US20120231366A1 - Porous ceramic molten metal composite solid oxide fuel cell anode - Google Patents
Porous ceramic molten metal composite solid oxide fuel cell anode Download PDFInfo
- Publication number
- US20120231366A1 US20120231366A1 US13/416,417 US201213416417A US2012231366A1 US 20120231366 A1 US20120231366 A1 US 20120231366A1 US 201213416417 A US201213416417 A US 201213416417A US 2012231366 A1 US2012231366 A1 US 2012231366A1
- Authority
- US
- United States
- Prior art keywords
- metal
- anode
- sofc
- porous ceramic
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 57
- 239000000446 fuel Substances 0.000 title claims abstract description 47
- 239000002905 metal composite material Substances 0.000 title claims abstract description 28
- 239000007787 solid Substances 0.000 title claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000002184 metal Substances 0.000 claims abstract description 43
- 239000003792 electrolyte Substances 0.000 claims abstract description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- -1 for example Inorganic materials 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 20
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 9
- 229910001128 Sn alloy Inorganic materials 0.000 claims abstract description 4
- 239000002131 composite material Substances 0.000 claims description 25
- 239000011572 manganese Substances 0.000 claims description 24
- 229910052718 tin Inorganic materials 0.000 claims description 19
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 18
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 18
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 18
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 claims description 15
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052762 osmium Inorganic materials 0.000 claims description 5
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052702 rhenium Inorganic materials 0.000 claims description 5
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 239000010948 rhodium Substances 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 239000011669 selenium Substances 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910002254 LaCoO3 Inorganic materials 0.000 claims description 4
- 229910002328 LaMnO3 Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 239000007784 solid electrolyte Substances 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910019828 La0.7Sr0.3CoO3 Inorganic materials 0.000 claims description 3
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 7
- 229910001338 liquidmetal Inorganic materials 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 15
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910020938 Sn-Ni Inorganic materials 0.000 description 5
- 229910008937 Sn—Ni Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002132 La0.6Sr0.4Co0.2Fe0.8O3-δ Inorganic materials 0.000 description 2
- 229910002131 La0.6Sr0.4Co0.2Fe0.8O3–δ Inorganic materials 0.000 description 2
- 229910002130 La0.6Sr0.4Co0.2Fe0.8O3−δ Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910002607 Gd0.1Ce0.9O1.95 Inorganic materials 0.000 description 1
- 229910002138 La0.6Sr0.4CoO3 Inorganic materials 0.000 description 1
- 229910002147 La0.6Sr0.4FeO3 Inorganic materials 0.000 description 1
- 229910002262 LaCrO3 Inorganic materials 0.000 description 1
- 229910002321 LaFeO3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- VDJTUVRUUAWNSP-UHFFFAOYSA-N cobalt(2+) iron(2+) lanthanum(3+) oxygen(2-) Chemical compound [O-2].[Fe+2].[Co+2].[La+3] VDJTUVRUUAWNSP-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- UOROWBGGYAMZCK-UHFFFAOYSA-N lanthanum(3+) manganese(2+) oxygen(2-) Chemical compound [O-2].[La+3].[Mn+2] UOROWBGGYAMZCK-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8621—Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- SOFCs Solid Oxide Fuel Cells
- YSZ solid yttria-stabilized zirconium oxide
- SOFC technology has the distinct advantage over competing fuel cell technologies (e.g. molten carbonate, polymer electrolyte, phosphoric acid and alkali) because of its ability to use fuels other than hydrogen and their relative insensitivity to CO, which act as poisons to other fuel cell types, but is a fuel for these cells.
- the general design of a SOFC is two porous electrodes separated by a ceramic electrolyte.
- the oxygen source typically air, contacts the cathode, for example strontium doped lanthanum manganese oxide (LSM), strontium doped lanthanum cobalt iron oxide (LSCF), or other conventional cathode material, to form oxygen ions upon reduction by electrons at the cathode/electrolyte/oxygen triple phase boundary.
- LSM strontium doped lanthanum manganese oxide
- LSCF strontium doped lanthanum cobalt iron oxide
- the oxygen ions diffuse through the electrolyte material to the anode where the oxygen ions encounter the fuel at the anode forming, water, carbon dioxide (with hydrocarbon fuels), heat, and electrons.
- the electrons transport from the anode through an external circuit to the cathode.
- a particularly useful anode for many cells is a liquid tin anode.
- a Liquid Tin Anode Solid Oxide Fuel Cell is a fuel cell that combines the efficiency and reliability of conventional SOFCs while expanding the range of fuels that can be used, including gaseous, liquid, and solid fuels, and is particularly tolerant to impurities, such as sulfur.
- Another advantage is that coking is not a problem due to the low catalytic activity of tin toward carbon depositions and because the tin is a low vapor pressure liquid at use temperatures, for example, above 232° C., such that a stable surface to promote excessive coke formation is not available.
- the tin is supported on the YSZ electrolyte, which is relatively thick.
- LTA-SOFCs which are used at temperatures in excess of 1000° C., have power densities that are significantly lower than other state of the art SOFCs, including those designed to function at lower temperatures, see for example International Application Publication No. WO/2010/045329.
- a SOFC that combines a molten metal anode with a thin electrolyte to significantly lower the cells resistance is desirable.
- Embodiments of the invention are directed to a fuel cell anode comprising a porous ceramic molten metal composite.
- Other embodiments of the invention are directed to a solid oxide fuel cell (SOFC) that comprises the anode comprising a porous ceramic molten metal composite.
- SOFC solid oxide fuel cell
- the porous ceramic molten metal composite comprises a metal or metal alloy that is infused into a porous ceramic and is liquid at a temperature below the working temperature of the SOFC.
- the metal or metal alloy comprises tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium and the porous ceramic comprises a doped CeO 2 or stabilized ZrO 2 , such as Gd-doped CeO 2 (GDC), Y-doped CeO 2 (YDC), Sm-doped cerium oxide (SDC), Sm—Nd-doped cerium oxide, yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia.
- GDC Gd-doped CeO 2
- YDC Y-doped
- the solid oxide fuel cell comprises a layer of the anode comprising the porous ceramic molten metal composite, a cathode layer comprising a metal oxide or mixed metal oxide, and an electrolyte layer comprising an oxygen ion conductive ceramic.
- the cathode can comprise a perovskite-type oxide, such as LaMnO 3 , La 0.84 Sr0.
- the cathode layer can comprise a metal oxide or mixed metal oxide, for example, Bi 2 Ru 2 O 7 (BRO7), BRO7-(Er 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 (ESB) composite, BRO-(Dw 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 ) (DSB) composite, BRO-(Y 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 ) (YSB) composite, or BRO-Bi 2 ⁇ (x+y) Dy x W y O 3 (DWSB) composite.
- BRO7 Bi 2 Ru 2 O 7
- ESD BRO7-(Er 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8
- DSB BRO-(Dw 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 )
- BRO-(Y 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 ) (YSB) composite BRO-B
- the electrolyte layer can be GDC (Ce x Gd 1 ⁇ x O 2 ⁇ ), Y-doped CeO 2 (YDC) (Ce x Y 1 ⁇ x O 2 ⁇ ), Sm-doped cerium oxide (SDC) (Ce x Sm 1 ⁇ x O 2 ⁇ ), Sm—Nd-doped cerium oxide (Sm x Nd y Ce 1 ⁇ x ⁇ y O 2 ⁇ ); yttria-stabilized zirconia (YSZ); Ca-stabilized zirconia; or Sc-stabilized zirconia.
- the electrolyte layer can be the same oxygen ion conductive ceramic included in the porous ceramic molten metal composite of the anode layer.
- the electrolyte layer can be a bilayer electrolyte comprising a layer of the same oxygen ion conductive ceramic included in the anode layer and a layer of the metal oxide or mixed metal oxide of the cathode layer.
- FIG. 1 shows an SEM image of a Sn/GDC composite anode, according to an embodiment of the invention, where Sn (dark grey) is intimately mixed with GDC (light grey) and surrounded by continuous porosity (black) for good fuel gas transport and oxidation, where each edge of the micrograph is approximately 50 ⁇ m.
- FIG. 2 plots the I-V characteristics of a SOFC at 600° C. for a Sn—Ni/GDC anode, a GDC electrolyte, and an LSCF/GDC composite cathode, according to embodiments of the invention, where the data was collected at 600° C. using flowing air at the cathode and wet hydrogen on the anode.
- FIG. 3 plots the I-V characteristics of a SOFC at 600° C. for a Sn—Ni/GDC composite anode, a GDC electrolyte, and an LSCF/GDC composite cathode, according to embodiments of the invention, where the data was collected at 600° C. using vaporized flowing dodecane at the anode and air at the cathode.
- Embodiments of the invention are directed to solid oxide fuel cells (SOFCs) that employ a porous ceramic molten metal composite anode with a cathode, an electrolyte in contact with the anode and the cathode, and an electrical circuit connecting the anode and the cathode for use of the electrical power resulting from the chemical reaction generated by the oxidation of the fuel.
- SOFCs solid oxide fuel cells
- the oxidant generally oxygen from the air is exposed to the cathode where it is reduced with the consumption of electrons to oxygen ions that transports through the electrolyte to the anode.
- fuel is supplied to the anode where it reacts with the oxygen ion to form electrons and oxidation products, such as water where the fuel is hydrogen, water and carbon dioxide when the fuel is a hydrocarbon, or carbon dioxide when the fuel is carbonaceous, with release of electrons as the fuel is oxidized.
- electrons and oxidation products such as water where the fuel is hydrogen, water and carbon dioxide when the fuel is a hydrocarbon, or carbon dioxide when the fuel is carbonaceous, with release of electrons as the fuel is oxidized.
- the electrons generated at the anode are transmitted through the electrical circuit to the cathode.
- Embodiments of the invention are directed to the porous ceramic molten metal composite anodes for use in SOFCs.
- the porous ceramic for example Gd-doped CeO 2 (GDC)
- GDC Gd-doped CeO 2
- the high electron conductivity of the molten metal and the high oxygen ion conductivity of the porous ceramic combine in a complementary fashion.
- the anode is a composite that provides a relatively large triple phase boundary, it differs from a molten metal anode of a fuel cell that uses a porous ceramic only as the electrolyte or as a facilitating component that separates or controls the contacting of fuel to the separate molten metal anode.
- the composite structure is constructed to optimize the area of the triple phase boundary of the oxygen conductive ceramic, the molten metal and the fuel.
- the porous ceramic does not function as a barrier between the fuel and the anode, and allows the ceramic in conjunction with the liquid metal to display good electron transport as well as oxygen ion transport.
- the porous ceramic used in the composite can also provide a high electrical conductivity.
- the use of the porous ceramic molten metal composite anode allows use of thin electrolytes in the solid oxide fuel cell (SOFC), which decreases the overall cell resistance and promotes superior cell performance.
- the electrolyte and the porous ceramic of the porous ceramic molten metal composite anode can be of the same material composition, which also reduces the cell's resistance.
- the porous ceramic used in the porous ceramic molten metal composite anode can be a doped ceria, (such as Gd-doped CeO 2 (GDC) (Ce x Gd 1 ⁇ x O 2 ⁇ ) Y-doped CeO 2 (YDC) (Ce x Y 1 ⁇ x O 2 ⁇ ), Sm-doped cerium oxide (SDC) (Ce x Sm 1 ⁇ x O 2 ⁇ ), or Sm—Nd-doped cerium oxide (Sm x Nd y Ce 1 ⁇ x ⁇ y O 2 ⁇ )) a metal-stabilized zirconia (such as yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ)), or any other ceramic that can transport oxygen anions at high temperatures.
- GDC Gd-doped CeO 2
- YDC Y-doped CeO 2
- SDC Sm-doped ce
- Values for x or x+y for these porous ceramics can range from less than 0.1 to about 0.5 and y can range from 0.01 to 0.49 where optimal conductivities are observed.
- the dopant level is 10-20 atom percent of the metal.
- the molten metal of the porous ceramic molten metal composite anodes can be a pure liquid or can have solid and liquid components as long as the overall properties of the metal are liquid-like at the working temperature of the SOFC.
- the anode can be a pure metal or can comprise an alloy of two or more metals.
- the molten metal can display a standard reduction potential greater than ⁇ 0.70 V versus the Standard Hydrogen Electrode, as determined at room temperature.
- the molten metal anode can comprise one or more transition metals, main group metals, alkaline metals, alkaline earth metals, lanthanides, actinides, or any combinations thereof.
- the metal although liquid, possesses a low vapor pressure at the working temperature of the SOFC.
- Metals that can be included as the pure metal or a component of the alloy include tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium.
- Sn M.P. 232° C.
- Cd M.P.
- the porous ceramic molten metal composite anode can be porous GDC with tin, or a liquid tin alloy, such as Sn—Ni, that can be used with hydrocarbon fuels at temperatures as low as 600° C.
- the SOFC can be designed to operate where the metal of the porous ceramic molten metal composite anode displays liquid or liquid-like properties at temperature of less than about 1,200° C., at a temperature less than about 1,000° C., at a temperature less than about 900° C., at a temperature less than about 800° C., at a temperature less than about 700° C., or at a temperature less than about 600° C.
- Sn can be used at temperatures above 300° C. whereas Sb requires temperatures above 630° C.
- the melting temperature is suppressed to ⁇ 500° C. which allows operation at this temperature.
- the alloy consists of a small amount of solid phase within a large liquid phase at temperatures above ⁇ 500° C. and displays liquid like behavior, allowing its use in an anode, according to an embodiment of the invention.
- Higher levels of Zn in the alloy with Sb result in a higher alloy melting temperature.
- the porous ceramic molten metal composite anode resists coking when the metal, for example, tin, displays a low catalytic activity in addition to the presence of the liquid surface that does not stabilize carbon deposition. It is also advantageous when the metal is tolerant of impurities in the fuel.
- liquid tin resists the blocking of fuel oxidation reaction sites by sulfur and sulfur comprising compounds and does not have promoted metal migration deficiencies that are common with typical non-liquid SOFC anodes.
- the shape of the porous ceramic molten metal composite anode, the electrolyte sharing a common interface, and the cathode can vary as is desired to optimize any parameter for the SOFC including: overall volume; surface area of any interface between the various functional layers of the SOFC; effective surface area between the oxidizer and cathode; effective surface area between the fuel and anode; or any other parameters that can facilitate or optimize heat exchange, fluid flows, or mixing, in a manner that can be appreciated by those of ordinary skill in the art.
- the SOFC can comprise a stack of flat plates or concentric cylinders.
- the SOFCs can be constructed to employ fuels that are gases, such as hydrogen, methane, or natural gas, liquids, such as hydrocarbons, or solids.
- the cells can be designed to introduce the fuel to the anode, and the oxidizer, for example, air, to the cathode in an efficient manner, as have been engineered for many state of the art SOFCs with parallel plate, tubular, or other designs.
- the cathode can be a perovskite-type oxide having a general structure of ABO 3 , where “A” and “B” represent two cation sites in a cubic crystal lattice.
- the perovskite-type oxide can have the structure La x A a B b C c O d where A is an alkaline earth metal, B is selected from the group consisting of scandium, yttrium and a lanthanide metal, C is selected from the group consisting of titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc, zirconium, hafnium, aluminum and antimony, x is from 0 to about 1.05, y is from 0 to about 1, a is from 0 to about 0.5, b is from 0 to about 0.5, c is from 0 to about 0.5, d is between about 1 and about 5, and at least one of x, y, a, b and c is greater than zero.
- perovskite-type oxides examples include LaMnO 3 , La 0.84 Sr0. 16 MnO 3 , La 0.84 Ca 0.16 MnO 3 , La 0.84 Ba 0.16 MnO 3 , La 0.65 Sr 0.35 Mn 0.8 Co 0.2 O 3 , La 0.79 Sr 0.16 Mn 0.85 CO 0.15 O 3 , La 0.84 Sr 0.16 Mn 0.8 Ni 0.2 O 3 , La 0.84 Sr 0.16 Mn 0.8 Fe 0.2 O 3 , La 0.84 Sr 0.6 Mn 0.8 Ce 0.2 O 3 , La 0.84 Sr 0.16 Mn 0.8 Mg 0.2 O 3 , La 0.84 Sr 0.16 Mn 0.8 Cr 0.2 O 3 , La 0.6 Sr 0.35 Mn 0.8 Al 0.2 O 3 , La 0.84 Scsub.
- the ceramic of the cathode may include other elements, such as titanium, tin, indium, aluminum, zirconium, iron, cobalt, manganese, strontium, calcium, magnesium, barium, or beryllium.
- cathodes that can be used in the SOFCs with the porous ceramic molten metal composite anodes include LaCoO 3 , LaFeO 3 , LaCrO 3 , and a LaMnO 3 -based perovskite oxide cathode, such as La 0.75 Sr 0.25 CrO 3 , (La 0.6 Sr 0.4 ) 0.9 CrO 3 , La 0.6 Sr 0.4 FeO 3 , La 0.6 Sr 0.4 CoO 3 or Ln 0.6 Sr 0.4 CoO 3 , where the lanthanide may be any one of La, Pr, Nd, Sm, or Gd.
- the cathode of the SOFC can be a metal oxide or a mixed metal oxide, including Bi 2 Ru 2 O 7 (BRO7), BRO7-(Er 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 (ESB) composite, BRO-(Dw 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 ) (DSB) composite, BRO-(Y 2 O 3 ) 0.2 (Bi 2 O 3 ) 0.8 ) (YSB) composite, or BRO-Bi 2 ⁇ (x+y) Dy x W y O 3 (DWSB) composite.
- the cathode may include a metal. Examples of metals useful for the cathodes include platinum, palladium, gold, silver, rhodium, rhenium, iridium, osmium, and any combination thereof.
- the electrolyte can be doped ceria (such as Gd-doped CeO 2 (GDC) (Ce x Gd 1 _ 31 xO 2 ⁇ ), Y-doped CeO 2 (YDC) (Ce x Y 1 ⁇ x O 2 ⁇ ), Sm-doped cerium oxide (SDC) (Ce x Sm 1 ⁇ x O 2 ⁇ ), or Sm—Nd-doped cerium oxide (Sm x Nd y Ce 1 ⁇ x ⁇ y O 2 ⁇ )), or metal-stabilized zirconia (such as yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ)).
- GDC Gd-doped CeO 2
- YDC Y-doped CeO 2
- SDC Sm-doped cerium oxide
- Sm x Nd y Ce 1 ⁇ x ⁇ y O 2 ⁇ Sm—Nd-d
- the electrolyte is of the same composition of the porous ceramic include in the porous ceramic molten metal composite anode.
- the electrolyte can be a bilayer electrolyte structured to complement both the anode and cathode structures, for example a bilayer electrolyte can be Ce x Sm 1 ⁇ x O 2 ⁇ (SDC), Ce x Gd 1 ⁇ x O 2 ⁇ (GDC), or Sm x Nd y Ce 1 ⁇ x ⁇ y O 2 ⁇ with a bismuth oxide comprising layer of Bi 1 ⁇ x Er x O 3 (ESB), Bi 2 ⁇ x Dw x O 3 (DSB), Bi 2 ⁇ x Y x O 3 (YSB), or Bi 2 ⁇ (x+y) Dy x W y O 3 (DWSB), where the values of x or x+y can range from less than 0.1 to about 0.5 and y can range from 0.01 to 0.49, where the cathode is a bis
- a SOFC was prepared with a porous ceramic molten metal composite anode, where a Sn—Ni/GDC composite anode, as illustrated in FIG. 1 , a GDC electrolyte, and a LSCF/GDC composite cathode are combined.
- the SOFC cell was prepared by partially sintering a mixture of NiO/10GDC (Gd 0.1 Ce 0.9 O 1.95 ) into a pellet approximately 0.5 mm thick by 2.5 cm in diameter. An aqueous suspension of 10GDC was applied on one side of the pellet, forming a layer of GDC after drying. The pellet was subsequently sintered to make a dense electrolyte of approximately 10 ⁇ m in thickness.
- a mixture of LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ⁇ )/10GDC powders in a paste form with an organic solvent was applied to the 10GDC electrolyte layer, dried, and partially sintered to form a porous composite cathode of approximately 40 ⁇ m in thickness. Finally, a piece of tin metal was fixed to the anode cell side using an organic adhesive. The SOFC was used to generate power using hydrogen and dodecane as the fuel.
- the SOFCs were tested under the following conditions. Air was applied to the cathode side of the cell. The cell was heated to 600° C. with wet H 2 on the anode side. During heating, NiO reduces to Ni and Sn melts to form an alloy with the Ni metal, resulting in the porous Sn—Ni/GDC anode. Currents were measured at a given voltage. After testing in wet H 2 , vaporized dodecane was introduced to the anode side and current-voltage measurements were performed.
- OCP open circuit potential
- the SOFC displays an OCP of 0.86 V and a maximum power density of 0.25 Wcm ⁇ 2 , although some cell instability was apparent.
- the power densities are representative of a good performing SOFC at 600° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inert Electrodes (AREA)
Abstract
A fuel cell anode comprises a porous ceramic molten metal composite of a metal or metal alloy, for example, tin or a tin alloy, infused in a ceramic where the metal is liquid at the temperatures of an operational solid oxide fuel cell, exhibiting high oxygen ion mobility. The anode can be employed in a SOFC with a thin electrolyte that can be a ceramic of the same or similar composition to that infused with the liquid metal of the porous ceramic molten metal composite anode. The thicknesses of the electrolyte can be reduced to a minimum that allows greater efficiencies of the SOFC thereby constructed.
Description
- The present application claims the benefit of U.S. Provisional Application Ser. No. 61/451,252, filed Mar. 10, 2011, which is hereby incorporated by reference herein in its entirety, including any figures, tables, or drawings.
- The subject invention was made with government support under The United States Army, Contract No. 2008-ARM079-0001. The government has certain rights to this invention.
- Fuel cells combine oxygen and fuel to chemically generate electricity without combustion. Solid Oxide Fuel Cells (SOFCs) use ceramic materials as an electrolyte, typically a solid yttria-stabilized zirconium oxide (YSZ), which is an excellent conductor of oxygen ions at high temperatures. SOFC technology has the distinct advantage over competing fuel cell technologies (e.g. molten carbonate, polymer electrolyte, phosphoric acid and alkali) because of its ability to use fuels other than hydrogen and their relative insensitivity to CO, which act as poisons to other fuel cell types, but is a fuel for these cells. The general design of a SOFC is two porous electrodes separated by a ceramic electrolyte. The oxygen source, typically air, contacts the cathode, for example strontium doped lanthanum manganese oxide (LSM), strontium doped lanthanum cobalt iron oxide (LSCF), or other conventional cathode material, to form oxygen ions upon reduction by electrons at the cathode/electrolyte/oxygen triple phase boundary. The oxygen ions diffuse through the electrolyte material to the anode where the oxygen ions encounter the fuel at the anode forming, water, carbon dioxide (with hydrocarbon fuels), heat, and electrons. The electrons transport from the anode through an external circuit to the cathode. A particularly useful anode for many cells is a liquid tin anode.
- A Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC) is a fuel cell that combines the efficiency and reliability of conventional SOFCs while expanding the range of fuels that can be used, including gaseous, liquid, and solid fuels, and is particularly tolerant to impurities, such as sulfur. Another advantage is that coking is not a problem due to the low catalytic activity of tin toward carbon depositions and because the tin is a low vapor pressure liquid at use temperatures, for example, above 232° C., such that a stable surface to promote excessive coke formation is not available. Typically the tin is supported on the YSZ electrolyte, which is relatively thick.
- Because of the thickness of the electrolyte, available LTA-SOFCs, which are used at temperatures in excess of 1000° C., have power densities that are significantly lower than other state of the art SOFCs, including those designed to function at lower temperatures, see for example International Application Publication No. WO/2010/045329. Hence, a SOFC that combines a molten metal anode with a thin electrolyte to significantly lower the cells resistance is desirable.
- Embodiments of the invention are directed to a fuel cell anode comprising a porous ceramic molten metal composite. Other embodiments of the invention are directed to a solid oxide fuel cell (SOFC) that comprises the anode comprising a porous ceramic molten metal composite. The porous ceramic molten metal composite comprises a metal or metal alloy that is infused into a porous ceramic and is liquid at a temperature below the working temperature of the SOFC. The metal or metal alloy comprises tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium and the porous ceramic comprises a doped CeO2 or stabilized ZrO2, such as Gd-doped CeO2 (GDC), Y-doped CeO2 (YDC), Sm-doped cerium oxide (SDC), Sm—Nd-doped cerium oxide, yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia.
- The solid oxide fuel cell (SOFC) comprises a layer of the anode comprising the porous ceramic molten metal composite, a cathode layer comprising a metal oxide or mixed metal oxide, and an electrolyte layer comprising an oxygen ion conductive ceramic. The cathode can comprise a perovskite-type oxide, such as LaMnO3, La0.84Sr0.16MnO3, La0.84Ca0.16MnO3, La0.84Ba0.16MnO3, La0.65Sr0.35Mn0.8Co0.2O3, La0.79Sr0.16Mn0.85CO0.15O3, La0.84Sr0.16Mn0.8Ni0.2)3, La0.84Sr0.16Mn0.8Fe0.2O3, La0.84Sr0.6Mn0.8Ce0.2O3, La0.84Sr0.16Mn0.8Mg0.2O3, La0.84Sr0.16Mn0.8Cr0.2O3, La0.6Sr0.35Mn0.8Al0.2O3, La0.84Scsub.0.16MnO3, La0.84Y0.16MnO3, La0.7Sr0.3CoO3, LaCoO3, La0.7Sr0.3FeO3, La0.5Sr0.5CoO0.8Fe0.2O3, or a composite of a perovskite-type oxide and a solid electrolyte, for example, LSCF-GDC or LSM-YSZ. The cathode layer can comprise a metal oxide or mixed metal oxide, for example, Bi2Ru2O7 (BRO7), BRO7-(Er2O3)0.2(Bi2O3)0.8 (ESB) composite, BRO-(Dw2O3)0.2(Bi2O3)0.8) (DSB) composite, BRO-(Y2O3)0.2(Bi2O3)0.8) (YSB) composite, or BRO-Bi2−(x+y)DyxWyO3 (DWSB) composite. The electrolyte layer can be GDC (CexGd1−xO2−δ), Y-doped CeO2 (YDC) (CexY1−xO2−δ), Sm-doped cerium oxide (SDC) (CexSm1−xO2−δ), Sm—Nd-doped cerium oxide (SmxNdyCe1−x−yO2−δ); yttria-stabilized zirconia (YSZ); Ca-stabilized zirconia; or Sc-stabilized zirconia. The electrolyte layer can be the same oxygen ion conductive ceramic included in the porous ceramic molten metal composite of the anode layer. The electrolyte layer can be a bilayer electrolyte comprising a layer of the same oxygen ion conductive ceramic included in the anode layer and a layer of the metal oxide or mixed metal oxide of the cathode layer.
-
FIG. 1 shows an SEM image of a Sn/GDC composite anode, according to an embodiment of the invention, where Sn (dark grey) is intimately mixed with GDC (light grey) and surrounded by continuous porosity (black) for good fuel gas transport and oxidation, where each edge of the micrograph is approximately 50 μm. -
FIG. 2 plots the I-V characteristics of a SOFC at 600° C. for a Sn—Ni/GDC anode, a GDC electrolyte, and an LSCF/GDC composite cathode, according to embodiments of the invention, where the data was collected at 600° C. using flowing air at the cathode and wet hydrogen on the anode. -
FIG. 3 plots the I-V characteristics of a SOFC at 600° C. for a Sn—Ni/GDC composite anode, a GDC electrolyte, and an LSCF/GDC composite cathode, according to embodiments of the invention, where the data was collected at 600° C. using vaporized flowing dodecane at the anode and air at the cathode. - Embodiments of the invention are directed to solid oxide fuel cells (SOFCs) that employ a porous ceramic molten metal composite anode with a cathode, an electrolyte in contact with the anode and the cathode, and an electrical circuit connecting the anode and the cathode for use of the electrical power resulting from the chemical reaction generated by the oxidation of the fuel. The oxidant, generally oxygen from the air is exposed to the cathode where it is reduced with the consumption of electrons to oxygen ions that transports through the electrolyte to the anode. Simultaneously, fuel is supplied to the anode where it reacts with the oxygen ion to form electrons and oxidation products, such as water where the fuel is hydrogen, water and carbon dioxide when the fuel is a hydrocarbon, or carbon dioxide when the fuel is carbonaceous, with release of electrons as the fuel is oxidized. The electrons generated at the anode are transmitted through the electrical circuit to the cathode.
- Embodiments of the invention are directed to the porous ceramic molten metal composite anodes for use in SOFCs. The porous ceramic, for example Gd-doped CeO2 (GDC), not only supports the molten metal, for example tin, but acts in a complementary fashion to the molten metal as it facilitates oxygen diffusion into the anode from the electrolyte and within the anode to an extent that is not possible in the liquid metal alone due to the low solubility of oxygen ion in the metal, particularly those of metal oxides that are formed where the fuel cell is operated below the melting temperature of the metal oxide, when the metal is prone to formation of an insulating metal oxide at the electrolyte interface.
- A significant proportion of the fuel oxidation occurs at the triple phase boundary of the GDC/metal/fuel in the porous ceramic molten metal composite anode. The high electron conductivity of the molten metal and the high oxygen ion conductivity of the porous ceramic combine in a complementary fashion. As the anode is a composite that provides a relatively large triple phase boundary, it differs from a molten metal anode of a fuel cell that uses a porous ceramic only as the electrolyte or as a facilitating component that separates or controls the contacting of fuel to the separate molten metal anode. The composite structure is constructed to optimize the area of the triple phase boundary of the oxygen conductive ceramic, the molten metal and the fuel. The porous ceramic does not function as a barrier between the fuel and the anode, and allows the ceramic in conjunction with the liquid metal to display good electron transport as well as oxygen ion transport. The porous ceramic used in the composite, according to embodiments of the invention, can also provide a high electrical conductivity. Furthermore, the use of the porous ceramic molten metal composite anode allows use of thin electrolytes in the solid oxide fuel cell (SOFC), which decreases the overall cell resistance and promotes superior cell performance. In one embodiment of the invention, the electrolyte and the porous ceramic of the porous ceramic molten metal composite anode can be of the same material composition, which also reduces the cell's resistance.
- In embodiments of the invention, the porous ceramic used in the porous ceramic molten metal composite anode can be a doped ceria, (such as Gd-doped CeO2 (GDC) (CexGd 1−xO2−δ) Y-doped CeO2 (YDC) (CexY1−xO2−δ), Sm-doped cerium oxide (SDC) (CexSm1−xO2−δ), or Sm—Nd-doped cerium oxide (SmxNdyCe1−x−yO2−δ)) a metal-stabilized zirconia (such as yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ)), or any other ceramic that can transport oxygen anions at high temperatures. Values for x or x+y for these porous ceramics can range from less than 0.1 to about 0.5 and y can range from 0.01 to 0.49 where optimal conductivities are observed. In an embodiment of the invention, the dopant level is 10-20 atom percent of the metal.
- In embodiments of the invention, the molten metal of the porous ceramic molten metal composite anodes can be a pure liquid or can have solid and liquid components as long as the overall properties of the metal are liquid-like at the working temperature of the SOFC. The anode can be a pure metal or can comprise an alloy of two or more metals. In one embodiment of the invention, the molten metal can display a standard reduction potential greater than −0.70 V versus the Standard Hydrogen Electrode, as determined at room temperature. The molten metal anode can comprise one or more transition metals, main group metals, alkaline metals, alkaline earth metals, lanthanides, actinides, or any combinations thereof. However, in many embodiments of the invention, the metal although liquid, possesses a low vapor pressure at the working temperature of the SOFC. Metals that can be included as the pure metal or a component of the alloy include tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium. For example, Sn (M.P. 232° C.), Cd (M.P. 321° C.), Zn (M.P. 420° C.), Pb (M.P. 327° ° C.), Hg (M.P. −39° C.), Se (M.P. 221° C.), Tl (M.P. 304° C.), In (M.P. 156° C.), Bi (M.P. 271° C.), Sb (M.P. 630° C.), and Te (M.P. 450° C.) can be used as the single component or the major components of an alloy matched to an operating temperature above each metal's or alloy's melting point. Alloys include, but are not limited to, those with a primary metal that is included at levels from 50 to 99% by weight. In embodiments of the invention, the porous ceramic molten metal composite anode can be porous GDC with tin, or a liquid tin alloy, such as Sn—Ni, that can be used with hydrocarbon fuels at temperatures as low as 600° C.
- The SOFC can be designed to operate where the metal of the porous ceramic molten metal composite anode displays liquid or liquid-like properties at temperature of less than about 1,200° C., at a temperature less than about 1,000° C., at a temperature less than about 900° C., at a temperature less than about 800° C., at a temperature less than about 700° C., or at a temperature less than about 600° C. Those of ordinary skill in the art can appreciate compositions for an anode or how to identify compositions for an anode where temperatures that display liquid or liquid-like behavior is achieved at a desired temperature range, for example from about 300° C. to about 1200° C., from about 500° C. to about 1100° C., from about 500° C. to about 1000° C., from about 500° C. to about 800° C., from about 600° C. to about 1000° C., from about 600° C. to about 900° C., from about 600° C. to about 800° C., from about 600° C. to about 700° C., from about 700° C. to about 1000° C., or from about 800° C. to about 1000° C. For example, Sn can be used at temperatures above 300° C. whereas Sb requires temperatures above 630° C. By addition of approximately 30 atom % Zn to Sb, the melting temperature is suppressed to ˜500° C. which allows operation at this temperature. Near 30 atom % (+/−5) Zn, the alloy consists of a small amount of solid phase within a large liquid phase at temperatures above ˜500° C. and displays liquid like behavior, allowing its use in an anode, according to an embodiment of the invention. Higher levels of Zn in the alloy with Sb result in a higher alloy melting temperature. The porous ceramic molten metal composite anode resists coking when the metal, for example, tin, displays a low catalytic activity in addition to the presence of the liquid surface that does not stabilize carbon deposition. It is also advantageous when the metal is tolerant of impurities in the fuel. For example, liquid tin resists the blocking of fuel oxidation reaction sites by sulfur and sulfur comprising compounds and does not have promoted metal migration deficiencies that are common with typical non-liquid SOFC anodes.
- The shape of the porous ceramic molten metal composite anode, the electrolyte sharing a common interface, and the cathode can vary as is desired to optimize any parameter for the SOFC including: overall volume; surface area of any interface between the various functional layers of the SOFC; effective surface area between the oxidizer and cathode; effective surface area between the fuel and anode; or any other parameters that can facilitate or optimize heat exchange, fluid flows, or mixing, in a manner that can be appreciated by those of ordinary skill in the art. For example, the SOFC can comprise a stack of flat plates or concentric cylinders.
- The SOFCs, according to embodiments of the invention, can be constructed to employ fuels that are gases, such as hydrogen, methane, or natural gas, liquids, such as hydrocarbons, or solids. The cells can be designed to introduce the fuel to the anode, and the oxidizer, for example, air, to the cathode in an efficient manner, as have been engineered for many state of the art SOFCs with parallel plate, tubular, or other designs.
- The cathode can be a perovskite-type oxide having a general structure of ABO3, where “A” and “B” represent two cation sites in a cubic crystal lattice. For example, the perovskite-type oxide can have the structure LaxAaBbCcOd where A is an alkaline earth metal, B is selected from the group consisting of scandium, yttrium and a lanthanide metal, C is selected from the group consisting of titanium, vanadium, chromium, iron, cobalt, nickel, copper, zinc, zirconium, hafnium, aluminum and antimony, x is from 0 to about 1.05, y is from 0 to about 1, a is from 0 to about 0.5, b is from 0 to about 0.5, c is from 0 to about 0.5, d is between about 1 and about 5, and at least one of x, y, a, b and c is greater than zero. Examples of perovskite-type oxides include LaMnO3, La0.84Sr0.16MnO3, La0.84Ca0.16MnO3, La0.84Ba0.16MnO3, La0.65Sr0.35Mn0.8Co0.2O3, La0.79Sr0.16Mn0.85CO0.15O3, La0.84Sr0.16Mn0.8Ni0.2O3, La0.84Sr0.16Mn0.8Fe0.2O3, La0.84Sr0.6Mn0.8Ce0.2O3, La0.84Sr0.16Mn0.8Mg0.2O3, La0.84Sr0.16Mn0.8Cr0.2O3, La0.6Sr0.35Mn0.8Al0.2O3, La0.84Scsub.0.16MnO3, La0.84Y0.16MnO3, La0.7Sr0.3CoO3, LaCoO3, La0.7Sr0.3FeO3, La0.5Sr0.5CoO0.8Fe0.2O3, or a composite of a perovskite-type oxide and a solid electrolyte, for example, LSCF-GDC or LSM-YSZ. The ceramic of the cathode may include other elements, such as titanium, tin, indium, aluminum, zirconium, iron, cobalt, manganese, strontium, calcium, magnesium, barium, or beryllium. Other cathodes that can be used in the SOFCs with the porous ceramic molten metal composite anodes include LaCoO3, LaFeO3, LaCrO3, and a LaMnO3-based perovskite oxide cathode, such as La0.75Sr0.25CrO3, (La0.6Sr0.4)0.9CrO3, La0.6Sr0.4FeO3, La0.6Sr0.4CoO3 or Ln0.6Sr0.4CoO3, where the lanthanide may be any one of La, Pr, Nd, Sm, or Gd. The cathode of the SOFC can be a metal oxide or a mixed metal oxide, including Bi2Ru2O7 (BRO7), BRO7-(Er2O3)0.2(Bi2O3)0.8 (ESB) composite, BRO-(Dw2O3)0.2(Bi2O3)0.8) (DSB) composite, BRO-(Y2O3)0.2(Bi2O3)0.8) (YSB) composite, or BRO-Bi2−(x+y)DyxWyO3 (DWSB) composite. Alternatively, the cathode may include a metal. Examples of metals useful for the cathodes include platinum, palladium, gold, silver, rhodium, rhenium, iridium, osmium, and any combination thereof.
- The electrolyte can be doped ceria (such as Gd-doped CeO2 (GDC) (CexGd1_31 xO2−δ), Y-doped CeO2 (YDC) (CexY1−xO2−δ), Sm-doped cerium oxide (SDC) (CexSm1−xO2−δ), or Sm—Nd-doped cerium oxide (SmxNdyCe1−x−yO2−δ)), or metal-stabilized zirconia (such as yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ)). In some embodiments of the invention, the electrolyte is of the same composition of the porous ceramic include in the porous ceramic molten metal composite anode. In some embodiments of the invention, the electrolyte can be a bilayer electrolyte structured to complement both the anode and cathode structures, for example a bilayer electrolyte can be CexSm1−xO2−δ(SDC), CexGd1−xO2−δ(GDC), or SmxNdyCe1−x−yO2−δ with a bismuth oxide comprising layer of Bi1−xErxO3 (ESB), Bi2−xDwxO3 (DSB), Bi2−xYxO3 (YSB), or Bi2−(x+y)DyxWyO3 (DWSB), where the values of x or x+y can range from less than 0.1 to about 0.5 and y can range from 0.01 to 0.49, where the cathode is a bismuth comprising cathode, such as BRO7, ESB, DSB, YSB, or DWSB.
- A SOFC was prepared with a porous ceramic molten metal composite anode, where a Sn—Ni/GDC composite anode, as illustrated in
FIG. 1 , a GDC electrolyte, and a LSCF/GDC composite cathode are combined. The SOFC cell was prepared by partially sintering a mixture of NiO/10GDC (Gd0.1Ce0.9O1.95) into a pellet approximately 0.5 mm thick by 2.5 cm in diameter. An aqueous suspension of 10GDC was applied on one side of the pellet, forming a layer of GDC after drying. The pellet was subsequently sintered to make a dense electrolyte of approximately 10 μm in thickness. A mixture of LSCF6428 (La0.6Sr0.4Co0.2Fe0.8O3−δ)/10GDC powders in a paste form with an organic solvent was applied to the 10GDC electrolyte layer, dried, and partially sintered to form a porous composite cathode of approximately 40 μm in thickness. Finally, a piece of tin metal was fixed to the anode cell side using an organic adhesive. The SOFC was used to generate power using hydrogen and dodecane as the fuel. - The SOFCs were tested under the following conditions. Air was applied to the cathode side of the cell. The cell was heated to 600° C. with wet H2 on the anode side. During heating, NiO reduces to Ni and Sn melts to form an alloy with the Ni metal, resulting in the porous Sn—Ni/GDC anode. Currents were measured at a given voltage. After testing in wet H2, vaporized dodecane was introduced to the anode side and current-voltage measurements were performed.
- As can be seen in
FIG. 2 , the SOFC using hydrogen with 3% water at the fuel at 600° C. where the open circuit potential (OCP) is 0.68 V exhibits a maximum power density of 0.35 Wcm−2 at 600° C. Using vaporized dodecane at 600° C., as can be seen inFIG. 3 , the SOFC displays an OCP of 0.86 V and a maximum power density of 0.25 Wcm−2, although some cell instability was apparent. The power densities are representative of a good performing SOFC at 600° C. using wet H2 as fuel, and this power density is also extended to operation using a hydrocarbon fuel such as dodecane, which is very high at 600° C., representing a significant advance in the use of SOFCs for hydrocarbon fuel operation at an intermediate temperature, such as ˜600° C. - It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
Claims (19)
1. A fuel cell anode, comprising a porous ceramic molten metal composite wherein a metal or metal alloy that is liquid at the use temperature of the fuel cell is infused into a porous ceramic.
2. The anode of claim 1 , wherein the metal or metal alloy comprises tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium.
3. The anode of claim 1 , wherein the metal or metal alloy comprises tin.
4. The anode of claim 1 , wherein the porous ceramic comprises a doped CeO2 or doped ZrO2.
5. The anode of claim 1 , wherein the porous ceramic comprises Gd-doped CeO2 (GDC), Y-doped CeO2 (YDC), Sm-doped cerium oxide (SDC), Sm—Nd-doped cerium oxide, yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ).
6. The anode of claim , wherein the metal or metal alloy is liquid below 1,000° C.
7. The anode of claim 1 , wherein the metal or metal alloy is liquid below 650° C.
8. A solid oxide fuel cell (SOFC), comprising:
an anode layer comprising a porous ceramic molten metal composite;
a cathode layer comprising a metal oxide or mixed metal oxide; and
an electrolyte layer comprising an oxygen ion conductive ceramic.
9. The SOFC of claim 8 , wherein the porous ceramic molten metal composite comprises a metal or metal alloy comprising tin, bismuth, indium, lead, antimony, copper, molybdenum, mercury, iridium, palladium, rhenium, platinum, silver, arsenic, rhodium, tellurium, selenium, osmium, gold, germanium, thallium, cadmium, gadolinium, chromium, nickel, iron, tungsten, cobalt, zinc, or vanadium infused in a porous ceramic comprising Gd-doped CeO2 (GDC), Y-doped CeO2 (YDC), Sm-doped cerium oxide (SDC), Sm—Nd-doped cerium oxide, yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Se-stabilized zirconia.
10. The SOFC of claim 9 , wherein the porous ceramic molten metal composite comprises a molten tin or tin alloy infused GDC.
11. The SOFC of claim 8 , wherein the anode layer comprises a molten tin or tin alloy infused GDC and the electrolyte layer comprises GDC.
12. The SOFC of claim 8 , wherein the metal oxide or mixed metal oxide comprises a perovskite-type oxide.
13. The SOFC of claim 12 , wherein the perovskite-type oxide comprises LaMnO3, La0.84Sr0.16MnO3, La0.84Ca0.16MnO3, La0.84Ba0.16MnO3, La0.65Sr0.35Mn0.8Co0.2O3, La0.79Sr0.16Mn0.85CO0.15O3, La0.84Sr0.16Mn0.8Ni0.2O3, La0.84Sr0.16Mn0.8Fe0.2O3, La0.84Sr0.6Mn0.8Ce0.2O3, La0.84Sr0.16Mn0.8Mg0.2O3, La0.84Sr0.16Mn0.8Cr0.2O3, La0.6Sr0.35Mn0.8Al0.2O3, La0.84Scsub.0.16MnO3, La0.84Y0.16MnO3, La0.7Sr0.3CoO3, LaCoO3, La0.7Sr0.3FeO3, or La0.5Sr0.5CoO0.8Fe0.2O3.
14. The SOFC of claim 8 , wherein the metal oxide or mixed metal oxide comprises a composite of a perovskite-type oxide and a solid electrolyte.
15. The SOFC of claim 14 , wherein the perovskite-type oxide and the solid electrolyte metal oxide or mixed metal oxide comprises LSCF-GDC or LSM-YSZ.
16. The SOFC of claim 8 , wherein the metal oxide or mixed metal oxide comprises Bi2Ru2O7 (BRO7), BRO7-(Er2O3)0.2(Bi2O3)0.8 (ESB) composite, BRO-(Dw2O3)0.2(Bi2O3)0.8) (DSB) composite, BRO-(Y2O3)0.2(Bi2O3)0.8) (YSB) composite, or BRO-Bi2−(x+y)DyxWyO3 (DWSB) composite.
17. The SOFC of claim 8 , wherein the electrolyte layer comprises Gd-doped CeO2 (GDC), Y-doped CeO2 (YDC), Sm-doped cerium oxide (SDC), or Sm—Nd-doped cerium oxide, yttria-stabilized zirconia (YSZ), Ca-stabilized zirconia, or Sc-stabilized zirconia (SSZ).
18. The SOFC of claim 8 , wherein the electrolyte layer comprises an oxygen ion conductive ceramic identical to the ceramic of the porous ceramic molten metal composite of the anode layer.
19. The SOFC of claim 8 , wherein the electrolyte layer comprises a bilayer electrolyte comprising a layer of an oxygen ion conductive ceramic identical to the ceramic of the porous ceramic molten metal composite of the anode layer and a layer of the metal oxide or mixed metal oxide of the cathode layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/416,417 US20120231366A1 (en) | 2011-03-10 | 2012-03-09 | Porous ceramic molten metal composite solid oxide fuel cell anode |
US14/887,909 US10044057B2 (en) | 2011-03-10 | 2015-10-20 | Porous ceramic molten metal composite solid oxide fuel cell anode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161451252P | 2011-03-10 | 2011-03-10 | |
US13/416,417 US20120231366A1 (en) | 2011-03-10 | 2012-03-09 | Porous ceramic molten metal composite solid oxide fuel cell anode |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/887,909 Division US10044057B2 (en) | 2011-03-10 | 2015-10-20 | Porous ceramic molten metal composite solid oxide fuel cell anode |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120231366A1 true US20120231366A1 (en) | 2012-09-13 |
Family
ID=46795864
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/416,417 Abandoned US20120231366A1 (en) | 2011-03-10 | 2012-03-09 | Porous ceramic molten metal composite solid oxide fuel cell anode |
US14/887,909 Active 2032-05-31 US10044057B2 (en) | 2011-03-10 | 2015-10-20 | Porous ceramic molten metal composite solid oxide fuel cell anode |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/887,909 Active 2032-05-31 US10044057B2 (en) | 2011-03-10 | 2015-10-20 | Porous ceramic molten metal composite solid oxide fuel cell anode |
Country Status (1)
Country | Link |
---|---|
US (2) | US20120231366A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103825039A (en) * | 2014-02-27 | 2014-05-28 | 盐城工学院 | Electrolyte material and preparation method for intermediate and low-temperature solid oxide fuel cells |
WO2014155360A1 (en) * | 2013-03-28 | 2014-10-02 | Cuf - Químicos Industriais S.A. | Electrodes/electrolyte assembly, reactor and method for direct am i nation of hydrocarbons |
EP2808932A1 (en) | 2013-05-31 | 2014-12-03 | Topsøe Fuel Cell A/S | Metal-supported solid oxide cell |
WO2015167794A3 (en) * | 2014-04-28 | 2016-03-17 | Saudi Arabian Oil Company | Sulfur management and utilization in molten metal anode solid oxide fuel cells |
WO2016110810A1 (en) * | 2015-01-07 | 2016-07-14 | Director General, Centre For Materials For Electronics Technology | Glass ceramic composite electrolyte for low temperature solid oxide fuel cell |
WO2016126549A1 (en) * | 2015-02-02 | 2016-08-11 | University Of Houston System | Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication |
WO2016193827A1 (en) | 2015-06-01 | 2016-12-08 | SECRETARY, DEPARTMENT OF ELECTRONICS AND INFORMATION TECHNOLOGY (DeitY) | Conductive solid oxide fuel cell electrolyte composition and a method for preparing the same |
CN106935353A (en) * | 2017-03-30 | 2017-07-07 | 清华大学 | A kind of magnetic porous liquid metal material and its preparation and application |
WO2017161332A1 (en) * | 2016-03-18 | 2017-09-21 | University Of Maryland, College Park | Alternative anode material for solid oxide fuel cells |
CN108085519A (en) * | 2016-11-21 | 2018-05-29 | 云南科威液态金属谷研发有限公司 | A kind of method and its application that micro-nano granules are adulterated into liquid metal |
JP2018524765A (en) * | 2015-06-11 | 2018-08-30 | エルジー・ケム・リミテッド | Air electrode composition, air electrode and fuel cell including the same |
CN109836154A (en) * | 2018-12-29 | 2019-06-04 | 清华大学 | A kind of method that low-temperature sintering densifies cerium oxide base separation layer in fuel cell |
JP2019517124A (en) * | 2016-05-19 | 2019-06-20 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Molten metal anode solid oxide fuel cell for auxiliary power unit related to transportation |
US20220102745A1 (en) * | 2020-09-28 | 2022-03-31 | Hyzon Motors Inc. | Membrane electrode assembly with enhanced start-up and shut-down durability |
CN115188975A (en) * | 2022-06-23 | 2022-10-14 | 苏州科技大学 | A kind of solid oxide fuel cell anode material with high activity and anti-carbon deposition, its preparation method and application |
CN116864718A (en) * | 2023-06-10 | 2023-10-10 | 贵州大学 | A universal multimetallic nanocatalyst for liquid fuel cells |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280998A1 (en) * | 2005-05-19 | 2006-12-14 | Massachusetts Institute Of Technology | Electrode and catalytic materials |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002316379A1 (en) | 2001-06-25 | 2003-01-08 | Celltech Power, Inc. | Electrode layer arrangements in an electrochemical device |
US20060040167A1 (en) | 2003-10-16 | 2006-02-23 | Celltech Power, Inc. | Components for electrochemical devices including multi-unit device arrangements |
WO2004112175A2 (en) | 2003-06-10 | 2004-12-23 | Celltech Power, Inc. | Oxidation facilitator |
JP2007149439A (en) * | 2005-11-25 | 2007-06-14 | Shinko Electric Ind Co Ltd | Solid electrolyte fuel cell |
EP2059965A4 (en) | 2006-09-13 | 2012-03-28 | Univ Akron | CATALYTIC COMPOSITIONS FOR FUEL CELLS |
CA2740293C (en) | 2008-10-14 | 2017-10-03 | University Of Florida Research Foundation, Inc. | Advanced materials and design for low temperature sofcs |
-
2012
- 2012-03-09 US US13/416,417 patent/US20120231366A1/en not_active Abandoned
-
2015
- 2015-10-20 US US14/887,909 patent/US10044057B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280998A1 (en) * | 2005-05-19 | 2006-12-14 | Massachusetts Institute Of Technology | Electrode and catalytic materials |
Non-Patent Citations (1)
Title |
---|
Gorte et al. (Current Opinion in Colloid & Interface Science 14 (2009) 236-244) * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014155360A1 (en) * | 2013-03-28 | 2014-10-02 | Cuf - Químicos Industriais S.A. | Electrodes/electrolyte assembly, reactor and method for direct am i nation of hydrocarbons |
CN105358740A (en) * | 2013-03-28 | 2016-02-24 | Cuf-化学工业股份有限公司 | Electrode/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
US10689767B2 (en) | 2013-03-28 | 2020-06-23 | Bondalti Chemicals, S.A. | Electrodes/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
US10273589B2 (en) | 2013-03-28 | 2019-04-30 | Cuf—Quimicos Industriais S.A. | Electrodes/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
CN105358740B (en) * | 2013-03-28 | 2018-04-03 | Cuf-化学工业股份有限公司 | Electrode/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
AU2014240787B8 (en) * | 2013-03-28 | 2018-02-08 | Cuf - Quimicos Industriais S.A. | Electrodes/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
AU2014240787B2 (en) * | 2013-03-28 | 2018-02-01 | Cuf - Quimicos Industriais S.A. | Electrodes/electrolyte assembly, reactor and method for direct amination of hydrocarbons |
EP2808932A1 (en) | 2013-05-31 | 2014-12-03 | Topsøe Fuel Cell A/S | Metal-supported solid oxide cell |
CN103825039A (en) * | 2014-02-27 | 2014-05-28 | 盐城工学院 | Electrolyte material and preparation method for intermediate and low-temperature solid oxide fuel cells |
US9685675B2 (en) | 2014-04-28 | 2017-06-20 | Saudi Arabian Oil Company | Sulfur management and utilization in molten metal anode solid oxide fuel cells |
WO2015167794A3 (en) * | 2014-04-28 | 2016-03-17 | Saudi Arabian Oil Company | Sulfur management and utilization in molten metal anode solid oxide fuel cells |
CN106233517A (en) * | 2014-04-28 | 2016-12-14 | 沙特阿拉伯石油公司 | Sulfur management in motlten metal negative pole SOFC and use |
JP2017517838A (en) * | 2014-04-28 | 2017-06-29 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Sulfur management and utilization in molten metal anode solid oxide fuel cells. |
CN106233517B (en) * | 2014-04-28 | 2019-03-01 | 沙特阿拉伯石油公司 | Sulfur management and use in molten metal anode solid oxide fuel cells |
WO2016110810A1 (en) * | 2015-01-07 | 2016-07-14 | Director General, Centre For Materials For Electronics Technology | Glass ceramic composite electrolyte for low temperature solid oxide fuel cell |
US10683236B2 (en) | 2015-01-07 | 2020-06-16 | Director General, Centre For Materials For Electronics Technology | Glass ceramic composite electrolyte for low temperature solid oxide fuel cell |
WO2016126549A1 (en) * | 2015-02-02 | 2016-08-11 | University Of Houston System | Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication |
US10547076B2 (en) | 2015-02-02 | 2020-01-28 | University Of Houston System | Porous solid oxide fuel cell anode with nanoporous surface and process for fabrication |
US10797335B2 (en) | 2015-06-01 | 2020-10-06 | SECRETARY, DEPARTMENT OF ELECTRONICS AND INFORMATION TECHNOLOGY (DeitY) | Conductive solid oxide fuel cell electrolyte composition and a method for preparing the same |
WO2016193827A1 (en) | 2015-06-01 | 2016-12-08 | SECRETARY, DEPARTMENT OF ELECTRONICS AND INFORMATION TECHNOLOGY (DeitY) | Conductive solid oxide fuel cell electrolyte composition and a method for preparing the same |
JP2018524765A (en) * | 2015-06-11 | 2018-08-30 | エルジー・ケム・リミテッド | Air electrode composition, air electrode and fuel cell including the same |
JP2019509602A (en) * | 2016-03-18 | 2019-04-04 | ユニバーシティー オブ メリーランド,カレッジ パーク | Alternative anode materials for solid oxide fuel cells |
JP7106047B2 (en) | 2016-03-18 | 2022-07-26 | ユニバーシティ オブ メリーランド, カレッジ パーク | Alternative Anode Materials for Solid Oxide Fuel Cells |
KR102323575B1 (en) * | 2016-03-18 | 2021-11-09 | 유니버시티 오브 메릴랜드, 컬리지 파크 | Alternative Anode Materials for Solid Oxide Fuel Cells |
KR20180124919A (en) * | 2016-03-18 | 2018-11-21 | 유니버시티 오브 메릴랜드, 컬리지 파크 | Alternative anode materials for solid oxide fuel cells |
WO2017161332A1 (en) * | 2016-03-18 | 2017-09-21 | University Of Maryland, College Park | Alternative anode material for solid oxide fuel cells |
US11936080B2 (en) | 2016-03-18 | 2024-03-19 | University Of Maryland, College Park | Alternative anode material for solid oxide fuel cells |
US10938052B2 (en) | 2016-03-18 | 2021-03-02 | University Of Maryland, College Park | Alternative anode material for solid oxide fuel cells |
JP2019517124A (en) * | 2016-05-19 | 2019-06-20 | サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company | Molten metal anode solid oxide fuel cell for auxiliary power unit related to transportation |
US10661736B2 (en) | 2016-05-19 | 2020-05-26 | Saudi Arabian Oil Company | Molten metal anode solid oxide fuel cell for transportation-related auxiliary power units |
CN108085519A (en) * | 2016-11-21 | 2018-05-29 | 云南科威液态金属谷研发有限公司 | A kind of method and its application that micro-nano granules are adulterated into liquid metal |
CN106935353A (en) * | 2017-03-30 | 2017-07-07 | 清华大学 | A kind of magnetic porous liquid metal material and its preparation and application |
CN109836154A (en) * | 2018-12-29 | 2019-06-04 | 清华大学 | A kind of method that low-temperature sintering densifies cerium oxide base separation layer in fuel cell |
US20220102745A1 (en) * | 2020-09-28 | 2022-03-31 | Hyzon Motors Inc. | Membrane electrode assembly with enhanced start-up and shut-down durability |
US11784337B2 (en) * | 2020-09-28 | 2023-10-10 | Hyzon Motors Inc. | Membrane electrode assembly with enhanced start-up and shut-down durability |
CN115188975A (en) * | 2022-06-23 | 2022-10-14 | 苏州科技大学 | A kind of solid oxide fuel cell anode material with high activity and anti-carbon deposition, its preparation method and application |
CN116864718A (en) * | 2023-06-10 | 2023-10-10 | 贵州大学 | A universal multimetallic nanocatalyst for liquid fuel cells |
Also Published As
Publication number | Publication date |
---|---|
US20160133979A1 (en) | 2016-05-12 |
US10044057B2 (en) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10044057B2 (en) | Porous ceramic molten metal composite solid oxide fuel cell anode | |
US9673469B2 (en) | High performance multilayer electrodes for use in reducing gases | |
US9806345B2 (en) | Electrochemical energy conversion devices and cells, and positive electrode-side materials for them | |
Yokokawa et al. | Electrolytes for solid-oxide fuel cells | |
JP4981239B2 (en) | High performance cathode for solid oxide fuel cells | |
US20090148743A1 (en) | High performance multilayer electrodes for use in oxygen-containing gases | |
Yoo et al. | Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel | |
US20080254336A1 (en) | Composite anode showing low performance loss with time | |
US20160020470A1 (en) | Composition for fuel cell electrode | |
CN108352551A (en) | Composition for fuel cell electrode | |
Zurlo et al. | Copper-based electrodes for IT-SOFC | |
Zhou et al. | Metal-supported solid oxide fuel cells with in-situ sintered (Bi2O3) 0.7 (Er2O3) 0.3–Ag composite cathode | |
US20090181274A1 (en) | Electrodes for Lanthanum Gallate Electrolyte-Based Electrochemical Systems | |
Yang et al. | Low temperature co-sintering of Sr2Fe1. 5Mo0. 5O6− δ–Gd0. 1Ce0. 9O2− δ anode-supported solid oxide fuel cells with Li2O–Gd0. 1Ce0. 9O2− δ electrolyte | |
Jiang | Advances and challenges of intermediate temperature solid oxide fuel cells: a concise review | |
JP7395171B2 (en) | Anode for solid oxide fuel cells and solid oxide fuel cells | |
US10411267B2 (en) | Highly porous cathode catalyst layer structures for flexible solid oxide fuel cell applications in vehicles | |
Ishihara et al. | Intermediate temperature solid oxide electrolysis cell using LaGaO3-base oxide | |
JP7428686B2 (en) | Solid oxide electrolyzer cell with electrolysis-resistant air-side electrode | |
KR102845951B1 (en) | Composite oxygen electrode for solid oxide cell containing double-doped stabilized bismuth oxide | |
EP2973807B1 (en) | Composition for anode in fuel cell | |
US20060240314A1 (en) | Electrode for fuel cell and solid oxide fuel cell using the same | |
Pan et al. | High Performance SrFe0. 2Co0. 4Mo0. 4O3− δ Ceramic Anode Supported Low-Temperature SOFCs | |
Bi et al. | A Cu–CeO2-LDC Composite Anode for LSGM Electrolyte-Supported Solid Oxide Fuel Cells | |
Wang et al. | Metal oxides in fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., F Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WACHSMAN, ERIC D.;BISHOP, SEAN ROBERT;SIGNING DATES FROM 20120518 TO 20120530;REEL/FRAME:028284/0913 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |