US20130167504A1 - Method for regulating a short-term power increase of a steam turbine - Google Patents

Method for regulating a short-term power increase of a steam turbine Download PDF

Info

Publication number
US20130167504A1
US20130167504A1 US13/822,392 US201113822392A US2013167504A1 US 20130167504 A1 US20130167504 A1 US 20130167504A1 US 201113822392 A US201113822392 A US 201113822392A US 2013167504 A1 US2013167504 A1 US 2013167504A1
Authority
US
United States
Prior art keywords
flow medium
temperature
nominal value
flow
heating surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/822,392
Other languages
English (en)
Inventor
Jan Brückner
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRUECKNER, JAN, THOMAS, FRANK
Publication of US20130167504A1 publication Critical patent/US20130167504A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to a method for regulating a short-term power increase of a steam turbine with an upstream waste heat generator having a number of economizer, evaporator and superheater heating surfaces which form a flow path and through which a flow medium flows, in which flow medium is tapped off from the flow path in a pressure stage and is injected into the flow path on the flow-medium side between two superheater heating surfaces of the respective pressure stage, with a first characteristic value which is characteristic of the discrepancy between the outlet temperature of the final superheater heating surface on the flow medium side of the respective pressure stage and a predetermined temperature nominal value being used as a regulation variable for the amount of flow medium injected.
  • a waste heat steam generator is a heat exchanger which recovers heat from a hot gas flow.
  • Waste heat steam generators are frequently used in gas and steam turbine plants (combined cycle power plants) which are used predominantly for electricity generation.
  • a modern combined cycle power plant usually comprises one to four gas turbines and at least one steam turbine, wherein either each turbine drives a generator in each case (multi-shaft system) or a gas turbine drives the single generator with the steam turbine on a common shaft (single shaft system).
  • the hot exhaust gases of the gas turbine are in such cases used in the waste heat steam generator for generation of water steam.
  • the steam is subsequently fed to the steam turbine, usually around two thirds of the electrical power is allocated to the gas turbine and one third to the steam process.
  • the waste heat steam generator also comprises a plurality of pressure stages with different thermal states of the water-steam mixture contained therein in each case.
  • the flow medium on its flow path initially passes through economizers, which use the residual heat to preheat the flow medium, and subsequently different stages of evaporator and superheater heating surfaces.
  • the evaporator the flow medium is evaporated, thereafter any possible residual moisture is separated in a separation device and the steam left behind is heated up further in the superheater. Thereafter the superheated steam flows into the high-pressure part of the steam turbine, is expanded there and supplied to the following pressure stages of the steam turbine. It is superheated again there and supplied to the next pressure section of the steam turbine.
  • the demands imposed on modern power plants include not only high levels of efficiency but also a method of operation that is as flexible as possible. In addition to short start-up times and high load change speeds, this also includes the option of compensating for frequency disruptions in the electricity grid. In order to fulfill these requirements the power plant must be in a position to be able to provide power increases of for example 5% within a few seconds.
  • This additional power can be released within a relatively short time so that the delayed heat power increase by the gas turbines (limited by their maximum speed of load change resulting from design and operational constraints) can be at least partly compensated for.
  • the entire block makes a direct jump in performance through this measure and through a subsequent increase in power of the gas turbine can also maintain or exceed this power level permanently, provided the plant is in the part load range at the point at which the additional power reserves are requested.
  • a permanent throttling of the turbine valves to maintain a reserve however always leads to a loss of efficiency so that, for cost effective operation the degree of throttling should be kept as low as is absolutely necessary.
  • a few designs of waste heat steam generator thus for example once-through circulation steam generators, under some circumstances have a significantly smaller storage volume than for example natural circulation steam generators.
  • the difference in the size of the boiler has an influence in the method described above on the behavior during changes in power of the steam part of the combined cycle power plant.
  • the object of the invention is thus to specify a method for regulation of a short-term power increase of a steam turbine with an upstream waste-heat steam generator of the type given above, in which the efficiency of the steam process is not disproportionately adversely affected.
  • the short-term power increase should be made possible independently of the design of the waste-heat steam generator without invasive structural modifications to the overall system.
  • This object is achieved in accordance with the invention, for a short-term power increase of the steam turbine, by reducing the temperature nominal value and increasing the characteristic value for the period of the reduction of the temperature nominal value temporarily disproportionately to the discrepancy.
  • the invention is based on the idea that additional injection of feed water can make a further contribution to a rapid variation in power.
  • additional injection in the area of the superheater the steam mass flow can namely be temporarily increased.
  • the injection is triggered in such cases by the temperature nominal value being reduced.
  • a jump in the temperature nominal value is linked via a corresponding characteristic value to a jump in the regulator discrepancy, which causes the regulator to vary the degree of opening of the injection regulation valve.
  • a power increase of the steam turbine can be realized precisely by such a measure, i.e. a sudden reduction in the temperature nominal value.
  • an actual-nominal comparison between desired and measured steam temperature is made via a subtractor element.
  • this signal can still be modified further by additional information from the process, before it is subsequently switched as an input signal (regulation discrepancy) to a PI controller for example.
  • the temperature can additionally be used as a regulation variable directly after the injection point of the flow medium, i.e. at the inlet of the last superheater heating surface.
  • dual circuit regulation sudden variations in the injection mass flow which have occurred as a result of the regulator intervention are damped out. Under these circumstances the regulation optimized for rapid interventions can be stabilized by preventing an overshoot.
  • the temporary increase of the characteristic value can be advantageously created by the characteristic value characteristic for the discrepancy between the temperature and the nominal value being formed from the sum of this discrepancy and a second characteristic value characteristic for the change over time of the temperature nominal value.
  • the second characteristic value is essentially the change over time of the temperature nominal value multiplied by an amplification factor. In regulation technology terms, this is achieved by the predetermined steam temperature nominal value being used as an input signal of a first order differentiation element and the output of this element being subtracted, after suitable amplification from the difference between measured and predetermined temperature at the heater surface outlet.
  • the desired artificial increase of the discrepancy is realized especially easily in this way and via the additional first-order differentiation element the injection mass flow and thus the power additionally released via the steam turbine is increased significantly faster.
  • a parameter of one of the characteristic values is determined specifically for the plant. This means that the level of the amplification, the parameters of the differentiation element etc. are to be determined specifically on the basis of the plant concerned in the individual case. This can be done for example in advance with the aid of simulation calculations or can happen during commissioning of the regulation.
  • the temperature nominal value is also reduced during the end injection for a short-term increase in the power of the steam turbine, which is also used here as a regulation variable for the amount of flow medium M injected.
  • This change however is applied in usual systems with a slight time delay (e.g. in control technology terms by a PTn element).
  • This time delay models the temporal behavior of the superheater path between intermediate and final injection, i.e. it is advantageously characteristic of the throughflow time of the flow medium M through the superheater heating surfaces and of its thermal behavior between the two injection points.
  • the intermediate injection regulation valve opens first, since this first experiences the change in the temperature nominal value. Because of the injection amount introduced the temperature before the final injection reduces with the temporal behavior of the superheater path.
  • the final injection is not active, which under certain circumstances is desirable in conventional operation. If however the final injection is to be used as a result of the said advantages, this must become active directly after the application of the nominal value change to the assigned characteristic value.
  • the time delay of the temperature nominal value is advantageously deactivated in the definition of characteristic value.
  • a regulation system for a waste heat steam generator with a number of economizer, evaporator and superheater heating surfaces forming a flow path through which a flow medium flows comprises means for executing the method.
  • a waste heat steam generator for a combined cycle power plant has such a regulation system and a combined cycle power plant has such a waste heat steam generator.
  • the advantages obtained by the invention especially consist of enabling, through the explicit reduction of the steam temperature nominal value using the injection regulation method, the thermal energy stored in the metal masses downstream from the injection to be used for a temporary power increase of the steam turbine. If in such cases the adapted regulation method described is used, in the event of a sudden reduction of the steam temperature nominal value, significantly faster power increases are able to be realized with the aid of the injection system.
  • the method for providing a temporary power increase of the steam turbine is independent of other measures, so that also for example throttled turbine valves can additionally be opened in order to further amplify the power increase of the steam turbine.
  • a further advantage of the method consists of being able to lower the actual steam temperature by the temperature regulation concept. Maximum allowable temperature transients of the steam turbine are not exceeded under these circumstances with a maximum possible power increase. Precisely in respect of the additional use of the final injection, the fresh steam temperature can be adjusted very precisely.
  • FIG. 1 shows a flow-medium-side schematic of the high-pressure part of a waste heat steam generator with data-side connection of the intermediate injection regulation system for use for an immediate power release, and
  • FIG. 2 shows a flow-medium-side schematic of the high-pressure part of a waste heat steam generator with data-side connection of the final injection regulation system for use for an immediate power release.
  • FIG. 1 for example shows the high-pressure part of the waste heat steam generator 1 .
  • the invention can naturally also be used in other pressures stages for regulation of the intermediate superheating.
  • FIG. 1 schematically represents a part of the flow path 2 of the flow medium M.
  • the heating surfaces of the economizer, evaporator and superheater usually disposed in the high-pressure part of the waste heat steam generator 1 only the last superheater heating surfaces 4 are shown.
  • the spatial arrangement of the individual superheater heating surfaces 4 in the hot gas duct is not shown and can vary.
  • the superheater heating surfaces 4 shown can each be representative of a plurality of serially connected heating surfaces which, for reasons of clarity, are not shown differentiated.
  • the flow medium M is conveyed from a feed pump at the corresponding pressure into the high-pressure flow path 2 of the waste heat steam generator 1 .
  • the flow medium M initially passes through an economizer, which can comprise a plurality of heating surfaces.
  • the economizer is typically disposed in the coldest part of the hot gas duct, in order to obtain a use of residual heat here to increase the efficiency.
  • the flow medium M passes through the heating surfaces of the evaporator and a first superheater.
  • a separation device can be disposed between the evaporator and superheater, which removes the residual moisture from the flow medium M so that only pure steam gets through to the superheater.
  • an intermediate injection valve 6 Disposed on the flow medium side downstream from a first superheating heating surface not shown in the figure is an intermediate injection valve 6 , a further final injection valve 8 is disposed after the last superheater surface 4 .
  • cooler and unevaporated flow medium M for regulating the outlet temperature at the outlet 10 of the high-pressure part of the waste heat generator 1 can be injected.
  • the amount of flow medium M introduced into the intermediate injection valve 6 is regulated via the injection valve 12 .
  • the flow medium M in this case is supplied via an overflow line 14 branching off beforehand in the flow path 2 .
  • a temperature measurement device 16 upstream from the intermediate injection valve 6 Disposed in the flow path 2 for regulating the injection are a number of measurement devices, namely a temperature measurement device 16 upstream from the intermediate injection valve 6 , a temperature measurement device 18 and a pressure measurement device 20 downstream from the intermediate injection valve 6 and upstream from the superheater heating surfaces 4 , as well as a temperature measurement device 22 downstream from the superheater heating surfaces 4 .
  • FIG. 1 The other parts of FIG. 1 show a regulation system 24 for the intermediate injection.
  • a temperature nominal value is set at a nominal value generator 26 .
  • This temperature nominal value is switched together with the temperature measured at the temperature measurement device 22 downstream from the superheater heating surface 4 to a subtractor element 28 , where the discrepancy between the temperature at the outlet of the superheater heating surfaces 4 and the nominal value is thus formed.
  • This discrepancy is corrected in an adder element 30 , wherein the correction models the time delay of a temperature change during passage through the superheater heating surfaces 4 .
  • the temperature at the inlet of the superheater heating surfaces 4 is switched from the temperature measurement device 18 to a time-delayed PTn element 32 .
  • the signal produced is switched together with the value from the temperature measurement device 18 to a subtractor element 34 , the output of which is supplied to the adder element 13 .
  • the subtractor element 34 consequently only supplies a value other than zero for a certain time after a change of the temperature at the temperature measurement device 18 , which corrects the discrepancy present at the adder element.
  • the signal present at the adder element 30 is switched together with further signals to a minimum element 36 , which takes account of further parameters:
  • the temperature downstream from the intermediate injection must have a certain distance from the pressure-dependent boiling temperature.
  • the pressure measured at the pressure measurement device 20 is switched into a functional element 38 , which outputs the boiling temperature of the flow medium M corresponding to this pressure.
  • a preset constant from a generator 42 is added, which can amount for example to 30° C. and guarantees a safety gap to the boiling line.
  • the minimum temperature thus determined is switched together with the actual temperature determined at the temperature measurement device 18 to a subtractor element 44 and the discrepancy thus determined is given to the minimum element 36 .
  • a few switching connections are not shown in FIG. 1 but are indicated by appropriate connection symbols ⁇ A>, ⁇ B>, ⁇ C>.
  • the signals of the pressure measurement device 20 as well as those of the temperature measurement devices 16 , 18 upstream and downstream from the intermediate injection are switched to the enthalpy module connected upstream from the minimum element 36 .
  • the enthalpy module 46 for its part calculates an associated temperature difference on the basis of these parameters which will be connected as an input signal to the following minimum element 36 .
  • the signal determined in the minimum element 36 is connected to a regulation element 48 for controlling the injection regulation valve 12 .
  • said system comprises corresponding means for executing the method for regulating a short-term power increase of the steam turbine.
  • the temperature nominal value is reduced at the nominal value generator 26 , which results in an increase in the intermediate injection amount.
  • a rapid regulator response of the PI regulator element 48 should be guaranteed.
  • the discrepancy caused between the actual temperature and the temperature nominal value will however be ameliorated by the PTn element 32 shortly after the change.
  • the signal of the nominal value generator 26 for the temperature nominal value is to be switched to a first-order differentiation element (DT1).
  • DT1 first-order differentiation element
  • a PT1 element 50 has the signal of the nominal value generator 26 applied to it on the input side and is switched together with the original signal of the nominal value generator 26 to a subtractor element 52 on the output side, the output of which is connected to a multiplier element 54 which amplifies the signal by a factor, e.g. 5,from a generator 56 .
  • This signal is in its turn added by a subtractor element 58 into the signal to the adder element 30 .
  • the circuit In the event of a change in the nominal value, the circuit outputs a signal differing from one via the PT1 element 50 , which is amplified by the multiplier element 54 and artificially disproportionately amplifies the value characteristic for the discrepancy.
  • the signal via the loop with the PTn element 32 is then relatively smaller and a faster regulator response of the PI regulator element 48 is forced.
  • a steam amount increase is rapidly achieved and the power of the downstream steam turbine is increased.
  • FIG. 2 now shows the parts of the regulation system 24 relevant to the final injection.
  • a further temperature measurement device 60 here in the flow path 2 downstream from the final injection valve 8
  • the temperature nominal value of the nominal value generator 26 is used here as a regulation variable. Its signal is sent to a PTn element 62 which, like the PTn element 32 , models the time delay through the superheater heating surfaces 4 . Its output signal is sent together with the signal of the nominal value generator 26 to a maximum element 64 , of which the output signal together with the signal from the temperature measurement device 60 is sent into a subtractor element 66 . The discrepancy determined there is sent to a PI regulation element 68 which regulates the injection regulation valve 70 of the final injection.
  • the PTn element in combination with the maximum element 64 , here delays the regulator response of the PI regulator element 68 .
  • the time delay i.e. the PTn element 62 , is deactivated for a time in such a case. This speeds up the regulator response accordingly and a fast power release is possible.
  • a waste heat steam generator 1 regulated in this way is now used in a combined cycle power plant.
  • the hot waste gases of one or more gas turbines are routed on the flue gas side through the waste heat steam generator 1 , which thus provides steam for a steam turbine.
  • the steam turbine in this case comprises a number of pressure stages, i.e. the steam heated up by the high-pressure part of the waste heat steam generator 1 and expanded in the first stage (high-pressure stage) of the steam turbine is routed into a medium-pressure stage of the waste heat steam generator 1 and is superheated there once again, but to a lower pressure level however.
  • the exemplary embodiment shows the high-pressure part of the waste heat steam generator 1 to illustrate the invention by way of example, but this can also be used in other pressure stages.
  • a combined cycle power plant equipped with such a waste heat steam generator is able not only to provide a short-term power increase of the gas turbine which is restricted by the allowed maximum load change speed, but also to rapidly provide a power increase via an immediate power release of the steam turbine, which serves to support the frequency of the electricity grid.
  • this power reserve is achieved by a double use of the injection valves as well as the usual temperature regulation also enables a permanent throttling of the steam turbine valves in order to provide a reserve to be reduced or dispensed with entirely, whereby an especially high level of efficiency during normal operation is achieved.
US13/822,392 2010-09-13 2011-09-02 Method for regulating a short-term power increase of a steam turbine Abandoned US20130167504A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010040623A DE102010040623A1 (de) 2010-09-13 2010-09-13 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine
DE102010040623.6 2010-09-13
PCT/EP2011/065221 WO2012034876A2 (de) 2010-09-13 2011-09-02 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine

Publications (1)

Publication Number Publication Date
US20130167504A1 true US20130167504A1 (en) 2013-07-04

Family

ID=44587822

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/822,392 Abandoned US20130167504A1 (en) 2010-09-13 2011-09-02 Method for regulating a short-term power increase of a steam turbine

Country Status (9)

Country Link
US (1) US20130167504A1 (de)
EP (1) EP2616643B1 (de)
JP (1) JP5855105B2 (de)
KR (1) KR101818021B1 (de)
CN (1) CN103097671B (de)
DE (1) DE102010040623A1 (de)
ES (1) ES2603612T3 (de)
MY (1) MY165706A (de)
WO (1) WO2012034876A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288210A1 (en) * 2007-11-28 2010-11-18 Brueckner Jan Method for operating a once-through steam generator and forced-flow steam generator
US11255224B2 (en) * 2016-09-28 2022-02-22 Siemens Energy Global GmbH & Co. KG Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041964A1 (de) * 2010-10-05 2012-04-05 Siemens Aktiengesellschaft Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine
DE102012206466A1 (de) * 2012-04-19 2013-10-24 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb eines solarthermischen Kraftwerks
DE102013202249A1 (de) 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Dampftemperatur-Regeleinrichtung für eine Gas- und Dampfturbinenanlage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648667A (en) * 1969-09-23 1972-03-14 Sulzer Ag Apparatus and method for starting up a steam generator
US4552099A (en) * 1984-10-25 1985-11-12 Westinghouse Electric Corp. Anticipatory boiler feedpump suction head controller system
US5379588A (en) * 1990-11-20 1995-01-10 General Electric Company Reheat steam cycle for a steam and gas turbine combined cycle system
US5473898A (en) * 1995-02-01 1995-12-12 Westinghouse Electric Corporation Method and apparatus for warming a steam turbine in a combined cycle power plant
US5577377A (en) * 1993-11-04 1996-11-26 General Electric Co. Combined cycle with steam cooled gas turbine
US20100305768A1 (en) * 2009-06-01 2010-12-02 General Electric Company Control for improved thermal performance of a steam turbine at partial load
US20130160424A1 (en) * 2011-12-22 2013-06-27 Alstom Technology Ltd. Method for Operating a Combined Cycle Power Plant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK118672B (da) * 1964-03-13 1970-09-21 Siemens Ag Reguleringsapparat til tvangscirkulationskedler.
CH552771A (de) * 1972-06-12 1974-08-15 Sulzer Ag Zwangdurchlaufdampferzeuger.
FR2401380A1 (fr) * 1977-08-23 1979-03-23 Sulzer Ag Generateur de vapeur a circulation forcee
US4144846A (en) 1977-09-27 1979-03-20 Sulzer Brothers Ltd. Forced-flow steam generator
DE19749452C2 (de) * 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
DE19750125A1 (de) * 1997-11-13 1999-03-11 Siemens Ag Verfahren und Vorrichtung zur Primärregelung eines Dampfkraftwerkblocks
US6474069B1 (en) * 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
EP2034137A1 (de) * 2007-01-30 2009-03-11 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie dafür ausgelegte Gas- und Dampfturbinenanlage
US8104283B2 (en) * 2007-06-07 2012-01-31 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control in a boiler system using reheater variables
EP2224164A1 (de) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Abhitzedampferzeugers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648667A (en) * 1969-09-23 1972-03-14 Sulzer Ag Apparatus and method for starting up a steam generator
US4552099A (en) * 1984-10-25 1985-11-12 Westinghouse Electric Corp. Anticipatory boiler feedpump suction head controller system
US5379588A (en) * 1990-11-20 1995-01-10 General Electric Company Reheat steam cycle for a steam and gas turbine combined cycle system
US5577377A (en) * 1993-11-04 1996-11-26 General Electric Co. Combined cycle with steam cooled gas turbine
US5473898A (en) * 1995-02-01 1995-12-12 Westinghouse Electric Corporation Method and apparatus for warming a steam turbine in a combined cycle power plant
US20100305768A1 (en) * 2009-06-01 2010-12-02 General Electric Company Control for improved thermal performance of a steam turbine at partial load
US20130160424A1 (en) * 2011-12-22 2013-06-27 Alstom Technology Ltd. Method for Operating a Combined Cycle Power Plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100288210A1 (en) * 2007-11-28 2010-11-18 Brueckner Jan Method for operating a once-through steam generator and forced-flow steam generator
US9482427B2 (en) * 2007-11-28 2016-11-01 Siemens Aktiengesellschaft Method for operating a once-through steam generator and forced-flow steam generator
US11255224B2 (en) * 2016-09-28 2022-02-22 Siemens Energy Global GmbH & Co. KG Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control

Also Published As

Publication number Publication date
CN103097671B (zh) 2015-06-03
KR101818021B1 (ko) 2018-01-12
EP2616643B1 (de) 2016-08-17
CN103097671A (zh) 2013-05-08
JP2013537271A (ja) 2013-09-30
WO2012034876A3 (de) 2013-02-28
KR20130105628A (ko) 2013-09-25
EP2616643A2 (de) 2013-07-24
ES2603612T3 (es) 2017-02-28
WO2012034876A2 (de) 2012-03-22
MY165706A (en) 2018-04-20
DE102010040623A1 (de) 2012-03-15
JP5855105B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
US8959915B2 (en) Waste heat steam generator
US9593844B2 (en) Method for operating a waste heat steam generator
US9080465B2 (en) Method for controlling a short-term increase in power of a steam turbine
US8733104B2 (en) Single loop attemperation control
JP5595595B2 (ja) 複合型ガス・蒸気タービン設備の運転方法並びにこの方法を実施するためのガス・蒸気タービン設備および対応する調節装置
US20130167504A1 (en) Method for regulating a short-term power increase of a steam turbine
US11255224B2 (en) Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control
US7827793B2 (en) Power generation system
JP5276973B2 (ja) 貫流式排熱回収ボイラ
JP5815753B2 (ja) 蒸気タービンの短期間の出力増大を調節するための方法
RU2559208C1 (ru) Вспомогательный парогенератор в качестве дополнительного средства регулирования частоты или средства первичного и/или вторичного регулирования в пароэлектростанции
US9506376B2 (en) Fossil-fired steam generator
JPH03282102A (ja) 排熱回収ボイラおよびそれに使用する減温器制御装置
JP3650277B2 (ja) 火力プラントの制御装置及び火力プラントの制御方法
JPH09195718A (ja) 主蒸気温度制御装置
Wittchow 3.7 Power plant operation: 3 Fossil-fueled power plants

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRUECKNER, JAN;THOMAS, FRANK;REEL/FRAME:029971/0916

Effective date: 20130127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION