US20130104815A1 - Economizer - Google Patents

Economizer Download PDF

Info

Publication number
US20130104815A1
US20130104815A1 US13/660,101 US201213660101A US2013104815A1 US 20130104815 A1 US20130104815 A1 US 20130104815A1 US 201213660101 A US201213660101 A US 201213660101A US 2013104815 A1 US2013104815 A1 US 2013104815A1
Authority
US
United States
Prior art keywords
economizer
exhaust
stacks
coil
coil stacks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/660,101
Inventor
Seyed Jafar Mirjalali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerpro Inc
Original Assignee
Enerpro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerpro Inc filed Critical Enerpro Inc
Priority to US13/660,101 priority Critical patent/US20130104815A1/en
Assigned to ENERPRO INC. reassignment ENERPRO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIRJALALI, SEYED JAFAR
Priority to CA2793329A priority patent/CA2793329A1/en
Publication of US20130104815A1 publication Critical patent/US20130104815A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/04Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways the tubes having plain outer surfaces, e.g. in vertical arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled

Definitions

  • Economizers are typically employed to heat a working fluid, such as water, making use of exhaust from a boiler, for example. While the exhaust may not be hot enough to be used in the boiler itself, heat from the exhaust may be recovered by the fluid carried by the economizer to improve the boiler's efficiency. In other words, the economizer is used to preheat the fluid carried therein with the exhaust heat that would otherwise have been wasted.
  • Some known economizers include coils and fins to increase heat transfer between the exhaust and the coils. Economizers are also known to include fans, or blowers, to force the exhaust from the boiler through the economizer.
  • an economizer including a plurality of coil stacks.
  • Each coil stack includes a tube coiled such that adjacent layers of the tube contact one another in a radial direction. Further, the coil stacks are axially spaced from one another to allow exhaust to flow between adjacent coil stacks.
  • FIG. 1 is a perspective view illustrating an example economizer
  • FIG. 2 illustrates a coil stack
  • FIG. 4 is a cross-sectional view of a tube used to form a coil stack
  • FIG. 5 includes various views of the exemplary economizer, as well as the manifolds used therein;
  • FIGS. 8-10 show various views of an example economizer housing.
  • an example economizer 10 includes a plurality of coil stacks 12 arranged relative to an inlet manifold 14 and an outlet manifold 16 (the manifolds are shown in detail in FIG. 5 ).
  • the coil stacks 12 are further arranged radially about an axis A x of a main exhaust flow conduit 18 .
  • the conduit 18 may optionally include a plurality of fins T disposed therein to create a circular movement of the exhaust E as it enters the economizer 10 .
  • the disclosed economizer 10 provides, among other features, for efficient recovery of latent heat.
  • the individual coil stacks 12 are formed by wrapping a single stainless steel tube 20 about itself.
  • the coil stack 12 a was formed by wrapping the single tube 20 about the axis A x such that the individual tube layers 22 a - 22 i contact one another in the radial direction R.
  • the efficiency of the overall economizer 10 depends on the relationship between heat transfer and a pressure drop of the exhaust E (e.g., exhaust pressure drop).
  • Heat transfer in this context, may be defined as the amount of heat allowed to transfer between the fluid within the economizer 10 (in particular, the fluid within the stacks 12 ) and the exhaust E. Efficiency of heat transfer is related to the heating surface available to the exhaust E.
  • Exhaust pressure drop may be defined as the difference between the pressure of the exhaust E as it enters the economizer (e.g., at the exhaust flow conduit 18 ) and the pressure of the exhaust E as it exits the economizer (e.g., after passing radially between the stacks 12 ).
  • Exhaust pressure drop may alternatively be defined as the pressure required to pass the exhaust E through the economizer.
  • axial gap D 1 the axial gap D 1 , stack size D 2 (or, overall stack diameter, represented in FIG. 2 ), tube diameter D 3 (represented in FIG. 4 ), and the number (or quantity) of stacks 12 selected for use therein.
  • a large axial gap D 1 leads to reduced heat transfer between the exhaust E and the stacks 12 .
  • efficiency of heat transfer is also related to the heating surface available to the exhaust E.
  • fins may be included to compensate for the lack of heat transfer.
  • the axial gap D 1 is related to tube diameter D 3 by a ratio within the range of 0.25:1 and 0.5:1, in one example.
  • the axial gap D 1 is within the range of about 0.1875 and 0.375 inches (between approximately 0.48 cm and 0.95 cm), the number of coil stacks selected for use is within the range of 30 and 36 coil stacks, and the tube diameter D 3 is about 0.75 inches (approximately 1.9 cm).
  • the terms “about,” approximately, and the like, should be construed to mean within dimensional tolerances accepted in this industry.
  • the stack size D 2 is then selected based on D 1 and D 3 to allow for a transfer of at least 10% of the heat from the exhaust E to the fluid within the economizer 10 .
  • disclosed economizer 10 allows for efficient heat transfer between the exhaust E and the working fluid, which again may be water, carried within the stacks 12 while reducing the exhaust pressure drop required to effectively communicate the exhaust through the coil stacks 12 .
  • the working fluid is water
  • the disclosed arrangement takes advantage of water condensing on the outside of the coil stacks 12 to increase heat transfer. Namely, relatively cold water within the economizer 10 is heated by the exhaust E, and condenses on the outside of the coil stacks 12 . This relatively cold water absorbs latent heat, allowing for absorption of the exhaust E. Further, and in general, the above-described configuration allows the economizer 10 to mainly recover latent heat, adding to the efficiency of the system (including the economizer 10 and the associated boiler).
  • the disclosed economizer 10 may be completely made of stainless steel. Other materials may be used, however, but stainless steel may have the advantages of being relatively inexpensive as well as providing for efficient heat transfer, and further being anti-corrosive.
  • the economizer may be contained in one of a plurality of economizer housings 24 a - 24 c and may be arranged relative to a boiler 26 , as shown across FIGS. 6-10 .
  • This disclosure is not limited to any particular use for the above-discussed economizer, and extends to all types of economizers.
  • the disclosed economizer is relatively compact and efficient. Further, in the disclosed example, no exhaust fan is required to communicate the exhaust from the boiler through the economizer 10 , and no heat-transfer fins (e.g., fins used primarily to transfer heat between exhaust and the working fluid, rather than the fins T, which are used to swirl a fluid flow) are required to increase heat transfer. Accordingly, the disclosed economizer is relative low cost and low maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Disclosed is an economizer including a plurality of coil stacks. Each coil stack includes a tube coiled such that adjacent layers of the tube contact one another in a radial direction. Further, the coil stacks are axially spaced from one another to allow exhaust to flow between adjacent coil stacks.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/552,143 filed 27 Oct. 2011, the entirety of which is herein incorporated by reference.
  • BACKGROUND
  • Economizers are typically employed to heat a working fluid, such as water, making use of exhaust from a boiler, for example. While the exhaust may not be hot enough to be used in the boiler itself, heat from the exhaust may be recovered by the fluid carried by the economizer to improve the boiler's efficiency. In other words, the economizer is used to preheat the fluid carried therein with the exhaust heat that would otherwise have been wasted.
  • Some known economizers include coils and fins to increase heat transfer between the exhaust and the coils. Economizers are also known to include fans, or blowers, to force the exhaust from the boiler through the economizer.
  • SUMMARY
  • Disclosed is an economizer including a plurality of coil stacks. Each coil stack includes a tube coiled such that adjacent layers of the tube contact one another in a radial direction. Further, the coil stacks are axially spaced from one another to allow exhaust to flow between adjacent coil stacks.
  • These and other features of the present disclosure can be best understood from the following drawings and detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings can be briefly described as follows:
  • FIG. 1 is a perspective view illustrating an example economizer;
  • FIG. 2 illustrates a coil stack;
  • FIG. 3 is a schematic-type view illustrating the arrangement of adjacent coil stacks;
  • FIG. 4 is a cross-sectional view of a tube used to form a coil stack;
  • FIG. 5 includes various views of the exemplary economizer, as well as the manifolds used therein;
  • FIG. 6-7 show various arrangements of an economizer relative to a boiler;
  • FIGS. 8-10 show various views of an example economizer housing.
  • DETAILED DESCRIPTION
  • With reference to the drawings, an example economizer 10 includes a plurality of coil stacks 12 arranged relative to an inlet manifold 14 and an outlet manifold 16 (the manifolds are shown in detail in FIG. 5). The coil stacks 12 are further arranged radially about an axis Ax of a main exhaust flow conduit 18. The conduit 18 may optionally include a plurality of fins T disposed therein to create a circular movement of the exhaust E as it enters the economizer 10. As will be appreciated from the below, the disclosed economizer 10 provides, among other features, for efficient recovery of latent heat.
  • In the example, the individual coil stacks 12 are formed by wrapping a single stainless steel tube 20 about itself. For example, in FIG. 2 the coil stack 12 a was formed by wrapping the single tube 20 about the axis Ax such that the individual tube layers 22 a-22 i contact one another in the radial direction R.
  • By coiling the tube 20 in such a manner the exhaust E from the boiler cannot pass axially through the stack 12 a (or, at least it is very difficult for exhaust to pass through the stack 12 a in an axial direction) between the individual layers of tube 22 a-22 i. Thus, when multiple coil stacks 12 (e.g., adjacent stacks 12 a-12 b) are arranged axially relative to one another (e.g., stacks 12 a-12 b are spaced apart, axially, by a distance D1), exhaust E is permitted to flow radially between the stacks, as shown in FIG. 3.
  • The efficiency of the overall economizer 10 depends on the relationship between heat transfer and a pressure drop of the exhaust E (e.g., exhaust pressure drop). Heat transfer, in this context, may be defined as the amount of heat allowed to transfer between the fluid within the economizer 10 (in particular, the fluid within the stacks 12) and the exhaust E. Efficiency of heat transfer is related to the heating surface available to the exhaust E. Exhaust pressure drop may be defined as the difference between the pressure of the exhaust E as it enters the economizer (e.g., at the exhaust flow conduit 18) and the pressure of the exhaust E as it exits the economizer (e.g., after passing radially between the stacks 12). Exhaust pressure drop may alternatively be defined as the pressure required to pass the exhaust E through the economizer.
  • As one would appreciate, there is a tradeoff between overall economizer efficiency, and the exhaust pressure drop. That is, decreasing the distance D1 between stacks may lead to more efficient heat transfer, however this also leads to a large pressure drop, requiring more energy (e.g., in the form of a separate fan or blower required to draw the exhaust E through the economizer 10).
  • Included among the variables affecting the relationship between heat transfer and exhaust pressure drop are the axial gap D1, stack size D2 (or, overall stack diameter, represented in FIG. 2), tube diameter D3 (represented in FIG. 4), and the number (or quantity) of stacks 12 selected for use therein.
  • As one example of the relationship between exhaust pressure drop and heat transfer, as the axial gap D1 decreases, overall heat transfer increases, as does the required exhaust pressure drop. If the axial gap D1 is too small, a separate blower or fan may be required to draw (or blow) the exhaust E through the economizer, increasing the energy required to operate the economizer 10. Further, the exhaust E may contain soot, which could potentially clog a small gap.
  • On the other hand, a large axial gap D1 leads to reduced heat transfer between the exhaust E and the stacks 12. As mentioned, efficiency of heat transfer is also related to the heating surface available to the exhaust E. Thus, when D1 is too large, fins may be included to compensate for the lack of heat transfer.
  • To optimize the relationship between heat transfer and exhaust pressure drop, the axial gap D1 is related to tube diameter D3 by a ratio within the range of 0.25:1 and 0.5:1, in one example.
  • In one example, the axial gap D1 is within the range of about 0.1875 and 0.375 inches (between approximately 0.48 cm and 0.95 cm), the number of coil stacks selected for use is within the range of 30 and 36 coil stacks, and the tube diameter D3 is about 0.75 inches (approximately 1.9 cm). As used herein, the terms “about,” approximately, and the like, should be construed to mean within dimensional tolerances accepted in this industry. Further, the stack size D2 is then selected based on D1 and D3 to allow for a transfer of at least 10% of the heat from the exhaust E to the fluid within the economizer 10. These dimensions provide one example of an efficient tradeoff between heat transfer and exhaust pressure drop, however this disclosure is not limited to the above-mentioned dimensions, and variations thereof come within the scope of this disclosure.
  • In general, disclosed economizer 10 allows for efficient heat transfer between the exhaust E and the working fluid, which again may be water, carried within the stacks 12 while reducing the exhaust pressure drop required to effectively communicate the exhaust through the coil stacks 12. In the example that the working fluid is water, the disclosed arrangement takes advantage of water condensing on the outside of the coil stacks 12 to increase heat transfer. Namely, relatively cold water within the economizer 10 is heated by the exhaust E, and condenses on the outside of the coil stacks 12. This relatively cold water absorbs latent heat, allowing for absorption of the exhaust E. Further, and in general, the above-described configuration allows the economizer 10 to mainly recover latent heat, adding to the efficiency of the system (including the economizer 10 and the associated boiler).
  • The disclosed economizer 10 may be completely made of stainless steel. Other materials may be used, however, but stainless steel may have the advantages of being relatively inexpensive as well as providing for efficient heat transfer, and further being anti-corrosive.
  • The economizer may be contained in one of a plurality of economizer housings 24 a-24 c and may be arranged relative to a boiler 26, as shown across FIGS. 6-10. This disclosure is not limited to any particular use for the above-discussed economizer, and extends to all types of economizers.
  • The disclosed economizer is relatively compact and efficient. Further, in the disclosed example, no exhaust fan is required to communicate the exhaust from the boiler through the economizer 10, and no heat-transfer fins (e.g., fins used primarily to transfer heat between exhaust and the working fluid, rather than the fins T, which are used to swirl a fluid flow) are required to increase heat transfer. Accordingly, the disclosed economizer is relative low cost and low maintenance.
  • While water has been mentioned as a working fluid carried within the economizer 10, other fluids may be employed herein. Further, economizers used in other areas, such as those not associated with a boiler, may benefit from this disclosure. Thus, this disclosure is not limited to economizers that are associated with a boiler.
  • Although the different examples have the specific components shown in the illustrations, embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
  • One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.

Claims (20)

What is claimed is:
1. An economizer comprising:
a plurality of coil stacks, each coil stack including a tube coiled such that adjacent layers of the tube contact one another in a radial direction, the coil stacks axially spaced from one another to allow exhaust to flow between adjacent coil stacks.
2. The economizer according to claim 1, wherein the coils stacks are axially spaced from one another such that an axial gap is provided between adjacent coil stacks, the axial gap related to the diameter of the tubes by a ratio within the range of 0.25:1 and 0.5:1.
3. The economizer according to claim 2, wherein the axial gap is within the range of about 3/16 inches (0.48 cm) and ⅜ inches (0.95 cm).
4. The economizer according to claim 3, wherein there are between 30 and 36 coil stacks.
5. The economizer according to claim 4, wherein the tube diameter is about 0.75 inches (1.9 cm).
6. The economizer according to claim 1, wherein the economizer does not include any heat-transfer fins.
7. A heat recovery system comprising:
a boiler configured to generate a flow of exhaust; and
an economizer including a plurality of coil stacks, each coil stack including a tube coiled such that adjacent layers of the tube contact one another in a radial direction, the coil stacks axially spaced from one another to allow the exhaust from the boiler to flow between adjacent coil stacks.
8. The system as recited in claim 7, wherein each coil stack is disposed about an axis, the economizer arranged relative to the boiler such that the exhaust enters the economizer flowing in a direction parallel to the axis.
9. The system as recited in claim 8, wherein the exhaust flows radially, in a direction perpendicular to the axis, between adjacent coil stacks.
10. The system as recited in claim 7, wherein a flow of a working fluid is provided to the economizer, the working fluid heated by the exhaust from the boiler.
11. The system as recited in claim 10, wherein the working fluid is water.
12. The system as recited in claim 10, wherein the economizer includes an inlet manifold in communication with each of the coils stacks, the working fluid provided to the inlet manifold.
13. The system as recited in claim 7, including a conduit configured to direct exhaust toward the economizer, the conduit including a plurality of fins configured to swirl the flow of exhaust as the exhaust enters the economizer.
14. The system according to claim 7, wherein the axial gap is within the range of about 3/16 inches (0.48 cm) and ⅜ inches (0.95 cm).
15. The system according to claim 14, wherein there are between 30 and 36 coil stacks.
16. The system according to claim 15, wherein the tube diameter is about 0.75 inches (1.9 cm).
17. The system according to claim 7, wherein the exhaust flows from the boiler to the economizer without the aid of an exhaust fan.
18. A method for heating a working fluid comprising:
providing a boiler;
providing an economizer including a plurality of coil stacks, each coil stack including a tube coiled such that adjacent layers of the tube contact one another in a radial direction, the coil stacks axially spaced from one another;
establishing a flow of a working fluid within each of the coil stacks; and
establishing a flow of exhaust from the boiler between adjacent coil stacks to heat the working fluid carried within the coil stacks.
19. The method as recited in claim 18, wherein the working fluid is water.
20. The method as recited in claim 19, including condensing water on the outside of the coil stacks to increase heat transfer between the exhaust and the water carried within the coil stacks.
US13/660,101 2011-10-27 2012-10-25 Economizer Abandoned US20130104815A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/660,101 US20130104815A1 (en) 2011-10-27 2012-10-25 Economizer
CA2793329A CA2793329A1 (en) 2011-10-27 2012-10-26 Economizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161552143P 2011-10-27 2011-10-27
US13/660,101 US20130104815A1 (en) 2011-10-27 2012-10-25 Economizer

Publications (1)

Publication Number Publication Date
US20130104815A1 true US20130104815A1 (en) 2013-05-02

Family

ID=48171084

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/660,101 Abandoned US20130104815A1 (en) 2011-10-27 2012-10-25 Economizer

Country Status (2)

Country Link
US (1) US20130104815A1 (en)
CA (1) CA2793329A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029056A (en) * 1976-01-16 1977-06-14 Leon Jacques Wanson Compact indirect heating vapor generator
US20030202913A1 (en) * 2002-04-30 2003-10-30 Mikhail Maryamchik Compact footprint CFB with mechanical dust collector
US20040045513A1 (en) * 2002-09-06 2004-03-11 Mcnertney Robert M. Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US20070209606A1 (en) * 2004-05-11 2007-09-13 Tetsurou Hamada Heat Exchanger and Water Heater
US7281497B2 (en) * 2002-10-16 2007-10-16 Societe D'etude Et De Realisation Mecaniques Engeneering En Technologies Avancees Condensation heat exchanger with plastic casing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029056A (en) * 1976-01-16 1977-06-14 Leon Jacques Wanson Compact indirect heating vapor generator
US20030202913A1 (en) * 2002-04-30 2003-10-30 Mikhail Maryamchik Compact footprint CFB with mechanical dust collector
US20040045513A1 (en) * 2002-09-06 2004-03-11 Mcnertney Robert M. Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US7281497B2 (en) * 2002-10-16 2007-10-16 Societe D'etude Et De Realisation Mecaniques Engeneering En Technologies Avancees Condensation heat exchanger with plastic casing
US20070209606A1 (en) * 2004-05-11 2007-09-13 Tetsurou Hamada Heat Exchanger and Water Heater

Also Published As

Publication number Publication date
CA2793329A1 (en) 2013-04-27

Similar Documents

Publication Publication Date Title
US9134041B2 (en) Vapor vacuum condensing boiler designs
US20050189094A1 (en) Helical coil-on-tube heat exchanger
TW201042230A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
US9890948B2 (en) Method for preheating feed water in steam power plants, with process steam outcoupling
JP2006336988A (en) Heat exchanger apparatus and heat pump water heater using it
US10760857B2 (en) Tube for a heat exchanger with an at least partially variable cross-section, and heat exchanger equipped therewith
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
EP4325117A2 (en) Condensing, ultra-low nox gas-fired humidifier
US20130104815A1 (en) Economizer
US9316409B2 (en) Heat exchanger including waste heat recovery
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP2012207852A (en) Boiler
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2010151332A (en) Heat exchanger and heat pump type water heater
JP2008185297A (en) Heat exchanger for hot water supply
JP2005147567A (en) Double pipe type heat exchanger
TWI651464B (en) Heat recovery steam generator and method for heating same
JP2007064551A (en) Combustion apparatus
CN203310299U (en) Efficient heat exchange pipe in condensing type heat exchanger
CN203964697U (en) Air cooled condenser
Nicolae et al. Compact solutions for heat recovery from cogeneration modules engines—Case study for a 500 kW (e) unit
CN103216975B (en) Bidirectional phase equilibrium heat exchanger, air conditioner and heat pump water heater
JPS6217154B2 (en)
CN202382599U (en) Heat exchanger with offset tube bundles in parallel connection

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENERPRO INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIRJALALI, SEYED JAFAR;REEL/FRAME:029189/0856

Effective date: 20121017

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION