US20130048265A1 - Variable temperature chiller coils - Google Patents

Variable temperature chiller coils Download PDF

Info

Publication number
US20130048265A1
US20130048265A1 US13/215,583 US201113215583A US2013048265A1 US 20130048265 A1 US20130048265 A1 US 20130048265A1 US 201113215583 A US201113215583 A US 201113215583A US 2013048265 A1 US2013048265 A1 US 2013048265A1
Authority
US
United States
Prior art keywords
chiller
modules
chiller coil
temperature
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/215,583
Other languages
English (en)
Inventor
Bhalchandra Arun DESAI
Michael Adelbert Sullivan
Huong Van Vu
Eric Milton LAFONTAINE
Mark Andrew Cournoyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US13/215,583 priority Critical patent/US20130048265A1/en
Assigned to GENERAL ELECTRIC COMPAN reassignment GENERAL ELECTRIC COMPAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SULLIVAN, MICHAEL ADELBERT, VU, HUONG VAN, COURNOYER, MARK ANDREW, Desai, Bhalchandra Arun, Lafontaine, Eric Milton
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY CORRECTIVE ASSIGNMENT TO CORRECT THE RESIDENT INFORMATION FOR THE SECOND, THIRD AND FIFTH INVENTORS AND TO HAVE SAME-DATE EXECUTION DATES FOR INVENTORS/WITNESSES PREVIOUSLY RECORDED ON REEL 026791 FRAME 0837. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTED ASSIGNMENT. Assignors: Desai, Bhalchandra Arun, COURNOYER, MARK ANDREW, Lafontaine, Eric Milton, SULLIVAN, MICHAEL ADELBERT, VU, HUONG VAN
Priority to EP12180320A priority patent/EP2562393A2/en
Priority to JP2012180294A priority patent/JP2013044327A/ja
Priority to CN2012103019142A priority patent/CN102953829A/zh
Publication of US20130048265A1 publication Critical patent/US20130048265A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection

Definitions

  • the present application relates generally to gas turbines and more particularly, to a chiller coil arrangement in a gas turbine inlet filter house.
  • Gas turbine engines typically include a compressor for compressing incoming air, a combustor for mixing fuel with the compressed air and to ignite the fuel and the air to form a high temperature gas stream, and a turbine section that is driven by the high temperature gas stream. It is generally accepted that lowering the temperature of the inlet air entering the compressor results in an increased power output, and there are known methods for reducing the air inlet temperature to the engine in so-called power augmentation systems.
  • a power augmentation system may include a chiller coil arrangement located in the turbine inlet filter house that reduces the temperature of the inlet air stream. Examples are described in, for example, U.S. Pat. No. 7,007,484 B2 and U.S. Patent Publication No. 2005/0056023 A1.
  • the present invention relates to a chiller coil system for an asymmetric gas turbine filter house comprising a plurality of chiller coil modules arranged in a substantially vertical array, each chiller coil module provided with a cooled fluid inlet pipe and a fluid outlet, each outlet pipe connected to a common return pipe, wherein at least some of the inlet pipes is connected to the common return pipe; and mixing control valves for controlling an amount of cooling fluid in the common return pipe to be added to the at least some of the inlet pipes.
  • the invention in another exemplary but nonlimiting aspect, relates to a chiller coil system for an asymmetric gas turbine filter house comprising a plurality of chiller coil modules arranged in two substantially vertical arrays, each chiller coil module provided with a cooled fluid inlet pipe and a warmed fluid outlet pipe, each warmed fluid outlet pipe connected to a common return pipe; wherein at least some of the cooled fluid inlet pipes are connected to the common return pipe, and wherein a mixing control valve controls an amount of warmed fluid in the common return pipe to be added to the at least some of said inlet pipes.
  • the invention provides a method of controlling temperature of inlet air flowing across a chiller coil assembly of a gas turbine, wherein the chiller coil assembly comprises a plurality of substantially vertically aligned chiller modules and wherein inlet air flow velocity varies across the chiller modules as a function of vertical height of the chiller modules, the method comprising determining temperature differential of the inlet air downstream of each module, and differentially adjusting temperature of cooling fluid in the plurality of chiller modules to produce a substantially uniform temperature for the inlet air downstream of the chiller coil assembly.
  • FIG. 1 is a partial schematic of an asymmetric gas turbine inlet filter house
  • FIG. 2 is a schematic diagram of a chiller coil and control arrangement for the filter house shown in FIG. 1 ;
  • FIG. 3 is a schematic control block diagram for controlling the chiller coil arrangement shown in FIG. 2 .
  • FIG. 1 illustrates a typical asymmetrical gas turbine filter house 10 including a filter section and chiller coil housing portion 12 and outlet duct portions 14 , 16 leading to the compressor (not shown).
  • a louvered inlet 18 guides outside or ambient air into the filter house, and it can be appreciated that the inlet flow velocity profile varies with height within the upstanding filter and chiller coil housing portion 12 .
  • chiller coil shown in dashed pipes is arranged substantially vertically (and upstream or downstream of filter elements (not shown)), and that air velocity and hence the temperature across and about the chiller coil will also vary by height in that, for example, air entering at the top of the filter housing, across the coils 20 (described below) and down the back wall to the outlet duct 14 will have a lower velocity and thus a greater time exposure to the cooling coils than air entering the filter house at the bottom of the chiller unit where the velocity is greater.
  • air downstream of the chiller coils in the lower portion of duct sections 14 , 16 will have higher temperatures than air in the upper portion of the duct sections.
  • the exemplary but nonlimiting embodiment of the invention described herein seeks to make that inlet air temperature more uniform throughout the post coil vertical section 12 , the duct sections 14 and 16 and hence the compressor.
  • the chiller coil assembly 20 is comprised of plural, individual but substantially identical vertically-oriented stacks of chiller coil modules 22 , each of which supports a serpentine array of finned heat exchange tubes indicated generally at 24 .
  • the stacks of chiller coil modules 22 are divided into two side-by-side groups, Group A on the left-hand side and Group B on the right-hand side. Within each group, there are three sets 1 , 2 and 3 of two coils each. Thus, within the Group A stack, modules 26 and 28 form the first set 1 ; modules 30 and 32 form the second set 2 ; and modules 34 , 36 form the third set 3 .
  • the module arrangement and control valve arrangement for the Group B stack is substantially identical to that of Group A, and therefore, only Group A will be described in detail, except as otherwise noted.
  • Chilled water (or other suitable cooling fluid) is supplied to the Group A stack of modules via common supply pipe 38 .
  • Each module is supplied individually by respective branch pipes 42 , 44 , 46 , 48 , 50 and 52 .
  • the cooling water exiting the modules via respective return branch pipes 54 , 56 , 58 , 60 , 62 and 64 joins to a common return pipe 39 which returns the newly-“warmed” water (due to heat exchange with the inlet air flowing across the module coils) to cooling towers (not shown) which ultimately return chilled water to the supply pipe 38 .
  • a separate manual vent valve 60 relieves pressure in the system as necessary. Vent valves 40 and 68 are for automatic vents and are in a normally open position.
  • inlet air velocity over the chiller coils varies by location. As already noted above, it has been determined that for some asymmetric filter house configurations, the air velocity through the two lowermost modules 26 , 28 of the Group A stack (and laterally-aligned modules 126 , 128 of the Group B stack) is higher, thereby resulting in air flow that is warmer due to a shorter residence time in the coil section. Conversely, with decreased velocity across the two uppermost, modules 34 , 36 , (and laterally-aligned modules 134 , 136 of the Group B stack) the inlet air downstream of the chiller coils is cooler due to longer residence time in the coil section.
  • the inlet air temperature through the mid portion of the chiller coils, including modules 30 , 32 and 130 , 132 lies in between the temperature of the inlet air passing through the upper and lower sets of modules 36 , 34 and 28 , 26 , respectively.
  • the chiller supply/return configuration is modified in accordance with a first exemplary but nonlimiting embodiment described below.
  • the chilled water supply is mixed with warmed return water.
  • the branch inlet pipes 46 , 48 of the mid-height modules 30 and 32 are connected by pipes 70 and 72 to the common return pipe 39 under the control of respective valves 74 and 76 which control the amount of warmed or return water to be added to the branch inlet pipes 46 , 48 .
  • the branch inlet pipes 50 , 52 are connected by pipes 78 and 80 to the common return pipe 39 under the control of respective valves 82 and 84 which control the amount of warmed or return water to be added to the branch inlet pipes 50 , 52 .
  • the goal is to have coldest water temperature flowing through the lowest module sets 26 and 28 and relatively less colder water through sets 30 and 32 and relatively least cold water through sets 34 and 36 .
  • the water temperature profile through the chiller coil modules 22 is counteracting the velocity profile. In the highest velocity area (lowest height section), residence time is lowest and water temperature is coldest. Progressing towards the top of the stacks of chiller coil modules 22 , the velocity is the lowest, resulting residence time is highest and the water temperature is least cold. This evens out the overall air temperature profile across the height of the stacks of modules 22 . In other words, in the described system thermal stratification is achieved to counter the effects of variable velocity.
  • the controlled addition of warmed return water is substantially the same for mid-height modules 30 and 32 , and a proportionately greater addition of warmed return water is made with respect to the upper-height modules 34 and 36 . It is nevertheless possible to treat each module individually rather than in pairs.
  • a conventional drain trough 86 catches condensate formed on the outside of the various modules and routes it to a drain box 87 . From the drain box, condensed water returns to the cooling towers where it is cooled and recycled to the chiller coils. Alternatively, the condensate can be drained off at the nearest drain point. Both alternatives are practiced in the industry.
  • FIG. 3 an exemplary but nonlimiting control system for monitoring and adjusting the water supplied to the various modules is illustrated.
  • a chiller coil controller 88 interfaces with a chiller plant controller 90 and a gas turbine controller 92 .
  • the chiller coil controller receives signals from sensors/thermocouples 94 , 96 , 98 , 100 , 102 and 104 , respectively corresponding to: inlet air temperature, inlet air velocity, chilled water return temperature from module pairs, chilled water supply flow, chilled water supply temperature, downstream air temperature.
  • Another embodiment of this system can also be utilized where the chiller coil controller resides in the chiller plant controller.
  • the chiller coil controller 88 outputs control signals the various mixing valves 74 , 76 , 82 , 84 to achieve the desired coolant temperature profile.
  • the chiller coil system is regulated to achieve a substantially uniform air temperature downstream of the chiller coils, thus compensating for the different velocity profiles across the coils resulting from the asymmetric filter house geometry.
  • the fin density, material of construction, coatings or the geometry of the individual heat exchanger tubes and fins in the various coils, and/or the heat exchange properties or mass flow of the cooling fluid may be altered as needed to obtain the desired uniformity of inlet air temperature.
  • the chilling coil system as described herein can be employed on essentially all existing gas turbines where transitions are asymmetric or where velocity profile is not uniform, and where the power demands warrant inlet air cooling. It can be also employed on new units where asymmetric transitions are necessary (to save cost of structural steel) when specified along the inlet air cooling.
  • the chilling coil system as described herein can also be employed on applications requiring inlet air heating for gas turbines where transitions are asymmetric and the gas turbine operation warrants inlet air heating.
  • the principle of design and operation is similar to the system explained above except for the fact that the purpose is to heat the inlet air.
  • the chiller coil system can also be used in circumstances where the plurality of chiller modules are supplied with coolant at different temperatures from a cooling source. In this arrangement mixing valves and return water mixing are not used; however, all modules are independently supplied with coolant at different temperatures directly from the cooling source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US13/215,583 2011-08-23 2011-08-23 Variable temperature chiller coils Abandoned US20130048265A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/215,583 US20130048265A1 (en) 2011-08-23 2011-08-23 Variable temperature chiller coils
EP12180320A EP2562393A2 (en) 2011-08-23 2012-08-13 Variable temperature chiller coils
JP2012180294A JP2013044327A (ja) 2011-08-23 2012-08-16 温度可変チラーコイル
CN2012103019142A CN102953829A (zh) 2011-08-23 2012-08-23 可变温度式冷却器盘管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/215,583 US20130048265A1 (en) 2011-08-23 2011-08-23 Variable temperature chiller coils

Publications (1)

Publication Number Publication Date
US20130048265A1 true US20130048265A1 (en) 2013-02-28

Family

ID=46829637

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/215,583 Abandoned US20130048265A1 (en) 2011-08-23 2011-08-23 Variable temperature chiller coils

Country Status (4)

Country Link
US (1) US20130048265A1 (zh)
EP (1) EP2562393A2 (zh)
JP (1) JP2013044327A (zh)
CN (1) CN102953829A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035095B2 (en) 2016-03-04 2018-07-31 General Electric Company Diverted pulse jet cleaning device and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683529A (zh) * 2013-11-05 2016-06-15 通用电气公司 燃气涡轮入口空气调节盘管系统
JP7032015B2 (ja) * 2016-05-03 2022-03-08 ゼネラル・エレクトリック・カンパニイ 液体注入装置、および液体注入装置を有する圧縮機アセンブリ
CN106644489B (zh) * 2016-09-30 2019-06-18 西安航天动力试验技术研究所 非对称结构推进剂均衡供应装置及设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193352A (en) * 1991-05-03 1993-03-16 Amsted Industries, Inc. Air pre-cooler method and apparatus
US5390505A (en) * 1993-07-23 1995-02-21 Baltimore Aircoil Company, Inc. Indirect contact chiller air-precooler method and apparatus
US5435122A (en) * 1991-09-13 1995-07-25 Abb Carbon Ab Temperature control method and apparatus for the air supply in PFBC plants
US20020083712A1 (en) * 2000-12-28 2002-07-04 Tomlinson Leroy Omar Control system and method for gas turbine inlet-air water-saturation and supersaturation system
US20050056023A1 (en) * 1999-08-06 2005-03-17 Pierson Tom L. Method of chilling inlet air for gas turbines
US20060042276A1 (en) * 2004-08-25 2006-03-02 York International Corporation System and method for detecting decreased performance in a refrigeration system
US20070271024A1 (en) * 2006-05-22 2007-11-22 Mitsubishi Heavy Industries, Ltd. Gas turbine output learning circuit and combustion control device for gas turbine having the same
US20110197592A1 (en) * 2010-02-15 2011-08-18 Theodore Philip Bezat Coil arrangement for air intake system for gas turbine and methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337674A1 (de) * 1992-11-17 1994-05-19 Elin Energieversorgung Verfahren zur Eisfreihaltung des Frischluft-Ansaugfilters von Gas-Dampfturbinenanlagen
JPH11173162A (ja) * 1997-07-22 1999-06-29 Yoshihide Nakamura ガスタービンシステムとその夏期における吸気冷却方法
US6145294A (en) * 1998-04-09 2000-11-14 General Electric Co. Liquid fuel and water injection purge system for a gas turbine
JP3723943B2 (ja) * 1999-10-05 2005-12-07 吉秀 中村 ガスタービンプラント及びその吸気冷却方法
US7007484B2 (en) 2003-06-06 2006-03-07 General Electric Company Methods and apparatus for operating gas turbine engines
CN2799870Y (zh) * 2005-06-22 2006-07-26 陆钧 燃气轮机组进气冷却装置
JP5423080B2 (ja) * 2009-03-18 2014-02-19 富士電機株式会社 局所冷却システム、その制御装置、プログラム
JP2010216765A (ja) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd 局所冷却システム
CN103470379B (zh) * 2013-09-09 2016-02-17 无锡金龙石化冶金设备制造有限公司 组合式节能型燃气轮机进气冷却系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193352A (en) * 1991-05-03 1993-03-16 Amsted Industries, Inc. Air pre-cooler method and apparatus
US5435122A (en) * 1991-09-13 1995-07-25 Abb Carbon Ab Temperature control method and apparatus for the air supply in PFBC plants
US5390505A (en) * 1993-07-23 1995-02-21 Baltimore Aircoil Company, Inc. Indirect contact chiller air-precooler method and apparatus
US20050056023A1 (en) * 1999-08-06 2005-03-17 Pierson Tom L. Method of chilling inlet air for gas turbines
US20020083712A1 (en) * 2000-12-28 2002-07-04 Tomlinson Leroy Omar Control system and method for gas turbine inlet-air water-saturation and supersaturation system
US20060042276A1 (en) * 2004-08-25 2006-03-02 York International Corporation System and method for detecting decreased performance in a refrigeration system
US20070271024A1 (en) * 2006-05-22 2007-11-22 Mitsubishi Heavy Industries, Ltd. Gas turbine output learning circuit and combustion control device for gas turbine having the same
US20110197592A1 (en) * 2010-02-15 2011-08-18 Theodore Philip Bezat Coil arrangement for air intake system for gas turbine and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE OIL & GAS, "Inlet Air Cooling" (2008). *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035095B2 (en) 2016-03-04 2018-07-31 General Electric Company Diverted pulse jet cleaning device and system

Also Published As

Publication number Publication date
JP2013044327A (ja) 2013-03-04
EP2562393A2 (en) 2013-02-27
CN102953829A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
US6213200B1 (en) Low profile heat exchange system and method with reduced water consumption
US9151488B2 (en) Start-up system for a once-through horizontal evaporator
US9377250B2 (en) Cross-flow heat exchanger having graduated fin density
US8235365B2 (en) Natural draft air cooled steam condenser and method
US20190219283A1 (en) Methods and apparatus for latent heat extraction
US20130048265A1 (en) Variable temperature chiller coils
JP6329786B2 (ja) 空調機の熱交換器
JP2010139114A (ja) 分配器並びに冷凍サイクル装置
JP6397853B2 (ja) 低温液体を気化するシステム
SU833154A3 (ru) Способ регулировани процесса тепловой обработки шлама
US11761677B2 (en) Water heater having highly efficient and compact heat exchanger
US10961909B2 (en) Variable evaporative cooling system
RU2685158C1 (ru) Выхлопная система газоперекачивающего агрегата
JP6286548B2 (ja) 貫流式蒸気発生器
RU2439450C1 (ru) Конденсатор с блоком переохлаждения
CN110686339B (zh) 一种集成喷雾功能的冷水机组
CN115899733A (zh) 一种提高烟气调温挡板汽温调节效果的炉膛出口烟道
CN114643636A (zh) 一种混凝土构件养护的热气互导系统及其控制方法
JP2005321336A (ja) 原子力施設ユーティリティ流体供給システムおよび方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPAN, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESAI, BHALCHANDRA ARUN;SULLIVAN, MICHAEL ADELBERT;VU, HUONG VAN;AND OTHERS;SIGNING DATES FROM 20110808 TO 20110809;REEL/FRAME:026791/0837

AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RESIDENT INFORMATION FOR THE SECOND, THIRD AND FIFTH INVENTORS AND TO HAVE SAME-DATE EXECUTION DATES FOR INVENTORS/WITNESSES PREVIOUSLY RECORDED ON REEL 026791 FRAME 0837. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTED ASSIGNMENT;ASSIGNORS:DESAI, BHALCHANDRA ARUN;SULLIVAN, MICHAEL ADELBERT;VU, HUONG VAN;AND OTHERS;SIGNING DATES FROM 20120730 TO 20120731;REEL/FRAME:028687/0111

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION