connector-receivingportion 92, which is formed on an external surface of a housing (not shown). Thewiring connection portion 80 is configured by awire 81, afirst terminal 82, which is provided at a first end of thewire 81 and electrically connected to anexternal power source 90, and asecond terminal 83, which is provided at a second end of thewire 81 and electrically connected to the motor drive circuit (not shown). Thewire 81 is formed by covering a lead portion 81 a, which is formed by binding up a plurality of leads with aninsulating coating 81 b. - A
swage portion 82 a (first end-connection portion) is formed at a first end of thefirst terminal 82, while aconnection portion 82 b (second end-connection portion), which is electrically connected to theexternal power source 90, is formed at a second end of thefirst terminal 82. Aswage portion 83 a (first end-connection portion) is formed at a first end of thesecond terminal 83, while aconnection portion 83 b (second end-connection portion), which is electrically connected to aconductive member 91, is formed at a second end of thesecond terminal 83. - At the opposite ends of the
wire 81, the lead portion 81 a is exposed from theinsulating coating 81 b. The first end of thewire 81 and thefirst terminal 82 are connected by swaging the lead portion 81 a exposed from theinsulating coating 81 b at the first end of thewire 81 by theswage portion 82 a of thefirst terminal 82. Also, the second end of thewire 81 and thesecond terminal 83 are connected to each other by swaging the lead portion 81 a exposed from theinsulating coating 81 b at the second end of thewire 81 by theswage portion 83 a of thesecond terminal 83. - There is a need for the length in the direction in which the connector-receiving
portion 92 extends to be shortened as required in accordance with the position and size of a space in the vehicle allotted for the motor-driven compressor. Therefore, it is also necessary to shorten the length of thewire 81 of thewiring connection portion 80 in accordance with the length of the connector-receivingportion 92. - If the swaging of the lead portion 81 a by the
swage portion 82 a of thefirst terminal 82 and the swaging of the lead portion 81 a by theswage portion 83 a of thesecond terminal 83 are performed using, for example, a swage tool while a machine such as a robot arm grasps thewire 81, the position of the swaging (connecting position) is shifted due to the flexibility of thewire 81, resulting in poor connecting operability. Therefore, generally, the swaging of the lead portion 81 a by theswage portion 82 a of thefirst terminal 82 and the swaging of the lead portion 81 a by theswage portion 83 a of thesecond terminal 83 are performed using the swage tool while an operator holds thewire 81 by hand. Accordingly, such manual operation by the operator allows the swage position to be adjusted finely, and the operability of the swaging is improved. - The shorter the length of the
wire 81 becomes, however, the shorter the distance between the operator's hand and the swage tool becomes. Accordingly, such a connecting operation cannot be easily performed, and thus it becomes difficult to shorten the length of the entirewiring connection portion 80. As a result, the length in the direction in which the connector-receivingportion 92 extends cannot be shortened as necessary in accordance with the position and size of an allotted space in the vehicle. - Further, for example, dimensional tolerance exists between the
connection portion 82 b of thefirst terminal 82 and theexternal power source 90 or between theconnection portion 83 b of thesecond terminal 83 and theconductive member 91 when connecting theconnection portion 82 b of thefirst terminal 82 with theexternal power source 90 or theconnection portion 83 b of thesecond terminal 83 with theconductive member 91. Accordingly, there is a need for the dimensional tolerance to be absorbed between theconnection portion 82 b of thefirst terminal 82 and theexternal power source 90 or between theconnection portion 83 b of thesecond terminal 83 and theconductive member 91 when connecting theconnection portion 82 b of thefirst terminal 82 with theexternal power source 90 or theconnection portion 83 b of thesecond terminal 83 with theconductive member 91. - An object of the present invention is to provide a motor-driven compressor that can shorten the entire length of a wiring connection portion compared with a wiring connection portion using no wires and absorb dimensional tolerance between a first terminal and an external power source or between a second terminal and a conductive member.
- To achieve the foregoing objective and in accordance with one aspect of the present invention, a motor-driven compressor is provided that includes a housing, a compression portion, an electric motor, a motor drive circuit, a connector-receiving portion, a wiring connection portion, and a conductive member. The compression portion, the electric motor, and the motor drive circuit are accommodated in the housing. The connector-receiving portion is provided on an outer surface of the housing. The wiring connection portion is provided in the connector-receiving portion and is adapted for supplying electricity from an external power source to the motor drive circuit. The conductive member is provided on the motor drive circuit and extends toward a space in the connector-receiving portion. The conductive member electrically connects the motor drive circuit and the wiring connection portion with each other. The wiring connection portion includes a first terminal, a second terminal and a coupling member for coupling the first terminal with the second terminal. The first terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof. The second end-connection portion is electrically connected to the external power source. The second terminal has a first end-connection portion at an end thereof and a second end-connection portion at the other end thereof. The second end-connection portion is electrically connected to the conductive member. The coupling member has a first metal plate connected to the first end-connection portion of the first terminal, a second metal plate connected to the first end-connection portion of the second terminal, and a wire mesh coupling the first metal plate and the second metal plate with each other.
- Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
- The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
-
FIG. 1A is a longitudinal cross-sectional view illustrating a motor-driven compressor according to one embodiment of the present invention; -
FIG. 1B is a partially enlarged longitudinal cross-sectional view illustrating the connector-receiving portion and its surrounding in the motor-driven compressor shown inFIG. 1A ; -
FIG. 2 is a cross-sectional view taken along line A-A ofFIG. 1B ; -
FIG. 3 is a view schematically showing the state where a first metal plate and a wire mesh are joined by resistance welding; -
FIG. 4 is a partially enlarged longitudinal cross-sectional view illustrating a connector-receiving portion and its surrounding according to another embodiment of the present invention; and -
FIG. 5 is a partially enlarged lateral cross-sectional view illustrating the connector-receiving portion of a conventional motor-driven compressor and its surroundings. - A motor-driven compressor according to one embodiment of the present invention will now be described with reference to
FIGS. 1-3 . The motor-driven compressor of the present embodiment is mounted on vehicle, which is a hybrid automobile, and employed for a vehicle air conditioner. - As shown in
FIG. 1A , a motor-drivencompressor 10 includes ahousing 11, which is made of metal (aluminum in the present embodiment). Thehousing 11 is formed by anintermediate housing member 12, adischarge housing member 13, and aninverter housing member 14. Theintermediate housing member 12 constitutes an intermediate part of thehousing 11 and is formed to be cylindrical with a closed end. Thedischarge housing member 13 is joined to the open end of theintermediate housing member 12. Theinverter housing member 14 is joined to the closed end of theintermediate housing member 12. Theintermediate housing member 12 and thedischarge housing member 13 are fastened to each other by blots B1 with a gasket G in between. Also, theintermediate housing member 12 and theinverter housing member 14 are fastened to each other by bolts B2. Anaccommodation space 17 is defined between theintermediate housing member 12 and theinverter housing member 14. - A
discharge chamber 15 is defined between theintermediate housing member 12 and thedischarge housing member 13. Adischarge port 16 is formed in an end face of thedischarge housing member 13. Thedischarge chamber 15 is connected to an external refrigerant circuit (not shown) via thedischarge port 16. A suction port (not shown) is formed at a position near theinverter housing 14 in theintermediate housing member 12. The space in theintermediate housing member 12 is connected to the external refrigerant circuit (not shown) via the suction port. - A
rotary shaft 23 is rotationally supported in theintermediate housing member 12. Theintermediate housing member 12 accommodates acompression portion 18 for compressing refrigerant and anelectric motor 19 for driving thecompression portion 18. Theaccommodation space 17 accommodates amotor drive circuit 30, which controls operation of theelectric motor 19. Therefore, thecompression portion 18, theelectric motor 19, and themotor drive circuit 30 are accommodated in thehousing 11 to be arranged in that order in the axial direction of therotary shaft 23. - The
compression portion 18 will now be described. - The
compression portion 18 includes a fixedscroll 20, which is fixed to theintermediate housing member 12, and anorbiting scroll 21, which is arranged to face the fixedscroll 20.Compression chambers 22, the volume of which is variable, are defined between the fixedscroll 20 and the orbitingscroll 21. Adischarge passage 28, which connects thecompression chambers 22 and thedischarge chamber 15 to each other, is formed in the fixedscroll 20. Adischarge valve 29 is located at an end face of the fixedscroll 20. - Next, the
electric motor 19 will be described. - The
electric motor 19 includes arotor 24, which rotates integrally with therotary shaft 23, and astator 25, which is fixed to the inner circumferential surface of theintermediate housing member 12 to surround therotor 24. Therotor 24 includes arotor core 24 a, which is fixed to and rotates integrally with therotary shaft 23, andpermanent magnets 24 b, which are provided on the circumferential surface of therotor core 24 a. Thestator 25 is substantially annular. Astator core 25 a is fixed to the inner circumferential surface of theintermediate housing member 12. Acoil 25 b is wound about each of teeth (not shown) of thestator core 25 a. - The
motor drive circuit 30 will now be described. - The
motor drive circuit 30 includes a flat plate-like circuit board 31 andelectrical components 32 a to 32 d mounted on thecircuit board 31. Thecircuit board 31 is located in theaccommodation space 17 and fixed to the inner surface of theinverter housing member 14. Thecircuit board 31 is arranged in theinverter housing member 14 to extend in a radial direction of therotary shaft 23. Themotor drive circuit 30 supplies electricity to thestator 25 of theelectric motor 19 based on commands from an ECU for controlling the air conditioner (not shown). Thecircuit board 31 has aconductive member 33, which protrudes from the outer circumferential surface of theinverter housing member 14 and extends toward a connector-receivingportion 42. - As shown in
FIG. 1B , the connector-receivingportion 42 is made of metal (aluminum in the present embodiment). The connector-receivingportion 42 includes a tubular firstextended portion 42 a and a tubular secondextended portion 42 b. The firstextended portion 42 a extends outward from the outer circumferential surface of theinverter housing member 14 in a radial direction of therotary shaft 23. The secondextended portion 42 b is continuous with the firstextended portion 42 a and extends in the axial direction of therotary shaft 23 and toward theelectric motor 19. The firstextended portion 42 a has a connection portion 421 a, which is connected to aconnection hole 141 formed in theinverter housing member 14. The connector-receivingportion 42 is connected to theinverter housing member 14 by joining theconnection hole 141 and connection portion 421 a to each other. - The length of the second
extended portion 42 b in a longitudinal direction is adjusted in accordance with the position and size of a space in a hybrid car allotted for the motor-drivencompressor 10 according to the present embodiment. Aconnector housing 44, which is made of plastic, is attached to anopening 421 b of the secondextended portion 42 b. Theconnector housing 44 is tubular and includes afitting portion 44 a, acontact portion 44 b, and amain body 44 c. Thefitting portion 44 a is fitted in theopening 421 b. Thecontact portion 44 b is continuous with thefitting portion 44 a and contacts anopen end 422 b of the secondextended portion 42 b. Themain body 44 c is continuous with thecontact portion 44 b and is connected to anexternal power source 40. -
Wiring connection portions 50 are accommodated in the secondextended portion 42 b and theconnector housing 44 to supply electricity from theexternal power source 40 to themotor drive circuit 30. Each of thewiring connection portions 50 includes afirst terminal 51 electrically connected to theexternal power source 40, asecond terminal 52 electrically connected to themotor drive circuit 30 and acoupling member 56 coupling thefirst terminal 51 with thesecond terminal 52. Thecoupling member 56 includes afirst metal plate 53, asecond metal plate 54, and awire mesh 55. Thewire mesh 55 is configured by a woven metallic braid. - A first end-
connection portion 51 a is formed at a first end of thefirst terminal 51, while a second end-connection portion 51 b, which is electrically connected to theexternal power source 40, is formed at a second end of thefirst terminal 51. Also, a first end-connection portion 52 a is formed at a first end of thesecond terminal 52, while a second end-connection portion 52 b, which is electrically connected to theconductive member 33, is formed at a second end of thesecond terminal 52. Thefirst metal plate 53 and thesecond metal plate 54 are elongated boards. The first end of thefirst metal plate 53 and the first end-connection portion 51 a of thefirst terminal 51 are joined to each other; that is, connected to each other by welding (in the present embodiment, resistance welding). The second end of thefirst metal plate 53 and the first end of thewire mesh 55 are joined to each other; that is connected to each other by welding (in the present embodiment, resistance welding). Also, the first end of thesecond metal plate 54 and the first end-connection portion 52 a of thesecond terminal 52 are joined to each other by welding (in the present embodiment, resistance welding). The second end of thesecond metal plate 54 and the second end of thewire mesh 55 are joined to each other by welding (in the present embodiment, resistance welding). Accordingly, thewire mesh 55 couples thefirst metal plate 53 and thesecond metal plate 54 with each other. Thefirst metal plate 53, thesecond metal plate 54 and thewire mesh 55 connect thefirst terminal 51 and thesecond terminal 52 with each other. The total length of thefirst metal plate 53, thesecond metal plate 54 and thewire mesh 55 added together is less than the length of the secondextended portion 42 b in the direction in which the secondextended portion 42 b extends. - As shown in
FIG. 2 , the motor-drivencompressor 10 according to the present embodiment is provided with twowiring connection portions 50, which are arranged side by side. Thesecond terminal 52, thesecond metal plate 54 and thewire mesh 55 of eachwiring connection portion 50 are located in aplastic cluster block 45 having shape of a rectangular box accommodated in the secondextended portion 42 b. The inside of thecluster block 45 is sectioned into a first accommodation section 45 a and a second accommodation section 45 b. The first accommodation section 45 a accommodates thesecond terminal 52, thesecond metal plate 54 and thewire mesh 55 of one of thewiring connection portions 50. The second accommodation section 45 b accommodates thesecond terminal 52, thesecond metal plate 54 and thewire mesh 55 of the other one of thewiring connection portions 50. Thecluster block 45 ensures insulation between i) thesecond terminal 52, thesecond metal plate 54 and thewire mesh 55 of one of thewiring connection portions 50 and ii) thesecond terminal 52, thesecond metal plate 54 and thewire mesh 55 of the otherwiring connection portion 50. Further, thecluster block 45 ensures insulation between each of thewiring connection portions 50 and the connector-receivingportion 42. Therefore, in the present embodiment, thecluster block 45 functions as an insulating member. - The
connector housing 44 accommodates thefirst terminals 51 and thefirst metal plates 53 of thewiring connection portions 50. A space in theconnector housing 44 is sectioned into afirst accommodation section 441 and asecond accommodation section 442. Thefirst accommodation section 441 accommodates thefirst terminal 51 and thefirst metal plate 53 of one of thewiring connection portions 50. Thesecond accommodation section 442 accommodates thefirst terminal 51 and thefirst metal plate 53 of the otherwiring connection portion 50. Theconnector housing 44 ensures insulation between i) thefirst terminal 51 and thefirst metal plate 53 of one of thewiring connection portions 50 and ii) thefirst terminal 51 and thefirst metal plate 53 of the other one of thewiring connection portions 50. Further, theconnector housing 44 ensures insulation between eachwiring connection portion 50 and the connector-receivingportion 42. Therefore, in the present embodiment, theconnector housing 44 functions as an insulating member. - The second end-
connection portions 52 b of thesecond terminals 52 and theconductive members 33 are electrically connected to each other, and the second end-connection portions 51 b of thefirst terminals 51 and theexternal power source 40 are electrically connected to each other, so that theexternal power source 40 and themotor drive circuit 30 are electrically connected to each other via thewiring connection portions 50 and theconductive members 33. - According to the above described motor-driven
compressor 10, electricity from theexternal power source 40 is supplied to themotor drive circuit 30 via thewiring connection portions 50 and theconductive members 33. When the electricity is supplied to theelectric motor 19 from themotor drive circuit 30, therotor 24 is rotated. Accordingly, therotary shaft 23 rotates. As therotary shaft 23 rotates, the volume of eachcompression chamber 22 between the orbitingscroll 21 and the fixedscroll 20 is reduced in thecompression portion 18. Then, refrigerant is drawn into theintermediate housing member 12 from the external refrigerant circuit via the suction port. The refrigerant taken into theintermediate housing member 12 is drawn into thecompression chambers 22 in theintermediate housing member 12 via asuction passage 27 provided in theintermediate housing member 12 to be compressed. The refrigerant that has been compressed in thecompression chambers 22 is discharged to thedischarge chamber 15 via thedischarge passage 28, while flexing thedischarge valve 29. The refrigerant discharged to thedischarge chamber 15 is conducted to the external refrigerant circuit via thedischarge port 16 and then returned to theintermediate housing member 12. - Operation of the present embodiment will now be described.
- For example, a case is considered where a machine such as a robot arm grasps the
first metal plate 53 or thesecond metal plate 54 to connect the first end of thefirst metal plate 53 to the first end-connection portion 51 a of thefirst terminal 51 or the first end of thesecond metal plate 54 is connected to the first end-connection portion 52 a of thesecond terminal 52. In this case, since thefirst metal plate 53 and the second metal plate are more rigid than a wire used in a conventional motor-driven compressor, the likelihood of shifting of the connecting position of thefirst metal plate 53 and thesecond metal plate 54 with respect to the first end-connection portion 51 a of thefirst terminal 51 or to the first end-connection portion 52 a of thesecond terminal 52 is reduced. As a result, it is not necessary for an operator to perform connecting operation while holding thefirst metal plate 53 or thesecond metal plate 54 by hand. Even if the entire length of thefirst metal plate 53 and thesecond metal plate 54 is shortened, the operation of connecting the first end of thefirst metal plate 53 with the first end-connection portion 51 a of thefirst terminal 51 or the first end of thesecond metal plate 54 with the first end-connection portion 52 a of thesecond terminal 52 is facilitated. - According to the above described motor-driven
compressor 10, the total length of thefirst metal plate 53, thesecond metal plate 54, and thewire mesh 55 is less than the length of the secondextended portion 42 b in the direction in which the secondextended portion 42 b extends. As a result, the length of the secondextended portion 42 b is shortened in accordance with the position and size of a space in a hybrid car allotted for the motor-drivencompressor 10 according to the present embodiment. This facilitates mounting of the motor-drivencompressor 10 on a hybrid car. - Further, the
wire mesh 55 is flexible. Accordingly, thewire mesh 55 flexes when connecting the second end-connection portion 51 b of thefirst terminal 51 with theexternal power source 40 or the second end-connection portion 52 b of thesecond terminal 52 with theconductive member 33. The flexing of thewire mesh 55 absorbs the dimensional tolerance between the second end-connection portion 51 b of thefirst terminal 51 and theexternal power source 40 or between the second end-connection portion 52 b of thesecond terminal 52 and theconductive member 33. - Next, a method for welding the
first metal plate 53 with thewire mesh 55 will be described. - As shown in
FIG. 3 , first, a part of thewire mesh 55 is brought into contact with a plane part 53 a of thefirst metal plate 53, and then thefirst metal plate 53 and thewire mesh 55 are sandwiched by a pair of welding electrodes T1 and T2. Specifically, the welding electrode T1 is arranged at a part opposite to a part in contact with thefirst metal plate 53 in thewire mesh 55, and the welding electrode T2 is arranged on a surface opposite to the plane part 53 a in thefirst metal plate 53. Then, current is supplied to flow between the welding electrodes T1 and T2. - The current from the welding electrode T1 flows into the welding electrode T2 through the
wire mesh 55 and thefirst metal plate 53. Thereby, resistance heat is generated in the contacting part between thewire mesh 55 and thefirst metal plate 53. With this resistance heat, the part of thewire mesh 55 in contact with thefirst metal plate 53 and the part of thefirst metal plate 53 in contact with thewire mesh 55 are respectively heated to be melted. As the melted parts are cooled, thefirst metal plate 53 and thewire mesh 55 are joined with each other. Since the method for welding thesecond metal plate 54 with thewire mesh 55 is the same as the method for welding thefirst metal plate 53 with thewire mesh 55, the detailed explanation thereof is omitted. - The above described embodiment has the following advantages.
- (1) Each of the
wiring connection portions 50 is formed by thefirst terminal 51, thesecond terminal 52 thefirst metal plate 53, thesecond metal plate 54, and thewire mesh 55. Accordingly, thefirst metal plate 53 and thesecond metal plate 54 are more rigid than the wire used in the conventional motor-driven compressor. Therefore, the likelihood of shifting of the connecting positions of thefirst metal plate 53 and thesecond metal plate 54 with respect to the first end-connection portion 51 a of thefirst terminal 51 or to the first end-connection portion 52 a of thesecond terminal 52 can be reduced. Accordingly, even if the lengths of thefirst metal plate 53 and thesecond metal plate 54 are shortened, the first end-connection portion 51 a of thefirst terminal 51 can be easily connected to thefirst metal plate 53 and the first end-connection portion 52 a of thesecond terminal 52 can be easily connected to thesecond metal plate 54. As a result, the lengths of thefirst metal plate 53 and thesecond metal plate 54 can be shortened as much as possible; that is, the length of the entirewiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used. - Further, the
wire mesh 55 is flexible. Accordingly, thewire mesh 55 flexes when connecting the second end-connection portion 51 b of thefirst terminal 51 with theexternal power source 40 or the second end-connection portion 52 b of thesecond terminal 52 with theconductive member 33. Thereby, the dimensional tolerance between the second end-connection portion 51 b of thefirst terminal 51 and theexternal power source 40 or between the second end-connection portion 52 b of thesecond terminal 52 and theconductive member 33 can be absorbed. As a result, the second end-connection portion 51 b of thefirst terminal 51 can be easily connected with theexternal power source 40 or the second end-connection portion 52 b of thesecond terminal 52 can be easily connected with theconductive member 33. - (2) The connector-receiving
portion 42 is made of metal, and thecluster block 45 and theconnector housing 44 are located between thewiring connection portions 50 and the connector-receivingportion 42. In order to ensure the strength of the connector-receivingportion 42, it is preferred to form the connector-receivingportion 42 with metal. Further, thecluster block 45 and theconnector housing 44 can ensure insulation between thewiring connection portions 50 and the connector-receivingportion 42. Since the positions of thewiring connection portions 50 are determined by thecluster block 45 and theconnector housing 44 in the connector-receivingportion 42, movement of thewiring connection portions 50 in the connector-receivingportion 42 due to vibration of the running hybrid car is reduced. - (3) The
cluster block 45 and theconnector housing 44 ensure insulation between one of thewiring connection portions 50 and the other one of thewiring connection portions 50. Accordingly, for example, thewiring connection portions 50 are prevented from contacting each other to be conductive with each other due to vibration of the running hybrid car. - (4) The
first metal plate 53 is provided between thewire mesh 55 and the first end-connection portion 51 a of thefirst terminal 51 and the plane part 53 a of thefirst metal plate 53 and a part of thewire mesh 55 are joined with each other according to resistance welding. Thereby, a current path (shown by an arrow E inFIG. 3 ) is formed by the welding electrode T1, thewire mesh 55, thefirst metal plate 53 and the welding electrode T2 in this order. Accordingly, thewire mesh 55 can be easily welded to thefirst metal plate 53. The same may be applied to the relationship between thesecond metal plate 54 and thewire mesh 55. Accordingly, theflexible wire mesh 55 can be easily provided at a part of eachwiring connection portion 50. - The above described embodiment may be modified as follows.
- The second
extended portion 42 b of the connector-receivingportion 42 is arranged to extend in the axial direction of therotary shaft 23. The invention is not limited to this, and as shown inFIG. 4 , for example, the secondextended portion 42 b of the connector-receivingportion 42 may be arranged to extend in the radial direction of therotary shaft 23. That is, the direction in which the connector-receiving portion extends may be changed as necessary in accordance with the configurations such as the position and size of a space in the vehicle allotted for the motor-driven compressor. - The connector-receiving
portion 42 may be simultaneously formed when theinverter housing member 14 is formed. - The connector-receiving
portion 42 may be made of plastic, for example. In this case, the insulating member for ensuring the insulation between thewiring connection portions 50 and the connector-receiving portion may be omitted. - The
first metal plate 53 and the first end-connection portion 51 a of thefirst terminal 51 may be connected to each other by swaging, and thesecond metal plate 54 and the first end-connection portion 52 a of thesecond terminal 52 may be connected to each other by swaging. Even in this case, when thefirst metal plate 53 is swaged to the first end-connection portion 51 a of thefirst terminal 51 and thesecond metal plate 54 is swaged to the first end-connection portion 52 a of thesecond terminal 52, the likelihood of shifting the swaging position, as in the case where a wire is used, can be reduced. Accordingly, it is possible to perform a swaging operation by the swage tool while a machine such as a robot arm grasps thefirst metal plate 53 or thesecond metal plate 54, for example. As a result, even if the lengths of thefirst metal plate 53 and thesecond metal plate 54 are shortened as much as possible, the swaging operation is not difficult. Accordingly, the length of the entirewiring connection portion 50 can be easily shortened in comparison to a wiring connection portion in which a wire is used. - The
wiring connection portions 50 may be entirely accommodated in thecluster block 45 to ensure insulation between thewiring connection portions 50 and the connector-receivingportion 42. Alternatively, theconnector housing 44 may accommodate thewiring connection portions 50 entirely to ensure insulation between thewiring connection portions 50 and the connector-receivingportion 42. - Although the
wire mesh 55 is located in thecluster block 45, thewire mesh 55 may be located in theconnector housing 44. - The two
wiring connection portions 50 are provided side by side. However, for example, threewiring connection portions 50 may be arranged side by side. That is, the number of thewiring connection portions 50, which are arranged side by side, is not particularly limited. - The
compression portion 18, theelectric motor 19, and themotor drive circuit 30 are accommodated in thehousing 11 to be arranged in that order in the axial direction of therotary shaft 23. The present invention is not limited to this. For example, theelectric motor 19, thecompression portion 18, and themotor drive circuit 30 may be accommodated in thehousing 11 to be arranged in that order in the axial direction of therotary shaft 23. - The
compression portion 18 is not limited to a type that is configured by the fixedscroll 20 and the orbitingscroll 21, but may be a piston type or a vane type. - Instead of a vehicle air conditioner, the present invention may be applied to other types of air conditioners.
- The present invention is applied to the motor-driven
compressor 10, which is mounted on a hybrid automobile and used in a vehicle air conditioner. However, instead of a hybrid automobile, the present invention may be applied to a motor-driven compressor that is used in a vehicle air conditioner mounted on an automobile driven only by gasoline or on an electric car. - Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims (4)
1. A motor-driven compressor, comprising:
a housing;
a compression portion, an electric motor, and a motor drive circuit, which are accommodated in the housing;
a connector-receiving portion provided on an outer surface of the housing; and
a wiring connection portion provided in the connector-receiving portion, the wiring connection portion being adapted for supplying electricity from an external power source to the motor drive circuit; and
a conductive member provided in the motor drive circuit, the conductive member extending into a space in the connector-receiving portion and electrically connecting the motor drive circuit and the wiring connection portion with each other,
wherein the wiring connection portion includes
a first terminal having a first end-connection portion at an end thereof and a second end-connection portion at another end thereof, the second end-connection portion being electrically connected to the external power source,
a second terminal having a first end-connection portion at an end thereof and a second end-connection portion at another end thereof, the second end-connection portion being electrically connected to the conductive member, and
a coupling member, which couples the first terminal with the second terminal, and
wherein the coupling member includes
a first metal plate connected to the first end-connection portion of the first terminal,
a second metal plate connected to the first end-connection portion of the second terminal, and
a wire mesh connecting the first metal plate and the second metal plate with each other.
2. The motor-driven compressor according to claim 1 , wherein
the connector-receiving portion is formed of metal, and
the motor-driven compressor further comprises an insulating member located between the wiring connection portion and the connector-receiving portion, which insulating member determines a position of the wiring connection portion in the connector-receiving portion.
3. The motor-driven compressor according to claim 1 , wherein the housing accommodates a rotary shaft having an axial direction, and wherein the connector-receiving portion extends in the axial direction of the rotary shaft and toward the electric motor.
4. The motor-driven compressor according to claim 3 , wherein the compression portion, the electric motor, and the motor drive circuit are accommodated in the housing to be arranged in that order in the axial direction of the rotary shaft.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-021093 | 2012-02-02 | ||
JP2012021093A JP5720593B2 (en) | 2012-02-02 | 2012-02-02 | Electric compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130202462A1 true US20130202462A1 (en) | 2013-08-08 |
Family
ID=47664160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/751,655 Abandoned US20130202462A1 (en) | 2012-02-02 | 2013-01-28 | Motor-driven compressor |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130202462A1 (en) |
EP (1) | EP2623787B1 (en) |
JP (1) | JP5720593B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109072894A (en) * | 2016-03-24 | 2018-12-21 | 三电汽车部件株式会社 | Inverter-integrated type electric compressor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018014166A (en) * | 2016-07-19 | 2018-01-25 | 住友電装株式会社 | connector |
JP6927118B2 (en) * | 2018-03-29 | 2021-08-25 | 株式会社豊田自動織機 | In-vehicle electric compressor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3160460A (en) * | 1962-01-17 | 1964-12-08 | Fusite Corp | Terminal assembly having conductor pins and connector block |
US4966559A (en) * | 1989-10-12 | 1990-10-30 | Tecumseh Products Company | Internal terminal block for compressor hermetic terminal |
US5488768A (en) * | 1993-09-24 | 1996-02-06 | Ventritex, Inc. | Method of forming a defibrillation electrode connection |
US6321563B1 (en) * | 1999-04-07 | 2001-11-27 | Sanden Corporation | Motor-driven compressor |
US6336827B1 (en) * | 1998-08-20 | 2002-01-08 | Fujitsu Takamisawa Component Ltd. | Balanced-transmission cable-and-connector unit |
JP2004027984A (en) * | 2002-06-26 | 2004-01-29 | Denso Corp | Hermetic electric compressor |
US8007284B2 (en) * | 2008-04-01 | 2011-08-30 | Bridgeport Fittings, Inc. | Moisture proof telescoping coupler assembly for electric metal tubes with enhanced grounding, sealing, and continuity |
US8303270B2 (en) * | 2007-12-18 | 2012-11-06 | Kabushiki Kaisha Toyota Jidoshokki | Motor-driven compressor |
US8303271B2 (en) * | 2007-09-25 | 2012-11-06 | Sanden Corporation | Electric compressor integral with drive circuit |
US9112397B2 (en) * | 2009-11-06 | 2015-08-18 | Yazaki Corporation | Inverter terminal board installed in motor case |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4964788A (en) * | 1990-03-21 | 1990-10-23 | Tecumseh Products Company | Hermetic terminal with terminal pin assemblies having fusible links and motor compressor unit including same |
JP2003097436A (en) * | 2001-09-25 | 2003-04-03 | Denso Corp | Electric compressor |
JP4151510B2 (en) * | 2003-08-07 | 2008-09-17 | 株式会社豊田自動織機 | Shielded cable, method for manufacturing the shielded cable, and compressor unit using the shielded cable |
JP2005327557A (en) * | 2004-05-13 | 2005-11-24 | Hitachi Cable Ltd | Power connection means for case |
JP2006283719A (en) * | 2005-04-04 | 2006-10-19 | Sanden Corp | Motor-driven compressor |
JP4799180B2 (en) * | 2006-01-05 | 2011-10-26 | サンデン株式会社 | Electric compressor |
JP5426202B2 (en) * | 2009-03-25 | 2014-02-26 | 矢崎総業株式会社 | connector |
JP4998527B2 (en) * | 2009-09-08 | 2012-08-15 | 株式会社豊田自動織機 | Electric compressor |
JP5381599B2 (en) * | 2009-10-12 | 2014-01-08 | 株式会社デンソー | Compressor |
JP2011144788A (en) * | 2010-01-18 | 2011-07-28 | Toyota Industries Corp | Motor-driven compressor |
-
2012
- 2012-02-02 JP JP2012021093A patent/JP5720593B2/en not_active Expired - Fee Related
-
2013
- 2013-01-28 US US13/751,655 patent/US20130202462A1/en not_active Abandoned
- 2013-01-29 EP EP13152991.9A patent/EP2623787B1/en not_active Not-in-force
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3160460A (en) * | 1962-01-17 | 1964-12-08 | Fusite Corp | Terminal assembly having conductor pins and connector block |
US4966559A (en) * | 1989-10-12 | 1990-10-30 | Tecumseh Products Company | Internal terminal block for compressor hermetic terminal |
US5488768A (en) * | 1993-09-24 | 1996-02-06 | Ventritex, Inc. | Method of forming a defibrillation electrode connection |
US6336827B1 (en) * | 1998-08-20 | 2002-01-08 | Fujitsu Takamisawa Component Ltd. | Balanced-transmission cable-and-connector unit |
US6321563B1 (en) * | 1999-04-07 | 2001-11-27 | Sanden Corporation | Motor-driven compressor |
JP2004027984A (en) * | 2002-06-26 | 2004-01-29 | Denso Corp | Hermetic electric compressor |
US8303271B2 (en) * | 2007-09-25 | 2012-11-06 | Sanden Corporation | Electric compressor integral with drive circuit |
US8303270B2 (en) * | 2007-12-18 | 2012-11-06 | Kabushiki Kaisha Toyota Jidoshokki | Motor-driven compressor |
US8007284B2 (en) * | 2008-04-01 | 2011-08-30 | Bridgeport Fittings, Inc. | Moisture proof telescoping coupler assembly for electric metal tubes with enhanced grounding, sealing, and continuity |
US9112397B2 (en) * | 2009-11-06 | 2015-08-18 | Yazaki Corporation | Inverter terminal board installed in motor case |
Non-Patent Citations (1)
Title |
---|
Machine Translation of Japanese Document JP2004-27984A, HARAKAWA YOSHIAKI et al., "HERMETIC ELECTRIC COMPRESSOR", 01-2004, Japan * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109072894A (en) * | 2016-03-24 | 2018-12-21 | 三电汽车部件株式会社 | Inverter-integrated type electric compressor |
Also Published As
Publication number | Publication date |
---|---|
JP2013160091A (en) | 2013-08-19 |
EP2623787B1 (en) | 2014-07-16 |
EP2623787A1 (en) | 2013-08-07 |
JP5720593B2 (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8618703B2 (en) | Motor driven compressor | |
JP6650524B2 (en) | Compressor | |
KR101442101B1 (en) | Motor-driven compressor | |
JP5138551B2 (en) | Inverter-integrated electric compressor | |
US20110211981A1 (en) | Inverter-Integrated Electric Compressor | |
JP5416388B2 (en) | Inverter-integrated electric compressor | |
US20130004345A1 (en) | Motor-driven compressor | |
CN113287233B (en) | Device for electrical connection of plug connection | |
US11670983B2 (en) | Motor-driven compressor | |
US20100141066A1 (en) | Inverter connection terminal assembly for electric compressor | |
US20130202461A1 (en) | Motor-driven compressor | |
US6737773B2 (en) | Wiring structure of motor in hybrid compressor | |
KR20110135221A (en) | Stator of electromotive compressor and assembling method of the same | |
EP2623787B1 (en) | Motor-driven compressor | |
EP2623786B1 (en) | Motor-driven compressor | |
US7049518B2 (en) | Shielded cable, process for assembling the same and compressor unit having the same | |
WO2022202803A1 (en) | Electric compressor | |
CN111756189B (en) | Electric compressor | |
CN107787544A (en) | For the device of the electrical connection between electric notor and the power subsystem of the motor, the compressor of motor vehicles is particularly used for | |
JP2004176682A (en) | Electric compressor for coolant | |
JP2006307646A (en) | Hermetic scroll compressor | |
KR20240097550A (en) | Terminal unit and electric compressor including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENAMI, SHINGO;REEL/FRAME:029709/0975 Effective date: 20130115 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |