US20120279449A1 - Apparatus and method for focused electric field enhanced plasma-based ion implantation - Google Patents

Apparatus and method for focused electric field enhanced plasma-based ion implantation Download PDF

Info

Publication number
US20120279449A1
US20120279449A1 US13/398,500 US201213398500A US2012279449A1 US 20120279449 A1 US20120279449 A1 US 20120279449A1 US 201213398500 A US201213398500 A US 201213398500A US 2012279449 A1 US2012279449 A1 US 2012279449A1
Authority
US
United States
Prior art keywords
chamber
conduit
implantation
sample holder
evaporation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/398,500
Inventor
Paul K. Chu
Liuhe Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City University of Hong Kong CityU
Original Assignee
City University of Hong Kong CityU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City University of Hong Kong CityU filed Critical City University of Hong Kong CityU
Priority to US13/398,500 priority Critical patent/US20120279449A1/en
Publication of US20120279449A1 publication Critical patent/US20120279449A1/en
Assigned to CITY UNIVERSITY OF HONG KONG reassignment CITY UNIVERSITY OF HONG KONG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, LIUHE, CHU, PAUL K
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Definitions

  • the present invention relates to an apparatus and method for Plasma-Based Ion Implantation (PBII), and in particular though not exclusively to such a method that is suitable for use with implantation materials that have a low melting point and high vapor pressure.
  • PBII Plasma-Based Ion Implantation
  • Focused Electric Field Enhanced Plasma-Based Ion Implantation relates to a process for focused electric field enhanced plasma apparatus and methods and the following plasma-based ion implantation.
  • One of the techniques belonging to the family of plasma-based ion implantation is plasma immersion ion implantation (PIII), which is a useful niche technology for the modification of surface properties of materials and industrial components, especially such materials and components that are large or that have an irregular shape.
  • the samples are immersed in plasma from which ions are extracted and implanted in the surface of the samples.
  • a plasma source is provided to supply the ions for implantation.
  • the plasma may be generated by, for example, thermionic discharge, pulsed high-voltage glow discharge, radio frequency plasma sources, microwave plasma sources, cathodic arc metal plasma sources and sputtering targets amongst other possibilities.
  • a negative potential is applied to the sample holder which negative potential serves to attract positive ions out of the plasma and to accelerate them towards the sample where they are implanted.
  • apparatus for focused electric field enhanced plasma-based ion implantation comprising, an implantation chamber, a vacuum pump for maintaining the pressure in said implantation chamber at a desired level, a sample holder, means for applying a negative potential to said sample holder, and means for supplying a gaseous or vaporized implantation material, wherein said supplying means comprises an feed conduit having an exit opening located in said implantation chamber above said sample holder, and wherein when said negative potential is applied to said sample holder said exit opening of said feed conduit is maintained at a potential that is positive relative to said sample holder.
  • the apparatus further comprises an evaporating and supply means for generating vaporized implantation material and for supplying said vaporized implantation material to said inlet conduit.
  • the evaporating and supply means comprises an evaporation chamber for receiving a source of said implantation material, and a heating means for generating vaporized implantation material from the source.
  • the heating means preferably surrounds the evaporation chamber.
  • the evaporation chamber may be formed with an opening for allowing vaporized source material to exit the evaporation chamber, with the opening having a relatively small dimension compared with the internal area of said evaporation chamber.
  • the ratio of the opening to the top area of the evaporation chamber is greater than 4.
  • the evaporating and supply means is removable from said apparatus.
  • a method for performing plasma-based ion implantation comprising, locating a sample on a sample holder in an implantation chamber, supplying gaseous or vaporized implantation material to said implantation chamber through a conduit, said conduit having an exit opening located in said implantation chamber and above said sample holder, and applying a negative potential to said sample holder while maintaining said exit opening at a potential that is positive relative to said sample holder so as to generate an electron focused electric field between said sample holder and said exit opening effective to generate ions from said gaseous or vaporized implantation material and to accelerate said thus generated ions towards said sample for implantation therein.
  • the method comprises forming an electron focused electric field to enhance the ionization of the plasma, and where the electron focused electric field is formed by the small exit opening and the large area sample holder.
  • a negative potential is applied to said sample holder as a series of pulses and maintaining said exit opening grounded.
  • the pressure in said implantation chamber is preferably maintained above a breakdown pressure.
  • the implantation material may be generated by evaporating a source material in an evaporation chamber to generate a vapor, and wherein said vapor is fed to said feed conduit through a feed conduit.
  • the vapor may be fed to said feed conduit with a carrier gas.
  • the vapor is preferably generated in said evaporation chamber in a state of quasi-equilibrium.
  • the evaporation chamber may provided with an exit opening through which vapor escapes to pass to said feed conduit, and wherein the dimensions of said exit opening are relatively small compared to the internal dimensions of the evaporation chamber and wherein the diameter of the feed conduit is relatively small compared to its length to maintain said quasi-equilibrium state.
  • the implantation material may be gaseous and is supplied to said inlet conduit.
  • the pressure in said implantation chamber is maintained above a breakdown pressure to maintain a steady-state glow discharge between said sample holder and said exit opening of said inlet conduit.
  • a method of performing plasma based ion implantation comprising feeding a gaseous or vaporized implantation material to an implantation chamber through an inlet conduit, supporting a sample to be implanted on a sample holder, and generating a glow-discharge between said sample holder and an exit opening of said feed conduit by applying a negative potential to said sample holder, whereby ions of said implantation material are generated and accelerated towards said sample.
  • FIG. 1 is a sectional view through a FEFE-PBII apparatus according to an embodiment of the present invention
  • FIG. 2 illustrates the electric field lines in the implantation chamber in the embodiment of FIG. 1 ,
  • FIG. 3 illustrates the changing potential between the sample holder and the opening of the inlet conduit
  • FIG. 4 shows as an example the depth of implantation of sulfur atoms using the apparatus of the embodiment of FIG. 1 .
  • FIG. 1 there is shown a FEFE-PBII apparatus according to an embodiment of the invention comprising a vacuum chamber 1 the pressure in which can be reduced to any desired level by means of a vacuum pump 9 .
  • an implantation chamber 2 in which is located a sample holder 6 for supporting a sample 5 to be implanted with ions.
  • the implantation chamber 2 is a smaller chamber made of an insulating material such as glass which serves to protect the remainder of the vacuum chamber from contamination by the vapor that is supplied to the chamber 2 as will be discussed below.
  • the implantation chamber 2 being made of an insulating material, also serves to electrically isolate the sample holder 6 from the exit opening 3 of the feed conduit 4 for reasons that will be understood from the description below.
  • the implantation chamber 2 may be removed completely if the vacuum chamber 1 is to be used as part of a conventional PBII apparatus.
  • the vacuum chamber 1 can also be removed completely if the implantation chamber 2 is also used as the vacuum chamber to conduct FEFE-PBII.
  • Sample holder 6 is formed at the end of a conductive rod 7 which extends though a wall of the vacuum chamber 1 through an insulating ring 8 .
  • An upper region of the vacuum chamber 1 is provided with a conventional plasma generating means 22 which may take any conventional form.
  • Plasma generating means 22 is provided simply to enable the apparatus to function in a conventional manner (with the implantation chamber 2 removed) in addition to the novel manner to be described below, and plasma generating means 22 will therefore not be described in detail.
  • a means for vaporizing a solid material 18 comprises an evaporation chamber 17 , a heating device 16 and a thermally insulating shield 15 designed to ensure that heat generated by the heating device 16 is directed into the evaporation chamber 17 for greater efficiency rather than externally of the evaporation chamber 17 .
  • a neck 23 that connects the evaporation chamber 17 to the feed conduit 4 that leads through a side wall of the vacuum chamber 1 to the top of the implantation chamber 2 where the feed conduit 4 is formed with an exit opening 3 into the implantation chamber 2 located above the sample 5 .
  • Heating device 16 may be any convenient heating device such as, for example, a high frequency heating device. In the embodiment of FIG. 1 the heating device 16 surrounds the evaporation chamber 17 , but alternatively the heating device 16 may be located simply at the bottom of the evaporation chamber 17 .
  • the vaporized sulfur is then allowed to escape from the evaporation chamber 17 through the neck 23 of the evaporation chamber which neck 23 has a diameter that is relatively small compared to the size of the evaporation chamber 17 so that the sulfur vapor may be in a quasi-equilibrium state within the evaporation chamber 17 .
  • the ratio of the entrance area of the neck 23 to the top area of the evaporation chamber 17 should be more than 4.
  • the sulfur vapor 19 that escapes from the evaporation chamber 17 is fed to the feed conduit 4 through an input valve 12 controlled by manually operable valve control means 14 .
  • Input valve 12 is provided with a valve heating means 13 similar to heating device 16 in order to prevent the sulfur vapor being deposited in the input valve 12 or in the feed conduit 4 .
  • the vaporized sulfur then passes along the feed conduit 4 (which is surrounded by an insulating wall 11 again to prevent cooling and deposition of the sulfur) to the exit opening 3 into the implantation chamber 2 .
  • means may be provided for supplying an inert carrier gas such as argon to facilitate the transfer of the sulfur vapor along the feed conduit 4 .
  • the carrier gas can be fed in from side wall of the evaporation chamber 17 or other places around the chamber not shown here.
  • This integral vaporizing and supply means is connected to the remainder of the PBII apparatus by means of a quick release flange 10 .
  • the integral vaporizing and supply means may be removed if not needed and in its place a supply conduit for a gaseous plasma forming material may be used if the material to be implanted is one that is gaseous under standard conditions.
  • the feed conduit 4 may be closed off altogether and plasma may be supplied to the vacuum chamber 1 in a conventional manner elsewhere, and the implantation chamber 2 may be removed, thus allowing an embodiment of the invention to be integrated into a conventional PBII apparatus.
  • the sample 5 in which the ions are to be implanted is supported on a sample holder 6 made of a conducting material and the sample holder 6 is supported on an electrically conductive rod 7 .
  • the conductive rod 7 and the sample holder 6 are connected to a source of negative potential and a highly negative voltage (eg 15 kV) is applied to the sample holder 6 .
  • the negative potential may be applied as a series of pulses, or in a long-pulse pseudo DC manner.
  • the feed conduit 4 , thermally insulating wall 11 , and the shield 15 surrounding the evaporation chamber 16 are all electrically grounded, therefore an electric field is established between the exit opening 3 of the feed conduit 4 (which is grounded and thus acts as an anode) and the negatively charged sample holder 6 .
  • the area of the exit opening 3 is much less than that of the sample holder 6 .
  • the electrons in the plasma as well as the secondary electron exited from the sample holder 6 will all fly to the exit opening 3 , a focused electric field is formed between the exit opening 3 and the sample holder 6 .
  • the ratio of the anode (exit opening 3 ) to cathode (sample holder 6 ) should be more than 6.
  • the electric field acts to ionize the sulfur vapor entering the implantation chamber 2 through the exit opening 3 forming an electron cloud/plasma 20 .
  • Sulfur ions are then accelerated in the direction of arrows 21 under the influence of the electric field and are accelerated towards the sample 5 in which they are then implanted.
  • FIG. 2 shows as an example the potential distribution between the negatively charged sample holder 6 marked B in the Figure, and the grounded exit opening 3 marked A in the Figure when a negative voltage of 15 kV is applied to the sample holder 6 . Electrons formed by the ionization of the sulfur vapor will move in the direction that the potential changes the fastest and the force on them is along the direction of an equipotential surface.
  • FIG. 3 illustrates the potential (shown on the y axis) between the sample holder 6 forming the cathode, and the exit opening 3 forming the anode.
  • the vaporizing source is preferably a quasi-equilibrium source in order to control the input vapor flow and implantation stability.
  • the interior of the evaporation chamber 17 is relatively large with a large internal area.
  • the feed conduit 4 is relatively long and with a small internal diameter (eg 6 mm). The ratio of the length of the feed conduit 4 to the internal diameter should be more than 4.
  • the mean free path of the vaporized sulfur atoms is much larger than the diameter of the feed conduit 4 and thus the vapor enters the feed conduit 4 in the form of a laminar flow.
  • a glow discharge is created under the influence of the high negative potential applied to the sample holder 6 this creating a plasma and beginning the implantation process.
  • the pressure in the implantation chamber must exceed the breakdown pressure.
  • FIG. 4 is a plot showing the concentration of sulfur atoms (y axis) as a function of depth (x axis) into a silicon sample in the following example.
  • a negative voltage of 15 kV is applied to the sample holder for a period of one hour.
  • the negative voltage was applied to the sample holder 6 as pulses at a frequency of 100 Hz and with the pulses having a duration of 250 ⁇ s.
  • the voltage was then increased to a negative voltage of 25 kV, again pulsed as before, for a further two hours.
  • Sulfur was evaporated from the solid state in the evaporation chamber 17 and fed through feed conduit 4 using argon as the carrier gas.
  • FIG. 4 shows the resulting sulfur distribution using X-ray spectroscopy and shows measured results contrasted with simulated analog results (obtained using TRIM software) without carrier gas.

Abstract

There is disclosed an apparatus and method for focused electric field enhanced plasma-based ion implantation. The apparatus includes an implantation chamber, a vacuum pump for maintaining the pressure in the implantation chamber at a desired level, a sample holder, means for applying a negative potential to the sample holder, and means for supplying a gaseous or vaporized implantation material. The supplying means takes the form of a feed conduit having an exit opening located in the implantation chamber above the sample holder, and when a negative potential is applied to the sample holder the exit opening of the feed conduit is maintained at a potential that is positive relative to the sample holder.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an apparatus and method for Plasma-Based Ion Implantation (PBII), and in particular though not exclusively to such a method that is suitable for use with implantation materials that have a low melting point and high vapor pressure.
  • BACKGROUND OF THE INVENTION
  • Focused Electric Field Enhanced Plasma-Based Ion Implantation (FEFE-PBII) relates to a process for focused electric field enhanced plasma apparatus and methods and the following plasma-based ion implantation. One of the techniques belonging to the family of plasma-based ion implantation is plasma immersion ion implantation (PIII), which is a useful niche technology for the modification of surface properties of materials and industrial components, especially such materials and components that are large or that have an irregular shape. The samples are immersed in plasma from which ions are extracted and implanted in the surface of the samples.
  • PRIOR ART
  • Conventionally, in a PBII method, a plasma source is provided to supply the ions for implantation. Typically the plasma may be generated by, for example, thermionic discharge, pulsed high-voltage glow discharge, radio frequency plasma sources, microwave plasma sources, cathodic arc metal plasma sources and sputtering targets amongst other possibilities. After the plasma has been generated, a negative potential is applied to the sample holder which negative potential serves to attract positive ions out of the plasma and to accelerate them towards the sample where they are implanted. A problem with conventional techniques, however, is that there does not exist a single plasma source that is capable of generating a plasma containing ions of all possible elements. For example, it is very difficult to generate a plasma containing positive ions of solid materials with poor electrical conductivity such as sulfur, phosphorous and boron, and poorly or semiconducting materials such as silicon, germanium and elements with low melting points and high vapor pressure. Unfortunately many of these materials that are difficult to implant are materials where the ability to perform PIII would be very desirable.
  • SUMMARY OF THE INVENTION
  • According to the present invention there is provided apparatus for focused electric field enhanced plasma-based ion implantation comprising, an implantation chamber, a vacuum pump for maintaining the pressure in said implantation chamber at a desired level, a sample holder, means for applying a negative potential to said sample holder, and means for supplying a gaseous or vaporized implantation material, wherein said supplying means comprises an feed conduit having an exit opening located in said implantation chamber above said sample holder, and wherein when said negative potential is applied to said sample holder said exit opening of said feed conduit is maintained at a potential that is positive relative to said sample holder.
  • In a preferred embodiment of the invention the apparatus further comprises an evaporating and supply means for generating vaporized implantation material and for supplying said vaporized implantation material to said inlet conduit. Preferably, for example, the evaporating and supply means comprises an evaporation chamber for receiving a source of said implantation material, and a heating means for generating vaporized implantation material from the source. The heating means preferably surrounds the evaporation chamber.
  • The evaporation chamber may be formed with an opening for allowing vaporized source material to exit the evaporation chamber, with the opening having a relatively small dimension compared with the internal area of said evaporation chamber. For example the ratio of the opening to the top area of the evaporation chamber is greater than 4. Preferably the evaporating and supply means is removable from said apparatus.
  • According to another aspect of the invention there is provided a method for performing plasma-based ion implantation comprising, locating a sample on a sample holder in an implantation chamber, supplying gaseous or vaporized implantation material to said implantation chamber through a conduit, said conduit having an exit opening located in said implantation chamber and above said sample holder, and applying a negative potential to said sample holder while maintaining said exit opening at a potential that is positive relative to said sample holder so as to generate an electron focused electric field between said sample holder and said exit opening effective to generate ions from said gaseous or vaporized implantation material and to accelerate said thus generated ions towards said sample for implantation therein.
  • In a preferred embodiment the method comprises forming an electron focused electric field to enhance the ionization of the plasma, and where the electron focused electric field is formed by the small exit opening and the large area sample holder.
  • Preferably a negative potential is applied to said sample holder as a series of pulses and maintaining said exit opening grounded. The pressure in said implantation chamber is preferably maintained above a breakdown pressure.
  • The implantation material may be generated by evaporating a source material in an evaporation chamber to generate a vapor, and wherein said vapor is fed to said feed conduit through a feed conduit. The vapor may be fed to said feed conduit with a carrier gas. The vapor is preferably generated in said evaporation chamber in a state of quasi-equilibrium. To achieve this the evaporation chamber may provided with an exit opening through which vapor escapes to pass to said feed conduit, and wherein the dimensions of said exit opening are relatively small compared to the internal dimensions of the evaporation chamber and wherein the diameter of the feed conduit is relatively small compared to its length to maintain said quasi-equilibrium state.
  • Alternatively the implantation material may be gaseous and is supplied to said inlet conduit.
  • Preferably the pressure in said implantation chamber is maintained above a breakdown pressure to maintain a steady-state glow discharge between said sample holder and said exit opening of said inlet conduit.
  • According to a further aspect of the present invention there is provided a method of performing plasma based ion implantation comprising feeding a gaseous or vaporized implantation material to an implantation chamber through an inlet conduit, supporting a sample to be implanted on a sample holder, and generating a glow-discharge between said sample holder and an exit opening of said feed conduit by applying a negative potential to said sample holder, whereby ions of said implantation material are generated and accelerated towards said sample.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:—
  • FIG. 1 is a sectional view through a FEFE-PBII apparatus according to an embodiment of the present invention,
  • FIG. 2 illustrates the electric field lines in the implantation chamber in the embodiment of FIG. 1,
  • FIG. 3 illustrates the changing potential between the sample holder and the opening of the inlet conduit,
  • FIG. 4 shows as an example the depth of implantation of sulfur atoms using the apparatus of the embodiment of FIG. 1.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Referring firstly to FIG. 1 there is shown a FEFE-PBII apparatus according to an embodiment of the invention comprising a vacuum chamber 1 the pressure in which can be reduced to any desired level by means of a vacuum pump 9. Within the vacuum chamber is provided an implantation chamber 2 in which is located a sample holder 6 for supporting a sample 5 to be implanted with ions. The implantation chamber 2 is a smaller chamber made of an insulating material such as glass which serves to protect the remainder of the vacuum chamber from contamination by the vapor that is supplied to the chamber 2 as will be discussed below. The implantation chamber 2, being made of an insulating material, also serves to electrically isolate the sample holder 6 from the exit opening 3 of the feed conduit 4 for reasons that will be understood from the description below. The implantation chamber 2 may be removed completely if the vacuum chamber 1 is to be used as part of a conventional PBII apparatus. The vacuum chamber 1 can also be removed completely if the implantation chamber 2 is also used as the vacuum chamber to conduct FEFE-PBII. Sample holder 6 is formed at the end of a conductive rod 7 which extends though a wall of the vacuum chamber 1 through an insulating ring 8. An upper region of the vacuum chamber 1 is provided with a conventional plasma generating means 22 which may take any conventional form. Plasma generating means 22 is provided simply to enable the apparatus to function in a conventional manner (with the implantation chamber 2 removed) in addition to the novel manner to be described below, and plasma generating means 22 will therefore not be described in detail.
  • To one side of the vacuum chamber 1 there is provided a means for vaporizing a solid material 18. This vaporizing means comprises an evaporation chamber 17, a heating device 16 and a thermally insulating shield 15 designed to ensure that heat generated by the heating device 16 is directed into the evaporation chamber 17 for greater efficiency rather than externally of the evaporation chamber 17. At the top of the evaporation chamber 17 there is formed a neck 23 that connects the evaporation chamber 17 to the feed conduit 4 that leads through a side wall of the vacuum chamber 1 to the top of the implantation chamber 2 where the feed conduit 4 is formed with an exit opening 3 into the implantation chamber 2 located above the sample 5.
  • If it is desired to form a plasma containing ions of an element with a low melting point, such as for example sulfur, a sample of sulfur (solid material 18) is placed within the evaporation chamber 17 and is vaporized to form a vapor 19 by the application of heat through heating device 16. Heating device 16 may be any convenient heating device such as, for example, a high frequency heating device. In the embodiment of FIG. 1 the heating device 16 surrounds the evaporation chamber 17, but alternatively the heating device 16 may be located simply at the bottom of the evaporation chamber 17. The vaporized sulfur is then allowed to escape from the evaporation chamber 17 through the neck 23 of the evaporation chamber which neck 23 has a diameter that is relatively small compared to the size of the evaporation chamber 17 so that the sulfur vapor may be in a quasi-equilibrium state within the evaporation chamber 17. Generally, the ratio of the entrance area of the neck 23 to the top area of the evaporation chamber 17 should be more than 4.
  • The sulfur vapor 19 that escapes from the evaporation chamber 17 is fed to the feed conduit 4 through an input valve 12 controlled by manually operable valve control means 14. Input valve 12 is provided with a valve heating means 13 similar to heating device 16 in order to prevent the sulfur vapor being deposited in the input valve 12 or in the feed conduit 4. The vaporized sulfur then passes along the feed conduit 4 (which is surrounded by an insulating wall 11 again to prevent cooling and deposition of the sulfur) to the exit opening 3 into the implantation chamber 2. Optionally, means may be provided for supplying an inert carrier gas such as argon to facilitate the transfer of the sulfur vapor along the feed conduit 4. The carrier gas can be fed in from side wall of the evaporation chamber 17 or other places around the chamber not shown here.
  • It should also be noted that the evaporation chamber 17 and heating device 16, input valve 12 and input valve heating means 13, together with the first part of the feed conduit 4 surrounded by a thermally insulating wall 11, form an integral unit for vaporizing solid state materials and other materials and for supplying the resulting vapor into the PBII apparatus. This integral vaporizing and supply means is connected to the remainder of the PBII apparatus by means of a quick release flange 10. By means of the quick release flange 10, the integral vaporizing and supply means may be removed if not needed and in its place a supply conduit for a gaseous plasma forming material may be used if the material to be implanted is one that is gaseous under standard conditions. Alternatively the feed conduit 4 may be closed off altogether and plasma may be supplied to the vacuum chamber 1 in a conventional manner elsewhere, and the implantation chamber 2 may be removed, thus allowing an embodiment of the invention to be integrated into a conventional PBII apparatus.
  • As discussed above, the sample 5 in which the ions are to be implanted is supported on a sample holder 6 made of a conducting material and the sample holder 6 is supported on an electrically conductive rod 7. In use of the embodiment of FIG. 1, the conductive rod 7 and the sample holder 6 are connected to a source of negative potential and a highly negative voltage (eg 15 kV) is applied to the sample holder 6. The negative potential may be applied as a series of pulses, or in a long-pulse pseudo DC manner. In contrast the feed conduit 4, thermally insulating wall 11, and the shield 15 surrounding the evaporation chamber 16 are all electrically grounded, therefore an electric field is established between the exit opening 3 of the feed conduit 4 (which is grounded and thus acts as an anode) and the negatively charged sample holder 6. The area of the exit opening 3 is much less than that of the sample holder 6. The electrons in the plasma as well as the secondary electron exited from the sample holder 6 will all fly to the exit opening 3, a focused electric field is formed between the exit opening 3 and the sample holder 6. To form this focused electric field, the ratio of the anode (exit opening 3) to cathode (sample holder 6) should be more than 6. The electric field acts to ionize the sulfur vapor entering the implantation chamber 2 through the exit opening 3 forming an electron cloud/plasma 20. Sulfur ions are then accelerated in the direction of arrows 21 under the influence of the electric field and are accelerated towards the sample 5 in which they are then implanted.
  • It is important to note that by applying a high negative voltage to the sample holder 6 an electric field is established that serves both to ionize the sulfur vapor entering the implantation chamber 2, and also to accelerate the resulting sulfur ions towards the surface of the sample. FIG. 2 shows as an example the potential distribution between the negatively charged sample holder 6 marked B in the Figure, and the grounded exit opening 3 marked A in the Figure when a negative voltage of 15 kV is applied to the sample holder 6. Electrons formed by the ionization of the sulfur vapor will move in the direction that the potential changes the fastest and the force on them is along the direction of an equipotential surface. Secondary electrons will also be emitted from the sample holder 6 and these electrons will also travel in the same direction and will move towards the exit opening 3 which forms the anode. The electrons resulting from the ionization of the sulfur vapor and the secondary electrons from the sample holder 6 will thus be focused on the outlet 3 and will form the electron cloud 20 shown in FIG. 1. The presence of this electron cloud 20 will in turn further assist in the generation of sulfur ions by the interaction of the electron cloud with the sulfur vapor exiting the exit opening 3. FIG. 3 illustrates the potential (shown on the y axis) between the sample holder 6 forming the cathode, and the exit opening 3 forming the anode.
  • As mentioned above, the vaporizing source is preferably a quasi-equilibrium source in order to control the input vapor flow and implantation stability. To achieve this quasi-equilibrium the interior of the evaporation chamber 17 is relatively large with a large internal area. The feed conduit 4 is relatively long and with a small internal diameter (eg 6 mm). The ratio of the length of the feed conduit 4 to the internal diameter should be more than 4.
  • In the presently described preferred embodiment of the invention, the mean free path of the vaporized sulfur atoms is much larger than the diameter of the feed conduit 4 and thus the vapor enters the feed conduit 4 in the form of a laminar flow. As discussed above, when the vapor flows into the implantation chamber a glow discharge is created under the influence of the high negative potential applied to the sample holder 6 this creating a plasma and beginning the implantation process. However, to maintain a steady-state glow discharge the pressure in the implantation chamber must exceed the breakdown pressure. An analysis of the conditions for establishing the breakdown pressure shows that the determining factors are the pressure in the evaporation chamber 17, and the length and diameter of the feed conduit 4.
  • In the following analysis
      • Pimp=pressure in the implantation chamber 2
      • Psource=pressure in the evaporation chamber 17 (if a carrier gas is used Psource reflects the combined pressure of the vapor and the carrier gas) and is determined by the evaporation rate and the gas flow rate
      • Utube=conductance of the feed conduit 4 determined by the length and diameter of the conduit 4 and the average speed of the vaporized atoms
      • Spump=the pumping speed of pump 9
  • P imp = U tube P source U tube + S pump = P source 1 + S pump U tube ( 1 )
  • From Eq. 1 it can be seen that by selecting an appropriate pressure in the evaporation chamber (to be determined by selecting the size of the evaporation chamber, and the applied temperature which will determine the evaporation rate), appropriate dimensions for the feed conduit 4, and a suitable pumping speed for pump 9, the pressure in the implantation chamber can be set so that in the steady state it is greater than the breakdown pressure and a steady-state glow discharge can be established.
  • It will also be noted that as implantation takes place if the particles in the implantation chamber 2 are used up, the pressure in the implantation chamber will fall and if it falls below the breakdown pressure the glow discharge will fail and the implantation process will stop until the pressure in the implantation chamber rises above the breakdown pressure again. To achieve stable operation therefore there should be sufficient vaporized atoms in the implantation chamber such that Pimp>Pbreakdown. That is to say
  • P imp = U tube P source U tube + S pump - Q imp U tube + S pump and U conduit S pump P breakdown + Q imp P source - P breakdown
  • Where Qimp=particle consumption rate during implantation.
  • It will thus be seen that by appropriate design of the key parameters such as the length and diameter of the feed conduit 4, the evaporation rate in the evaporation chamber 17, and the pumping rate of the pump 9, a steady-state glow discharge can be established and continuous implantation of atoms into the sample can take place. Should the particle consumption be such that the pressure in the implantation chamber falls below the breakdown pressure implantation will stop but will recommence once the pressure has increased to a level above the breakdown pressure.
  • FIG. 4 is a plot showing the concentration of sulfur atoms (y axis) as a function of depth (x axis) into a silicon sample in the following example. In this example a negative voltage of 15 kV is applied to the sample holder for a period of one hour. The negative voltage was applied to the sample holder 6 as pulses at a frequency of 100 Hz and with the pulses having a duration of 250 μs. The voltage was then increased to a negative voltage of 25 kV, again pulsed as before, for a further two hours. Sulfur was evaporated from the solid state in the evaporation chamber 17 and fed through feed conduit 4 using argon as the carrier gas. FIG. 4 shows the resulting sulfur distribution using X-ray spectroscopy and shows measured results contrasted with simulated analog results (obtained using TRIM software) without carrier gas.

Claims (20)

1. An apparatus comprising:
an implantation chamber;
an evaporation chamber including a heater and configured to vaporize a solid to thereby form a vapor;
a valve arranged to receive the vapor from the evaporation chamber; and
a conduit located between the valve and the implantation chamber, wherein the conduit includes a conduit exit that opens into the implantation chamber.
2. The apparatus of claim 1, further comprising a valve heater arranged to transfer heat to the valve.
3. The apparatus of claim 1, wherein the evaporation chamber further comprises an opening configured to receive a carrier gas.
4. The apparatus of claim 1, wherein a length of the conduit is at least four times greater than an internal diameter of the conduit.
5. The apparatus of claim 1, further comprising a vacuum chamber including a plasma generator, wherein the implantation chamber is located within the vacuum chamber.
6. The apparatus of claim 1, further comprising a sample holder located within the implantation chamber, wherein:
a surface of the sample holder opposite the conduit exit includes a cross-sectional area; and
the cross-sectional area of the sample holder is greater than a cross-sectional area of the conduit exit.
7. The apparatus of claim 6, wherein the cross-sectional area of the sample holder is at least six times greater than the cross-sectional area of the conduit exit.
8. An apparatus comprising:
an evaporation chamber including a heater and configured to vaporize a solid to thereby form a vapor;
a valve arranged to receive the vapor from the evaporation chamber; and
a first portion of a conduit extending from an implantation chamber, wherein the first portion of the conduit is releasably connected with a second portion of the conduit, and wherein the second portion of the conduit is further connected to the valve.
9. The apparatus of claim 8, wherein the heater comprises a high-frequency heater.
10. The apparatus of claim 8, wherein the evaporation chamber further comprises an opening configured to receive a carrier gas.
11. The apparatus of claim 8, wherein:
the evaporation chamber comprises a top surface and a neck extending from an opening in the top surface;
the neck is arranged to allow the vapor to escape to the valve; and
a surface area of the top surface of the evaporation chamber is greater than an area of the opening in the top surface.
12. The apparatus of claim 11, wherein the surface area of the top surface of the evaporation chamber is at least four times greater than the area of the opening in the top surface.
13. The apparatus of claim 8, further comprising a valve heater arranged to transfer heat to the valve.
14. An apparatus comprising:
a vacuum chamber;
a plasma generator located in an upper region of the vacuum chamber;
an implantation chamber located within the vacuum chamber;
a sample holder located within the implantation chamber and configured to hold a sample; and
a first portion of a conduit extending through the vacuum chamber and including a conduit exit that opens into the implantation chamber.
15. The apparatus of claim 14, further comprising:
an evaporation chamber; and
a second portion of the conduit;
wherein the evaporation chamber is arranged to provide a vapor to the implantation chamber through the first and second portions of the conduit.
16. The apparatus of claim 15, further comprising a valve configured to adjust a flow of the vapor from the evaporation chamber to the implantation chamber.
17. The apparatus of claim 16, further comprising a valve heater configured to transfer heat to the valve.
18. The apparatus of claim 15, further comprising a flange configured to releasably connect the second portion of the conduit with the first portion of the conduit.
19. The apparatus of claim 15, wherein the evaporation chamber comprises a heater configured to heat a solid to thereby form the vapor.
20. The apparatus of claim 15, wherein the evaporation chamber comprises an inlet to receive a carrier gas.
US13/398,500 2004-07-14 2012-02-16 Apparatus and method for focused electric field enhanced plasma-based ion implantation Abandoned US20120279449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/398,500 US20120279449A1 (en) 2004-07-14 2012-02-16 Apparatus and method for focused electric field enhanced plasma-based ion implantation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/891,309 US7741621B2 (en) 2004-07-14 2004-07-14 Apparatus and method for focused electric field enhanced plasma-based ion implantation
US12/106,009 US8119208B2 (en) 2004-07-14 2008-04-18 Apparatus and method for focused electric field enhanced plasma-based ion implantation
US13/398,500 US20120279449A1 (en) 2004-07-14 2012-02-16 Apparatus and method for focused electric field enhanced plasma-based ion implantation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/106,009 Continuation US8119208B2 (en) 2004-07-14 2008-04-18 Apparatus and method for focused electric field enhanced plasma-based ion implantation

Publications (1)

Publication Number Publication Date
US20120279449A1 true US20120279449A1 (en) 2012-11-08

Family

ID=35599766

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/891,309 Expired - Fee Related US7741621B2 (en) 2004-07-14 2004-07-14 Apparatus and method for focused electric field enhanced plasma-based ion implantation
US12/106,009 Expired - Fee Related US8119208B2 (en) 2004-07-14 2008-04-18 Apparatus and method for focused electric field enhanced plasma-based ion implantation
US13/398,500 Abandoned US20120279449A1 (en) 2004-07-14 2012-02-16 Apparatus and method for focused electric field enhanced plasma-based ion implantation

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/891,309 Expired - Fee Related US7741621B2 (en) 2004-07-14 2004-07-14 Apparatus and method for focused electric field enhanced plasma-based ion implantation
US12/106,009 Expired - Fee Related US8119208B2 (en) 2004-07-14 2008-04-18 Apparatus and method for focused electric field enhanced plasma-based ion implantation

Country Status (1)

Country Link
US (3) US7741621B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516284A (en) * 2013-04-11 2016-06-02 イオン ビーム サービス High productivity ion implanter
US9425400B2 (en) 2013-06-09 2016-08-23 Boe Technology Group Co., Ltd. Apparatus and method for coating organic film
WO2017156806A1 (en) * 2016-03-18 2017-09-21 李光武 Method and device for manufacturing semiconductor substrate
CN108411273A (en) * 2018-02-02 2018-08-17 信利(惠州)智能显示有限公司 A kind of auxiliary heating system and method for ion implantation device
CN109546008A (en) * 2017-09-22 2019-03-29 清华大学 The preparation method of Organic Light Emitting Diode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642135B2 (en) 2005-09-01 2014-02-04 Micron Technology, Inc. Systems and methods for plasma doping microfeature workpieces
CN101730373B (en) * 2008-11-03 2012-09-05 北京坚润表面材料研究所 Method and device for forming new materials by discharge of fog gas
CN106292190B (en) * 2015-05-24 2019-01-29 上海微电子装备(集团)股份有限公司 Torque compensation device and method applied to sports platform
WO2018192668A1 (en) * 2017-04-21 2018-10-25 Applied Materials, Inc. Material deposition arrangement, a method for depositing material and a material deposition chamber
CN111530118B (en) * 2020-05-21 2021-12-10 郑州大学 Ultrahigh vacuum equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620893A (en) * 1983-07-05 1986-11-04 Nextral Apparatus for the plasma treatment of disk-shaped substrates
US4756737A (en) * 1985-11-29 1988-07-12 Canon Kabushiki Kaisha Apparatus for producing optical element
US6033973A (en) * 1994-12-06 2000-03-07 Semiconductor Energy Laboratory Co., Ltd. Ion doping device and method of cleaning ion doping system
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US6335535B1 (en) * 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US20030082891A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping and ion implantation in an integrated processing system
US20030222360A1 (en) * 2002-05-29 2003-12-04 Randive Rajul V. High throughput vaporizer
US20030230986A1 (en) * 1999-12-13 2003-12-18 Horsky Thomas Neil Ion implantation ion source, system and method
US20040016404A1 (en) * 2002-07-23 2004-01-29 John Gregg Vaporizer delivery ampoule
US20050205807A1 (en) * 2004-03-18 2005-09-22 Perel Alexander S In-situ monitoring on an ion implanter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700633C2 (en) * 1987-01-12 1997-02-20 Reinar Dr Gruen Method and device for the gentle coating of electrically conductive objects by means of plasma
US5126163A (en) * 1990-09-05 1992-06-30 Northeastern University Method for metal ion implantation using multiple pulsed arcs
US5296272A (en) * 1990-10-10 1994-03-22 Hughes Aircraft Company Method of implanting ions from a plasma into an object
JPH0531957A (en) * 1991-05-23 1993-02-09 Canon Inc Light emitting device, optical writing printer head using the same and optical printer using the same head
US5330800A (en) * 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5354381A (en) * 1993-05-07 1994-10-11 Varian Associates, Inc. Plasma immersion ion implantation (PI3) apparatus
US5738731A (en) * 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
US5558718A (en) * 1994-04-08 1996-09-24 The Regents, University Of California Pulsed source ion implantation apparatus and method
US5531183A (en) * 1994-07-13 1996-07-02 Applied Materials, Inc. Vaporization sequence for multiple liquid precursors used in semiconductor thin film applications
WO1996020298A1 (en) * 1994-12-27 1996-07-04 Siemens Aktiengesellschaft Method of producing boron-doped monocrystalline silicon carbide
JPH09181061A (en) * 1995-12-25 1997-07-11 Hitachi Ltd Liq. material gasifying method and feeder and semiconductor producing apparatus constituted, using it
US5911832A (en) * 1996-10-10 1999-06-15 Eaton Corporation Plasma immersion implantation with pulsed anode
US5654043A (en) * 1996-10-10 1997-08-05 Eaton Corporation Pulsed plate plasma implantation system and method
US5861630A (en) * 1997-11-22 1999-01-19 Becker; Richard L. Method for generating a boron vapor
US6120660A (en) * 1998-02-11 2000-09-19 Silicon Genesis Corporation Removable liner design for plasma immersion ion implantation
US6101816A (en) * 1998-04-28 2000-08-15 Advanced Technology Materials, Inc. Fluid storage and dispensing system
US6213050B1 (en) * 1998-12-01 2001-04-10 Silicon Genesis Corporation Enhanced plasma mode and computer system for plasma immersion ion implantation
US6335536B1 (en) * 1999-10-27 2002-01-01 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for low voltage plasma doping using dual pulses
US6458430B1 (en) * 1999-12-22 2002-10-01 Axcelis Technologies, Inc. Pretreatment process for plasma immersion ion implantation
US7504639B2 (en) * 2003-10-16 2009-03-17 Alis Corporation Ion sources, systems and methods
US7511279B2 (en) * 2003-10-16 2009-03-31 Alis Corporation Ion sources, systems and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620893A (en) * 1983-07-05 1986-11-04 Nextral Apparatus for the plasma treatment of disk-shaped substrates
US4756737A (en) * 1985-11-29 1988-07-12 Canon Kabushiki Kaisha Apparatus for producing optical element
US6033973A (en) * 1994-12-06 2000-03-07 Semiconductor Energy Laboratory Co., Ltd. Ion doping device and method of cleaning ion doping system
US6335535B1 (en) * 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US20030230986A1 (en) * 1999-12-13 2003-12-18 Horsky Thomas Neil Ion implantation ion source, system and method
US20030082891A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping and ion implantation in an integrated processing system
US20030222360A1 (en) * 2002-05-29 2003-12-04 Randive Rajul V. High throughput vaporizer
US20040016404A1 (en) * 2002-07-23 2004-01-29 John Gregg Vaporizer delivery ampoule
US20050205807A1 (en) * 2004-03-18 2005-09-22 Perel Alexander S In-situ monitoring on an ion implanter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516284A (en) * 2013-04-11 2016-06-02 イオン ビーム サービス High productivity ion implanter
US9425400B2 (en) 2013-06-09 2016-08-23 Boe Technology Group Co., Ltd. Apparatus and method for coating organic film
WO2017156806A1 (en) * 2016-03-18 2017-09-21 李光武 Method and device for manufacturing semiconductor substrate
CN109546008A (en) * 2017-09-22 2019-03-29 清华大学 The preparation method of Organic Light Emitting Diode
US20190115534A1 (en) * 2017-09-22 2019-04-18 Tsinghua University Method for making organic light emitting diode
US10424734B2 (en) * 2017-09-22 2019-09-24 Tsinghua University Method for making organic light emitting diode
CN108411273A (en) * 2018-02-02 2018-08-17 信利(惠州)智能显示有限公司 A kind of auxiliary heating system and method for ion implantation device

Also Published As

Publication number Publication date
US8119208B2 (en) 2012-02-21
US7741621B2 (en) 2010-06-22
US20060013964A1 (en) 2006-01-19
US20080193666A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
US8119208B2 (en) Apparatus and method for focused electric field enhanced plasma-based ion implantation
KR0158235B1 (en) Ion implantation system
US20080315127A1 (en) Ion Implanter Operating in Pulsed Plasma Mode
JPH08227688A (en) Ion generator used for ion injection machine and method thereof
JPH0265033A (en) Ion beam source for radio frequency
US4719355A (en) Ion source for an ion implanter
US3845312A (en) Particle accelerator producing a uniformly expanded particle beam of uniform cross-sectioned density
EP1829436B1 (en) Anionic and neutral particulate beams
US20140110607A1 (en) Ion implanter power supply which is intended to limit the loading effect
EP2482303A2 (en) Deposition apparatus and methods
KR20100083545A (en) Method and apparatus for ion implantation of non-gaseous elements
Bugaev et al. Generation of boron ions for beam and plasma technologies
JP7084201B2 (en) Reactive ion plating equipment and method
JP2977862B2 (en) Plasma generator
JP3186777B2 (en) Plasma source
JP2004139913A (en) Ion beam generating device, ion beam generating method, ion processing device, and ion processing method
JPH03163733A (en) High-speed atomic beam radiating device
Zolotukhin Measurement of mass-to-charge beam plasma ion composition during electron beam evaporation of refractory materials in the forevacuum pressure range
Gushenets et al. Plasma Optical System Based on an Anode-Layer Plasma Thruster for Intense Electron Beam Transport
JPH05117843A (en) Thin film forming method
EP3716308A1 (en) Gas cluster ion beam apparatus and analyzing apparatus
JP2703029B2 (en) Method of introducing impurities into substrate
JP2004011007A (en) Film deposition method
Begrambekov et al. Stand for an express analysis of ion-surface interaction
JP2023175267A (en) Ion plating device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITY UNIVERSITY OF HONG KONG, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHU, PAUL K;LI, LIUHE;SIGNING DATES FROM 20041029 TO 20041102;REEL/FRAME:030824/0943

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION