US20120199291A1 - Manufacturing method of printed wiring board and a laminate jointing apparatus - Google Patents
Manufacturing method of printed wiring board and a laminate jointing apparatus Download PDFInfo
- Publication number
- US20120199291A1 US20120199291A1 US13/452,251 US201213452251A US2012199291A1 US 20120199291 A1 US20120199291 A1 US 20120199291A1 US 201213452251 A US201213452251 A US 201213452251A US 2012199291 A1 US2012199291 A1 US 2012199291A1
- Authority
- US
- United States
- Prior art keywords
- laminate
- plate
- laminates
- copper clad
- joined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 33
- 238000005304 joining Methods 0.000 claims abstract description 68
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011888 foil Substances 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 79
- 229910052802 copper Inorganic materials 0.000 abstract description 66
- 239000010949 copper Substances 0.000 abstract description 66
- 239000000758 substrate Substances 0.000 abstract description 22
- 239000011889 copper foil Substances 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 23
- 238000007747 plating Methods 0.000 description 23
- 238000012545 processing Methods 0.000 description 22
- 239000004020 conductor Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 11
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 239000013043 chemical agent Substances 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000011162 core material Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0097—Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10431—Details of mounted components
- H05K2201/10598—Means for fastening a component, a casing or a heat sink whereby a pressure is exerted on the component towards the PCB
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0285—Using ultrasound, e.g. for cleaning, soldering or wet treatment
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/15—Position of the PCB during processing
- H05K2203/1545—Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/328—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/17—Surface bonding means and/or assemblymeans with work feeding or handling means
Definitions
- the present invention relates to a substrate manufacturing process of printed wiring board, more particularly to joining technology of thin substrates.
- sheet-like shape (plate-like shape) is employed as the shape of a thin substrate such as copper clad laminate in which copper foils are laminated on resin layer thereof
- transportation of substrates having a low stiffness is more difficult as the thickness of the substrate decreases.
- the thin substrates are set in a frame jig when they are carried and processed.
- the transportation with this condition is more difficult than transportation of a belt-like substrate using a roller.
- a work piece (substrate) may be seriously damaged.
- the effective area of the work piece (substrate) is reduced by an amount corresponding to the area occupied by the transportation jig thereby reducing productivity.
- the copper clad laminate in which copper foils are laminated on resin layer is used, and as the resin layer, for example, glass epoxy resin in which epoxy is impregnated in glass cloth core material and polyimide resin are used.
- the polyimide resin can be adjusted easily to a uniform thickness, it allows copper foil to be laminated easily and thus, as the copper clad laminate, reel-like products as well as plate-like (sheet-like) products are manufactured.
- the glass epoxy resin is difficult to form into a uniform thickness, the copper foil cannot be laminated thereon and as the copper clad laminate, the plate-like (sheet-like) product and roll-like products are manufactured.
- JP 2002-141659 A has disclosed technology for joining together a product with another product.
- an object of the invention is to provide a manufacturing method of printed wiring board which allows the plate-like substrate to be carried without any contact to its product surface and processed.
- Another object of the invention is to provide a manufacturing method of printed wiring board which can provide manufacturing steps with flexibility so as to raise productivity.
- the feature of the manufacturing method of the first printed wiring board exits in that the end portions of plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other; the contact portion is joined linearly with a joining means so as to obtain a long laminate; and the long laminate is processed.
- the feature of the manufacturing method of the first printed wiring board exists in comprising: a step of processing plate-like laminates each in which metal foil is laminated on resin layer thereof; and a step of bringing the end portions of the plate-like laminates into contact with each other, joining the contact portion linearly with a joining means so as to obtain a long laminate and processing the long laminate.
- the feature of a laminate joining apparatus exists in that the end portions of the plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other and joined linearly by rotating the disc-like ultrasonic horn along the contact portion so as to obtain a long laminate.
- a long laminate is obtained by joining plate-like laminates and then processed, the laminate can be carried and processed without any contact to its product surface as it is carried with the roller. Further, the processable area of a work piece (laminate) can be increased as compared to a case where the surrounding of the plate-like laminate is held with a frame-like jig.
- joining strength necessary for transportation with a roller can be obtained different from spot joining and further, no chemical agent such as plating solution is left around the joined portion. Further, processing of the end portions can be carried out continuously with the roller thereby raising processing efficiency.
- the end portions of the plate-like laminates are overlapped vertically, metal foils can be metal-joined and a joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- the end portions of the plate-like laminates are overlapped vertically and joined with ultrasonic, the metal foils can be metal-joined and a joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- the end portions of the plate-like laminates are overlapped vertically and joined linearly by rotating a disc-like ultrasonic horn along the end portion, the metal foils can be metal-joined and joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- the plate-like laminates are positioned and joined such that the side ends perpendicular to the end portions to be joined are in a straight line, the ends of the long laminates are arranged linearly thereby facilitating transportation with the roller.
- the end portions of the laminates are joined along plural lines with the ultrasonic horn, the contact faces on the end portions overlapped vertically can be joined completely and a high joining strength is obtained and no chemical agent such as plating solution is left around the joined portion.
- the sides of the end portions to be joined of the plate-like laminates are provided with taper, a difference of step at the joined end portions decreases thereby facilitating transportation of the belt-like laminate with a roller.
- the manufacturing method of the printed wiring board according to an eighth aspect of the present invention comprises a step of processing the plate-like laminate and a step of processing a long laminate produced by joining the plate-like laminates.
- a step which can process the plate-like laminate more easily the plate-like laminate is processed and in a step which can process the belt-like laminate more easily, the long laminate is processed thereby facilitating manufacturing of the printed wiring board.
- the plate-like laminate is processed in processing step in which positioning is carried out, the positioning accuracy can be raised. Then, because the long laminate is processed in plating step, plating can be carried out continuously and the laminate can be carried and plated without any contact to its product surface as it is carried with a roller.
- the end portions of the plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other and joined linearly by rotating the disc-like ultrasonic horn along the contact portion so as to obtain a long laminate.
- the long laminate can be carried and processed without any contact to its product surface when it is carried with the roller.
- joining of the plate-like laminates can be achieved by butting the end portions of the plate-like laminates and joining them with a joint tape.
- FIG. 1 is a plan view showing the structure of major portions of a laminate joining apparatus 10 according to a first embodiment of the present invention
- FIG. 2 is a sectional view taken along a line indicated with an arrow G of the laminate joining apparatus 10 shown in FIG. 1 ;
- FIG. 3 is a sectional view taken along a line indicated with an arrow F of the laminate joining apparatus 10 shown in FIG. 1 ;
- FIG. 4(A) is a plan view showing the entire structure of the laminate joining apparatus 10 according to the first embodiment and FIG. 4(B) is a side view thereof;
- FIG. 5 is a plan view showing the structure of major portions of the laminate joining apparatus 10 according to a first modification of the first embodiment
- FIG. 6 is a side view of the laminate joining apparatus 10 according to a second modification of the first embodiment
- FIG. 7 is an explanatory diagram showing the structure of a plating unit for use in the manufacturing method of the first embodiment
- FIG. 8 is a perspective view of a laser processing unit for use in the manufacturing method of the first embodiment
- FIG. 9(A) is a plan view showing the structure of a cutting unit according to the first embodiment and FIG. 9(B) is a side view thereof;
- FIG. 10 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment
- FIG. 11 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment
- FIG. 12 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment
- FIG. 13 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment.
- FIG. 14 is a sectional view of the multi-layer printed wiring board according to the first embodiment.
- FIG. 1 is a plan view showing the structure of major portions of the laminate joining apparatus 10 for joining together plate-like copper clad laminate 30 A.
- FIG. 2 is a sectional view taken along a line indicated with an arrow G of the laminate joining apparatus 10 shown in FIG. 1 .
- FIG. 3 is a sectional view taken along a line indicated with an arrow F of the laminate joining apparatus shown in FIG. 1 .
- the laminate joining apparatus 10 comprises an anvil 12 which constitutes a support base (jig) for the plate-like copper clad laminate 30 A, a positioning plate 14 erected on the anvil 12 and an ultrasonic joining machine 20 .
- the ultrasonic joining machine 20 comprises a horn 22 , an ultrasonic oscillator 26 and a pressure plate 28 for pressing the ultrasonic horn 22 against the copper clad laminate 30 A. As shown in FIG. 1 , the ultrasonic joining machine 20 vibrates an ultrasonic horn 22 at an amplitude of 1-20 ⁇ m in the direction of a disc axis.
- the ultrasonic horn 22 is pressed against the laminate 30 A at a force of 1-22 kgf via the pressure plate 28 and it is rotated along a joining portion as shown in FIG. 3 .
- the joining speed can be adjusted in a range of 1-40 mm/s.
- the copper clad laminate 30 A is produced by laminating copper foil 32 of 3-12 ⁇ m thick on both faces of an insulating substrate 30 composed of glass epoxy resin or polyimide resin of 20-60 ⁇ m thick. As shown in FIG. 2 , an overlapping width W 1 between the copper clad laminate and another copper clad laminate is adjusted to about 2 mm or less. As a consequence, an effective area of the copper clad laminate is secured sufficiently.
- the copper clad laminates 30 A are positioned and joined together by bringing side ends thereof into contact with the positioning plate 14 such that the side ends perpendicular to the end portions to be joined are in a straight line with respect to the positioning plate 14 erected on the anvil 12 . Because the length 11 of one side end of the copper clad laminate 30 A and the length 12 of the other side end can be different from each other in mm order as shown in FIG. 1 , unevenness occurs on the side end of the joined belt-like copper clad laminates 30 when they are joined together with the end portions to be joined as a criterion, so that thereby making it difficult to carry the joined belt-like laminates 30 .
- FIG. 4(A) is a plan view showing the entire structure of the laminate joining apparatus 10 according to the first embodiment and FIG. 4(B) is a side view thereof.
- the laminate joining apparatus 10 comprises a roller 18 which winds up belt-like copper clad laminates 30 B joined by an ultrasonic joining machine 20 and a carrying unit 16 which carries the plate-like copper clad laminate 30 A on the anvil 12 and positions the copper clad laminates 30 A with side ends thereof in contact with the positioning plate 14 and can automatically manufacture belt-like copper clad laminate 30 B from the plate-like copper clad laminates 30 A.
- the laminate joining apparatus 10 of the first embodiment can carry with rollers and process the belt-like copper clad laminate 30 B without any contact with its product surface because the belt-like copper clad laminate 30 B is produced by joining the plate-like copper clad laminates 30 A and processed. Further, the processable area of a work piece (laminate) can be expanded as compared to a case of holding the surrounding of the plate-like copper clad laminate with a frame-like jig. Because the laminates are joined linearly by bringing the end portions thereof in contact with each other, a joining strength necessary for transportation with the roller is obtained different from spot joining and no chemical agent like plating solution is left on the joined portion. Additionally, the laminate can be processed continuously with the roller so as to intensify processing efficiency.
- the plate-like copper clad laminates 30 A are joined linearly by rotating the disc-like ultrasonic horn 22 along the end portion with the end portions of the copper clad laminates overlapped vertically, the copper foils 32 can be metal-joined so that a joining strength necessary for transportation with the rollers can be obtained and no chemical agent such as plating solution is left on the joined portion.
- the plate-like copper clad laminates 30 A are joined such that the side end perpendicular to the end portions to be joined is in a straight line, an end of the belt-like copper clad laminate 30 B is formed linearly so that transportation thereof with the roller is facilitated.
- FIG. 5 is a plan view of the laminate joining apparatus 10 according to a first modification of the first embodiment.
- the joining is carried out linearly once by rotating the ultrasonic horn 22 along an end portion.
- the joining is carried out linearly by rotating the ultrasonic horn 22 several times along the end portion thereof.
- the end portions of the copper clad laminates 30 A are joined linearly by rotating the ultrasonic horn 22 along plural lines, the contact faces of the end portions overlapped vertically can be joined completely so as to obtain a high joining strength and no chemical agent like plating solution is left on the surrounding of the joined portion.
- FIG. 6 shows a side face of the laminate joining apparatus 10 according to the second modification of the first embodiment.
- the end portion of the copper clad laminate 30 A is cut vertically.
- the side of the end portion is provided with taper. The taper is formed so that the thickness decreases gradually as it goes toward the side end.
- the side of the end portion to be joined is provided with taper, difference of step at the joined end portion decreases gradually to facilitate transportation of the belt-like copper clad laminate 30 B with the roller.
- a plating apparatus 210 includes a roller 298 on which the belt-like copper clad laminate 30 B is wound, feeding rollers 250 for feeding the copper clad laminate 30 B from the roller 298 , a plating bath 212 which holds electroless plating solution, feeding rollers 250 B for pulling out the copper clad laminate from the plating bath 212 and a roller 298 B for winding up the copper clad laminate.
- the copper clad laminate 30 B is carried into the plating bath 212 through a slit 212 S.
- a buffer 250 for adjusting the tension of the copper clad laminate 30 B is disposed within the plating bath 212 .
- the buffer 250 is constituted of a pair of fixed rollers 252 , 254 and a swing roller 256 which is biased to the direction away from the fixed rollers 252 and 254 . Because the fixed rollers 252 , 254 and the swing roller 256 are formed in the diameter of about 50 cm, so that the joined portion is not separated even if the belt-like substrate 30 A is bent into a semi-circular shape of about 50 cm in diameter. Further, because the plating apparatus applies a tension of about 0.01 kgf/mm to the copper clad laminate, it is preferable to join the copper clad laminates so that they are not separated against a double tension of about 0.02 kgf/mm.
- the belt-like copper clad laminate is cut out so as to obtain the plate-like copper clad laminate 30 A and this laminate 30 A is positioned and processed with laser.
- This laser processing unit utilizes a CO 2 laser oscillation unit 360 having a wavelength of about 10.6 ⁇ m as a laser source. Light emitted from the laser oscillation unit 360 is reflected by a reflection plate 366 and sent to galvano head through a transfer mask 362 for making the focal point on a substrate clear.
- a scanning head (galvano head) 370 includes a galvano mirror comprised of a galvano mirror 374 X which scans with laser beam in the X direction and a galvano mirror 374 Y which scans with laser in the Y direction in pair and the mirrors 374 X, 374 Y are driven by control motors 372 X, 372 Y.
- the motors 372 X, 372 Y adjust angles of the mirrors 374 X, 372 Y corresponding to a control instruction from a computer (not shown) and sends a detection signal from an incorporated encoder to the computer.
- the scan area of the galvano mirror is about 30 ⁇ 30 mm.
- the positioning speed of the galvano mirror is about 400 points/second within the scan area.
- the laser beam is projected through the two galvano mirrors 374 X, 374 Y so as to scan in the X and Y directions, so that the laser beam passes through a f- ⁇ lens 376 and strikes an interlayer insulation layer 50 described later of the copper clad laminate 30 A to form a via hole (opening) 50 a.
- the copper clad laminate 30 A is placed on a X-Y table 380 which moves in the X and Y directions.
- the scan area of the galvano mirror of each galvano head 370 is about 30 mm ⁇ 30 mm as described above and the quantity of step areas of the X-Y table 380 is about 289 (17 ⁇ 17) because the copper clad laminate 30 A about 500 mm ⁇ 500 mm is used. That is, processing of the copper clad laminate 30 A is completed by moving by about 30 mm each in the X direction 17 times and in the Y direction 17 times.
- the manufacturing unit includes a CCD camera 390 , which measures the position of a target mark (positioning mark) 11 a disposed on each of four corners of the copper clad laminate 30 A and starts processing after an error is corrected.
- FIG. 9 is a plan view showing the entire structure of the cutting unit and FIG. 9(B) is a side view thereof.
- the belt-like copper clad laminate 30 B pulled out from the roller 18 is cut by a cutter 29 constituted of a pair of blades for cutting out the joined portion to separate each plate-like copper clad laminate 30 A and carry out with the carrying unit 16 .
- FIG. 14 is a sectional view of the multilayered printed wiring board 10 .
- Conductor circuit 34 is formed in the surface of a core substrate 30 .
- the conductor circuit 34 on the front surface and the conductor surface 34 on the rear surface are connected via through holes 36 .
- interlayer resin insulating layer 50 in which via holes 60 and conductor circuits 58 are formed and interlayer resin insulating layer 50 in which via holes 160 and conductor circuits 158 are formed are disposed on the conductor circuits 34 .
- Solder resist layer 70 is formed on the top layer of the via hole 160 and the conductor circuits 158 and bumps 76 U, 76 D are formed on the via holes 160 and the conductor circuits 158 via opening portions 71 in the solder resist layer 70 .
- the ultrasonic horn 22 was vibrated at an amplitude of about 12 ⁇ m and the ultrasonic horn 22 was pressed at a load of about 10 kgf, the joining speed was adjusted to about 10 mm/s and then, the overlapping width shown in FIG. 2 was set to about 2 mm.
- the joining condition is not restricted to this example. If speaking more in detail, the amplitude and load are changed appropriately corresponding to the joining strength of the copper clad laminate 30 A.
- the manufacturing method of the printed wiring board according to the first embodiment can raise positioning accuracy because the plate-like copper clad laminate 30 A is processed in laser processing process for positioning. Then, in the plating process, plating can be carried out continuously because the belt-like copper clad laminate 30 B is processed and because the laminate is carried with the roller, it can be carried and plated without any contact to its product surface.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Combinations Of Printed Boards (AREA)
Abstract
This invention provides a manufacturing method of printed wiring board which enables a plate-like substrate to be carried and processed without any contact to its product surface. End portions of plate-like copper clad laminates are overlapped vertically and then joined linearly by rotating an ultrasonic horn along the end portions. Consequently, copper foils can be metal-joined and a joining strength necessary for transportation with a roller is obtained. Because belt-like copper clad laminate is obtained by joining the plate-like copper clad laminates and after that, processed, thus, the belt-like copper clad laminate can be carried without any contact to its product surface as it is carried with the roller, and then processed.
Description
- The present application is a divisional of and claims the benefit of priority to U.S. application Ser. No. 11/519,885, filed Sep. 13, 2006. The contents of that application are incorporated herein by reference in their entirety.
- 1. Field of the Invention
- The present invention relates to a substrate manufacturing process of printed wiring board, more particularly to joining technology of thin substrates.
- 2. Description of the Related Art
- If sheet-like shape (plate-like shape) is employed as the shape of a thin substrate such as copper clad laminate in which copper foils are laminated on resin layer thereof, transportation of substrates having a low stiffness is more difficult as the thickness of the substrate decreases. For the reason, the thin substrates are set in a frame jig when they are carried and processed. However, the transportation with this condition is more difficult than transportation of a belt-like substrate using a roller. Particularly, unless a care is paid to handling of the substrates as well as transportation thereof, a work piece (substrate) may be seriously damaged.
- If the frame-like transportation jig is used, the effective area of the work piece (substrate) is reduced by an amount corresponding to the area occupied by the transportation jig thereby reducing productivity.
- As the core substrate of a built-up multi-layer wiring board, the copper clad laminate in which copper foils are laminated on resin layer is used, and as the resin layer, for example, glass epoxy resin in which epoxy is impregnated in glass cloth core material and polyimide resin are used. Because the polyimide resin can be adjusted easily to a uniform thickness, it allows copper foil to be laminated easily and thus, as the copper clad laminate, reel-like products as well as plate-like (sheet-like) products are manufactured. On the other hand, because the glass epoxy resin is difficult to form into a uniform thickness, the copper foil cannot be laminated thereon and as the copper clad laminate, the plate-like (sheet-like) product and roll-like products are manufactured. Here, JP 2002-141659 A has disclosed technology for joining together a product with another product.
- The embodiments of the present invention have been achieved to solve the above-described problem and an object of the invention is to provide a manufacturing method of printed wiring board which allows the plate-like substrate to be carried without any contact to its product surface and processed. Another object of the invention is to provide a manufacturing method of printed wiring board which can provide manufacturing steps with flexibility so as to raise productivity.
- To achieve the above-described objects, the feature of the manufacturing method of the first printed wiring board exits in that the end portions of plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other; the contact portion is joined linearly with a joining means so as to obtain a long laminate; and the long laminate is processed.
- The feature of the manufacturing method of the first printed wiring board exists in comprising: a step of processing plate-like laminates each in which metal foil is laminated on resin layer thereof; and a step of bringing the end portions of the plate-like laminates into contact with each other, joining the contact portion linearly with a joining means so as to obtain a long laminate and processing the long laminate.
- The feature of a laminate joining apparatus exists in that the end portions of the plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other and joined linearly by rotating the disc-like ultrasonic horn along the contact portion so as to obtain a long laminate.
- Because according to the manufacturing method of the printed wiring board according to a first aspect of the invention, a long laminate is obtained by joining plate-like laminates and then processed, the laminate can be carried and processed without any contact to its product surface as it is carried with the roller. Further, the processable area of a work piece (laminate) can be increased as compared to a case where the surrounding of the plate-like laminate is held with a frame-like jig. Here because the end portions of laminates are brought into contact with each other and joined linearly, joining strength necessary for transportation with a roller can be obtained different from spot joining and further, no chemical agent such as plating solution is left around the joined portion. Further, processing of the end portions can be carried out continuously with the roller thereby raising processing efficiency.
- Because according to the manufacturing method of the printed wiring board according to a second aspect of the present invention, the end portions of the plate-like laminates are overlapped vertically, metal foils can be metal-joined and a joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- Because according to the manufacturing method of the printed wiring board according to a third aspect of the present invention, the end portions of the plate-like laminates are overlapped vertically and joined with ultrasonic, the metal foils can be metal-joined and a joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- Because according to the manufacturing method of the printed wiring board according to a fourth aspect of the present invention, the end portions of the plate-like laminates are overlapped vertically and joined linearly by rotating a disc-like ultrasonic horn along the end portion, the metal foils can be metal-joined and joining strength necessary for transportation with a roller can be obtained and no chemical agent such as plating solution is left around the joined portion.
- Because according to the manufacturing method of the printed wiring board according to a fifth aspect of the present invention, the plate-like laminates are positioned and joined such that the side ends perpendicular to the end portions to be joined are in a straight line, the ends of the long laminates are arranged linearly thereby facilitating transportation with the roller.
- Because according to the manufacturing method of the printed wiring board according to a sixth aspect of the present invention, the end portions of the laminates are joined along plural lines with the ultrasonic horn, the contact faces on the end portions overlapped vertically can be joined completely and a high joining strength is obtained and no chemical agent such as plating solution is left around the joined portion.
- Because according to the manufacturing method of the printed wiring board according to a seventh aspect of the present invention, the sides of the end portions to be joined of the plate-like laminates are provided with taper, a difference of step at the joined end portions decreases thereby facilitating transportation of the belt-like laminate with a roller.
- The manufacturing method of the printed wiring board according to an eighth aspect of the present invention comprises a step of processing the plate-like laminate and a step of processing a long laminate produced by joining the plate-like laminates. Thus, in a step which can process the plate-like laminate more easily, the plate-like laminate is processed and in a step which can process the belt-like laminate more easily, the long laminate is processed thereby facilitating manufacturing of the printed wiring board.
- Because according to the manufacturing method of the printed wiring board according to a ninth aspect of the present invention, the plate-like laminate is processed in processing step in which positioning is carried out, the positioning accuracy can be raised. Then, because the long laminate is processed in plating step, plating can be carried out continuously and the laminate can be carried and plated without any contact to its product surface as it is carried with a roller.
- In the laminate joining apparatus of a tenth aspect of the present invention, the end portions of the plate-like laminates each in which metal foil is laminated on resin layer thereof are brought into contact with each other and joined linearly by rotating the disc-like ultrasonic horn along the contact portion so as to obtain a long laminate. Thus, the long laminate can be carried and processed without any contact to its product surface when it is carried with the roller.
- In the meantime, joining of the plate-like laminates can be achieved by butting the end portions of the plate-like laminates and joining them with a joint tape.
-
FIG. 1 is a plan view showing the structure of major portions of alaminate joining apparatus 10 according to a first embodiment of the present invention; -
FIG. 2 is a sectional view taken along a line indicated with an arrow G of thelaminate joining apparatus 10 shown inFIG. 1 ; -
FIG. 3 is a sectional view taken along a line indicated with an arrow F of thelaminate joining apparatus 10 shown inFIG. 1 ; -
FIG. 4(A) is a plan view showing the entire structure of thelaminate joining apparatus 10 according to the first embodiment andFIG. 4(B) is a side view thereof; -
FIG. 5 is a plan view showing the structure of major portions of thelaminate joining apparatus 10 according to a first modification of the first embodiment; -
FIG. 6 is a side view of thelaminate joining apparatus 10 according to a second modification of the first embodiment; -
FIG. 7 is an explanatory diagram showing the structure of a plating unit for use in the manufacturing method of the first embodiment; -
FIG. 8 is a perspective view of a laser processing unit for use in the manufacturing method of the first embodiment; -
FIG. 9(A) is a plan view showing the structure of a cutting unit according to the first embodiment andFIG. 9(B) is a side view thereof; -
FIG. 10 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment; -
FIG. 11 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment; -
FIG. 12 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment; -
FIG. 13 is a process diagram showing the manufacturing method of multi-layer printed wiring board according to the first embodiment; and -
FIG. 14 is a sectional view of the multi-layer printed wiring board according to the first embodiment. - The structure of the laminate joining apparatus for use for the manufacturing method of printed wiring board of the present invention will be described with reference to
FIGS. 1-3 . -
FIG. 1 is a plan view showing the structure of major portions of thelaminate joining apparatus 10 for joining together plate-likecopper clad laminate 30A.FIG. 2 is a sectional view taken along a line indicated with an arrow G of thelaminate joining apparatus 10 shown inFIG. 1 .FIG. 3 is a sectional view taken along a line indicated with an arrow F of the laminate joining apparatus shown inFIG. 1 . - The
laminate joining apparatus 10 comprises ananvil 12 which constitutes a support base (jig) for the plate-likecopper clad laminate 30A, apositioning plate 14 erected on theanvil 12 and anultrasonic joining machine 20. Theultrasonic joining machine 20 comprises ahorn 22, anultrasonic oscillator 26 and apressure plate 28 for pressing theultrasonic horn 22 against thecopper clad laminate 30A. As shown inFIG. 1 , theultrasonic joining machine 20 vibrates anultrasonic horn 22 at an amplitude of 1-20 μm in the direction of a disc axis. Theultrasonic horn 22 is pressed against thelaminate 30A at a force of 1-22 kgf via thepressure plate 28 and it is rotated along a joining portion as shown inFIG. 3 . Here, the joining speed can be adjusted in a range of 1-40 mm/s. - The copper clad
laminate 30A is produced by laminatingcopper foil 32 of 3-12 μm thick on both faces of an insulatingsubstrate 30 composed of glass epoxy resin or polyimide resin of 20-60 μm thick. As shown inFIG. 2 , an overlapping width W1 between the copper clad laminate and another copper clad laminate is adjusted to about 2 mm or less. As a consequence, an effective area of the copper clad laminate is secured sufficiently. - The copper clad
laminates 30A are positioned and joined together by bringing side ends thereof into contact with thepositioning plate 14 such that the side ends perpendicular to the end portions to be joined are in a straight line with respect to thepositioning plate 14 erected on theanvil 12. Because thelength 11 of one side end of the copper cladlaminate 30A and thelength 12 of the other side end can be different from each other in mm order as shown inFIG. 1 , unevenness occurs on the side end of the joined belt-like copper cladlaminates 30 when they are joined together with the end portions to be joined as a criterion, so that thereby making it difficult to carry the joined belt-like laminates 30. -
FIG. 4(A) is a plan view showing the entire structure of thelaminate joining apparatus 10 according to the first embodiment andFIG. 4(B) is a side view thereof. Thelaminate joining apparatus 10 comprises aroller 18 which winds up belt-like copper cladlaminates 30B joined by an ultrasonic joiningmachine 20 and a carryingunit 16 which carries the plate-like copper cladlaminate 30A on theanvil 12 and positions the copper cladlaminates 30A with side ends thereof in contact with thepositioning plate 14 and can automatically manufacture belt-like copper cladlaminate 30B from the plate-like copper cladlaminates 30A. - The
laminate joining apparatus 10 of the first embodiment can carry with rollers and process the belt-like copper cladlaminate 30B without any contact with its product surface because the belt-like copper cladlaminate 30B is produced by joining the plate-like copper cladlaminates 30A and processed. Further, the processable area of a work piece (laminate) can be expanded as compared to a case of holding the surrounding of the plate-like copper clad laminate with a frame-like jig. Because the laminates are joined linearly by bringing the end portions thereof in contact with each other, a joining strength necessary for transportation with the roller is obtained different from spot joining and no chemical agent like plating solution is left on the joined portion. Additionally, the laminate can be processed continuously with the roller so as to intensify processing efficiency. - Because in the
laminate joining apparatus 10 of the first embodiment, the plate-like copper cladlaminates 30A are joined linearly by rotating the disc-likeultrasonic horn 22 along the end portion with the end portions of the copper clad laminates overlapped vertically, the copper foils 32 can be metal-joined so that a joining strength necessary for transportation with the rollers can be obtained and no chemical agent such as plating solution is left on the joined portion. - Because in the
laminate joining apparatus 10 of the first embodiment, the plate-like copper cladlaminates 30A are joined such that the side end perpendicular to the end portions to be joined is in a straight line, an end of the belt-like copper cladlaminate 30B is formed linearly so that transportation thereof with the roller is facilitated. -
FIG. 5 is a plan view of thelaminate joining apparatus 10 according to a first modification of the first embodiment. In the first embodiment described with reference toFIG. 1 , the joining is carried out linearly once by rotating theultrasonic horn 22 along an end portion. Contrary to this, according to the first modification of the first embodiment, the joining is carried out linearly by rotating theultrasonic horn 22 several times along the end portion thereof. - Because according to the first modification of the first embodiment, the end portions of the copper clad
laminates 30A are joined linearly by rotating theultrasonic horn 22 along plural lines, the contact faces of the end portions overlapped vertically can be joined completely so as to obtain a high joining strength and no chemical agent like plating solution is left on the surrounding of the joined portion. -
FIG. 6 shows a side face of thelaminate joining apparatus 10 according to the second modification of the first embodiment. In the first embodiment described with reference toFIG. 1 , the end portion of the copper cladlaminate 30A is cut vertically. Contrary to this, according to the second modification of the first embodiment, the side of the end portion is provided with taper. The taper is formed so that the thickness decreases gradually as it goes toward the side end. - Because according to the second modification of the first embodiment, the side of the end portion to be joined is provided with taper, difference of step at the joined end portion decreases gradually to facilitate transportation of the belt-like copper clad
laminate 30B with the roller. - An example of the structure of a plating apparatus used on plating process picked up as an example of processing to the belt-like copper clad
laminate 30B in the manufacturing method of the printed wiring board according to the first embodiment will be described with reference toFIG. 7 . - A
plating apparatus 210 includes aroller 298 on which the belt-like copper cladlaminate 30B is wound, feedingrollers 250 for feeding the copper cladlaminate 30B from theroller 298, aplating bath 212 which holds electroless plating solution, feedingrollers 250B for pulling out the copper clad laminate from theplating bath 212 and aroller 298B for winding up the copper clad laminate. The copper cladlaminate 30B is carried into theplating bath 212 through aslit 212S. Abuffer 250 for adjusting the tension of the copper cladlaminate 30B is disposed within theplating bath 212. Thebuffer 250 is constituted of a pair of fixedrollers swing roller 256 which is biased to the direction away from the fixedrollers rollers swing roller 256 are formed in the diameter of about 50 cm, so that the joined portion is not separated even if the belt-like substrate 30A is bent into a semi-circular shape of about 50 cm in diameter. Further, because the plating apparatus applies a tension of about 0.01 kgf/mm to the copper clad laminate, it is preferable to join the copper clad laminates so that they are not separated against a double tension of about 0.02 kgf/mm. - Next, the structure of a laser processing apparatus for use in laser processing process picked up as an example of processing applied to the plate-like copper clad
laminate 30A in the manufacturing method of the printed wiring board according to the first embodiment will be described with reference toFIG. 8 . - According to the first embodiment, the belt-like copper clad laminate is cut out so as to obtain the plate-like copper clad
laminate 30A and thislaminate 30A is positioned and processed with laser. This laser processing unit utilizes a CO2laser oscillation unit 360 having a wavelength of about 10.6 μm as a laser source. Light emitted from thelaser oscillation unit 360 is reflected by areflection plate 366 and sent to galvano head through atransfer mask 362 for making the focal point on a substrate clear. - A scanning head (galvano head) 370 includes a galvano mirror comprised of a
galvano mirror 374X which scans with laser beam in the X direction and agalvano mirror 374Y which scans with laser in the Y direction in pair and themirrors control motors motors mirrors - The scan area of the galvano mirror is about 30×30 mm. The positioning speed of the galvano mirror is about 400 points/second within the scan area. The laser beam is projected through the two galvano mirrors 374X, 374Y so as to scan in the X and Y directions, so that the laser beam passes through a f-
θ lens 376 and strikes aninterlayer insulation layer 50 described later of the copper cladlaminate 30A to form a via hole (opening) 50 a. - The copper clad
laminate 30A is placed on a X-Y table 380 which moves in the X and Y directions. The scan area of the galvano mirror of each galvanohead 370 is about 30 mm×30 mm as described above and the quantity of step areas of the X-Y table 380 is about 289 (17×17) because the copper cladlaminate 30A about 500 mm×500 mm is used. That is, processing of the copper cladlaminate 30A is completed by moving by about 30 mm each in the X direction 17 times and in the Y direction 17 times. - The manufacturing unit includes a
CCD camera 390, which measures the position of a target mark (positioning mark) 11 a disposed on each of four corners of the copper cladlaminate 30A and starts processing after an error is corrected. - The structure of a cutting unit for use in cutting process picked up as an example of processing applied to the belt-like copper clad
laminate 30B in the manufacturing method of the printed wiring board according to the first embodiment will be described with reference toFIG. 9(A) .FIG. 9 is a plan view showing the entire structure of the cutting unit andFIG. 9(B) is a side view thereof. The belt-like copper cladlaminate 30B pulled out from theroller 18 is cut by acutter 29 constituted of a pair of blades for cutting out the joined portion to separate each plate-like copper cladlaminate 30A and carry out with the carryingunit 16. - The structure of a multilayered printed
wiring board 10 manufactured according to the manufacturing method of the first embodiment of the present invention will be explained with reference toFIGS. 10-14 .FIG. 14 is a sectional view of the multilayered printedwiring board 10.Conductor circuit 34 is formed in the surface of acore substrate 30. Theconductor circuit 34 on the front surface and theconductor surface 34 on the rear surface are connected via throughholes 36. Further, interlayerresin insulating layer 50 in which viaholes 60 andconductor circuits 58 are formed and interlayerresin insulating layer 50 in which viaholes 160 andconductor circuits 158 are formed are disposed on theconductor circuits 34. Solder resistlayer 70 is formed on the top layer of the viahole 160 and theconductor circuits 158 and bumps 76U, 76D are formed on the via holes 160 and theconductor circuits 158 via opening portions 71 in the solder resistlayer 70. - Subsequently, the manufacturing method of the multilayered printed
wiring board 10 described above with reference toFIG. 14 will be described with reference toFIGS. 10-13 . -
- (1) A plate-like copper clad laminate (about 510 mm in length×about 164 mm in width) 30A in which copper foils 32 of about 12 μm are laminated on both faces of an insulating
substrate 30 composed of glass epoxy resin of about 0.6 mm in thickness was used as starting material (FIG. 10(A) ). - (2) A belt-like copper clad
laminate 30B is obtained by joining plural pieces of the plate-like copper cladlaminates 30A using the above-described laminate joining apparatus (UEW-100Z28a: manufactured by Ultrasonic Engineering Co., Ltd.) with reference toFIGS. 1-4 (FIG. 10(B) ). - As joining condition, the
ultrasonic horn 22 was vibrated at an amplitude of about 12 μm and theultrasonic horn 22 was pressed at a load of about 10 kgf, the joining speed was adjusted to about 10 mm/s and then, the overlapping width shown inFIG. 2 was set to about 2 mm. As a result, even if the joined copper clad laminate is bent into a semi-circular shape of about 50 cm in diameter, the joined portion is not separated so that it can bear a tension of up to about 0.1 kgf/mm. In the meantime, the joining condition is not restricted to this example. If speaking more in detail, the amplitude and load are changed appropriately corresponding to the joining strength of the copper cladlaminate 30A. - (3) Communication holes 35 for through holes are made in the belt-like copper clad
laminate 30B with a drill (FIG. 10(C) ). - (4) After electroless copper plating is executed to the communication holes 35 for through holes with the above-described plating unit with reference to
FIG. 7 , throughholes 36 are formed by providing electrolytic plating film (FIG. 10(D) ). - (5)
Conductor circuit 34 is formed by patterning thecopper foil 32 by etching (FIG. 11(A) ). - (6) Roughened face 34 a was formed on the surface of the
wiring pattern 34 and throughhole 36 by black oxide processing and reduction processing (FIG. 11(B) ). - (7) Next, through hole charging resin composition 40 y was charged in between the
conductor circuits holes 36 using a squeegee and then dried (FIG. 11(C) ). The substrate surface was polished to a flat surface until land surfaces of theconductor circuits 34 and throughholes 36 are exposed and the through hole charging resin composition 40γ was hardened by heat treatment so as to form resin charging material layer 40 (FIG. 12(A) ). - (8) After the substrate was washed with water and degreased with acid, soft etching was carried out and then, etching solution was sprayed to both faces of a substrate and the roughened face 34β was formed on the entire surface of the conductor circuit by etching the surface of the
conductor circuit 34 and the land surface and inner wall of the through holes 36 (FIG. 12(B) ). - (9) Next, interlayer insulating resin film 50γ was bonded by vacuum pressure bonding lamination at about 0.5 MPa while raising the temperature up to 50-150° C.
- (10) The belt-like copper clad
laminate 30B described with reference toFIG. 9 was cut out by a cutting unit at the joined portion so as to produce the plate-like copper cladlaminate 30A (FIG. 12(D) ). - (11) Next, the plate-like copper clad
laminate 30A was positioned to the laser unit described above with reference toFIG. 8 so as to form the opening 50 a for the via hole having a diameter of about 80 μm (FIG. 13(A) ). - (12) Next, heat treatment was carried out to harden the interlayer insulating resin film 50γ completely to form the interlayer
resin insulating layer 50 and consequently, theconductor circuits 58 and viaholes 60 composed ofelectroless plating film 52 andelectrolytic plating film 56 were formed (FIG. 13(B) ). Further, black oxide processing and reduction processing were carried out to form a roughened face 58 a on the surface of theconductor circuit 58 and a roughened face 60 a on the surface of the via hole 60 (FIG. 13(C) ). - (13) The upper
interlayer insulating layer 150 was formed to form theconductor circuits 158 and the via holes 160. Further, the roughened face 158 a was formed on the surface of theconductor circuits 158 and the roughened face 160α was formed on the surface of the via holes 160 (FIG. 13(D) ). - (14) The solder resist
layer 70 having the opening 71 was formed on both faces of the substrate and solder paste was printed within the opening 71 and then solder bumps 76U, 76D were formed by reflow so as to form a printed wiring board having the solder bumps (FIG. 14 ). - The manufacturing method of the printed wiring board according to the first embodiment can raise positioning accuracy because the plate-like copper clad
laminate 30A is processed in laser processing process for positioning. Then, in the plating process, plating can be carried out continuously because the belt-like copper cladlaminate 30B is processed and because the laminate is carried with the roller, it can be carried and plated without any contact to its product surface. - Although the invention has been disclosed in the context of a certain preferred embodiments, it will be understood that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments of the invention. Thus, it is intended that the scope of the invention should not be limited by the disclosed embodiments but should be determined by reference to the claims that follow.
Claims (9)
1. A laminate joining apparatus comprising:
a positioning device configured to position end portions of plate-like laminates each in which metal foil is laminated on a resin layer thereof into contact with each other at a contact portion; and
a joining device configured to use a disc-like ultrasonic horn to linearly join the plate-like laminates along the contact portion so as to obtain a long laminate.
2. The laminate joining apparatus according to claim 1 wherein the positioning device comprises a carrying unit.
3. The laminate joining apparatus according to claim 1 further comprising a support base configured to support the plate-like laminates.
4. The laminate joining apparatus according to claim 3 wherein the disc-like ultrasonic horn is coupled to the support base such that the disc-like ultrasonic horn rotates along the end portions of the plate-like laminates in contact with each other.
5. The laminate joining apparatus according to claim 1 , wherein the positioning device comprises a positioning plate configured to position the plate-like laminates such that the side ends perpendicular to the end portions to be joined are in a straight line.
6. The laminate joining apparatus according to claim 2 , wherein the positioning device comprises a positioning plate configured to position the plate-like laminates such that the side ends perpendicular to the end portions to be joined are in a straight line.
7. The laminate joining apparatus according to claim 3 , wherein the positioning device comprises a positioning plate configured to position the plate-like laminates such that the side ends perpendicular to the end portions to be joined are in a straight line.
8. The laminate joining apparatus according to claim 1 , further comprising a roller configured to carry the plate-like laminates in a joined state.
9. A laminate joining apparatus comprising:
means for positioning end portions of plate-like laminates each in which metal foil is laminated on a resin layer thereof into contact with each other; and
means for linearly joining the plate-like laminates along the contact portion so as to obtain a long laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/452,251 US20120199291A1 (en) | 2006-09-13 | 2012-04-20 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/519,885 US8220696B2 (en) | 2006-09-13 | 2006-09-13 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
US13/452,251 US20120199291A1 (en) | 2006-09-13 | 2012-04-20 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/519,885 Division US8220696B2 (en) | 2006-09-13 | 2006-09-13 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120199291A1 true US20120199291A1 (en) | 2012-08-09 |
Family
ID=39293376
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/519,885 Expired - Fee Related US8220696B2 (en) | 2006-09-13 | 2006-09-13 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
US13/452,251 Abandoned US20120199291A1 (en) | 2006-09-13 | 2012-04-20 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/519,885 Expired - Fee Related US8220696B2 (en) | 2006-09-13 | 2006-09-13 | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Country Status (2)
Country | Link |
---|---|
US (2) | US8220696B2 (en) |
JP (1) | JP5151313B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8220696B2 (en) * | 2006-09-13 | 2012-07-17 | Ibiden Co., Ltd. | Manufacturing method of printed wiring board and a laminate jointing apparatus |
DE102008063277A1 (en) * | 2008-12-29 | 2010-07-08 | Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh | Method and device for joining metal strips |
JP6158031B2 (en) * | 2013-10-15 | 2017-07-05 | 日本メクトロン株式会社 | Method for manufacturing flexible printed circuit board and intermediate product used for manufacturing flexible printed circuit board |
KR102321605B1 (en) | 2015-04-09 | 2021-11-08 | 삼성전자주식회사 | Method for designing layout of semiconductor device and method for manufacturing semiconductor device using the same |
US9698056B2 (en) | 2015-04-09 | 2017-07-04 | Samsung Electronics., Ltd. | Method for designing layout of semiconductor device and method for manufacturing semiconductor device using the same |
US9690896B2 (en) | 2015-04-09 | 2017-06-27 | Samsung Electronics Co., Ltd. | Method for manufacturing a semiconductor device and semiconductor device manufactured by the same |
US10204920B2 (en) | 2015-04-09 | 2019-02-12 | Samsung Electronics Co., Ltd. | Semiconductor device including polygon-shaped standard cell |
US9773772B2 (en) | 2015-04-09 | 2017-09-26 | Samsung Electronics Co., Ltd. | Semiconductor device and method of fabricating the same |
JP2017215499A (en) * | 2016-06-01 | 2017-12-07 | エルジー ディスプレイ カンパニー リミテッド | Manufacturing method of display device |
JP6842669B2 (en) * | 2017-05-29 | 2021-03-17 | トヨタ紡織株式会社 | Particle impregnation device and manufacturing method of particle impregnated non-woven fabric |
CN208539000U (en) * | 2018-03-15 | 2019-02-22 | 宁德时代新能源科技股份有限公司 | Welding device and processing equipment for secondary battery current collector |
CN116923975B (en) * | 2023-09-14 | 2023-11-24 | 遂宁利和科技有限公司 | Conveying and feeding device for copper-clad plate production |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3217957A (en) * | 1958-12-12 | 1965-11-16 | Gen Electric | Welding apparatus |
US3360850A (en) * | 1965-05-24 | 1968-01-02 | Western Electric Co | Vibratory bonding utilizing a tuned anvil |
US3955740A (en) * | 1975-06-09 | 1976-05-11 | Branson Ultrasonics Corporation | Vibratory seam welding apparatus |
US4975133A (en) * | 1981-11-28 | 1990-12-04 | Licentia Patent-Verwaltungs-Gmbh | Apparatus for welding components together with the use of ultrasound |
US8220696B2 (en) * | 2006-09-13 | 2012-07-17 | Ibiden Co., Ltd. | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4591087A (en) * | 1984-03-07 | 1986-05-27 | Kulicke And Soffa Industries Inc. | Apparatus for making rolling spot bonds |
JPH05111715A (en) | 1991-09-27 | 1993-05-07 | Sumitomo Metal Ind Ltd | Method for preventing generation of end mark when metallic strip is coiled |
DE4318061C2 (en) * | 1993-06-01 | 1998-06-10 | Schulz Harder Juergen | Method of manufacturing a metal-ceramic substrate |
JPH1174651A (en) * | 1997-03-13 | 1999-03-16 | Ibiden Co Ltd | Printed wiring board and manufacturing method thereof |
US5942314A (en) * | 1997-04-17 | 1999-08-24 | Mitsui Mining & Smelting Co., Ltd. | Ultrasonic welding of copper foil |
JP2002141659A (en) | 2000-10-31 | 2002-05-17 | Fujikura Ltd | Method for connecting flexible printed circuit boards |
JP4216044B2 (en) | 2002-10-31 | 2009-01-28 | 三井金属鉱業株式会社 | Ultrasonic welding equipment for metal foil |
JP2005197295A (en) | 2003-12-26 | 2005-07-21 | Fujikura Ltd | CONNECTED BODY AND ITS MANUFACTURING METHOD |
JP2005223054A (en) * | 2004-02-04 | 2005-08-18 | Fujikura Ltd | Ultrasonic bonding method of terminal part of flexible wiring board |
JP4676776B2 (en) | 2005-02-09 | 2011-04-27 | 株式会社フジクラ | Method for manufacturing printed wiring board |
-
2006
- 2006-09-13 US US11/519,885 patent/US8220696B2/en not_active Expired - Fee Related
-
2007
- 2007-08-22 JP JP2007215428A patent/JP5151313B2/en not_active Expired - Fee Related
-
2012
- 2012-04-20 US US13/452,251 patent/US20120199291A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3217957A (en) * | 1958-12-12 | 1965-11-16 | Gen Electric | Welding apparatus |
US3360850A (en) * | 1965-05-24 | 1968-01-02 | Western Electric Co | Vibratory bonding utilizing a tuned anvil |
US3955740A (en) * | 1975-06-09 | 1976-05-11 | Branson Ultrasonics Corporation | Vibratory seam welding apparatus |
US4975133A (en) * | 1981-11-28 | 1990-12-04 | Licentia Patent-Verwaltungs-Gmbh | Apparatus for welding components together with the use of ultrasound |
US8220696B2 (en) * | 2006-09-13 | 2012-07-17 | Ibiden Co., Ltd. | Manufacturing method of printed wiring board and a laminate jointing apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20080223502A1 (en) | 2008-09-18 |
JP5151313B2 (en) | 2013-02-27 |
JP2008072103A (en) | 2008-03-27 |
US8220696B2 (en) | 2012-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8220696B2 (en) | Manufacturing method of printed wiring board and a laminate jointing apparatus | |
KR101160498B1 (en) | Printed wiring board and method for producing the same | |
KR101162525B1 (en) | Method for manufacturing printed wiring board | |
US6237218B1 (en) | Method and apparatus for manufacturing multilayered wiring board and multi-layered wiring board | |
US8075788B2 (en) | Fabrication method of printed circuit board and printed circuit board machining apparatus | |
US8208769B2 (en) | Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted | |
US5079070A (en) | Repair of open defects in thin film conductors | |
JP2001053443A (en) | Electronic circuit board manufacturing method, electronic circuit board manufacturing apparatus, and electronic circuit board | |
JPH10242617A (en) | Method and apparatus for processing ceramic green sheet | |
TWI328991B (en) | Manufacturing method of wiring substrate | |
JP2003060356A (en) | Manufacturing method of multilayer printed wiring board | |
JP2009146979A (en) | Photoelectric conversion device | |
JP2011119728A (en) | Method for recognizing alignment mark, and method for manufacturing printed wiring board | |
JP2006059942A (en) | Wiring board, manufacturing method thereof electronic equipment and electronic device using the same | |
JPH10335806A (en) | Method and equipment for manufacture circuit module | |
JP2001267695A (en) | Bendable circuit board and method of manufacturing the same | |
JP4794152B2 (en) | Wiring interlayer connection method of printed wiring board | |
JP4893651B2 (en) | Component mounting apparatus and mounting method | |
JP2005317953A (en) | Multilayer interconnection board and manufacturing method of the multilayer interconnection board | |
JP2002204047A (en) | Manufacturing method of flexible printed wiring board and manufacturing apparatus used therefor | |
JP2003053580A (en) | Method for laser beam machining and method and device for manufacturing printed wiring board | |
JPH05267810A (en) | Double-sided board and manufacture of the same | |
JP2003285176A (en) | Laser beam machining method | |
JP2005217030A (en) | Rigid flex board, manufacturing method and repair method thereof | |
JPH05167242A (en) | Flexible circuit board joining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |