US20130139534A1 - Energy-saving device for air conditioner outdoor unit and energy-saving method thereof - Google Patents

Energy-saving device for air conditioner outdoor unit and energy-saving method thereof Download PDF

Info

Publication number
US20130139534A1
US20130139534A1 US13/763,199 US201313763199A US2013139534A1 US 20130139534 A1 US20130139534 A1 US 20130139534A1 US 201313763199 A US201313763199 A US 201313763199A US 2013139534 A1 US2013139534 A1 US 2013139534A1
Authority
US
United States
Prior art keywords
water
water mist
outdoor unit
air conditioner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/763,199
Inventor
WenXiong Huang
Xiaoming Kong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Assigned to HUAWEI TECHNOLOGIES CO., LTD. reassignment HUAWEI TECHNOLOGIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, WENXIONG, KONG, XIAOMING
Publication of US20130139534A1 publication Critical patent/US20130139534A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/42Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of the condensate, e.g. for enhanced cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • F24F1/50Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow with outlet air in upward direction

Definitions

  • the present disclosure relates to air conditioning energy-saving technology, and more specifically, to an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof.
  • FIG. 1 is a diagram showing the installation site of the air conditioning system in the prior art. As shown, an indoor host is connected with an outdoor condenser, the refrigerant in the outdoor condenser is continuously evaporated by absorbing the heat indoor, such that the temperature of the indoor air is decreased and an air after refrigeration is provided through an air outlet of the indoor host.
  • FIG. 2 shows an air conditioner heat dissipating system in the prior art.
  • the following technical solution has been adopted in the prior art for addressing problems of excessively high airflow temperature at the air inlet of the outdoor unit, degradation of refrigeration efficiency and being not good for saving power consumption of the refrigeration system.
  • a latent heat transition economizer is added at the air inlet of the condenser of the outdoor unit.
  • the economizer comprises an evaporation wet curtain, a booster fan and a duct system. Water is supplied to the wet curtain through the duct system.
  • the temperature of the air passing through the economizer is lowered by making use of the principle of endothermic induced by the evaporation of water, and the water that has been used is drained off through a blow-off line.
  • the air conditioner heat dissipating system specifically comprises: air-cooled air conditioner host 1 , condensation fan 2 , air-cooled air conditioner host condenser 4 , booster fan 5 , water distribution pipeline 6 , evaporation wet curtain 7 , water circulating pipeline 8 , external hot air 9 , sink 10 , water pump 11 , water replenishing float 12 , attachment bracket 13 and air inlet region 14 .
  • this device it is possible to lower the temperature at the air inlet of the condenser of air conditioner outdoor unit by 6° C. ⁇ 8° C., thereby accomplishing the purpose of enhancing refrigeration efficiency of the air conditioner and saving power consumption thereof.
  • the embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof, wherein, the energy-saving device lowers the temperature of the air conditioner outdoor unit by water mist generated from a water mist generator, improves the spraying effect of the outdoor unit, and controls the generation of water mist by monitoring the temperature at the air inlet and the refrigerant evaporating pressure, thereby further saving energy.
  • the embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit, which comprises: a water mist generator which is installed opposite to an air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow; a water circulating system which connects the water mist generator with an external water source, so as to supply the water mist generator with water needed for atomizing; a controller which is connected to the water circulating system for controlling operational states of the water circulating system based on monitored results of the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist.
  • the embodiments of the present disclosure further provide an energy-saving method for an air conditioner outdoor unit, which comprises: detecting the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure; controlling operational states of the water circulating system based on monitored results of the temperature at the air inlet of the condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist; the water circulating system is used for connecting a water mist generator with an external water source, thereby supplying the water mist generator with water needed for atomizing; the water mist generator is installed opposite to the air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow.
  • the device according to the embodiments of the present disclosure adopts a water mist generator for lowering the temperature of an outdoor unit and enhances the spraying effect, requires no additional fans and saves costs, and performs a control on the timing of spraying which further saves energy.
  • FIG. 1 is a diagram showing the installation site of an air conditioning system in the prior art
  • FIG. 2 is a structural view of an air conditioner heat dissipating system containing a latent heat transition economizer according to the prior art
  • FIG. 3 is a block diagram showing a functional principle of an energy-saving device for an air conditioner outdoor unit according to the embodiments of the present disclosure
  • FIG. 4 is a structural view of the device according to an embodiments of the present disclosure, when the air conditioner outdoor unit is horizontally installed;
  • FIG. 5 is a structural view of the device of the embodiments of the present disclosure, when the air conditioner outdoor unit is vertically installed;
  • FIG. 6 is a structural view of a two-side opposite spray water mist generator according to one embodiments of the present disclosure.
  • FIG. 6 a is a diagram of the spraying of the two-side opposite spray water mist generator
  • FIG. 7 is a structural view of a dot spray water mist generator according to one embodiments of the present disclosure.
  • FIG. 7 a is a diagram of the spraying of the dot spray water mist generator.
  • FIG. 8 is a flowchart of an energy-saving method for an air conditioner outdoor unit according to one embodiments of the present disclosure.
  • the embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof.
  • the device adopts a water mist generator for spraying the outdoor unit, controls the generation of water mist by monitoring the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure.
  • the temperature at the air inlet can be lowered by the water mist, thereby improving the heat dissipating performance of the outdoor unit under a high-temperature environment and accomplishing purposes of enhancing refrigeration efficiency of the air conditioner outdoor unit and saving power consumption thereof.
  • FIG. 3 is a block diagram showing the functional principle of the energy-saving device for an air conditioner outdoor unit according to the embodiments of the present disclosure. As shown in FIG. 3 , the device comprises:
  • the device further comprises: a temperature detection unit 304 which is provided at the air inlet of the condenser of the air conditioner outdoor unit for detecting the temperature at the air inlet; a pressure detection unit 305 which is provide in the condenser of the air conditioner outdoor unit for detecting the refrigerant evaporating pressure.
  • the controller 303 further connects the temperature detection unit 304 with the pressure detection unit 305 .
  • the water pump is started; when T ⁇ T H ⁇ T 0 and P ⁇ P H ⁇ P 0 , the water pump is stopped from working.
  • T H is a predetermined temperature
  • P H is a predetermined pressure
  • T 0 is a non-return temperature
  • P 0 is a non-return pressure.
  • the energy-saving device for an air conditioner outdoor unit of this embodiment is typically applied to the following two main scenes: one scene in which the air conditioner outdoor unit is horizontally installed and the other scene in which the air conditioner outdoor unit is vertically installed. Below, the specific structures of the device under these two installation scenes will be described in detail.
  • FIG. 4 When the air conditioner outdoor unit is horizontally installed, the structure of the device of the present disclosure is shown in FIG. 4 .
  • the water mist generator and the sink are both located below the air inlet of the air conditioner outdoor unit.
  • the water mist generator is located between the air inlet and the sink. The external hot air passes through the water mist generator and then enters the air conditioner outdoor unit.
  • the water circulating system of this embodiment comprises: a sink which is provided below the water mist generator and connected to an external water source, and collects drips dropped from the condenser of the outdoor unit, thereby recycling the water; a water pump which is connected to the sink, the water mist generator and a controller, and controlled by the controller, for supplying the water from the sink to the water mist generator automatically.
  • the sink further comprises a water replenishing float for auto replenishment from external water sources, wherein, the operational principle of the water replenishing float is similar as the water tank of a home toilet, that is, when the water level drops, the float opens the water inlet valve, when the water level reaches a certain height, the water inlet valve is closed. Since this technology itself is a mature technology, detailed descriptions thereof are omitted.
  • the operational principle of the device of this embodiment goes as follows.
  • the water mist generator and the water circulating system are mutually connected. Water inside the sink is transported to the water mist generator through the water pump, then the water mist generator atomizes the water. Due to the suction effect of the fan system of the air conditioner outdoor unit, the region nearby the water mist generator is a negative pressure zone, the airflow carries the mist into the outdoor unit.
  • the mist passes the condenser of the outdoor unit, the condenser is subjected to heat dissipation by an endothermic effect induced by the evaporation of water.
  • Using such water mist evaporation manner can significantly lower the temperature of the external hot air (by about 8° C. ⁇ 12° C.), thus improving the state of heat dissipation of the air conditioner outdoor unit and enhancing its refrigeration efficiency.
  • the sink of this embodiment is connected with an external water supply system, for realizing auto replenishment of water resources with the use of the water replenishing float, and collects drips dropped from the condenser of the outdoor unit for recycle.
  • a mesh screen can be provided over the upper portion of the water tank, and a cleaning treatment on the water inside the water tank may be periodically carried out, for example, by putting non-oxidative cleanser 805 A into the water tank once after every 700-hour service hours).
  • the controller of this embodiment monitors the air inlet temperature of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby realizing the real-time control of the generation of water mist and saving the electricity consumed by the operation of the water pump.
  • FIG. 5 When the air conditioner outdoor unit is vertically installed, the installation structure of the device of the present disclosure is shown in FIG. 5 .
  • the water mist generator and the sink are provided in front of the air inlet of the air conditioner outdoor unit. External hot air passes through the water mist generator and then enters the air condition air conditioner outdoor unit.
  • Other structures of the device in this scene are similar as those in the scene where the outdoor unit is horizontally installed, and thus detailed descriptions thereof are omitted.
  • the water mist generator is an important module of the embodiments of the present disclosure. This embodiment provides two specific implementation manners, which are applicable to the aforementioned horizontal installation structure and vertical installation structure;
  • FIG. 6 a is a diagram of the spraying of the two-side opposite spray water mist generator, wherein, the spray direction of the water mist is indicated by the arrows.
  • FIG. 7 a is a diagram of the spraying of the dot spray water mist generator, wherein, the spray direction of the water mist is indicated by the arrows.
  • FIG. 8 is a flowchart of the energy-saving method. As shown in FIG. 8 , the method comprises:
  • the water circulating system is used for connecting a water mist generator with an external water source, thereby supplying the water mist generator with water needed for atomizing.
  • the water mist generator is installed opposite to the air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow.
  • S 802 comprises: obtaining monitoring results of the temperature at the air inlet and the refrigerant evaporating pressure; when the value of the temperature at a temperature monitoring point is T ⁇ T H ⁇ 0 or the value of the pressure at a pressure monitoring point is P ⁇ P H ⁇ 0, the water pump of the water circulating system is started; when T ⁇ T H ⁇ T 0 and P ⁇ P H ⁇ P 0 , the water pump is stopped from working.
  • T H is a predetermined temperature
  • P H is a predetermined pressure
  • T 0 is a non-return temperature
  • P 0 is a non-return pressure.
  • This device adopts a module design, has a wide adaptive capability, and can be applied to the traditional air-cooled air conditioner air conditioner outdoor unit for reduction of power consumption;
  • This device and method control the timing of the spraying, require no additional fans, and reduce the production cost and the operating expense of the energy-saving system, that is, reduce the Total Cost of Ownership (TCO);
  • the sink of this device can be used for collecting drips dropped from the condenser, realizing the recycle of water and saving water resources;
  • This device and method adopt a fine management technology of operation, enhance the spray effect of the outdoor unit, and reduces the consumption of water resources while improving the Coefficient of Performance (COP) of the Computer Room Air Conditioner (CRAC);
  • COP Coefficient of Performance
  • CRAC Computer Room Air Conditioner
  • the structure of this device can loosen the installation constraints of the energy-saving system of the air conditioner outdoor unit and expand its application range.
  • the device of the present disclosure has advantages of low Capital Expenditure (CapEx), low Operating Expense (OpEx), small occupied space, flexible installation, easy for operation, and notable effect of saving energy and reducing exhaust.
  • the water mist generator of the present disclosure also can be arranged in the vicinity of the air outlet of the CRAC outdoor unit, such that the energy of the hot currents exhausted from the outdoor unit can be absorbed by the spray, in which way, the temperature of the exhaust air of the outdoor unit can be lowered and the influence on the environment by the exhaust air can be improved, and meanwhile, the heated water vapour can be recycled for further uses (e.g. in civil area, such as, for washing hands, showering, washing clothes, hot-water heating, or the like) so as to further enhance the utilization efficiency of energy.
  • civil area such as, for washing hands, showering, washing clothes, hot-water heating, or the like
  • the memory medium can be a magnetic disc, an optical disc, a read-only memory (ROM) or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present disclosure provides an energy-saving device for an air conditioner outdoor unit, which comprises: a water mist generator which is installed opposite to an air inlet of the outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the outdoor unit along with external airflow; a water circulating system which connects the water mist generator with an external water source, so as to supply the water mist generator with water needed for atomizing; a controller which is connected to the water circulating system for controlling operational states of the water circulating system based on monitored results of the temperature at an air inlet of a condenser of the outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of International Application No. PCT/CN2011/075044, filed May 31, 2011, which claims priority to Chinese Patent Application No. 201010255556.7, filed Aug. 16, 2010, both of which are hereby incorporated by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present disclosure relates to air conditioning energy-saving technology, and more specifically, to an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof.
  • DESCRIPTION OF THE RELATED ART
  • For the existing Central Office (CO)/Data Centre (DC) machine room, due to the continuous increase of the density of power consumption of various devices and the increasing demand for refrigeration, more and more air conditioners are required for heat dissipation. However, air conditioner outdoor units typically are installed closely with the distance between respective outdoor units being decreased continuously due to the limited outdoor space for arrangement, a phenomenon of “heated air interference” between outdoor units frequently occurs. The phenomenon causes the temperature of the airflow at the air inlet of the air conditioner outdoor unit to be excessively high, which severely affects the refrigeration performance of the air conditioner and is unfavourable for the energy-saving operation of the refrigeration system.
  • Moreover, some machine rooms is not properly designed. The installation regions for outdoor units usually face south or west which causes the air conditioner outdoor units to over-expose to sunlight during hot summer. Thus the airflow temperature at the air inlet of the outdoor unit becomes excessively hot, badly reducing the efficiency of heat dissipation of the outdoor unit and exerting unfavourable influences on the reliability of the operation of the indoor Information and Communication Technology (ICT) equipment.
  • FIG. 1 is a diagram showing the installation site of the air conditioning system in the prior art. As shown, an indoor host is connected with an outdoor condenser, the refrigerant in the outdoor condenser is continuously evaporated by absorbing the heat indoor, such that the temperature of the indoor air is decreased and an air after refrigeration is provided through an air outlet of the indoor host.
  • FIG. 2 shows an air conditioner heat dissipating system in the prior art. The following technical solution has been adopted in the prior art for addressing problems of excessively high airflow temperature at the air inlet of the outdoor unit, degradation of refrigeration efficiency and being not good for saving power consumption of the refrigeration system. A latent heat transition economizer is added at the air inlet of the condenser of the outdoor unit. The economizer comprises an evaporation wet curtain, a booster fan and a duct system. Water is supplied to the wet curtain through the duct system. The temperature of the air passing through the economizer is lowered by making use of the principle of endothermic induced by the evaporation of water, and the water that has been used is drained off through a blow-off line.
  • As shown in FIG. 2, the air conditioner heat dissipating system specifically comprises: air-cooled air conditioner host 1, condensation fan 2, air-cooled air conditioner host condenser 4, booster fan 5, water distribution pipeline 6, evaporation wet curtain 7, water circulating pipeline 8, external hot air 9, sink 10, water pump 11, water replenishing float 12, attachment bracket 13 and air inlet region 14. With this device, it is possible to lower the temperature at the air inlet of the condenser of air conditioner outdoor unit by 6° C.˜8° C., thereby accomplishing the purpose of enhancing refrigeration efficiency of the air conditioner and saving power consumption thereof.
  • During the implementation of the present disclosure, the inventor has found the following defects in the technical solution of the prior art:
  • Since this solution adopts a wet curtain which significantly increases airflow resistance of the system and requires an additional fan for overcoming this resistance, the operating expense (electricity bill for the operation of the fan), together with the material cost (fan) of the system, are increased;
  • Since the spray header is located above the evaporation wet curtain according to this solution, in such a coarse spraying manner, a large amount of water is not practically sprayed onto the wet curtain, which is not favourable for saving water resources.
  • SUMMARY OF THE INVENTION
  • In order to solve the above-mentioned defects existing in the prior art, the embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof, wherein, the energy-saving device lowers the temperature of the air conditioner outdoor unit by water mist generated from a water mist generator, improves the spraying effect of the outdoor unit, and controls the generation of water mist by monitoring the temperature at the air inlet and the refrigerant evaporating pressure, thereby further saving energy.
  • On one hand, the embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit, which comprises: a water mist generator which is installed opposite to an air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow; a water circulating system which connects the water mist generator with an external water source, so as to supply the water mist generator with water needed for atomizing; a controller which is connected to the water circulating system for controlling operational states of the water circulating system based on monitored results of the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist.
  • On the other hand, the embodiments of the present disclosure further provide an energy-saving method for an air conditioner outdoor unit, which comprises: detecting the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure; controlling operational states of the water circulating system based on monitored results of the temperature at the air inlet of the condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist; the water circulating system is used for connecting a water mist generator with an external water source, thereby supplying the water mist generator with water needed for atomizing; the water mist generator is installed opposite to the air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow.
  • The device according to the embodiments of the present disclosure adopts a water mist generator for lowering the temperature of an outdoor unit and enhances the spraying effect, requires no additional fans and saves costs, and performs a control on the timing of spraying which further saves energy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing the installation site of an air conditioning system in the prior art;
  • FIG. 2 is a structural view of an air conditioner heat dissipating system containing a latent heat transition economizer according to the prior art;
  • FIG. 3 is a block diagram showing a functional principle of an energy-saving device for an air conditioner outdoor unit according to the embodiments of the present disclosure;
  • FIG. 4 is a structural view of the device according to an embodiments of the present disclosure, when the air conditioner outdoor unit is horizontally installed;
  • FIG. 5 is a structural view of the device of the embodiments of the present disclosure, when the air conditioner outdoor unit is vertically installed;
  • FIG. 6 is a structural view of a two-side opposite spray water mist generator according to one embodiments of the present disclosure;
  • FIG. 6 a is a diagram of the spraying of the two-side opposite spray water mist generator;
  • FIG. 7 is a structural view of a dot spray water mist generator according to one embodiments of the present disclosure;
  • FIG. 7 a is a diagram of the spraying of the dot spray water mist generator; and
  • FIG. 8 is a flowchart of an energy-saving method for an air conditioner outdoor unit according to one embodiments of the present disclosure.
  • DESCRIPTION OF THE EMBODIMENTS
  • The embodiments of the present disclosure provide an energy-saving device for an air conditioner outdoor unit and an energy-saving method thereof. The device adopts a water mist generator for spraying the outdoor unit, controls the generation of water mist by monitoring the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure. The temperature at the air inlet can be lowered by the water mist, thereby improving the heat dissipating performance of the outdoor unit under a high-temperature environment and accomplishing purposes of enhancing refrigeration efficiency of the air conditioner outdoor unit and saving power consumption thereof.
  • In order to make the objects, the technical solution and the advantages of the embodiments of the present disclosure become much clearer, the technical solution of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings of the present disclosure. Obviously, the described embodiments are merely a part of the embodiments of the present disclosure, instead of the entire embodiments. Based on the embodiments of the present disclosure, all other embodiments that can be obtained by one of ordinary skill in the art without paying creative efforts also belong to the claimed scope of the present disclosure.
  • The embodiments of the disclosure provide energy-saving devices for an air conditioner outdoor unit. FIG. 3 is a block diagram showing the functional principle of the energy-saving device for an air conditioner outdoor unit according to the embodiments of the present disclosure. As shown in FIG. 3, the device comprises:
      • a water mist generator 301 which is installed opposite to an air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending
      • the generated water mist into the air conditioner outdoor unit along with external airflow;
      • a water circulating system 302 which connects the water mist generator 301 with an external water source, so as to supply the water mist generator 301 with water needed for atomizing;
      • a controller 303 which is connected to the water circulating system 302 for controlling operating states of the water circulating system 302 based on monitored results of the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby enabling and disabling the generation of water mist.
  • Specifically, the device further comprises: a temperature detection unit 304 which is provided at the air inlet of the condenser of the air conditioner outdoor unit for detecting the temperature at the air inlet; a pressure detection unit 305 which is provide in the condenser of the air conditioner outdoor unit for detecting the refrigerant evaporating pressure.
  • Specifically, the controller 303 further connects the temperature detection unit 304 with the pressure detection unit 305. When the value of the temperature at a temperature monitoring point is T−TH≧0 or the value of the pressure at a pressure monitoring point is P−PH≧0, the water pump is started; when T−TH≦T0 and P−PH≦P0, the water pump is stopped from working. Wherein, TH is a predetermined temperature, PH is a predetermined pressure, T0 is a non-return temperature, and P0 is a non-return pressure.
  • The energy-saving device for an air conditioner outdoor unit of this embodiment is typically applied to the following two main scenes: one scene in which the air conditioner outdoor unit is horizontally installed and the other scene in which the air conditioner outdoor unit is vertically installed. Below, the specific structures of the device under these two installation scenes will be described in detail.
  • A scene in which the air conditioner outdoor unit is horizontally installed
  • When the air conditioner outdoor unit is horizontally installed, the structure of the device of the present disclosure is shown in FIG. 4. In this application scene, the water mist generator and the sink are both located below the air inlet of the air conditioner outdoor unit. In addition, the water mist generator is located between the air inlet and the sink. The external hot air passes through the water mist generator and then enters the air conditioner outdoor unit.
  • As shown in FIG. 4, the water circulating system of this embodiment comprises: a sink which is provided below the water mist generator and connected to an external water source, and collects drips dropped from the condenser of the outdoor unit, thereby recycling the water; a water pump which is connected to the sink, the water mist generator and a controller, and controlled by the controller, for supplying the water from the sink to the water mist generator automatically. Optionally, the sink further comprises a water replenishing float for auto replenishment from external water sources, wherein, the operational principle of the water replenishing float is similar as the water tank of a home toilet, that is, when the water level drops, the float opens the water inlet valve, when the water level reaches a certain height, the water inlet valve is closed. Since this technology itself is a mature technology, detailed descriptions thereof are omitted.
  • The operational principle of the device of this embodiment goes as follows. The water mist generator and the water circulating system are mutually connected. Water inside the sink is transported to the water mist generator through the water pump, then the water mist generator atomizes the water. Due to the suction effect of the fan system of the air conditioner outdoor unit, the region nearby the water mist generator is a negative pressure zone, the airflow carries the mist into the outdoor unit. When the mist passes the condenser of the outdoor unit, the condenser is subjected to heat dissipation by an endothermic effect induced by the evaporation of water. Using such water mist evaporation manner can significantly lower the temperature of the external hot air (by about 8° C.˜12° C.), thus improving the state of heat dissipation of the air conditioner outdoor unit and enhancing its refrigeration efficiency.
  • The sink of this embodiment is connected with an external water supply system, for realizing auto replenishment of water resources with the use of the water replenishing float, and collects drips dropped from the condenser of the outdoor unit for recycle. In order to ensure that the sprayed water will not contaminate the water within the sink during back-flow, a mesh screen can be provided over the upper portion of the water tank, and a cleaning treatment on the water inside the water tank may be periodically carried out, for example, by putting non-oxidative cleanser 805A into the water tank once after every 700-hour service hours).
  • In order to reduce operating expense while ensuring the sufficient and high-efficient heat dissipation of the outdoor unit, it is necessary to finely regulate the operating time of the water pump. Since the heat dissipation efficiency of the outdoor unit is restrained by both the temperature at its air inlet and the refrigerant evaporating pressure, the controller of this embodiment monitors the air inlet temperature of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby realizing the real-time control of the generation of water mist and saving the electricity consumed by the operation of the water pump.
  • 2) A Scene in Which the Outdoor Unit is Vertically Installed
  • When the air conditioner outdoor unit is vertically installed, the installation structure of the device of the present disclosure is shown in FIG. 5. In this application scene, the water mist generator and the sink are provided in front of the air inlet of the air conditioner outdoor unit. External hot air passes through the water mist generator and then enters the air condition air conditioner outdoor unit. Other structures of the device in this scene are similar as those in the scene where the outdoor unit is horizontally installed, and thus detailed descriptions thereof are omitted.
  • The water mist generator is an important module of the embodiments of the present disclosure. This embodiment provides two specific implementation manners, which are applicable to the aforementioned horizontal installation structure and vertical installation structure;
  • (a) Two-Side Opposite Spray
  • As shown in FIG. 6, by providing water mist spray holes on the opposite sides of the water mist generator with each spray hole being connected to the water circulating system via a water pipeline, opposite spray of water mist can be realized and a water mist curtain can be formed on the plane of the water mist generator. Optionally, in order to make the water mist particles smaller, spray holes of a fine size can be used for spraying. The two-side opposite water mist generator has an advantage in that the water columns collide with each other to form fine water particles which is good for evaporative heat dissipation. Therefore, this structure can enhance the endothermic ability of water mist gasification while reducing the resistance encountered by the airflow at the time of passing through the water mist curtain, which significantly lowers the airflow temperature at the air inlet of the air conditioner outdoor unit. Meanwhile, the atomized water vapour can be more easily carried by the air and transported to the vicinity of the condenser of the air conditioner outdoor unit, thereby improving the heat dissipation effect of the condenser. Taking the vertical installation as an example, FIG. 6 a is a diagram of the spraying of the two-side opposite spray water mist generator, wherein, the spray direction of the water mist is indicated by the arrows.
  • (b) Dot Spray
  • As shown in FIG. 7, by providing water mist spray orifices on the surface of the water mist generator with each orifice being connected to the water circulating system via a water pipeline, vertically hemispherical spray of water mist can be realized and a water mist curtain can be formed between the surface of the water mist generator and the air inlet of the air conditioner outdoor unit. Optionally, in order to make the water mist particles smaller, spray orifices of a fine size can be used for spraying. As compared with the two-side opposite spray water mist generator, the dot spray has an advantage in that the resistance of the fan can be reduced. Thus, this structure can enhance the endothermic ability of water mist gasification while reducing the resistance encountered by the airflow at the time of passing through the water mist curtain, which significantly lowers the airflow temperature at the air inlet of the air conditioner outdoor unit. Meanwhile, the atomized water vapour can be more easily carried by the air and transported to the vicinity of the condenser of the air conditioner outdoor unit, thereby improving the heat dissipation effect of the condenser. Taking the vertical installation as an example, FIG. 7 a is a diagram of the spraying of the dot spray water mist generator, wherein, the spray direction of the water mist is indicated by the arrows.
  • This embodiment also provides an energy-saving method for an air conditioner outdoor unit. FIG. 8 is a flowchart of the energy-saving method. As shown in FIG. 8, the method comprises:
  • S801, detecting the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure;
  • S802, controlling operational states of the water circulating system based on monitor results of the temperature at the air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting or stopping the generation of water mist. Wherein, the water circulating system is used for connecting a water mist generator with an external water source, thereby supplying the water mist generator with water needed for atomizing. The water mist generator is installed opposite to the air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, thereby sending the generated water mist to the air conditioner outdoor unit along with external airflow.
  • Specifically, S802 comprises: obtaining monitoring results of the temperature at the air inlet and the refrigerant evaporating pressure; when the value of the temperature at a temperature monitoring point is T−TH≧0 or the value of the pressure at a pressure monitoring point is P−PH≧0, the water pump of the water circulating system is started; when T−TH≦T0 and P−PH≧P0, the water pump is stopped from working. Wherein, TH is a predetermined temperature, PH is a predetermined pressure, T0 is a non-return temperature, and P0 is a non-return pressure.
  • The device and method of the embodiments of the present disclosure can realize the following beneficial technical effects:
  • This device adopts a module design, has a wide adaptive capability, and can be applied to the traditional air-cooled air conditioner air conditioner outdoor unit for reduction of power consumption;
  • This device and method control the timing of the spraying, require no additional fans, and reduce the production cost and the operating expense of the energy-saving system, that is, reduce the Total Cost of Ownership (TCO);
  • The sink of this device can be used for collecting drips dropped from the condenser, realizing the recycle of water and saving water resources;
  • This device and method adopt a fine management technology of operation, enhance the spray effect of the outdoor unit, and reduces the consumption of water resources while improving the Coefficient of Performance (COP) of the Computer Room Air Conditioner (CRAC);
  • The structure of this device can loosen the installation constraints of the energy-saving system of the air conditioner outdoor unit and expand its application range.
  • In summary, as compared with the traditional energy-saving device of an air conditioner outdoor unit, the device of the present disclosure has advantages of low Capital Expenditure (CapEx), low Operating Expense (OpEx), small occupied space, flexible installation, easy for operation, and notable effect of saving energy and reducing exhaust.
  • The water mist generator of the present disclosure also can be arranged in the vicinity of the air outlet of the CRAC outdoor unit, such that the energy of the hot currents exhausted from the outdoor unit can be absorbed by the spray, in which way, the temperature of the exhaust air of the outdoor unit can be lowered and the influence on the environment by the exhaust air can be improved, and meanwhile, the heated water vapour can be recycled for further uses (e.g. in civil area, such as, for washing hands, showering, washing clothes, hot-water heating, or the like) so as to further enhance the utilization efficiency of energy.
  • One of ordinary skill in the art can understand that, all or part of the flowchart of the method described in the above embodiments can be completed by computer programs instructing relevant hardware, wherein, said programs can be stored in a computer readable memory medium and can comprise the flowchart as the above method embodiments when being executed. The memory medium can be a magnetic disc, an optical disc, a read-only memory (ROM) or a random access memory (RAM).
  • The aforementioned embodiments are merely used for describing the technical solution of the present disclosure, but are not intended to limit the present disclosure. Although the embodiments of the present disclosure have been described above in detail with reference to the previous embodiments, one of ordinary skill in the art should understand that, the technical solutions recited in the previous embodiments can be modified or some of the technical features in the previous embodiments can be equivalently replaced; moreover, these modifications or replacements will not make the corresponding technical solutions depart from the scope and range of the technical solutions recited in various embodiments of the present disclosure.

Claims (10)

1. An energy-saving device for an air conditioner unit comprising:
a water mist generator which is installed opposite to an air inlet of the air conditioner outdoor unit for atomizing water to generate water mist, wherein the generated water mist can enter into the outdoor unit along with external airflow;
a water circulating system which connects the water mist generator with an external water source, so as to supply the water mist generator with water needed for atomizing;
a controller which is connected to the water circulating system that controls operational states of the water circulating system based on monitoring results of the temperature at an air inlet of a condenser of the air conditioner unit and the refrigerant evaporating pressure, thereby starting or stopping the generation of water mist.
2. The device according to claim 1, wherein the said water mist generator comprises:
spray holes provided at opposite sides of the water mist generator in a manner that outlets of the spray holes at the opposite sides are arranged opposite to each other and each of the spray holes is connected with the water circulating system via a water pipeline, for realizing opposite spray of water mist and forming a water mist curtain on a plane of the water mist generator.
3. The device according to claim 1, wherein the said water mist generator comprises: a plurality of water mist spray orifices each of which is connected with the water circulating system via a water pipeline, for realizing a vertically hemispherical spray of water mist towards the air inlet and forming a water mist curtain between the surface of the water mist generator and the air inlet of the air conditioner outdoor unit.
4. The device according to claim 1, wherein the said water circulating system comprises:
a sink which is provided below the water mist generator and connected to an external water source, and collects drips dropped from the condenser of the outdoor unit, thereby realizing the recycle of water;
a water pump which is connected to the sink, the water mist generator and the controller, and supplies the water in the sink to the water mist generator under control of the controller.
5. The device according to claim 1, wherein the, said device further comprises:
a temperature detection unit which is provided at the air inlet of the condenser of the outdoor unit that detects the temperature at the air inlet;
a pressure detection unit which is provide in the condenser of the air conditioner unit for that detects the refrigerant evaporating pressure;
Wherein the controller further connects the temperature detection unit and the pressure detection unit; when the value of the detected temperature T−TH≧0 or the value of the detected pressure P−PH≧0, the water pump is started; when T−TH≦T0 and P−PH≦P0, the water pump is stopped working;
wherein, TH is a predetermined temperature, PH is a predetermined pressure, T0 is a non-return temperature, and P0 is a non-return pressure.
6. The device according to claim 4, wherein when the air conditioner unit is horizontally installed, the water mist generator is located below the air inlet of the outdoor unit.
7. The device according to claim 4, wherein, when the air conditioner unit is vertically installed, the water mist generator is located in front of the air inlet of the outdoor unit.
8. The device according to claim 4, wherein the sink further comprises a water replenishing float for auto replenishment of external water sources.
9. An energy-saving method for an air conditioner unit, wherein the method comprises:
detecting the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure;
controlling operational states of the water circulating system based on monitoring results of the temperature at an air inlet of the condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting or stopping the generation of water mist; the water circulating system is used for connecting a water mist generator with an external water source, thereby supplying the water mist generator with water needed for atomizing; the water mist generator is installed opposite to an air inlet of the unit for atomizing water to generate water mist, thereby the generated water mist can be enter into the air conditioner outdoor unit along with external airflow.
10. The method according to claim 9, wherein controlling operational states of the water circulating system based on monitoring results of the temperature at an air inlet of a condenser of the air conditioner outdoor unit and the refrigerant evaporating pressure, thereby starting and stopping the generation of water mist comprises:
obtaining monitoring results of the temperature at an air inlet of the condenser of the air conditioner unit and the refrigerant evaporating pressure;
when the value of the monitored temperature T−TH≧0 or the value of the monitored pressure P−PH≧0, the water pump of the water circulating system is started; when T−TH≦T0 and P-PH≦P0, the water pump is stopped working;
wherein, TH is a predetermined temperature, PH is a predetermined pressure, T0 is a non-return temperature, and P0 is a non-return pressure.
US13/763,199 2010-08-16 2013-02-08 Energy-saving device for air conditioner outdoor unit and energy-saving method thereof Abandoned US20130139534A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010102555567A CN101907324B (en) 2010-08-16 2010-08-16 Energy-saving device and energy-saving method for air conditioner outdoor unit
CN201010255556.7 2010-08-16
PCT/CN2011/075044 WO2011137855A1 (en) 2010-08-16 2011-05-31 Energy-saving device for air conditioner outdoor unit and method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075044 Continuation WO2011137855A1 (en) 2010-08-16 2011-05-31 Energy-saving device for air conditioner outdoor unit and method thereof

Publications (1)

Publication Number Publication Date
US20130139534A1 true US20130139534A1 (en) 2013-06-06

Family

ID=43262855

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/763,199 Abandoned US20130139534A1 (en) 2010-08-16 2013-02-08 Energy-saving device for air conditioner outdoor unit and energy-saving method thereof

Country Status (3)

Country Link
US (1) US20130139534A1 (en)
CN (1) CN101907324B (en)
WO (1) WO2011137855A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107965854A (en) * 2017-12-23 2018-04-27 华南理工大学广州学院 A kind of air-conditioner outdoor unit cooling system
EP3388751A4 (en) * 2015-12-10 2019-01-09 Guangdong Hi-1 New Materials Technology Research Institute Co., Ltd. Natural cold-source heat-dissipation system for various data equipment rooms
CN110701815A (en) * 2019-10-11 2020-01-17 烟台欧森纳地源空调股份有限公司 Evaporation type heat pump unit
US20220120452A1 (en) * 2020-10-16 2022-04-21 Fujifilm Business Innovation Corp. Booth
GR1010578B (en) * 2022-06-29 2023-11-29 Ελενη Νικολαου Μακρυγιαννη Air cooling system with water evaporation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907324B (en) * 2010-08-16 2013-03-13 华为技术有限公司 Energy-saving device and energy-saving method for air conditioner outdoor unit
CN102141274B (en) * 2011-03-24 2014-03-26 Tcl空调器(中山)有限公司 Split air-conditioner
CN102705935B (en) * 2012-06-02 2014-06-18 广东风华环保设备有限公司 Suspension type water mist dust laying and temperature reducing device for controlling indoor PM 2.5 air quality not to exceed standard
CN104566656A (en) * 2015-02-02 2015-04-29 珠海格力电器股份有限公司 Air conditioning system and control method thereof
CN105091159A (en) * 2015-05-13 2015-11-25 北京同盛环境科技有限公司 Energy-saving system for communication machine room central air conditioner
CN104848435A (en) * 2015-05-28 2015-08-19 何亮 Air conditioner water mist spraying cooling energy-saving system
CN105157125A (en) * 2015-08-12 2015-12-16 何亮 Auxiliary heat dissipating and water spray mist cooling device applied to outdoor host machine of air cooling air conditioner
CN105841407B (en) * 2016-05-23 2019-06-18 天来节能科技(上海)有限公司 A kind of air-conditioning voltage stabilizing energy saver and method
CN105993897A (en) * 2016-06-29 2016-10-12 湖南御景斋绿色智能科技有限公司 Intelligent micro-ecological landscape cylinder
CN106871370A (en) * 2017-03-13 2017-06-20 广东省智能制造研究所 A kind of air conditioning filter cooling control system wind power ganged based on intelligent negative pressure and method
CN108194995A (en) * 2017-12-13 2018-06-22 青岛海尔空调器有限总公司 A kind of air-conditioning
CN110131837A (en) * 2018-02-08 2019-08-16 中国二十冶集团有限公司 A kind of system and method reducing air conditioning energy consumption
CN108894957A (en) * 2018-06-26 2018-11-27 西安工程大学 A kind of air compressor air intake pretreatment optimization device
CN109282370B (en) * 2018-10-29 2024-03-01 福建天佐环境科技有限公司 Cooling system of air conditioner external unit and control method thereof
CN116293948A (en) * 2023-03-17 2023-06-23 烟台湖科空调设备有限公司 Air source air inlet structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387473A (en) * 1943-08-07 1945-10-23 Comfort Products Corp Air conditioning
US4028906A (en) * 1975-07-14 1977-06-14 Charles E. Upchurch Fogging device for cooling a condenser coil
US4213306A (en) * 1978-06-07 1980-07-22 William A. Peabody Method and apparatus for increasing air conditioner efficiency
US4266406A (en) * 1980-01-22 1981-05-12 Frank Ellis Cooling system for condenser coils
US5701748A (en) * 1995-06-12 1997-12-30 Phelps; Jack Leroy Evaporative cooler for air conditioning condensing unit
JP2000035227A (en) * 1998-07-15 2000-02-02 Daikin Ind Ltd Air conditioner
US6047555A (en) * 1999-01-13 2000-04-11 Yiue Feng Enterprise Co., Ltd. Refrigerating/air conditioning heat exchanging system with combined air/water cooling functions and the method for controlling such a system
WO2000068628A1 (en) * 1999-05-11 2000-11-16 Energy Innovation Corporation Evaporative cooler for air conditioning condensing unit
US20030213253A1 (en) * 2002-05-16 2003-11-20 Dennis James Air conditioner mist applicator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989394A (en) * 1995-09-25 1997-04-04 Sanyo Electric Co Ltd Cooler for finned tube condenser
CN2233057Y (en) * 1995-11-01 1996-08-14 魏剑鸣 Energy saving device used for small air conditioner
JP3739530B2 (en) * 1997-05-27 2006-01-25 オーケー器材株式会社 Air conditioner outdoor unit auxiliary cooling device
KR100391331B1 (en) * 2000-12-22 2003-07-12 현대자동차주식회사 Device for improving the capacity of air conditioning system using condenstating water
CN2753995Y (en) * 2004-07-12 2006-01-25 张华林 Air-cooled condenser air conditioner outdoor unit set
CN2833400Y (en) * 2005-08-16 2006-11-01 范育祥 Spray adsorption type air cooler dedicated for electric locomotive head
CN2906403Y (en) * 2005-12-30 2007-05-30 郑利春 Moving air conditioner with water as medium for heat exchange
CN2924430Y (en) * 2006-05-10 2007-07-18 徐文汉 Efficient air-cooled radiating device
CN201133703Y (en) * 2007-10-17 2008-10-15 南京捷通精密空调设备有限公司 Warm-pressing double-control intelligent atomizing sprinkling system
KR200445599Y1 (en) * 2009-05-20 2009-08-19 정민수 An Air Conditioner Which has Spindle Shaped Out-Door Condensing Water Coolers
CN101793427B (en) * 2010-03-04 2012-04-18 洛阳佳嘉乐农业产品开发有限公司 Continuous spraying air-cooled atomization and vaporization type condensing system and air-conditioning method
CN101907324B (en) * 2010-08-16 2013-03-13 华为技术有限公司 Energy-saving device and energy-saving method for air conditioner outdoor unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387473A (en) * 1943-08-07 1945-10-23 Comfort Products Corp Air conditioning
US4028906A (en) * 1975-07-14 1977-06-14 Charles E. Upchurch Fogging device for cooling a condenser coil
US4213306A (en) * 1978-06-07 1980-07-22 William A. Peabody Method and apparatus for increasing air conditioner efficiency
US4266406A (en) * 1980-01-22 1981-05-12 Frank Ellis Cooling system for condenser coils
US5701748A (en) * 1995-06-12 1997-12-30 Phelps; Jack Leroy Evaporative cooler for air conditioning condensing unit
JP2000035227A (en) * 1998-07-15 2000-02-02 Daikin Ind Ltd Air conditioner
US6047555A (en) * 1999-01-13 2000-04-11 Yiue Feng Enterprise Co., Ltd. Refrigerating/air conditioning heat exchanging system with combined air/water cooling functions and the method for controlling such a system
WO2000068628A1 (en) * 1999-05-11 2000-11-16 Energy Innovation Corporation Evaporative cooler for air conditioning condensing unit
US20030213253A1 (en) * 2002-05-16 2003-11-20 Dennis James Air conditioner mist applicator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ota, JP200035227TRANS (English Translation), 02-2000 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3388751A4 (en) * 2015-12-10 2019-01-09 Guangdong Hi-1 New Materials Technology Research Institute Co., Ltd. Natural cold-source heat-dissipation system for various data equipment rooms
JP2019502089A (en) * 2015-12-10 2019-01-24 広東合一新材料研究院有限公司Guangdong Hi−1 New Materials Technology Research Institute Co., Ltd. Natural cooling source heat dissipation system for various data centers
CN107965854A (en) * 2017-12-23 2018-04-27 华南理工大学广州学院 A kind of air-conditioner outdoor unit cooling system
CN110701815A (en) * 2019-10-11 2020-01-17 烟台欧森纳地源空调股份有限公司 Evaporation type heat pump unit
US20220120452A1 (en) * 2020-10-16 2022-04-21 Fujifilm Business Innovation Corp. Booth
GR1010578B (en) * 2022-06-29 2023-11-29 Ελενη Νικολαου Μακρυγιαννη Air cooling system with water evaporation

Also Published As

Publication number Publication date
CN101907324A (en) 2010-12-08
CN101907324B (en) 2013-03-13
WO2011137855A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US20130139534A1 (en) Energy-saving device for air conditioner outdoor unit and energy-saving method thereof
CN104244678B (en) Method for controlling primary water loop heat pipe heat radiation system for equipment cabinet server
CN104235981A (en) Primary water loop heat pipe radiation system for cabinet server
CN201106902Y (en) Wet wind refrigerated split type single cold air conditioner
CN105451509B (en) A kind of fluorine pumps the control method of a loop server cabinet cooling system
CN105430998A (en) Control method of fluorine-pump internal-circulation server cabinet heat radiation system
CN103245013A (en) Latent heat energy saving device of outdoor machine of air conditioning unit
CN105517405A (en) Control method of heat pipe internal circulation type server cabinet heat dissipation system
JP2019502089A (en) Natural cooling source heat dissipation system for various data centers
CN104235974A (en) Novel wet curtain energy-saving textile mill air-conditioning system
CN104359152B (en) Module multi-connected precise air-conditioning system and heat dissipation method thereof
CN204047013U (en) A kind of fluorine pump internal-circulation type secondary refrigerant loop server cabinet cooling system
CN204157200U (en) A kind of heat pipe cyclic refrigerant loop server cabinet cooling system
CN105517404A (en) Fluorine pump circulating type primary refrigerant loop server cabinet heat dissipation system
CN104254233B (en) Control method for heat pipe primary loop cabinet heat dissipation system
CN203642444U (en) Energy-saving air conditioner
CN204153902U (en) A kind of equipment cabinet server water loops heat pipe radiating system
CN105451508A (en) Fluorine-pump internal-circulation secondary refrigerant loop server cabinet heat radiation system
CN204923261U (en) Be applied to supplementary heat dissipation atomized water spray heat sink of outer host computer of air cooling air conditioning
CN104254232A (en) Heat-pipe circulating type primary refrigerant loop server cabinet heat dissipation system
CN212457524U (en) Cooling system
CN105020925A (en) Integrated cold/hot water unit adopting evaporative condenser
CN108156796A (en) A kind of Intelligent server cabinet being gas-cooled and liquid cold junction closes
CN103234370A (en) Light closed cooling tower
CN204786979U (en) Indirect evaporative cooling air -conditioning unit of vertical high efficiency

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, WENXIONG;KONG, XIAOMING;REEL/FRAME:029784/0521

Effective date: 20130121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION