US20130189376A1 - Dialysis precursor composition - Google Patents
Dialysis precursor composition Download PDFInfo
- Publication number
- US20130189376A1 US20130189376A1 US13/805,474 US201113805474A US2013189376A1 US 20130189376 A1 US20130189376 A1 US 20130189376A1 US 201113805474 A US201113805474 A US 201113805474A US 2013189376 A1 US2013189376 A1 US 2013189376A1
- Authority
- US
- United States
- Prior art keywords
- dialysis
- precursor composition
- acid
- solution
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/14—Alkali metal chlorides; Alkaline earth metal chlorides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/191—Carboxylic acids, e.g. valproic acid having two or more hydroxy groups, e.g. gluconic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/194—Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7004—Monosaccharides having only carbon, hydrogen and oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
- A61K33/10—Carbonates; Bicarbonates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0029—Parenteral nutrition; Parenteral nutrition compositions as drug carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0087—Galenical forms not covered by A61K9/02 - A61K9/7023
- A61K9/0095—Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1654—Dialysates therefor
- A61M1/1656—Apparatus for preparing dialysates
- A61M1/1666—Apparatus for preparing dialysates by dissolving solids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/28—Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation
- A61M1/287—Dialysates therefor
Definitions
- the present invention concerns a dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for further mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution.
- the present invention further concerns a method of providing a dialysis acid concentrate solution for dilution with water, a sodium containing concentrate, and a bicarbonate containing concentrate to produce a ready-for-use dialysis solution.
- Dialysis is a well established treatment technique for uremia. Essentially, dialysis artificially replaces the functions of the kidney. There are two distinct types of dialysis, hemodialysis and peritoneal dialysis.
- Hemodialysis involves withdrawing blood from the body and cleaning it in an extracorporeal blood circuit and then returning the cleansed blood to the body.
- the extracorporeal blood circuit includes a dialyzer which comprises a semipermeable membrane.
- the semipermeable membrane has a blood side and a dialysate side, and waste substances and excess fluid is removed from the blood passing on the blood side of the semipermeable membrane through the semipermeable membrane over to the dialysate side of the semipermeable membrane.
- Hemodialysis may be performed in three different treatment modes, hemodialysis, hemofiltration, and hemodiafiltration. Common to all three treatment modes is that the patient is connected by a blood line to the dialysis machine, which continuously withdraws blood from the patient. The blood is then brought in contact with the blood side of the semipermeable membrane within the dialyzer in a flowing manner.
- dialysis solution In hemodialysis, an aqueous solution called dialysis solution is brought in contact with the opposite membrane surface, the dialysate side, in a flowing manner. Waste substances (toxins) and solutes are removed/controlled mainly by diffusion. Excess fluid is removed by applying transmembrane pressure over the semipermeable membrane. Solutes and nutrients may diffuse in the opposite direction from the dialysis solution, through the semipermeable membrane and into the blood.
- Hemodiafiltration is a combination of hemodialysis and hemofiltration, a treatment mode that combines transport of waste substances and excess fluids through the semipermeable wall by both diffusion and convection.
- a dialysis solution is brought in contact with the dialysate side of the semipermeable membrane in a continuously flowing manner, and a dialysis solution (also named infusion fluid or replacement fluid) is used for infusion into the extracorporeal blood circuit in pre-infusion mode, post-infusion mode or both.
- hemodialysis is performed for 3-5 hours, three times per week. It is usually performed at a dialysis centre, although home dialysis is also possible.
- home dialysis patients are free to perform dialysis more frequently and also in more gentle treatments with longer treatment times, i.e. 4-8 hours per treatment and 5-7 treatments per week.
- the dose and treatment times may be adjusted due to different demand of the patients.
- a continuous treatment throughout a major portion of the entire day for up to several weeks, a continuous renal replacement therapy (CRRT), or intermittent renal replacement therapy (IRRT) is the indicated treatment depending on the patients status.
- CRRT continuous renal replacement therapy
- IRRT intermittent renal replacement therapy
- the removal of waste substances and excess fluid from the patient is effected by any or a combination of the treatment modes hemodialysis, hemofiltration and hemodiafiltration.
- a hypertonic dialysis solution is infused into the peritoneal cavity of the patient.
- solutes and water is exchanged in the capillary vessels of a patient's peritoneal membrane with said hypertonic dialysis solution.
- the principle of this method is diffusion of solutes transferred according to the concentration gradient and water migration due to the osmotic differences over the peritoneal membrane.
- the dialysis solutions used in all the above dialysis techniques contain mainly electrolytes like sodium, magnesium, calcium, potassium, an acid/base buffer system and optionally glucose or a glucose-like compound. All the components in dialysis solutions are selected to control the levels of electrolytes and the acid-base equilibrium within the blood and to remove waste materials from the blood.
- Dialysis solutions are today prepared from different types of concentrates. It may be liquid concentrates of different degree of concentration, where the acid/electrolyte part is separated from the buffer part. It may be provided in highly concentrated volumes of 1-8 L in bags for bedside use, or in more diluted concentrated volumes of 5-20 L in canisters, which still are for bedside use. Concentrates may also be prepared in central tanks in volumes of 300-1000 L.
- bicarbonate When using bicarbonate as a buffer component in the dialysis solution, bicarbonate is often provided as a dry concentrate for on-line-preparation of saturated bicarbonate containing concentrate.
- the saturated bicarbonate containing concentrate is thereafter mixed with an acid/electrolyte concentrate and further diluted with purified water to produce the on-line prepared dialysis solution.
- Dialysis solutions have improved in quality over the years, and the availability of concentrated precursor compositions for further dilution and mixing with other components into a ready-for-use dialysis solution have decreased the costs and improved the environmental issues.
- magnesium chloride and calcium chloride mixed with bicarbonate will provide areas were the solubility product of calcium carbonate and/or magnesium carbonate will be exceeded, which would cause precipitation thereof when water is added during preparation of a concentrate or a dialysis solution.
- One object of the present invention is to provide a dialysis precursor composition which show further improved stability, limited chemical degradation and increased shelf life.
- Another object of the present invention is to provide a dialysis precursor composition which give rise to further cost savings and further improved environmental benefits.
- the present invention concerns a dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for further mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution.
- Said dialysis acid precursor composition consists of powder components comprising glucose, at least one dry acid and a at least one magnesium salt, and optionally potassium salt, and calcium salt.
- said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition.
- said dialysis acid precursor composition is sealed in a moisture-resistant container with a water vapor transmission rate less than 0.3 g/m 2 /d at 38° C./90% RH.
- the present invention further concerns a method of providing a dialysis acid concentrate solution for dilution with water, a sodium containing concentrate, and a bicarbonate containing concentrate to produce a ready-for-use dialysis solution.
- this method comprises:
- a dialysis precursor composition comprising glucose, at least one dry acid, and at least one magnesium salt, optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition,
- the present invention further concerns use of said dialysis acid precursor composition for preparing a dialysis acid concentrate solution.
- the present invention concerns use of said dialysis acid precursor composition for preparing a dialysis solution.
- the container material used for storing the composition should be moisture-resistant and not allow passage of an amount equal to or above the amount which equals the crystalline water normally attached with the magnesium salt. This is achieved with a container material having a water vapor transmission rate less than 0.3 g/m 2 /d at 38° C./90% RH.
- said container material has a water vapor transmission rate less than 0.2 g/m 2 /d at 38° C./90% RH.
- said container material has a water vapor transmission rate between 0.05-0.3 g/m 2 /d at 38° C./90% RH.
- said container material has a water vapor transmission rate between 0.05-0.2 g/m 2 /d at 38° C./90% RH.
- said container material has a water vapor transmission rate between 0.1-0.3 g/m 2 /d at 38° C./90% RH.
- said container material has a water vapor transmission rate between 0.1-0.2 g/m 2 /d at 38° C./90% RH.
- said dialysis acid precursor composition consists of powder components comprising glucose, at least one dry acid and at least one magnesium salt, and optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition within the moisture-resistant container.
- said at least one dry acid is selected from the group comprising of lactic acid, citric acid, gluconic acid, glucono- ⁇ -lactone, N-acetyl cystein and ⁇ -lipoic acid.
- a combination of dry acids may be used within said dialysis acid precursor composition, and by providing a combination of different dry acids, other functions and effects, apart from said acidic function, may be provided, like for instance antioxidative effects (as with gluconic acid, glucono- ⁇ -lactone, N-acetyl cystein and ⁇ -lipoic acid), anticoagulation effects (as with citric acid) and so forth.
- said at least one magnesium salt in said dialysis acid precursor composition is selected from the group comprising of anhydrous magnesium chloride, magnesium gluconate, magnesium citrate (trimagnesium dicitrate), magnesium lactate, and magnesium ⁇ -ketoglutarate. Also here a combination of different magnesium salts may be used in order to tailor specific add-on features, like antioxidative effects from magnesium gluconate, or anticoagulation effects from magnesium citrate, and so forth.
- said at least one magnesium salt in said dialysis acid precursor composition is selected from the group comprising of magnesium gluconate, magnesium citrate and magnesium lactate.
- said calcium salt in said dialysis acid precursor composition is at least one chosen from the group comprising of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, calcium gluconate, calcium citrate, calcium lactate, and calcium ⁇ -ketoglutarate.
- a combination of different calcium salts may be used.
- said calcium salt is at least one chosen from the group comprising of anhydrous calcium chloride, calcium gluconate, calcium citrate and calcium lactate.
- said calcium salt is at least one chosen from the group comprising of calcium gluconate, calcium citrate and calcium lactate.
- said dialysis precursor composition is provided in a specific amount and is configured to be mixed with a prescribed volume of water within said moisture-resistant container to provide a dialysis acid concentrate solution.
- said moisture-resistant container is configured to receive and dispense solutions up to said prescribed volume.
- said prescribed volume may be within the range of from 0.3 to 8 L.
- said prescribed volume may be within the range of from 5-20 L.
- said prescribed volume may be within the range of 300-1000 L.
- said dialysis acid concentrate solution is configured and provided to be diluted within the range of 1:30 to 1:200 with water, a sodium containing concentrate, and a bicarbonate containing concentrate.
- the present invention further concerns a method of providing a dialysis acid concentrate solution.
- Said dialysis acid concentrate solution is further intended to be mixed with additional water, a sodium containing concentrate, and a bicarbonate containing concentrate to provide a ready-for-use dialysis solution.
- such a method comprises (a) providing a dialysis precursor composition comprising glucose, at least one dry acid, and at least one magnesium salt, optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition, (b) providing said dialysis precursor composition in a sealed, moisture-resistant container with a water vapor transmission rate less than 0.3 g/m 2 /d at 38° C./90% RH, and (c) adding a prescribed volume of water to said dialysis precursor composition in said container and mixing thereof, thereby providing said dialysis acid concentrate as a solution.
- Glucose is provided in such a quantity in said moisture-resistant container that a concentration of 30-400 g/L is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- Said dry acid is provided in such a quantity in said moisture-resistant container that a concentration within the range of 60-800 mEq/L H + (acid) is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- said at least one magnesium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 7.5-150 mM magnesium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- said calcium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 30-500 mM calcium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- potassium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 0-800 mM potassium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- said dry dialysis acid precursor composition comprises the different components in such an amount that when said dry dialysis acid precursor composition has been dissolved and mixed with water, a sodium concentrate, and a bicarbonate concentrate it provides a ready-for-use dialysis solution comprising from about 130-150 mM of sodium ions, from about 0 to 4 mM of potassium ions, from about 1-2.5 mM of calcium ions, from about 0.25 to 1 mM of magnesium ions, from about 0 to 2% (g/l) glucose from about 85 to 134 mM chloride ions, from about 2 to 4 mEq/L acid, and from about 20 to 40 mEq/L bicarbonate ions.
- the present invention provides a prepackaged container with a dry dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution, wherein said dialysis acid precursor composition consist of powder components comprising glucose, at least one dry acid and at least one magnesium salt.
- said dialysis acid precursor composition further comprises potassium salts, and calcium salts.
- said glucose and said at least one magnesium salt is present as anhydrous component in said dialysis acid precursor composition and said dialysis acid precursor composition is sealed in a moisture-proof container with a water vapor transmission rate less than 0.3 g/m 2 /d at 38° C./90% RH.
- anhydrous magnesium chloride powder in a dry dialysis acid precursor composition, the anhydrous component will act as desiccants if any water would be transported into the bag.
- the tables show the content of dialysis acid precursor compositions for dilution 1:35.
- the prescribed volume of each dialysis acid concentrate solution (DACS in tables below) is 5.714 L, and the final volume of each ready-for-use dialysis solution (RFUDS in tables below) is 200 L.
- the tables show the content of a dry acid precursor composition for dilution 1:200.
- the prescribed volume of each dialysis acid concentrate solution (DACS in tables below) is 1 L
- the final volume of each ready-for-use dialysis solution (RFUDS in tables below) is 200 L.
- Tests has been performed to study the stability of different dry powder compositions, both according to embodiments of the present invention as well as comparisons. Parameters like caking, lumping and discoloration were evaluated.
- Plastic films was welded into bags with 1 compartment.
- the amount of powder components of potassium chloride, anhydrous magnesium chloride, calcium chloride dihydrate, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into the plastic bags, with a water vapor transmission rate of 0.11 g/m2/d at 38° C./90% RH.
- the bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- the amount of powder components of potassium chloride, anhydrous magnesium chloride, anhydrous calcium chloride, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into plastic bags, with a water vapor transmission rate of 0.11 g/m2/d at 38° C./90% RH.
- the bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- the amount of powder components of potassium chloride, anhydrous magnesium chloride, calcium chloride dihydrate, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into plastic bags, with a water vapor transmission rate of 2.7 g/m2/d at 38° C./90% RH.
- the bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- compositions 1 and 2 have proven to stay stable for at least 6 months, while comparison composition 3 failed due to formation of brown lumps after less than 1 month.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Nutrition Science (AREA)
- General Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- External Artificial Organs (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention concerns a dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution. Said dialysis acid precursor composition consists of powder components comprising glucose, at least one dry acid and at least one magnesium salt, and optionally potassium salt, and calcium salt. According to the invention said glucose and said at least one magnesium salt, are present as anhydrous components in said dialysis acid precursor composition.
Description
- The present invention concerns a dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for further mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution. The present invention further concerns a method of providing a dialysis acid concentrate solution for dilution with water, a sodium containing concentrate, and a bicarbonate containing concentrate to produce a ready-for-use dialysis solution.
- When a person's kidney does not function properly uremia is developed. Dialysis is a well established treatment technique for uremia. Essentially, dialysis artificially replaces the functions of the kidney. There are two distinct types of dialysis, hemodialysis and peritoneal dialysis.
- Hemodialysis involves withdrawing blood from the body and cleaning it in an extracorporeal blood circuit and then returning the cleansed blood to the body. The extracorporeal blood circuit includes a dialyzer which comprises a semipermeable membrane. The semipermeable membrane has a blood side and a dialysate side, and waste substances and excess fluid is removed from the blood passing on the blood side of the semipermeable membrane through the semipermeable membrane over to the dialysate side of the semipermeable membrane.
- Hemodialysis may be performed in three different treatment modes, hemodialysis, hemofiltration, and hemodiafiltration. Common to all three treatment modes is that the patient is connected by a blood line to the dialysis machine, which continuously withdraws blood from the patient. The blood is then brought in contact with the blood side of the semipermeable membrane within the dialyzer in a flowing manner.
- In hemodialysis, an aqueous solution called dialysis solution is brought in contact with the opposite membrane surface, the dialysate side, in a flowing manner. Waste substances (toxins) and solutes are removed/controlled mainly by diffusion. Excess fluid is removed by applying transmembrane pressure over the semipermeable membrane. Solutes and nutrients may diffuse in the opposite direction from the dialysis solution, through the semipermeable membrane and into the blood.
- In hemofiltration, no dialysis solution is brought in contact with the dialysate side of the semipermeable membrane. Instead only a transmembrane pressure is applied over the semipermeable membrane thereby removing fluid and waste substances from the blood through the semipermable membrane wall and into the dialysate side thereof (convective flow). Fluid and waste substances are then passed to drain. To replace some of the removed fluid, a correctly balanced electrolyte/buffer dialysis solution (also named infusion fluid or replacement fluid) is infused into the extracorporeal blood circuit. This infusion may be done either pre the dialyzer (pre-infusion mode) or post the dialyzer (post-infusion mode) or both.
- Hemodiafiltration is a combination of hemodialysis and hemofiltration, a treatment mode that combines transport of waste substances and excess fluids through the semipermeable wall by both diffusion and convection. Thus, here a dialysis solution is brought in contact with the dialysate side of the semipermeable membrane in a continuously flowing manner, and a dialysis solution (also named infusion fluid or replacement fluid) is used for infusion into the extracorporeal blood circuit in pre-infusion mode, post-infusion mode or both.
- For many patients, hemodialysis is performed for 3-5 hours, three times per week. It is usually performed at a dialysis centre, although home dialysis is also possible. When home dialysis is performed patients are free to perform dialysis more frequently and also in more gentle treatments with longer treatment times, i.e. 4-8 hours per treatment and 5-7 treatments per week. The dose and treatment times may be adjusted due to different demand of the patients.
- In the case of patients suffering from acute renal insufficiency, a continuous treatment, throughout a major portion of the entire day for up to several weeks, a continuous renal replacement therapy (CRRT), or intermittent renal replacement therapy (IRRT) is the indicated treatment depending on the patients status. Also here the removal of waste substances and excess fluid from the patient is effected by any or a combination of the treatment modes hemodialysis, hemofiltration and hemodiafiltration.
- In a peritoneal dialysis treatment a hypertonic dialysis solution is infused into the peritoneal cavity of the patient. In this treatment solutes and water is exchanged in the capillary vessels of a patient's peritoneal membrane with said hypertonic dialysis solution. The principle of this method is diffusion of solutes transferred according to the concentration gradient and water migration due to the osmotic differences over the peritoneal membrane.
- The dialysis solutions used in all the above dialysis techniques contain mainly electrolytes like sodium, magnesium, calcium, potassium, an acid/base buffer system and optionally glucose or a glucose-like compound. All the components in dialysis solutions are selected to control the levels of electrolytes and the acid-base equilibrium within the blood and to remove waste materials from the blood.
- Dialysis solutions are today prepared from different types of concentrates. It may be liquid concentrates of different degree of concentration, where the acid/electrolyte part is separated from the buffer part. It may be provided in highly concentrated volumes of 1-8 L in bags for bedside use, or in more diluted concentrated volumes of 5-20 L in canisters, which still are for bedside use. Concentrates may also be prepared in central tanks in volumes of 300-1000 L.
- When using bicarbonate as a buffer component in the dialysis solution, bicarbonate is often provided as a dry concentrate for on-line-preparation of saturated bicarbonate containing concentrate. The saturated bicarbonate containing concentrate is thereafter mixed with an acid/electrolyte concentrate and further diluted with purified water to produce the on-line prepared dialysis solution.
- Dialysis solutions have improved in quality over the years, and the availability of concentrated precursor compositions for further dilution and mixing with other components into a ready-for-use dialysis solution have decreased the costs and improved the environmental issues.
- One way to further limit the costs and improve the environmental issues would be to provide a dialysis precursor composition in which all component are dry. However, having all components as dry components adds new problems.
- Firstly, dry acid and bicarbonate powder are not compatible. When small amounts of humidity is present, bicarbonate will break down to carbon dioxide.
- Secondly, magnesium chloride and calcium chloride mixed with bicarbonate will provide areas were the solubility product of calcium carbonate and/or magnesium carbonate will be exceeded, which would cause precipitation thereof when water is added during preparation of a concentrate or a dialysis solution.
- Thirdly, even if bicarbonate is excluded to a separate cartridge, still problems would be experienced. E.g. caking and lump formation of the different components will render the dissolution thereof. more difficult or even impossible when preparing the ready-for-use dialysis solution.
- Fourthly, if glucose is present, a discoloration of the precursor, and later on, the ready-for-use dialysis solution would arise as a result of glucose degradation products, which should be avoided due to toxicity and limits set by authority regulations, e.g. European Pharmacopeia.
- All the problems above are due to the presence of humidity within the dry precursor compositions.
- In prior art this has been solved by preparing granulates of the different components and creating different layers of the different components within each granulate, like disclosed in EP0567452 or EP1714657.
- However, this still may give rise to interactions between the different layers, and it is also a time-consuming matter of providing a completely and properly dissolved granulate for the preparation of the ready-for-use dialysis solution. Further, it is difficult to ensure proper composition and concentration of the different components both within the granulate and within the prepared ready-for-use dialysis solution.
- One object of the present invention is to provide a dialysis precursor composition which show further improved stability, limited chemical degradation and increased shelf life.
- Another object of the present invention is to provide a dialysis precursor composition which give rise to further cost savings and further improved environmental benefits.
- The present invention concerns a dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for further mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution. Said dialysis acid precursor composition consists of powder components comprising glucose, at least one dry acid and a at least one magnesium salt, and optionally potassium salt, and calcium salt. According to the invention said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition. Further, said dialysis acid precursor composition is sealed in a moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
- The present invention further concerns a method of providing a dialysis acid concentrate solution for dilution with water, a sodium containing concentrate, and a bicarbonate containing concentrate to produce a ready-for-use dialysis solution. According to the invention this method comprises:
- (a) providing a dialysis precursor composition comprising glucose, at least one dry acid, and at least one magnesium salt, optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition,
- (b) providing said dialysis precursor composition in a sealed, moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH, and
- (c) adding a prescribed volume of water to said dialysis precursor composition in said container and mixing thereof, thereby providing said dialysis acid concentrate as a solution.
- The present invention further concerns use of said dialysis acid precursor composition for preparing a dialysis acid concentrate solution.
- Finally, the present invention concerns use of said dialysis acid precursor composition for preparing a dialysis solution.
- Other embodiments of the present invention is evident from the description below and the dependent claims.
- A wide variety of different combinations and partitions of dry powder components of normal dialysis solutions like potassium chloride, magnesium chloride, calcium chloride, glucose, sodium chloride, sodium bicarbonate, dry acids like citric acid, glucono-δ-lactone, etc. were prepared and put in a forced stability study. Matters like caking, lump formation, discoloration and dissolution rate were investigated after 1 month, 4 months and 10 months storage time.
- It was identified that, as expected earlier, sodium bicarbonate needs to be separated from the other components due to carbon dioxide formation, calcium carbonate precipitation, and magnesium carbonate precipitation. However, when combining the remaining components of a normal dialysis solution, the crystalline water attached to glucose and magnesium chloride caused problems with caking and lump formation within the powder compositions and discoloration of glucose. By replacing glucose with anhydrous glucose and by replacing magnesium chloride hexahydrate with anhydrous magnesium chloride, or another magnesium salt not containing any crystalline water, the powder composition remained stable, free flowing and no discoloration evolved. Thus, in order to make sure that a stable composition is provided the container material used for storing the composition should be moisture-resistant and not allow passage of an amount equal to or above the amount which equals the crystalline water normally attached with the magnesium salt. This is achieved with a container material having a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
- In another embodiment said container material has a water vapor transmission rate less than 0.2 g/m2/d at 38° C./90% RH.
- In another embodiment said container material has a water vapor transmission rate between 0.05-0.3 g/m2/d at 38° C./90% RH.
- In even another embodiment said container material has a water vapor transmission rate between 0.05-0.2 g/m2/d at 38° C./90% RH.
- In another embodiment said container material has a water vapor transmission rate between 0.1-0.3 g/m2/d at 38° C./90% RH.
- In even another embodiment said container material has a water vapor transmission rate between 0.1-0.2 g/m2/d at 38° C./90% RH.
- According to the invention said dialysis acid precursor composition consists of powder components comprising glucose, at least one dry acid and at least one magnesium salt, and optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition within the moisture-resistant container.
- In other embodiments of the present invention said at least one dry acid is selected from the group comprising of lactic acid, citric acid, gluconic acid, glucono-δ-lactone, N-acetyl cystein and α-lipoic acid. Thus, a combination of dry acids may be used within said dialysis acid precursor composition, and by providing a combination of different dry acids, other functions and effects, apart from said acidic function, may be provided, like for instance antioxidative effects (as with gluconic acid, glucono-δ-lactone, N-acetyl cystein and α-lipoic acid), anticoagulation effects (as with citric acid) and so forth.
- In even further embodiments said at least one magnesium salt in said dialysis acid precursor composition, is selected from the group comprising of anhydrous magnesium chloride, magnesium gluconate, magnesium citrate (trimagnesium dicitrate), magnesium lactate, and magnesium α-ketoglutarate. Also here a combination of different magnesium salts may be used in order to tailor specific add-on features, like antioxidative effects from magnesium gluconate, or anticoagulation effects from magnesium citrate, and so forth.
- In one embodiment said at least one magnesium salt in said dialysis acid precursor composition is selected from the group comprising of magnesium gluconate, magnesium citrate and magnesium lactate.
- In other embodiments, in which calcium salt is present, said calcium salt in said dialysis acid precursor composition, is at least one chosen from the group comprising of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, calcium gluconate, calcium citrate, calcium lactate, and calcium α-ketoglutarate. Thus, also here a combination of different calcium salts may be used.
- In another embodiment, said calcium salt is at least one chosen from the group comprising of anhydrous calcium chloride, calcium gluconate, calcium citrate and calcium lactate.
- In another embodiment, said calcium salt is at least one chosen from the group comprising of calcium gluconate, calcium citrate and calcium lactate.
- In one embodiment said dialysis precursor composition is provided in a specific amount and is configured to be mixed with a prescribed volume of water within said moisture-resistant container to provide a dialysis acid concentrate solution. Thus, said moisture-resistant container is configured to receive and dispense solutions up to said prescribed volume.
- In one embodiment said prescribed volume may be within the range of from 0.3 to 8 L.
- In another embodiment said prescribed volume may be within the range of from 5-20 L.
- In even another embodiment said prescribed volume may be within the range of 300-1000 L.
- Further, in one embodiment said dialysis acid concentrate solution is configured and provided to be diluted within the range of 1:30 to 1:200 with water, a sodium containing concentrate, and a bicarbonate containing concentrate.
- The present invention further concerns a method of providing a dialysis acid concentrate solution. Said dialysis acid concentrate solution is further intended to be mixed with additional water, a sodium containing concentrate, and a bicarbonate containing concentrate to provide a ready-for-use dialysis solution. According to the invention such a method comprises (a) providing a dialysis precursor composition comprising glucose, at least one dry acid, and at least one magnesium salt, optionally potassium salt, and calcium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition, (b) providing said dialysis precursor composition in a sealed, moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH, and (c) adding a prescribed volume of water to said dialysis precursor composition in said container and mixing thereof, thereby providing said dialysis acid concentrate as a solution.
- Glucose is provided in such a quantity in said moisture-resistant container that a concentration of 30-400 g/L is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- Said dry acid is provided in such a quantity in said moisture-resistant container that a concentration within the range of 60-800 mEq/L H+ (acid) is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- Further, said at least one magnesium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 7.5-150 mM magnesium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- If present, said calcium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 30-500 mM calcium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- If present, potassium salt is provided in such a quantity in said moisture-resistant container that a concentration within the range of 0-800 mM potassium ions is provided in the dialysis acid concentrate solution when a prescribed volume of water has entered into said moisture-resistant container.
- In one embodiment said dry dialysis acid precursor composition comprises the different components in such an amount that when said dry dialysis acid precursor composition has been dissolved and mixed with water, a sodium concentrate, and a bicarbonate concentrate it provides a ready-for-use dialysis solution comprising from about 130-150 mM of sodium ions, from about 0 to 4 mM of potassium ions, from about 1-2.5 mM of calcium ions, from about 0.25 to 1 mM of magnesium ions, from about 0 to 2% (g/l) glucose from about 85 to 134 mM chloride ions, from about 2 to 4 mEq/L acid, and from about 20 to 40 mEq/L bicarbonate ions.
- Thus, the present invention provides a prepackaged container with a dry dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution, wherein said dialysis acid precursor composition consist of powder components comprising glucose, at least one dry acid and at least one magnesium salt. Optionally said dialysis acid precursor composition further comprises potassium salts, and calcium salts. According to the invention said glucose and said at least one magnesium salt is present as anhydrous component in said dialysis acid precursor composition and said dialysis acid precursor composition is sealed in a moisture-proof container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
- By using anhydrous magnesium chloride powder in a dry dialysis acid precursor composition, the anhydrous component will act as desiccants if any water would be transported into the bag.
- By way of example, and not limitation, the following examples identify a variety of dialysis acid precursor compositions pursuant to embodiments of the present invention.
- In examples 1-5, the tables show the content of dialysis acid precursor compositions for dilution 1:35. The prescribed volume of each dialysis acid concentrate solution (DACS in tables below) is 5.714 L, and the final volume of each ready-for-use dialysis solution (RFUDS in tables below) is 200 L.
-
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.81 70 2 Magnesium gluconate 41.46 17.5 0.5 Calcium chloride 44.10 52.5 1.5 dihydrate Citric acid 38.42 35 1 Glucose anhydrous 200 194 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.81 70 2 Magnesium lactate 20.24 17.5 0.5 Calcium gluconate 129.1 52.5 1.5 Citric acid 38.42 35 1 Glucose anhydrous 200 194 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.81 70 2 Trimagnesium dicitrate 15.04 5.83 0.167 Calcium gluconate 129.1 52.5 1.5 Citric acid 38.42 35 1 Glucose anhydrous 200 194 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.81 70 2 Trimagnesium dicitrate 15.04 5.83 0.167 Calcium chloride 44.10 52.5 1.5 dihydrate Glucono-delta-lactone 35.63 35 1 Citric acid 30.73 28 0.8 Glucose anhydrous 200 194 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.81 70 2 Trimagnesium dicitrate 15.04 5.83 0.167 Calcium chloride 33.30 52.5 1.5 anhydrous Glucono-delta-lactone 142.5 140 4 Glucose anhydrous 200 194 5.55 - In example 6-9, the tables show the content of a dry acid precursor composition for dilution 1:200. The prescribed volume of each dialysis acid concentrate solution (DACS in tables below) is 1 L, and the final volume of each ready-for-use dialysis solution (RFUDS in tables below) is 200 L.
-
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 59.64 800 4 Magnesium gluconate 41.46 100 0.5 Calcium chloride 51.45 350 1.75 dihydrate Citric acid 38.42 200 1 Glucose anhydrous 200 1111 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Trimagnesium dicitrate 15.04 33.4 0.167 Calcium gluconate 150.6 350 1.75 Citric acid 38.42 200 1 Glucose anhydrous 200 1111 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 29.82 400 2 Magnesium lactate 20.24 100 0.5 Calcium chloride 44.10 300 1.5 dihydrate Glucono-delta-lactone 35.63 200 1 Citric acid 30.74 160 0.8 Glucose anhydrous 200 1111 5.55 -
-
Conc in Conc in Amount DACS RFUDS Ingredient (g) (mM) (mM) Potassium chloride 59.64 800 4 Magnesium gluconate 41.46 100 0.5 Calcium chloride 22.22 200 1 anhydrous Citric acid 38.42 200 1 Glucose anhydrous 200 1111 5.55 - Tests
- Tests has been performed to study the stability of different dry powder compositions, both according to embodiments of the present invention as well as comparisons. Parameters like caking, lumping and discoloration were evaluated.
- Methods
- Plastic films, was welded into bags with 1 compartment.
- Composition 1
- The amount of powder components of potassium chloride, anhydrous magnesium chloride, calcium chloride dihydrate, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into the plastic bags, with a water vapor transmission rate of 0.11 g/m2/d at 38° C./90% RH. The bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- Composition 2
- The amount of powder components of potassium chloride, anhydrous magnesium chloride, anhydrous calcium chloride, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into plastic bags, with a water vapor transmission rate of 0.11 g/m2/d at 38° C./90% RH. The bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- Comparison Composition 3
- The amount of powder components of potassium chloride, anhydrous magnesium chloride, calcium chloride dihydrate, anhydrous glucose, and citric acid necessary to produce 230 L of dialysis fluid were filled into plastic bags, with a water vapor transmission rate of 2.7 g/m2/d at 38° C./90% RH. The bags were sealed and incubated in 30° C., 65% RH, and in 40° C., 75% RH, respectively.
- Results
- Compositions 1 and 2 have proven to stay stable for at least 6 months, while comparison composition 3 failed due to formation of brown lumps after less than 1 month.
- It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Claims (22)
1. A dialysis acid precursor composition for use during preparation of a dialysis acid concentrate solution and for mixing with water, a sodium containing concentrate, and a bicarbonate containing concentrate into a ready-for-use dialysis solution, wherein said dialysis acid precursor composition consist of powder components comprising glucose, at least one dry acid and at least one magnesium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition and wherein said dialysis acid precursor composition is sealed in a moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
2. A dialysis precursor composition according to claim 1 , wherein said at least one dry acid is selected from the group comprising of lactic acid, citric acid, gluconic acid, glucono-δ-lactone, N-acetyl cystein and α-lipoic acid.
3. A dialysis precursor composition according to claim 1 , wherein said at least one magnesium salt in said dialysis acid precursor composition is selected from the group comprising of anhydrous magnesium chloride, magnesium gluconate, magnesium citrate, magnesium lactate, and magnesium α-ketoglutarate.
4. A dialysis precursor composition according to claim 1 , wherein said calcium salt in said dialysis acid precursor composition, is at least one selected from the group comprising of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, calcium gluconate, calcium citrate, calcium lactate, and calcium α-ketoglutarate.
5. A dialysis precursor composition according to claim 1 , wherein said water vapor transmission rate is less than 0.2 g/m2/d at 38° C./90% RH.
6. A dialysis precursor composition according to claim 1 , wherein said water vapor transmission rate is more than 0.1 g/m2/d at 38° C./90% RH.
7. A dialysis precursor composition according to claim 1 , wherein said dialysis precursor composition is configured to be mixed with a prescribed volume of water within said moisture-resistant container to provide a dialysis acid concentrate solution.
8. A method of providing a dialysis acid concentrate solution for dilution with water, a sodium containing concentrate, and a bicarbonate containing concentrate to produce a ready-for-use dialysis solution, comprising:
(a) providing a dialysis precursor composition comprising glucose, at least one dry acid, and at least one magnesium salt, wherein said glucose and said at least one magnesium salt are present as anhydrous components in said dialysis acid precursor composition,
(b) providing said dialysis precursor composition in a sealed, moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH, and
(c) adding a prescribed volume of water to said dialysis precursor composition in said container and mixing thereof, thereby providing said dialysis acid concentrate as a solution.
9. The method according to claim 8 further comprising using the solution to prepare a dialysis acid concentrate solution.
10. The method according to claim 8 wherein the solution is at least one of an infusion solution, a replacement solution, a rinsing solution and a priming solution.
11. The dialysis precursor composition of claim 1 wherein the powder components further comprise at least one of a potassium salt and a calcium salt.
12. A dialysis acid precursor composition product comprising:
an anhydrous powdered composition including a sodium containing concentrate, a bicarbonate containing concentrate, a dry acid and a magnesium salt, and
a sealed moisture-resistant container housing the anhydrous powdered composition, wherein the container has a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
13. The dialysis precursor composition product according to claim 12 , wherein said dry acid includes at least one of lactic acid, citric acid, gluconic acid, glucono-δ-lactone, N-acetyl cystein and α-lipoic acid.
14. The dialysis precursor composition product according to claim 12 , wherein said magnesium salt includes at least one of anhydrous magnesium chloride, magnesium gluconate, magnesium citrate, magnesium lactate, and magnesium α-ketoglutarate.
15. The dialysis precursor composition product according to claim 12 , wherein said calcium salt includes at least one of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, calcium gluconate, calcium citrate, calcium lactate, and calcium α-ketoglutarate.
16. The dialysis precursor composition product according to claim 12 , wherein said water vapor transmission rate is less than 0.2 g/m2/d at 38° C./90% RH.
17. The dialysis precursor composition product according to claim 12 , wherein said water vapor transmission rate is greater than 0.1 g/m2/d at 38° C./90% RH.
18. The dialysis precursor composition product according to claim 12 , wherein said container is configured to receive water which mixes with the anhydrous powdered composition in the container.
19. A method comprising:
forming an anhydrous composition including glucose, a dry acid and a magnesium salt, and
storing the anhydrous composition in moisture free chamber of a sealed, moisture-resistant container with a water vapor transmission rate less than 0.3 g/m2/d at 38° C./90% RH.
20. The method of claim 19 further comprising adding water to said container and mixing the water and the anhydrous composition to place the composition in a solution.
21. The method claim 20 further using the solution to prepare a dialysis acid concentrate solution.
22. The method according to claim 20 wherein the solution is at least one of an infusion solution, a replacement solution, a rinsing solution and a priming solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/805,474 US20130189376A1 (en) | 2010-06-23 | 2011-06-20 | Dialysis precursor composition |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1050685-5 | 2010-06-23 | ||
SE1050685 | 2010-06-23 | ||
US35800610P | 2010-06-24 | 2010-06-24 | |
US13/805,474 US20130189376A1 (en) | 2010-06-23 | 2011-06-20 | Dialysis precursor composition |
PCT/EP2011/060233 WO2011161056A2 (en) | 2010-06-23 | 2011-06-20 | Dialysis precursor composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/060233 A-371-Of-International WO2011161056A2 (en) | 2010-06-23 | 2011-06-20 | Dialysis precursor composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/800,719 Division US11253543B2 (en) | 2010-06-23 | 2017-11-01 | Dialysis precursor composition product |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130189376A1 true US20130189376A1 (en) | 2013-07-25 |
Family
ID=44627996
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/805,474 Abandoned US20130189376A1 (en) | 2010-06-23 | 2011-06-20 | Dialysis precursor composition |
US15/800,719 Active 2031-10-15 US11253543B2 (en) | 2010-06-23 | 2017-11-01 | Dialysis precursor composition product |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/800,719 Active 2031-10-15 US11253543B2 (en) | 2010-06-23 | 2017-11-01 | Dialysis precursor composition product |
Country Status (13)
Country | Link |
---|---|
US (2) | US20130189376A1 (en) |
EP (1) | EP2585039B1 (en) |
JP (1) | JP5876042B2 (en) |
KR (1) | KR101813740B1 (en) |
CN (1) | CN102985071B (en) |
AU (1) | AU2011269109B2 (en) |
BR (1) | BR112012033044A2 (en) |
CA (1) | CA2803458C (en) |
ES (1) | ES2677603T3 (en) |
PL (1) | PL2585039T3 (en) |
TR (1) | TR201810427T4 (en) |
TW (1) | TWI583378B (en) |
WO (1) | WO2011161056A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160235785A1 (en) * | 2013-10-02 | 2016-08-18 | Tomita Pharmaceutical Co., Ltd. | Solid dialysis a agent containing alkali metal diacetate, and two-part type low-acetate dialysis agent using same |
US20170312413A1 (en) * | 2014-11-20 | 2017-11-02 | Nikkiso Co., Ltd. | Dialysis-fluid supply system |
US20170312414A1 (en) * | 2014-11-20 | 2017-11-02 | Nikkiso Co., Ltd. | Dialysis-fluid supply system |
US9931453B2 (en) | 2012-10-10 | 2018-04-03 | Tomita Pharmaceutical Co., Ltd. | Dialysis agent a containing acetic acid and acetate salt, and a two-part dialysis agent using thereof |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5876042B2 (en) | 2010-06-23 | 2016-03-02 | ガンブロ・ルンディア・エービーGambro Lundia Ab | Dialysis precursor composition |
ES2535867T3 (en) | 2010-06-23 | 2015-05-18 | Gambro Lundia Ab | Precursor Dialysis Composition |
US8951219B2 (en) | 2011-04-29 | 2015-02-10 | Medtronic, Inc. | Fluid volume monitoring for patients with renal disease |
EP2720700B1 (en) * | 2011-06-20 | 2016-06-01 | Gambro Lundia AB | Dialysis precursor composition |
WO2012175354A1 (en) * | 2011-06-20 | 2012-12-27 | Gambro Lundia Ab | Dialysis precursor composition |
PL2793902T3 (en) | 2011-12-21 | 2018-11-30 | Gambro Lundia Ab | Dialysis precursor composition |
WO2013092283A1 (en) | 2011-12-21 | 2013-06-27 | Gambro Lundia Ab | Dialysis precursor composition |
SE536913C2 (en) * | 2012-03-08 | 2014-10-28 | Gambro Lundia Ab | Composition for dialysis |
AU2013201546B2 (en) | 2012-12-18 | 2014-10-23 | Gambro Lundia Ab | Dialysis composition |
AU2014264537B2 (en) | 2013-05-08 | 2018-10-18 | Gambro Lundia Ab | Dialysis formulation |
US10076283B2 (en) | 2013-11-04 | 2018-09-18 | Medtronic, Inc. | Method and device to manage fluid volumes in the body |
US9814819B2 (en) * | 2015-06-15 | 2017-11-14 | Fresenius Medical Care Holdings, Inc. | Dialysis machines with integral salt solution chambers and related methods |
US10874790B2 (en) | 2016-08-10 | 2020-12-29 | Medtronic, Inc. | Peritoneal dialysis intracycle osmotic agent adjustment |
US10994064B2 (en) | 2016-08-10 | 2021-05-04 | Medtronic, Inc. | Peritoneal dialysate flow path sensing |
WO2017192436A1 (en) * | 2016-05-05 | 2017-11-09 | Medtronic, Inc. | Customized dialysate solution using spikes |
US11013843B2 (en) | 2016-09-09 | 2021-05-25 | Medtronic, Inc. | Peritoneal dialysis fluid testing system |
US11806457B2 (en) | 2018-11-16 | 2023-11-07 | Mozarc Medical Us Llc | Peritoneal dialysis adequacy meaurements |
US11806456B2 (en) | 2018-12-10 | 2023-11-07 | Mozarc Medical Us Llc | Precision peritoneal dialysis therapy based on dialysis adequacy measurements |
US11850344B2 (en) | 2021-08-11 | 2023-12-26 | Mozarc Medical Us Llc | Gas bubble sensor |
CN113952527A (en) * | 2021-09-27 | 2022-01-21 | 广州骐骥生物科技有限公司 | Dry powder bag for hemodialysis and preparation method thereof |
US11965763B2 (en) | 2021-11-12 | 2024-04-23 | Mozarc Medical Us Llc | Determining fluid flow across rotary pump |
US11944733B2 (en) | 2021-11-18 | 2024-04-02 | Mozarc Medical Us Llc | Sodium and bicarbonate control |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3560380A (en) * | 1968-10-28 | 1971-02-02 | Mallinckrodt Chemical Works | Dry concentrates for preparing hemodialysis solutions |
US4756838A (en) * | 1980-02-21 | 1988-07-12 | Veltman Preston Leonard | Preparation of dry dialysate products |
US20040060865A1 (en) * | 1998-10-20 | 2004-04-01 | Robin Callan | Buffered compositions for dialysis |
US20070231395A1 (en) * | 2004-03-30 | 2007-10-04 | Toshiya Kai | Solid Pharmaceutical Preparation for Dialysis |
US20100120702A1 (en) * | 2007-05-31 | 2010-05-13 | Ajinomoto Co., Inc. | Solid preparation for dialysis |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4581141A (en) * | 1978-02-27 | 1986-04-08 | Purdue Research Foundation | Dialysis material and method for removing uremic substances |
CA1241886A (en) | 1983-04-13 | 1988-09-13 | Peter W. Field | Enema bag |
JP2749375B2 (en) * | 1989-05-26 | 1998-05-13 | テルモ 株式会社 | Preparation for hemodialysis and method for producing the same |
AU627309B2 (en) * | 1989-05-26 | 1992-08-20 | Terumo Kabushiki Kaisha | Preparation for blood dialysis and method for production thereof |
JPH0366622A (en) * | 1989-08-07 | 1991-03-22 | Nikkiso Co Ltd | Preparation of dialyzing fluid, agent for preparing same fluid and dialyzing fluid preparing device |
US5071558A (en) | 1989-08-11 | 1991-12-10 | Nikkiso Co., Ltd. | Sodium bicarbonate dialysate |
ES2087281T3 (en) | 1990-12-18 | 1996-07-16 | Univ Washington | DIALYSIS FLUID PRODUCTION SYSTEM WITH DIALYSIS PILL. |
JPH04257522A (en) | 1991-02-07 | 1992-09-11 | Nikkiso Co Ltd | Dialyzing agent for sodium bicarbonate |
JP2769592B2 (en) | 1992-12-14 | 1998-06-25 | 富田製薬株式会社 | Method for producing artificial kidney perfusion agent for bicarbonate dialysis and artificial kidney perfusion agent |
JP3619921B2 (en) | 1996-09-13 | 2005-02-16 | 富田製薬株式会社 | Bicarbonate solid dialysis agent |
FR2766797B1 (en) | 1997-07-30 | 1999-09-17 | Smad | PACKAGING FOR AT LEAST ONE SOLID MATERIAL, ESPECIALLY IN GRANULAR OR POWDERY FORM |
US6610206B1 (en) | 1998-10-20 | 2003-08-26 | Advanced Renal Technologies | Buffered compositions for dialysis |
US6274103B1 (en) | 1999-03-26 | 2001-08-14 | Prismedical Corporation | Apparatus and method for preparation of a peritoneal dialysis solution |
SE9901165D0 (en) | 1999-03-30 | 1999-03-30 | Gambro Lundia Ab | Method, apparatus and components of dialysis systems |
EP1059083B1 (en) * | 1999-06-07 | 2004-04-14 | Nipro Corporation | A solid pharmaceutical preparation for dialysis and a process for producing the same |
EP2052751A3 (en) | 1999-09-22 | 2009-06-03 | Advanced Renal Technologies | Use of high citrate dialysate |
IT1308861B1 (en) | 1999-11-02 | 2002-01-11 | Gambro Dasco Spa | METHOD OF CONTROL OF A DIALYSIS EQUIPMENT DEDICATED TO THE IMPLEMENTATION OF THE AFBK DIALYTIC TECHNIQUE AND RELATED |
DE19955578C1 (en) | 1999-11-18 | 2001-09-06 | Fresenius Medical Care De Gmbh | Multi-chamber container, with glucose concentrate compartment and hydrochloric acid concentrate compartment |
JP3899506B2 (en) | 2000-09-27 | 2007-03-28 | ニプロ株式会社 | Preparation for solid dialysis and method for producing the same |
JP5204359B2 (en) | 2001-09-28 | 2013-06-05 | 味の素株式会社 | Dialysis agent and method for producing the same |
SE525132C2 (en) | 2001-11-23 | 2004-12-07 | Gambro Lundia Ab | Method of operation of dialysis device |
US7238164B2 (en) * | 2002-07-19 | 2007-07-03 | Baxter International Inc. | Systems, methods and apparatuses for pumping cassette-based therapies |
JP4328851B2 (en) * | 2003-03-03 | 2009-09-09 | 富田製薬株式会社 | Bicarbonate solid dialysate |
JP4647953B2 (en) | 2003-12-26 | 2011-03-09 | マナック株式会社 | Single agent type solid preparation for bicarbonate dialysis and method for producing the same |
EP1714657A1 (en) | 2004-02-09 | 2006-10-25 | Nipro Corporation | Solid formulation for dialysis and process for producing the same |
CN1938058A (en) * | 2004-03-30 | 2007-03-28 | 尼普洛株式会社 | Solid pharmaceutical preparation for dialysis |
CA2570110A1 (en) | 2004-06-17 | 2006-01-19 | Gopal Iyengar | Multi-layer, high barrier packaging materials |
US7544301B2 (en) | 2004-08-19 | 2009-06-09 | Hhd Llc | Citrate-based dialysate chemical formulations |
US20090294360A1 (en) | 2005-01-07 | 2009-12-03 | Ajinomoto Co., Inc. | Dialysis preparation |
RU2311202C1 (en) | 2006-02-08 | 2007-11-27 | Общество С Ограниченной Ответственностью "Нпо "Нефрон" | Method for preparing acidic component for hydrocarbonate hemodialysis |
US8133194B2 (en) | 2006-02-22 | 2012-03-13 | Henry Ford Health System | System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits |
EP2123270B2 (en) | 2006-12-12 | 2016-06-15 | Advanced Renal Technologies, Inc. | Iron metabolism-improving agent |
TWI419683B (en) | 2007-03-14 | 2013-12-21 | Ajinomoto Kk | Bone metabolism improving agent |
WO2010055963A1 (en) | 2008-11-17 | 2010-05-20 | Lee, Jin Tae | Manufacturing method of acetate-free dialysate composition |
WO2010112570A1 (en) | 2009-03-31 | 2010-10-07 | Gambro Lundia Ab | Dialysis solution |
ES2535867T3 (en) | 2010-06-23 | 2015-05-18 | Gambro Lundia Ab | Precursor Dialysis Composition |
JP5876042B2 (en) | 2010-06-23 | 2016-03-02 | ガンブロ・ルンディア・エービーGambro Lundia Ab | Dialysis precursor composition |
WO2012175354A1 (en) | 2011-06-20 | 2012-12-27 | Gambro Lundia Ab | Dialysis precursor composition |
EP2720700B1 (en) | 2011-06-20 | 2016-06-01 | Gambro Lundia AB | Dialysis precursor composition |
DE102011106248A1 (en) | 2011-07-01 | 2013-01-03 | Fresenius Medical Care Deutschland Gmbh | Container, use, dialysis machine or preparation unit and method for producing a concentrate |
-
2011
- 2011-06-20 JP JP2013515839A patent/JP5876042B2/en active Active
- 2011-06-20 EP EP11729587.3A patent/EP2585039B1/en active Active
- 2011-06-20 WO PCT/EP2011/060233 patent/WO2011161056A2/en active Application Filing
- 2011-06-20 AU AU2011269109A patent/AU2011269109B2/en active Active
- 2011-06-20 PL PL11729587T patent/PL2585039T3/en unknown
- 2011-06-20 CA CA2803458A patent/CA2803458C/en active Active
- 2011-06-20 US US13/805,474 patent/US20130189376A1/en not_active Abandoned
- 2011-06-20 ES ES11729587.3T patent/ES2677603T3/en active Active
- 2011-06-20 BR BR112012033044A patent/BR112012033044A2/en not_active Application Discontinuation
- 2011-06-20 KR KR1020137001786A patent/KR101813740B1/en active IP Right Grant
- 2011-06-20 CN CN201180030052.8A patent/CN102985071B/en active Active
- 2011-06-20 TR TR2018/10427T patent/TR201810427T4/en unknown
- 2011-06-22 TW TW100121844A patent/TWI583378B/en active
-
2017
- 2017-11-01 US US15/800,719 patent/US11253543B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3560380A (en) * | 1968-10-28 | 1971-02-02 | Mallinckrodt Chemical Works | Dry concentrates for preparing hemodialysis solutions |
US4756838A (en) * | 1980-02-21 | 1988-07-12 | Veltman Preston Leonard | Preparation of dry dialysate products |
US20040060865A1 (en) * | 1998-10-20 | 2004-04-01 | Robin Callan | Buffered compositions for dialysis |
US20070231395A1 (en) * | 2004-03-30 | 2007-10-04 | Toshiya Kai | Solid Pharmaceutical Preparation for Dialysis |
US20100120702A1 (en) * | 2007-05-31 | 2010-05-13 | Ajinomoto Co., Inc. | Solid preparation for dialysis |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9931453B2 (en) | 2012-10-10 | 2018-04-03 | Tomita Pharmaceutical Co., Ltd. | Dialysis agent a containing acetic acid and acetate salt, and a two-part dialysis agent using thereof |
US10251988B2 (en) * | 2012-10-10 | 2019-04-09 | Tomita Pharmaceutical Co., Ltd. | Dialysis agent a containing acetic acid and acetate salt, and a two-part dialysis agent using thereof |
US20160235785A1 (en) * | 2013-10-02 | 2016-08-18 | Tomita Pharmaceutical Co., Ltd. | Solid dialysis a agent containing alkali metal diacetate, and two-part type low-acetate dialysis agent using same |
US10525078B2 (en) * | 2013-10-02 | 2020-01-07 | Tomita Pharmaceutical Co., Ltd. | Solid dialysis A agent containing alkali metal diacetate, and two-part type low-acetate dialysis agent using same |
US20170312413A1 (en) * | 2014-11-20 | 2017-11-02 | Nikkiso Co., Ltd. | Dialysis-fluid supply system |
US20170312414A1 (en) * | 2014-11-20 | 2017-11-02 | Nikkiso Co., Ltd. | Dialysis-fluid supply system |
US10814055B2 (en) * | 2014-11-20 | 2020-10-27 | Nikkiso Co., Ltd. | Dialysis-fluid supply system |
Also Published As
Publication number | Publication date |
---|---|
KR101813740B1 (en) | 2017-12-29 |
CN102985071A (en) | 2013-03-20 |
TR201810427T4 (en) | 2018-08-27 |
AU2011269109B2 (en) | 2013-11-21 |
CN102985071B (en) | 2014-12-03 |
CA2803458C (en) | 2018-02-13 |
PL2585039T3 (en) | 2018-09-28 |
WO2011161056A2 (en) | 2011-12-29 |
US11253543B2 (en) | 2022-02-22 |
BR112012033044A2 (en) | 2016-12-20 |
TWI583378B (en) | 2017-05-21 |
EP2585039B1 (en) | 2018-04-25 |
AU2011269109A1 (en) | 2013-02-07 |
JP5876042B2 (en) | 2016-03-02 |
ES2677603T3 (en) | 2018-08-03 |
JP2013530972A (en) | 2013-08-01 |
EP2585039A2 (en) | 2013-05-01 |
CA2803458A1 (en) | 2011-12-29 |
WO2011161056A3 (en) | 2012-03-01 |
KR20130121815A (en) | 2013-11-06 |
US20180050062A1 (en) | 2018-02-22 |
TW201212909A (en) | 2012-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11253543B2 (en) | Dialysis precursor composition product | |
US10993961B2 (en) | Dialysis precursor composition | |
US9655922B1 (en) | Dialysis precursor composition | |
US9821102B2 (en) | Dialysis precursor composition | |
US9687507B2 (en) | Dialysis precursor composition | |
US9833470B2 (en) | Dialysis precursor composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GAMBRO LUNDIA AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARLSSON, OLA;JONSSON, LENNART;LINDEN, TORBJORN;AND OTHERS;REEL/FRAME:029997/0380 Effective date: 20130226 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |