US20120153462A1 - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device Download PDF

Info

Publication number
US20120153462A1
US20120153462A1 US13/312,565 US201113312565A US2012153462A1 US 20120153462 A1 US20120153462 A1 US 20120153462A1 US 201113312565 A US201113312565 A US 201113312565A US 2012153462 A1 US2012153462 A1 US 2012153462A1
Authority
US
United States
Prior art keywords
semiconductor device
alignment mark
semiconductor element
electronic component
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/312,565
Other versions
US8841783B2 (en
Inventor
Satoru Wakiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAKIYAMA, SATORU
Publication of US20120153462A1 publication Critical patent/US20120153462A1/en
Priority to US14/462,776 priority Critical patent/US8962440B2/en
Application granted granted Critical
Publication of US8841783B2 publication Critical patent/US8841783B2/en
Priority to US14/600,371 priority patent/US9202804B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • H01L2224/03462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/039Methods of manufacturing bonding areas involving a specific sequence of method steps
    • H01L2224/03912Methods of manufacturing bonding areas involving a specific sequence of method steps the bump being used as a mask for patterning the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10152Auxiliary members for bump connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/10165Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/11015Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for aligning the bump connector, e.g. marks, spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/1146Plating
    • H01L2224/11462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13012Shape in top view
    • H01L2224/13014Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/141Disposition
    • H01L2224/1412Layout
    • H01L2224/1413Square or rectangular array
    • H01L2224/14131Square or rectangular array being uniform, i.e. having a uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1451Function
    • H01L2224/14515Bump connectors having different functions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26135Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26122Auxiliary members for layer connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/26145Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26165Alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27416Spin coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/81132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/81138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/81139Guiding structures on the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81399Material
    • H01L2224/814Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting the layer connector during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8313Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/83132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/83141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06568Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06593Mounting aids permanently on device; arrangements for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Definitions

  • the present disclosure relates to a semiconductor device, in which alignment marks for flip chip connection are formed, and a method of manufacturing the semiconductor device.
  • the alignment marks are formed by using metal wire on the semiconductor chip. Further, in flip chip mounting, the semiconductor chip is mounted, and the lower portion of the mounted semiconductor chip is filled with an underfill resin for improving reliability. Further, in order to prevent resin contamination caused by flow of the underfill resin from occurring on the electrodes such as the wire bonding pads which are formed on the mounting board or the semiconductor device, a technique of forming a dam in a region filled with the underfill resin has been studied (for example, refer to Japanese Unexamined Patent Application Publication No. 2005-276879).
  • the underfill resin which covers the solder bumps, on the surface where the semiconductor chips are mounted in advance.
  • the underfill resin is also formed on the alignment marks of the semiconductor chips.
  • the optical transparency of the underfill resin filled with a filler and the like is low, it is difficult to identify the alignment marks formed on the lower side of the underfill resin.
  • connection error such as short between the bumps occurs.
  • a semiconductor device including a semiconductor element; a pad electrode that is formed on the semiconductor element; an alignment mark that is formed on the semiconductor element; a connection electrode that is formed on the pad electrode; and an underfill resin that is formed to cover the connection electrode.
  • the height of the alignment mark from the semiconductor element is greater than that of the connection electrode.
  • a semiconductor device including a first electronic component that has the configuration of the above-mentioned semiconductor device; a second electronic component on which the first electronic component is mounted.
  • a method of manufacturing the semiconductor device includes a process of providing a wafer on which a semiconductor element is formed, and a process of forming a barrier layer on the wafer.
  • the method also includes a process of forming a first resist pattern, which has an opening portion located at a position of a formed alignment mark, on the barrier layer, and a process of forming the alignment mark in the opening portion of the first resist pattern by using an electrolytic plating method.
  • the method also includes a process of forming a second resist pattern, which has an opening portion located at a position of a connection electrode of the semiconductor element so as to cover the barrier layer and the alignment mark, after removing the first resist pattern.
  • the method also includes a process of forming the connection electrode in the opening portion of the second resist pattern by using the electrolytic plating method, and a process of providing an underfill resin on the semiconductor element so as to cover the connection electrode.
  • a method of manufacturing a semiconductor device includes a process of forming a first electronic component, and a process of providing a second electronic component that has an alignment mark and a pad electrode.
  • the method also includes a process of aligning a position of the first electronic component with a position of the second electronic component by using the alignment mark, electrically connecting the connection electrode and the pad electrode to each other, and mounting the first electronic component on the second electronic component.
  • the alignment mark of which the height is set to be greater than that of the connection electrode is set to be greater than that of the connection electrode.
  • the alignment mark of which the height is greater than the connection electrode even after the underfill resin is formed to cover the connection electrode, it becomes easy to recognize the alignment mark. Hence, it is possible to manufacture the semiconductor device capable of suppressing the connection error.
  • the underfill resin is formed to cover the connection electrode, it is possible to provide a semiconductor device capable of easily recognizing the alignment mark and easily performing accurate positional alignment.
  • FIG. 1 is a diagram illustrating a configuration of a semiconductor device according to a first embodiment of the disclosure
  • FIGS. 2A to 2E are diagrams illustrating a method of manufacturing the semiconductor device according to the first embodiment of the disclosure
  • FIGS. 3A to 3D are diagrams illustrating the method of manufacturing the semiconductor device according to the first embodiment of the disclosure.
  • FIGS. 4A to 4D are diagrams illustrating the method of manufacturing the semiconductor device according to the first embodiment of the disclosure.
  • FIGS. 5A and 5B are diagrams illustrating a configuration of a semiconductor device according to a second embodiment of the disclosure.
  • FIGS. 6A to 6C are diagrams illustrating a method of manufacturing the semiconductor device according to the second embodiment of the disclosure.
  • FIG. 7 is a diagram illustrating the configuration of the semiconductor device according to the first embodiment of the disclosure.
  • FIGS. 8A and 8B are diagrams illustrating the configuration of the semiconductor device according to the second embodiment of the disclosure.
  • FIG. 1 shows the semiconductor device according to the first embodiment of the disclosure.
  • the semiconductor device 10 shown in FIG. 1 will be described with reference to a sectional view illustrating a part in which bump electrodes 19 are formed on pad electrodes 12 on the semiconductor element 11 .
  • the semiconductor device 10 has the pad electrodes 12 on the semiconductor element 11 . Further, a passivation layer 13 is formed on the entire surface except openings of the pad electrodes 12 on the semiconductor element 11 .
  • the bump electrodes 19 are formed as electrodes which are connected to external devices on the pad electrodes 12 .
  • the barrier layer 14 is formed on the pad electrode 12 .
  • an under bump metal (UBM) 16 is provided on the barrier layer 14 .
  • a bump 17 corresponding to the pad electrode 12 is formed on the UBM 16 .
  • alignment marks 15 are formed on the passivation layer 13 .
  • an underfill resin 18 is formed on the entire surface of the semiconductor element 11 so as to cover the bump electrode 19 , the alignment marks 15 , and the passivation layer 13 .
  • Each pad electrode 12 is made of, for example aluminum, and is connected to an electronic circuit of a wafer, which is not shown, in the semiconductor element 11 . Further, the passivation layer 13 is formed around the surface of the pad electrode 12 , and the barrier layer 14 and the UBM 16 are formed in the center thereof.
  • the barrier layer 14 is formed to cover the center portion of each pad electrode 12 . Further, the barrier layer 14 is formed as the lower layer of the part, in which the UBM 16 is formed, on the passivation layer which is formed around the surface of the pad electrode 12 .
  • the barrier layer 14 is formed between the lower portions of the alignment marks 15 and the passivation layer 13 like the upper portions of the pad electrodes 12 .
  • the barrier layer 14 is made of, for example, Ti, Cu, or the like.
  • Each UBM 16 is formed in the center portion of the pad electrode 12 through the above-mentioned barrier layer 14 . Further, the bump 17 is formed on the UBM 16 . Likewise, the bump electrode 19 is formed on the pad electrode 12 so as to include the barrier layer 14 , the UBM 16 , and the bump 17 .
  • the UBM 16 is formed to have a thickness equal to or more than a certain level is eroded by the solder forming the bump 17 .
  • the UBM 16 is formed of, for example, Ni, Ti, TiW, W, Cu, and the like. Normally, the UBM 16 is formed to be thicker than that of the barrier layer 14 or that of the pad electrode 12 in order to prevent a solder alloy such as SnAg formed on the UBM 16 from diffusing into the pad electrode 12 made of AlCu, Cu, or the like.
  • Each bump 17 is formed on the UBM 16 in a spherical shape protruding from the pad electrode 12 .
  • the bump 17 is formed of, for example, a solder alloy such as SnAg. Further, the solder ally may not be formed as the bump 17 on the UBM 16 , and antioxidant treatment using Ni/Au or the like may be performed on the UBM 16 .
  • the alignment marks 15 are formalized at predetermined positions on the semiconductor element 11 .
  • a plurality of the alignment marks 15 are formed in order to align the positions thereof when the semiconductor device 10 is set on a different semiconductor device or a mounting board, and are formed on the semiconductor element 11 in order to correct distortion and the like of the semiconductor device 10 .
  • each alignment mark formed on the semiconductor element and the like are formed in the same process for the pad electrodes 12 .
  • each alignment mark is formed on the same plane of the pad electrode 12 so as to have a thickness the same as that of the pad electrode 12 .
  • the alignment mark 15 of the semiconductor device 10 is formed on the passivation layer 13 in a columnar shape.
  • the alignment mark 15 is formed such that the height thereof from the surface of the semiconductor element 11 is greater than the bump electrode 19 which is formed on the pad electrode 12 .
  • the height of the alignment mark 15 may be equal to the height of the underfill resin 18 . Further, it is preferable that the height of the alignment mark 15 should be formed to be equal to or less than that of the underfill resin 18 . In addition, even after the underfill resin 18 is formed, it is possible to easily recognize the alignment mark 15 . Thus, the height of the alignment mark 15 has only to be the height which does not cause a defect at the time of mounting the semiconductor device 10 .
  • the underfill resin 18 is formed to have a thickness at which the underfill resin 18 covers the connection portions of the bumps 17 , that is, the mounting surface of the semiconductor device 10 .
  • the thickness of the underfill resin from the surface of the semiconductor element 11 should be set to be equal to or greater than the distance between the mounting surface of the mounted semiconductor device 10 and the mounting surface of the semiconductor device or the mounting board on which the semiconductor device 10 is mounted.
  • the alignment mark 15 should be formed of the same material as the under bump metal (UBM) 16 such as Ni, Ti, TiW, W, and Cu. Further, the alignment mark may be formed of a material different from that of the UBM 16 .
  • UBM under bump metal
  • the alignment mark 15 in the semiconductor device 10 is formed on the passivation layer 13 , but may be formed on the same plane of the pad electrode 12 .
  • the alignment mark 15 may be formed of a material the same as that of the pad electrode 12 .
  • FIG. 2A there is provided a wafer on which the semiconductor element 11 having the pad electrodes 12 and the passivation layer 13 is formed. Then, by performing reverse sputtering on the surface of the semiconductor element 11 on the wafer, an oxide film and the like on the surfaces of the pad electrodes 12 are removed.
  • the pad electrodes 12 and the passivation layer 13 are covered, and the barrier layer 14 is formed on the entire surface of the semiconductor element 11 .
  • the barrier layer 14 for example, a Ti layer is formed on the pad electrodes 12 and the passivation layer 13 by using the sputtering method. Then, likewise by using the sputtering method, a Cu layer is formed to cover the Ti layer.
  • a photo resist layer 21 is formed on the barrier layer 14 .
  • the photo resist layer 21 is formed by forming a coated film in for example a spin coating method so as to cover the surface of the wafer and subsequently drying the coated film. Further, the photo resist layer 21 is formed to have a thickness equal to or greater than the height of each alignment mark 15 formed on the semiconductor element 11 .
  • the exposure treatment is performed on the photo resist layer 21 through the photomask 22 .
  • the photomask 22 employs a pattern for illuminating the exposure light on the region in which the alignment marks are formed.
  • FIG. 2F by performing the development treatment on the photo resist layer 21 , the exposed portions of the photo resist layer 21 are removed, whereby opening portions 23 are formed on the photo resist layer 21 .
  • the opening portions 23 are formed on the semiconductor element 11 so as to correspond to the formation positions of the alignment marks.
  • a plating layer is formed on the opening portions 23 of the photo resist layer 21 , whereby the alignment marks 15 are formed. Thereby, the alignment marks 15 are formed on the semiconductor element 11 and the barrier layer 14 .
  • the alignment mark 15 is formed of a plating layer such as Ni, Ti, TiW, W, and Cu.
  • the alignment mark 15 is formed to have a height which is equal to or greater than that of the bump electrode 19 formed on the pad electrode of the semiconductor element 11 .
  • the photo resist layer 21 is removed from the semiconductor element 11 .
  • the photo resist layer 24 is formed on the barrier layer 14 .
  • the photo resist layer 24 is formed by forming a coated film in for example the spin coating method so as to cover the surface of the wafer and the alignment marks 15 and subsequently drying the coated film.
  • the exposure treatment is performed on the photo resist layer 24 through the photomask 25 .
  • the photomask 25 employs a pattern for illuminating the exposure light on the center portions of the pad electrodes 12 . Then, by performing the development treatment on the photo resist layer 24 after the exposure, the exposed portions are removed, whereby the opening portions 26 are formed on the photo resist layer 24 .
  • the under bump metal (UBM) 16 is formed in each opening portion 26 . Furthermore, as shown in FIG. 4B , a solder layer 17 A is formed on the UBM 16 in the opening portions 26 by using the electrolytic plating method.
  • the UBM 16 is, similarly to the alignment mark 15 , formed of Ni, Ti, TiW, W, Cu, and the like in the electrolytic plating. Further, the solder layer 17 A is formed by the electrolytic plating using the solder alloy such as SnAg.
  • the barrier layer 14 exposed on the surface of the semiconductor element 11 is removed by sputter etching.
  • the bumps 17 are formed by melting the semiconductor layer through the reflow.
  • the barrier layer 14 is made to remain under the UBM 16 throughout the entire surface.
  • each alignment mark 15 serves as an etching mask, the barrier layer 14 also remains under the alignment mark 15 .
  • each bump electrode 19 is formed of the UBM 16 and the bump 17 on the pad electrode 12 .
  • the underfill resin 18 is formed on the surface of the wafer on the semiconductor element 11 side.
  • the underfill resin 18 is formed by the spin coating method using an application liquid containing, for example, the underfill resin or by laminating a dry film of the underfill resin. Then, by cutting the semiconductor element 11 from the wafer and into separate pieces, the semiconductor device 10 is manufactured.
  • the alignment marks 15 , the UBM 16 , and the solder bumps 17 are formed on the surface of the wafer on which the semiconductor element 11 is formed.
  • Each alignment mark 15 is formed such that the height of the upper surface thereof is greater than the height of the bump electrode 19 from the formation surface of the semiconductor element 11 .
  • the alignment mark 15 is also coated therewith at the same time. At this time, the underfill resin 18 is formed to have a thickness equal to or greater than the height of the alignment mark 15 .
  • the alignment marks 15 are formed before the process of forming the UBM 16 and the solder layer 17 A.
  • the order of the process of forming the UBM 16 and the solder layer 17 A and the process of forming the alignment marks 15 are not particularly limited.
  • the processes of forming the alignment mark 15 , the UBM 16 , and the solder layer 17 A can be formed regardless of the order thereof if the processes are subsequent to the process of forming the barrier layer 14 and are previous to the process of etching the barrier layer 14 .
  • FIGS. 5A and 5B show the semiconductor device according to the second embodiment of the disclosure.
  • the semiconductor device shown in FIGS. 5A and 5B includes a first electronic component and a second electronic component.
  • the first electronic component has a configuration the same as the semiconductor device according to the first embodiment shown in FIG. 1 .
  • the second electronic component includes a semiconductor device on which the semiconductor device according to the first embodiment is mounted.
  • the semiconductor device according to the second embodiment is a semiconductor device 30
  • the semiconductor device formed as the first electronic component is a first semiconductor device 10
  • the semiconductor device formed as the second electronic component is a second semiconductor device 31 .
  • the second semiconductor device 31 shown in FIGS. 5A and 5B will be described with reference to a sectional view illustrating a part in which alignment marks 36 and under bump metals (UBM) 37 for electrode connection are formed on the semiconductor element 32 .
  • UBM under bump metals
  • the first semiconductor device 10 has the same configuration as that of the above-mentioned first embodiment.
  • FIGS. 5A and 5B show only a configuration which is necessary to describe the semiconductor device according to the second embodiment, where configurations of the pad electrodes which are formed on the semiconductor element 11 , the passivation layer, and the like are omitted.
  • the alignment marks 15 are formed at predetermined positions on the semiconductor element 11 . Further, each bump electrode 19 is formed of the UBM 16 and the bump 17 at the position corresponding to the pad electrode of the semiconductor element 11 . Furthermore, the height of the alignment mark 15 is larger than the height of the bump electrode 19 on the semiconductor element 11 . Then, the underfill resin 18 is formed to cover the bump electrodes 19 and the alignment marks 15 .
  • the alignment marks 36 are formed at predetermined positions of the semiconductor element 32 .
  • Each alignment mark is formed on the same layer as the pad electrode and at a height substantially equal to that of the surface of the semiconductor element 32 by using the wiring and the like of the semiconductor element 32 .
  • the UBM 37 is formed as a connection pad at the position corresponding to the pad electrode of the semiconductor element 32 .
  • the UBM 37 can be configured like the UBM 16 of the first semiconductor device 10 , and is formed of, for example, Ni, Ti, TiW, W, Cu, and the like.
  • the wire bonding pads 39 are formed at the end portions of the second semiconductor device 31 . In each wire bonding pad 39 , the second semiconductor device 31 and the external electronics are electrically connected through the wire bonding.
  • the pad electrodes and the passivation layer are formed on the semiconductor element 32 .
  • the configuration necessary to describe the semiconductor device according to the second embodiment is shown, and the description of the other configurations will be omitted.
  • the first semiconductor device 10 is mounted on the second semiconductor device 31 .
  • the first semiconductor device 10 and the second semiconductor device 31 are disposed such that the electrode formation surfaces thereof are opposed to each other. Further, in the semiconductor device 30 , the first semiconductor device 10 and the second semiconductor device 31 are disposed such that the positions of the alignment marks 15 of the first semiconductor device 10 are aligned with the positions of the alignment marks 36 of the second semiconductor device 31 .
  • each bump 17 of the first semiconductor device 10 comes into contact with the UBM 37 of the second semiconductor device 31 , whereby the first semiconductor device 10 and the second semiconductor device 31 are electrically connected. Then, through the underfill resin 18 , the first semiconductor device 10 and the second semiconductor device 31 are mechanically connected, and the connection between the bump electrode 19 and the UBM 37 is formed in the underfill resin 18 . As described above, in the semiconductor device 30 , by filling the gap between the first semiconductor device 10 and the second semiconductor device 31 , a filler is formed by the underfill resin 18 .
  • the difference in height between the pad electrode and the alignment mark formed in the first semiconductor device is set to be less than the height of the connection pad formed in the second semiconductor device.
  • the height of the alignment mark 15 of the first semiconductor device 10 is greater than the height of the bump electrode 19 of the first semiconductor device 10 .
  • the difference in height between the bump electrode 19 and the alignment mark 15 is represented by the height A.
  • the height of the UBM 37 which is formed as the connection pad in the second semiconductor device 31 , from the element surface is represented by the height B.
  • the alignment mark 15 is formed such that the height A is equal to the height B or the height A is less than the height B.
  • the height A is equal to or less than the height B, even when the parallelism between the first semiconductor device 10 and the second semiconductor device 31 at the time of mounting, it is possible to prevent connection errors caused by pieces of the bumps from occurring. Hence, when the first semiconductor device 10 is mounted on the second semiconductor device 31 , reliability in connection between the bump electrode 19 and the UBM 37 improves.
  • the alignment mark 15 and the alignment mark 36 comes into contact with each other before the connection between the bump electrode 19 and the UBM 37 . Hence, connection error occurs.
  • each bump is formed as a connection pad of the second semiconductor device 31 on the UBM 37
  • the height from the semiconductor element surface of the second semiconductor device 31 to the bump is set to the height B mentioned above.
  • the alignment mark 15 and the bump electrode 19 of the first semiconductor device 10 are formed at substantially the same height. Thereby, the alignment mark 15 is formed such that the height A is equal to the height B as described above.
  • the semiconductor device 31 is used as the second electronic component.
  • the second electronic component for example, a mounting board, on which a wiring pattern for mounting the semiconductor device is formed, may be used.
  • the first electronic component the above-mentioned semiconductor device having the alignment mark according to the first embodiment may be used, and as the second electronic component, there may be provided the alignment mark and the connection pad compatible with the semiconductor device according to the first embodiment.
  • the second electronic component may be applicable without being limited to the semiconductor device, the mounting board, and the like.
  • the alignment mark and the underfill resin higher than the connection electrode are formed on the side of the first semiconductor device as the first electronic component.
  • the alignment mark and the underfill resin higher than the connection electrode may be formed on the second electronic component side.
  • the above-mentioned first semiconductor device 10 which is manufactured by the first embodiment, is provided as the first electronic component.
  • the second semiconductor device on which the connection pads and the alignment marks 36 are formed on the semiconductor element 32 , is provided as the second electronic component.
  • the second semiconductor device 31 has the pad electrodes 33 and the alignment marks 36 on the semiconductor element 32 .
  • a passivation layer 34 is formed on the entire surface except the alignment marks 36 and the opening portions of the pad electrodes 33 on the semiconductor element 32 .
  • each UBM 37 is formed on the pad electrode 33 through the barrier layer 35 .
  • the bump 38 is formed on the UBM 37 . That is, in the second semiconductor device 31 shown in FIG. 6B , the connection pad for mounting the first semiconductor device 10 is formed of the pad electrode 33 , the barrier layer 35 , the UBM 37 , and the bump 38 . Furthermore, in the second semiconductor device 31 , the alignment marks 36 are formed on the same layer of the pad electrodes 33 .
  • the positions of the first semiconductor device 10 and the second semiconductor device 31 are aligned.
  • the positions of the alignment marks 15 and the alignment marks 36 are read.
  • the position of the first semiconductor device 10 is adjusted such that the positions of the alignment marks 15 and 36 in the first semiconductor device 10 and the second semiconductor device 31 are aligned.
  • the bumps 17 of the first semiconductor device 10 are brought into contact with the bumps 38 of the second semiconductor device 31 , and then weighting is applied thereto. Further, at the time of applying the weighting, by heating the bumps up to the melting point or more of the solder, for example, in the case where the bumps 17 and 38 are made of Sn—3.5Ag, by heating the bumps up to the melting point of 221° C. or more through the bonding head or the stage, the bumps are melted and connected. Thereby, by breaching a surface oxide film of the solder forming the bumps 17 and 38 , a connection portion 41 based on fluxless connection is formed. Through the connection portion 41 , the first semiconductor device 10 and the second semiconductor device 31 are electrically connected.
  • the underfill resin with which the first semiconductor device 10 and the second semiconductor device 31 are filled, is heated and cured.
  • the underfill resin 18 bonds the semiconductor element 11 and the semiconductor element 32 to each other by pressing the semiconductor element 11 on the second semiconductor device 31 .
  • mechanical connection reliability is improved.
  • the alignment marks 15 and the alignment marks 36 may be brought into direct contact with each other and may not be brought into contact with each other.
  • the semiconductor device 31 used as the second electronic component instead of the semiconductor device 31 used as the second electronic component, it may be possible to use the mounting board, in which the wiring pattern for mounting the semiconductor device, and the like.
  • the first electronic component the above-mentioned semiconductor device having the alignment mark according to the first embodiment may be used, and as the second electronic component, there may be provided the alignment mark and the connection pad compatible with the semiconductor device according to the first embodiment.
  • the alignment mark should be formed such that a planar shape thereof formed on the element surface is different from that of the bump electrode.
  • the bump electrode 19 is formed in a circular shape on the semiconductor element 11 .
  • the alignment mark is formed in a shape different from the circular shape.
  • the alignment mark is formed in a cross shape which is formed by combining rectangular shapes.
  • a square alignment mark is formed.
  • the alignment mark is formed in for example a star shape or a triangle shape.
  • the shape of the bump electrode different from the shape of the alignment mark formed in the semiconductor device, for example, even in a case where the bump electrode enters in the visual field of a camera for recognizing the alignment mark of the flip-chip bonder, it is possible to prevent false recognition.
  • the alignment mark which is formed in the semiconductor device, may be formed, for example as shown in FIG. 8A , so as to surround the outer peripheral portion of the semiconductor element.
  • the bump electrodes 19 are formed in a circular shape on the semiconductor element 11 .
  • the alignment mark 44 is formed to surround the outer peripheral portion of the semiconductor element 11 .
  • the underfill resin which is formed on the side of the bump electrodes 19 of the semiconductor device, is formed inside the alignment mark 44 which surrounds the outer peripheral portion of the semiconductor element 11 .
  • the alignment mark 44 has a rectangular alignment mark 44 A which is formed on the corner portion of the semiconductor element 11 and an alignment mark 44 B which is formed at the diagonal corner of the alignment mark 44 A. Furthermore, the alignment mark 44 has an alignment mark 44 C which is continuously formed on the outer peripheral portion of the semiconductor element 11 .
  • the alignment marks 44 A and 44 B are aligned with the alignment marks 36 of the second semiconductor device 31 at the time of mounting the second semiconductor device 31 .
  • the alignment marks should be formed in a shape different from that of the bump electrode 19 .
  • the underfill resin start flowing into the electrode portion near the mounting portion, whereby the electrode is contaminated by the resin. This tends to cause a problem when the distance between the mounting portion and the electrode portion is made to be short in the second semiconductor device by miniaturizing the semiconductor device.
  • the semiconductor element 11 by surrounding the outer peripheral portion of the semiconductor element 11 , it is possible to prevent the underfill resin from contaminating the wire bonding pads 39 and the like formed in the second semiconductor device 31 . Then, by decreasing the difference in element area between the first electronic component (the semiconductor device 10 ) and the second electronic component (the semiconductor device 31 ), it is possible to miniaturize the semiconductor device.
  • the alignment marks 15 may not come into direct contact with the element surface of the second semiconductor device 31 .
  • the alignment marks in the above-mentioned semiconductor device according to the embodiment may be connected to, for example, the electrodes of the lower semiconductor element.
  • the alignment marks of the upper semiconductor element are formed on the electrodes of the upper semiconductor element
  • the alignment marks of the lower semiconductor element is formed on the electrodes of the lower semiconductor element. Then, at the time of connecting the semiconductor elements to each other by forming the solder layer on the alignment marks of the lower semiconductor element, it is possible to form electrical connection between the alignment marks by connecting the alignment marks through the solder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor device includes a semiconductor element; a pad electrode that is formed on the semiconductor element; an alignment mark that is formed on the semiconductor element; a connection electrode that is formed on the pad electrode; and an underfill resin that is formed to cover the connection electrode. The height of the alignment mark from the semiconductor element is greater than that of the connection electrode.

Description

    BACKGROUND
  • The present disclosure relates to a semiconductor device, in which alignment marks for flip chip connection are formed, and a method of manufacturing the semiconductor device.
  • In the related art, in flip chip mounting in which the semiconductor chip is mounted by solder bumps, the alignment marks are formed by using metal wire on the semiconductor chip. Further, in flip chip mounting, the semiconductor chip is mounted, and the lower portion of the mounted semiconductor chip is filled with an underfill resin for improving reliability. Further, in order to prevent resin contamination caused by flow of the underfill resin from occurring on the electrodes such as the wire bonding pads which are formed on the mounting board or the semiconductor device, a technique of forming a dam in a region filled with the underfill resin has been studied (for example, refer to Japanese Unexamined Patent Application Publication No. 2005-276879).
  • SUMMARY
  • In flip chip mounting, there is proposed a method of forming the underfill resin, which covers the solder bumps, on the surface where the semiconductor chips are mounted in advance. In this method, the underfill resin is also formed on the alignment marks of the semiconductor chips. Hence, at the time of the mounting, it is necessary to check the positions of the alignment marks through the underfill resin. However, since the optical transparency of the underfill resin filled with a filler and the like is low, it is difficult to identify the alignment marks formed on the lower side of the underfill resin.
  • For this reason, it is difficult to accurately align their positions at the time of mounting the semiconductor chips, and thus a problem arises in that connection error such as short between the bumps occurs.
  • According to embodiments of the disclosure, it is desirable to provide a semiconductor device and a method of manufacturing the semiconductor device capable of easily recognizing the alignment marks and accurately aligning the positions using the alignment marks.
  • According to an embodiment of the disclosure, provided is a semiconductor device including a semiconductor element; a pad electrode that is formed on the semiconductor element; an alignment mark that is formed on the semiconductor element; a connection electrode that is formed on the pad electrode; and an underfill resin that is formed to cover the connection electrode. In addition, the height of the alignment mark from the semiconductor element is greater than that of the connection electrode.
  • Further, according to another embodiment of the disclosure, provided is a semiconductor device including a first electronic component that has the configuration of the above-mentioned semiconductor device; a second electronic component on which the first electronic component is mounted.
  • Furthermore, according to a further embodiment of the disclosure, a method of manufacturing the semiconductor device includes a process of providing a wafer on which a semiconductor element is formed, and a process of forming a barrier layer on the wafer. In addition, the method also includes a process of forming a first resist pattern, which has an opening portion located at a position of a formed alignment mark, on the barrier layer, and a process of forming the alignment mark in the opening portion of the first resist pattern by using an electrolytic plating method. Furthermore, the method also includes a process of forming a second resist pattern, which has an opening portion located at a position of a connection electrode of the semiconductor element so as to cover the barrier layer and the alignment mark, after removing the first resist pattern. The method also includes a process of forming the connection electrode in the opening portion of the second resist pattern by using the electrolytic plating method, and a process of providing an underfill resin on the semiconductor element so as to cover the connection electrode.
  • Further, according to a still further embodiment of the disclosure, a method of manufacturing a semiconductor device includes a process of forming a first electronic component, and a process of providing a second electronic component that has an alignment mark and a pad electrode. In addition, the method also includes a process of aligning a position of the first electronic component with a position of the second electronic component by using the alignment mark, electrically connecting the connection electrode and the pad electrode to each other, and mounting the first electronic component on the second electronic component.
  • In the method of manufacturing the semiconductor device according to the embodiment of the disclosure, the alignment mark of which the height is set to be greater than that of the connection electrode. Thereby, even in a state where the underfill resin is formed to cover the connection electrode, it becomes easy to recognize the alignment mark through the underfill resin. By performing flip chip connection of the semiconductor device having the alignment mark, it is possible to accurately align the mounting position, and thus it is possible to suppress the connection error.
  • Further, in the method of manufacturing the semiconductor device according to the embodiment of the disclosure, by forming the alignment mark of which the height is greater than the connection electrode, even after the underfill resin is formed to cover the connection electrode, it becomes easy to recognize the alignment mark. Hence, it is possible to manufacture the semiconductor device capable of suppressing the connection error.
  • According to the embodiments of the disclosure, even when the underfill resin is formed to cover the connection electrode, it is possible to provide a semiconductor device capable of easily recognizing the alignment mark and easily performing accurate positional alignment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating a configuration of a semiconductor device according to a first embodiment of the disclosure;
  • FIGS. 2A to 2E are diagrams illustrating a method of manufacturing the semiconductor device according to the first embodiment of the disclosure;
  • FIGS. 3A to 3D are diagrams illustrating the method of manufacturing the semiconductor device according to the first embodiment of the disclosure;
  • FIGS. 4A to 4D are diagrams illustrating the method of manufacturing the semiconductor device according to the first embodiment of the disclosure;
  • FIGS. 5A and 5B are diagrams illustrating a configuration of a semiconductor device according to a second embodiment of the disclosure;
  • FIGS. 6A to 6C are diagrams illustrating a method of manufacturing the semiconductor device according to the second embodiment of the disclosure;
  • FIG. 7 is a diagram illustrating the configuration of the semiconductor device according to the first embodiment of the disclosure.
  • FIGS. 8A and 8B are diagrams illustrating the configuration of the semiconductor device according to the second embodiment of the disclosure.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Hereinafter, the example of the best mode for carrying out the disclosure will be described, but the embodiments of the disclosure are not limited to the following example.
  • In addition, the description will be given in the following order.
  • 1. First Embodiment of Semiconductor device
  • 2. Method of Manufacturing Semiconductor device According to First Embodiment
  • 3. Second Embodiment of Semiconductor device
  • 4. Method of Manufacturing Semiconductor device According to Second Embodiment
  • 5. Modified Example of Alignment Mark
  • 1. First Embodiment of Semiconductor device
  • A semiconductor device according to a first embodiment of the disclosure will be described. FIG. 1 shows the semiconductor device according to the first embodiment of the disclosure. The semiconductor device 10 shown in FIG. 1 will be described with reference to a sectional view illustrating a part in which bump electrodes 19 are formed on pad electrodes 12 on the semiconductor element 11.
  • The semiconductor device 10 has the pad electrodes 12 on the semiconductor element 11. Further, a passivation layer 13 is formed on the entire surface except openings of the pad electrodes 12 on the semiconductor element 11.
  • The bump electrodes 19 are formed as electrodes which are connected to external devices on the pad electrodes 12. In each bump electrode 19, the barrier layer 14 is formed on the pad electrode 12. In addition, an under bump metal (UBM) 16 is provided on the barrier layer 14. Furthermore, a bump 17 corresponding to the pad electrode 12 is formed on the UBM 16.
  • Further, in the semiconductor device 10, alignment marks 15 are formed on the passivation layer 13. In addition, an underfill resin 18 is formed on the entire surface of the semiconductor element 11 so as to cover the bump electrode 19, the alignment marks 15, and the passivation layer 13.
  • Each pad electrode 12 is made of, for example aluminum, and is connected to an electronic circuit of a wafer, which is not shown, in the semiconductor element 11. Further, the passivation layer 13 is formed around the surface of the pad electrode 12, and the barrier layer 14 and the UBM 16 are formed in the center thereof.
  • The barrier layer 14 is formed to cover the center portion of each pad electrode 12. Further, the barrier layer 14 is formed as the lower layer of the part, in which the UBM 16 is formed, on the passivation layer which is formed around the surface of the pad electrode 12.
  • Furthermore, likewise, the barrier layer 14 is formed between the lower portions of the alignment marks 15 and the passivation layer 13 like the upper portions of the pad electrodes 12.
  • The barrier layer 14 is made of, for example, Ti, Cu, or the like.
  • Each UBM 16 is formed in the center portion of the pad electrode 12 through the above-mentioned barrier layer 14. Further, the bump 17 is formed on the UBM 16. Likewise, the bump electrode 19 is formed on the pad electrode 12 so as to include the barrier layer 14, the UBM 16, and the bump 17.
  • The UBM 16 is formed to have a thickness equal to or more than a certain level is eroded by the solder forming the bump 17. The UBM 16 is formed of, for example, Ni, Ti, TiW, W, Cu, and the like. Normally, the UBM 16 is formed to be thicker than that of the barrier layer 14 or that of the pad electrode 12 in order to prevent a solder alloy such as SnAg formed on the UBM 16 from diffusing into the pad electrode 12 made of AlCu, Cu, or the like.
  • Each bump 17 is formed on the UBM 16 in a spherical shape protruding from the pad electrode 12. The bump 17 is formed of, for example, a solder alloy such as SnAg. Further, the solder ally may not be formed as the bump 17 on the UBM 16, and antioxidant treatment using Ni/Au or the like may be performed on the UBM 16.
  • The alignment marks 15 are formalized at predetermined positions on the semiconductor element 11. A plurality of the alignment marks 15 are formed in order to align the positions thereof when the semiconductor device 10 is set on a different semiconductor device or a mounting board, and are formed on the semiconductor element 11 in order to correct distortion and the like of the semiconductor device 10.
  • Generally, the alignment marks formed on the semiconductor element and the like are formed in the same process for the pad electrodes 12. Hence, each alignment mark is formed on the same plane of the pad electrode 12 so as to have a thickness the same as that of the pad electrode 12.
  • On the other hand, the alignment mark 15 of the semiconductor device 10 according to the embodiment is formed on the passivation layer 13 in a columnar shape. The alignment mark 15 is formed such that the height thereof from the surface of the semiconductor element 11 is greater than the bump electrode 19 which is formed on the pad electrode 12.
  • Further, the height of the alignment mark 15 may be equal to the height of the underfill resin 18. Further, it is preferable that the height of the alignment mark 15 should be formed to be equal to or less than that of the underfill resin 18. In addition, even after the underfill resin 18 is formed, it is possible to easily recognize the alignment mark 15. Thus, the height of the alignment mark 15 has only to be the height which does not cause a defect at the time of mounting the semiconductor device 10.
  • At the time of mounting the semiconductor device 10, the underfill resin 18 is formed to have a thickness at which the underfill resin 18 covers the connection portions of the bumps 17, that is, the mounting surface of the semiconductor device 10. For example, it is preferable that the thickness of the underfill resin from the surface of the semiconductor element 11 should be set to be equal to or greater than the distance between the mounting surface of the mounted semiconductor device 10 and the mounting surface of the semiconductor device or the mounting board on which the semiconductor device 10 is mounted.
  • By adopting a configuration in which the gap between the semiconductor device 10 and the mounting board is filled with the underfill resin 18, it is possible to secure mount reliability. By forming the alignment mark 15 of which the height is greater than the height of the bump electrode 19, it becomes easy to identify the alignment mark 15 even in the semiconductor device 10 of which the surface is coated with the underfill resin 18 having low transparency.
  • It is preferable that the alignment mark 15 should be formed of the same material as the under bump metal (UBM) 16 such as Ni, Ti, TiW, W, and Cu. Further, the alignment mark may be formed of a material different from that of the UBM 16.
  • In addition, the alignment mark 15 in the semiconductor device 10 is formed on the passivation layer 13, but may be formed on the same plane of the pad electrode 12. In this case, the alignment mark 15 may be formed of a material the same as that of the pad electrode 12.
  • 2. Method of Manufacturing Semiconductor Device According to First Embodiment
  • Next, the method of manufacturing the semiconductor device according to the first embodiment will be described. In addition, in the case where the above-mentioned common elements shown in FIG. 1 exist, those elements will be referenced by the same reference numerals and signs, and detailed description thereof will be omitted.
  • In addition, the following description will be given with reference to the sectional view of one semiconductor element among the plurality of semiconductor elements formed on the semiconductor wafer.
  • First, as shown in FIG. 2A, there is provided a wafer on which the semiconductor element 11 having the pad electrodes 12 and the passivation layer 13 is formed. Then, by performing reverse sputtering on the surface of the semiconductor element 11 on the wafer, an oxide film and the like on the surfaces of the pad electrodes 12 are removed.
  • Next, as shown in FIG. 2B, by using the sputtering method, the pad electrodes 12 and the passivation layer 13 are covered, and the barrier layer 14 is formed on the entire surface of the semiconductor element 11. In the formation of the barrier layer 14, for example, a Ti layer is formed on the pad electrodes 12 and the passivation layer 13 by using the sputtering method. Then, likewise by using the sputtering method, a Cu layer is formed to cover the Ti layer.
  • Next, as shown in FIG. 2C, a photo resist layer 21 is formed on the barrier layer 14. The photo resist layer 21 is formed by forming a coated film in for example a spin coating method so as to cover the surface of the wafer and subsequently drying the coated film. Further, the photo resist layer 21 is formed to have a thickness equal to or greater than the height of each alignment mark 15 formed on the semiconductor element 11.
  • Next, as shown in FIG. 2D, the exposure treatment is performed on the photo resist layer 21 through the photomask 22. The photomask 22 employs a pattern for illuminating the exposure light on the region in which the alignment marks are formed. Then, as shown in FIG. 2F, by performing the development treatment on the photo resist layer 21, the exposed portions of the photo resist layer 21 are removed, whereby opening portions 23 are formed on the photo resist layer 21. The opening portions 23 are formed on the semiconductor element 11 so as to correspond to the formation positions of the alignment marks.
  • Next, as shown in FIG. 3A, by using the electrolytic plating method, a plating layer is formed on the opening portions 23 of the photo resist layer 21, whereby the alignment marks 15 are formed. Thereby, the alignment marks 15 are formed on the semiconductor element 11 and the barrier layer 14.
  • The alignment mark 15 is formed of a plating layer such as Ni, Ti, TiW, W, and Cu. The alignment mark 15 is formed to have a height which is equal to or greater than that of the bump electrode 19 formed on the pad electrode of the semiconductor element 11.
  • Next, as shown in FIG. 3B, the photo resist layer 21 is removed from the semiconductor element 11. Then, as shown in FIG. 3C, the photo resist layer 24 is formed on the barrier layer 14. The photo resist layer 24 is formed by forming a coated film in for example the spin coating method so as to cover the surface of the wafer and the alignment marks 15 and subsequently drying the coated film.
  • Next, as shown in FIG. 3D, the exposure treatment is performed on the photo resist layer 24 through the photomask 25. The photomask 25 employs a pattern for illuminating the exposure light on the center portions of the pad electrodes 12. Then, by performing the development treatment on the photo resist layer 24 after the exposure, the exposed portions are removed, whereby the opening portions 26 are formed on the photo resist layer 24.
  • Subsequently, as shown in FIG. 4A, by using the electrolytic plating method, the under bump metal (UBM) 16 is formed in each opening portion 26. Furthermore, as shown in FIG. 4B, a solder layer 17A is formed on the UBM 16 in the opening portions 26 by using the electrolytic plating method. The UBM 16 is, similarly to the alignment mark 15, formed of Ni, Ti, TiW, W, Cu, and the like in the electrolytic plating. Further, the solder layer 17A is formed by the electrolytic plating using the solder alloy such as SnAg.
  • Next, after the photo resist layer 24 is removed, the barrier layer 14 exposed on the surface of the semiconductor element 11 is removed by sputter etching. Then, as shown in FIG. 4C, the bumps 17 are formed by melting the semiconductor layer through the reflow. In the removal of the barrier layer 14, by using the UBM 16 and the solder layer 17A as a mask, the barrier layer 14 is made to remain under the UBM 16 throughout the entire surface. Further, since each alignment mark 15 serves as an etching mask, the barrier layer 14 also remains under the alignment mark 15. Furthermore, by forming the solder layer 17A into spherical bumps 17 through the reflow, each bump electrode 19 is formed of the UBM 16 and the bump 17 on the pad electrode 12.
  • Next, as shown in FIG. 4D, the underfill resin 18 is formed on the surface of the wafer on the semiconductor element 11 side. The underfill resin 18 is formed by the spin coating method using an application liquid containing, for example, the underfill resin or by laminating a dry film of the underfill resin. Then, by cutting the semiconductor element 11 from the wafer and into separate pieces, the semiconductor device 10 is manufactured.
  • As described above, by using the photolithography and the electrolytic plating, the alignment marks 15, the UBM 16, and the solder bumps 17 are formed on the surface of the wafer on which the semiconductor element 11 is formed. Each alignment mark 15 is formed such that the height of the upper surface thereof is greater than the height of the bump electrode 19 from the formation surface of the semiconductor element 11. Further, when the formation surface of the bump electrode 19 of the semiconductor element 11 is coated with the underfill resin 18, the alignment mark 15 is also coated therewith at the same time. At this time, the underfill resin 18 is formed to have a thickness equal to or greater than the height of the alignment mark 15.
  • In addition, in the manufacturing method according to the above-mentioned embodiment, the alignment marks 15 are formed before the process of forming the UBM 16 and the solder layer 17A. However, the order of the process of forming the UBM 16 and the solder layer 17A and the process of forming the alignment marks 15 are not particularly limited. The processes of forming the alignment mark 15, the UBM 16, and the solder layer 17A can be formed regardless of the order thereof if the processes are subsequent to the process of forming the barrier layer 14 and are previous to the process of etching the barrier layer 14.
  • 3. Second Embodiment of Semiconductor Device
  • Next, a semiconductor device according to a second embodiment of the disclosure will be described. FIGS. 5A and 5B show the semiconductor device according to the second embodiment of the disclosure. The semiconductor device shown in FIGS. 5A and 5B includes a first electronic component and a second electronic component. The first electronic component has a configuration the same as the semiconductor device according to the first embodiment shown in FIG. 1. Further, the second electronic component includes a semiconductor device on which the semiconductor device according to the first embodiment is mounted. Hereinafter, a description will be given under the assumption that the semiconductor device according to the second embodiment is a semiconductor device 30, the semiconductor device formed as the first electronic component is a first semiconductor device 10, and the semiconductor device formed as the second electronic component is a second semiconductor device 31.
  • The second semiconductor device 31 shown in FIGS. 5A and 5B will be described with reference to a sectional view illustrating a part in which alignment marks 36 and under bump metals (UBM) 37 for electrode connection are formed on the semiconductor element 32.
  • The first semiconductor device 10 has the same configuration as that of the above-mentioned first embodiment. In addition, FIGS. 5A and 5B show only a configuration which is necessary to describe the semiconductor device according to the second embodiment, where configurations of the pad electrodes which are formed on the semiconductor element 11, the passivation layer, and the like are omitted.
  • As shown in FIG. 5A, in the first semiconductor device 10, the alignment marks 15 are formed at predetermined positions on the semiconductor element 11. Further, each bump electrode 19 is formed of the UBM 16 and the bump 17 at the position corresponding to the pad electrode of the semiconductor element 11. Furthermore, the height of the alignment mark 15 is larger than the height of the bump electrode 19 on the semiconductor element 11. Then, the underfill resin 18 is formed to cover the bump electrodes 19 and the alignment marks 15.
  • Further, as shown in FIG. 5A, in the second semiconductor device 31, the alignment marks 36 are formed at predetermined positions of the semiconductor element 32. Each alignment mark is formed on the same layer as the pad electrode and at a height substantially equal to that of the surface of the semiconductor element 32 by using the wiring and the like of the semiconductor element 32. Furthermore, the UBM 37 is formed as a connection pad at the position corresponding to the pad electrode of the semiconductor element 32. The UBM 37 can be configured like the UBM 16 of the first semiconductor device 10, and is formed of, for example, Ni, Ti, TiW, W, Cu, and the like.
  • The wire bonding pads 39 are formed at the end portions of the second semiconductor device 31. In each wire bonding pad 39, the second semiconductor device 31 and the external electronics are electrically connected through the wire bonding.
  • In addition, in the second semiconductor device 31, similarly to the above-mentioned first semiconductor device 10, the pad electrodes and the passivation layer are formed on the semiconductor element 32. However, only the configuration necessary to describe the semiconductor device according to the second embodiment is shown, and the description of the other configurations will be omitted.
  • As shown in FIG. 5A, in the semiconductor device 30, the first semiconductor device 10 is mounted on the second semiconductor device 31. In the semiconductor device 30, the first semiconductor device 10 and the second semiconductor device 31 are disposed such that the electrode formation surfaces thereof are opposed to each other. Further, in the semiconductor device 30, the first semiconductor device 10 and the second semiconductor device 31 are disposed such that the positions of the alignment marks 15 of the first semiconductor device 10 are aligned with the positions of the alignment marks 36 of the second semiconductor device 31.
  • Furthermore, each bump 17 of the first semiconductor device 10 comes into contact with the UBM 37 of the second semiconductor device 31, whereby the first semiconductor device 10 and the second semiconductor device 31 are electrically connected. Then, through the underfill resin 18, the first semiconductor device 10 and the second semiconductor device 31 are mechanically connected, and the connection between the bump electrode 19 and the UBM 37 is formed in the underfill resin 18. As described above, in the semiconductor device 30, by filling the gap between the first semiconductor device 10 and the second semiconductor device 31, a filler is formed by the underfill resin 18.
  • Next, the height of the alignment mark in the semiconductor device according to the second embodiment will be described.
  • In the semiconductor device according to the second embodiment, the difference in height between the pad electrode and the alignment mark formed in the first semiconductor device is set to be less than the height of the connection pad formed in the second semiconductor device.
  • In the semiconductor device 30 shown in FIG. 5B, the height of the alignment mark 15 of the first semiconductor device 10 is greater than the height of the bump electrode 19 of the first semiconductor device 10. Here, the difference in height between the bump electrode 19 and the alignment mark 15 is represented by the height A.
  • Further, the height of the UBM 37, which is formed as the connection pad in the second semiconductor device 31, from the element surface is represented by the height B.
  • In this case, the alignment mark 15 is formed such that the height A is equal to the height B or the height A is less than the height B.
  • Since the height A is equal to or less than the height B, even when the parallelism between the first semiconductor device 10 and the second semiconductor device 31 at the time of mounting, it is possible to prevent connection errors caused by pieces of the bumps from occurring. Hence, when the first semiconductor device 10 is mounted on the second semiconductor device 31, reliability in connection between the bump electrode 19 and the UBM 37 improves.
  • Further, in the case where the height A is greater than the height B, when the first semiconductor device 10 is mounted on the second semiconductor device 31, the alignment mark 15 and the alignment mark 36 comes into contact with each other before the connection between the bump electrode 19 and the UBM 37. Hence, connection error occurs.
  • In addition, in the case where each bump is formed as a connection pad of the second semiconductor device 31 on the UBM 37, the height from the semiconductor element surface of the second semiconductor device 31 to the bump is set to the height B mentioned above. Further, similarly to the case where the connection pad is formed only on the pad electrode, in the case where the connection pad of the second semiconductor device 31 is formed on the substantially same surface as the semiconductor element surface, the alignment mark 15 and the bump electrode 19 of the first semiconductor device 10 are formed at substantially the same height. Thereby, the alignment mark 15 is formed such that the height A is equal to the height B as described above.
  • Further, in the above-mentioned embodiment, the semiconductor device 31 is used as the second electronic component. However, as the second electronic component, for example, a mounting board, on which a wiring pattern for mounting the semiconductor device is formed, may be used. As the first electronic component, the above-mentioned semiconductor device having the alignment mark according to the first embodiment may be used, and as the second electronic component, there may be provided the alignment mark and the connection pad compatible with the semiconductor device according to the first embodiment. In the semiconductor device according to the second embodiment, the second electronic component may be applicable without being limited to the semiconductor device, the mounting board, and the like.
  • Further, in the above-mentioned semiconductor device according to the second embodiment, the alignment mark and the underfill resin higher than the connection electrode are formed on the side of the first semiconductor device as the first electronic component. However, the alignment mark and the underfill resin higher than the connection electrode may be formed on the second electronic component side. By providing the underfill resin on the first electronic component side, there is no contamination caused by resin at the time of forming the underfill resin on the electrodes formed around the portion in which wire bonding pads formed in the second semiconductor device are mounted. Hence, it is preferable that the alignment mark and the underfill resin higher than the connection electrode should be formed on the first electronic component side.
  • 4. Method of Manufacturing Semiconductor Device According to Second Embodiment
  • Next, the method of manufacturing the semiconductor device according to the second embodiment will be described. In addition, in the description of the following manufacturing method, in the case where the above-mentioned common elements shown in FIGS. 1 to 5 exist, those elements will be referenced by the same reference numerals and signs, and detailed description thereof will be omitted.
  • In addition, the following description will be given of the method of manufacturing the semiconductor device according to the second embodiment by using the above-mentioned semiconductor device manufactured by the first embodiment.
  • First, as shown in FIG. 6A, the above-mentioned first semiconductor device 10, which is manufactured by the first embodiment, is provided as the first electronic component.
  • Further, as shown in FIG. 6B, the second semiconductor device, on which the connection pads and the alignment marks 36 are formed on the semiconductor element 32, is provided as the second electronic component. The second semiconductor device 31 has the pad electrodes 33 and the alignment marks 36 on the semiconductor element 32. Then, a passivation layer 34 is formed on the entire surface except the alignment marks 36 and the opening portions of the pad electrodes 33 on the semiconductor element 32. Further, each UBM 37 is formed on the pad electrode 33 through the barrier layer 35. The bump 38 is formed on the UBM 37. That is, in the second semiconductor device 31 shown in FIG. 6B, the connection pad for mounting the first semiconductor device 10 is formed of the pad electrode 33, the barrier layer 35, the UBM 37, and the bump 38. Furthermore, in the second semiconductor device 31, the alignment marks 36 are formed on the same layer of the pad electrodes 33.
  • Then, the positions of the first semiconductor device 10 and the second semiconductor device 31 are aligned. By using a camera 40, the positions of the alignment marks 15 and the alignment marks 36 are read. Subsequently, the position of the first semiconductor device 10 is adjusted such that the positions of the alignment marks 15 and 36 in the first semiconductor device 10 and the second semiconductor device 31 are aligned.
  • Next, as shown in FIG. 6C, the bumps 17 of the first semiconductor device 10 are brought into contact with the bumps 38 of the second semiconductor device 31, and then weighting is applied thereto. Further, at the time of applying the weighting, by heating the bumps up to the melting point or more of the solder, for example, in the case where the bumps 17 and 38 are made of Sn—3.5Ag, by heating the bumps up to the melting point of 221° C. or more through the bonding head or the stage, the bumps are melted and connected. Thereby, by breaching a surface oxide film of the solder forming the bumps 17 and 38, a connection portion 41 based on fluxless connection is formed. Through the connection portion 41, the first semiconductor device 10 and the second semiconductor device 31 are electrically connected.
  • Furthermore, the underfill resin, with which the first semiconductor device 10 and the second semiconductor device 31 are filled, is heated and cured. The underfill resin 18 bonds the semiconductor element 11 and the semiconductor element 32 to each other by pressing the semiconductor element 11 on the second semiconductor device 31. By bonding the semiconductor elements to each other through the underfill resin 18, mechanical connection reliability is improved.
  • Through the above processes, it is possible to manufacture the semiconductor device 30 according to the second embodiment.
  • In addition, when the first semiconductor device 10 and the second semiconductor device 31 are connected, the alignment marks 15 and the alignment marks 36 may be brought into direct contact with each other and may not be brought into contact with each other.
  • Further, in the description of the following manufacturing method, instead of the semiconductor device 31 used as the second electronic component, it may be possible to use the mounting board, in which the wiring pattern for mounting the semiconductor device, and the like. As the first electronic component, the above-mentioned semiconductor device having the alignment mark according to the first embodiment may be used, and as the second electronic component, there may be provided the alignment mark and the connection pad compatible with the semiconductor device according to the first embodiment.
  • 5. Modified Example of Alignment Mark MODIFIED EXAMPLE 1
  • Next, the shape of the alignment mark formed in the above-mentioned semiconductor device will be described.
  • It is preferable that the alignment mark should be formed such that a planar shape thereof formed on the element surface is different from that of the bump electrode. For example, as shown in FIG. 7, normally the bump electrode 19 is formed in a circular shape on the semiconductor element 11. Hence, the alignment mark is formed in a shape different from the circular shape. Like the alignment mark 42, the alignment mark is formed in a cross shape which is formed by combining rectangular shapes. Further, like the alignment mark 43, a square alignment mark is formed. In addition, the alignment mark is formed in for example a star shape or a triangle shape.
  • As described above, by making the shape of the bump electrode different from the shape of the alignment mark formed in the semiconductor device, for example, even in a case where the bump electrode enters in the visual field of a camera for recognizing the alignment mark of the flip-chip bonder, it is possible to prevent false recognition.
  • MODIFIED EXAMPLE 2
  • Further, the alignment mark, which is formed in the semiconductor device, may be formed, for example as shown in FIG. 8A, so as to surround the outer peripheral portion of the semiconductor element.
  • In the semiconductor device shown in FIG. 8A, the bump electrodes 19 are formed in a circular shape on the semiconductor element 11. Then, the alignment mark 44 is formed to surround the outer peripheral portion of the semiconductor element 11. Furthermore, the underfill resin, which is formed on the side of the bump electrodes 19 of the semiconductor device, is formed inside the alignment mark 44 which surrounds the outer peripheral portion of the semiconductor element 11.
  • The alignment mark 44 has a rectangular alignment mark 44A which is formed on the corner portion of the semiconductor element 11 and an alignment mark 44B which is formed at the diagonal corner of the alignment mark 44A. Furthermore, the alignment mark 44 has an alignment mark 44C which is continuously formed on the outer peripheral portion of the semiconductor element 11.
  • As shown in FIG. 8B, the alignment marks 44A and 44B are aligned with the alignment marks 36 of the second semiconductor device 31 at the time of mounting the second semiconductor device 31. Hence, it is preferable that the alignment marks should be formed in a shape different from that of the bump electrode 19.
  • Further, by surrounding the outer peripheral portion of the semiconductor element 11, it is possible to suppress outflow of the underfill resin.
  • When the mounting portion of the first semiconductor device is close to the electrode portions such as the wire bonding pads formed around the mounting portion, the underfill resin start flowing into the electrode portion near the mounting portion, whereby the electrode is contaminated by the resin. This tends to cause a problem when the distance between the mounting portion and the electrode portion is made to be short in the second semiconductor device by miniaturizing the semiconductor device.
  • Hence, by surrounding the outer peripheral portion of the semiconductor element 11, it is possible to prevent the underfill resin from contaminating the wire bonding pads 39 and the like formed in the second semiconductor device 31. Then, by decreasing the difference in element area between the first electronic component (the semiconductor device 10) and the second electronic component (the semiconductor device 31), it is possible to miniaturize the semiconductor device.
  • In addition, as shown in FIG. 8B, even when the alignment mark 44 and the element surface of the second semiconductor device 31 are spaced, it is possible to suppress outflow of the underfill resin 18. Hence, the alignment marks 15 may not come into direct contact with the element surface of the second semiconductor device 31.
  • In addition, the alignment marks in the above-mentioned semiconductor device according to the embodiment may be connected to, for example, the electrodes of the lower semiconductor element. For example, the alignment marks of the upper semiconductor element are formed on the electrodes of the upper semiconductor element, and the alignment marks of the lower semiconductor element is formed on the electrodes of the lower semiconductor element. Then, at the time of connecting the semiconductor elements to each other by forming the solder layer on the alignment marks of the lower semiconductor element, it is possible to form electrical connection between the alignment marks by connecting the alignment marks through the solder.
  • The present disclosure contains subject matter related to that disclosed in Japanese Priority Patent Application JP 2010-282082 filed in the Japan Patent Office on Dec. 17, 2010, the entire contents of which are hereby incorporated by reference.
  • It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.

Claims (9)

1. A semiconductor device comprising:
a semiconductor element;
a pad electrode that is formed on the semiconductor element;
an alignment mark that is formed on the semiconductor element;
a connection electrode that is formed on the pad electrode; and
an underfill resin that is formed to cover the connection electrode,
wherein a height of the alignment mark from the semiconductor element is greater than that of the connection electrode.
2. The semiconductor device according to claim 1, wherein the connection electrode is formed of an under bump metal which is formed on the pad electrode and a solder bump which is formed on the under bump metal.
3. The semiconductor device according to claim 2, wherein the alignment mark and the under bump metal are formed of a same material.
4. The semiconductor device according to claim 1, wherein a shape of the alignment mark is different from a shape of the connection electrode.
5. The semiconductor device according to claim 1, wherein the alignment mark is formed to surround an outer peripheral portion of the semiconductor element.
6. A method of manufacturing a semiconductor device comprising:
providing a wafer on which a semiconductor element is formed;
forming a barrier layer on the wafer;
forming a first resist pattern, which has an opening portion located at a position of a formed alignment mark, on the barrier layer;
forming the alignment mark in the opening portion of the first resist pattern by using an electrolytic plating method;
forming a second resist pattern, which has an opening portion located at a position of a connection electrode of the semiconductor element so as to cover the barrier layer and the alignment mark, after removing the first resist pattern;
forming the connection electrode in the opening portion of the second resist pattern by using the electrolytic plating method; and
providing an underfill resin on the semiconductor element so as to cover the connection electrode.
7. A semiconductor device comprising:
a first electronic component that is formed of a semiconductor element, a pad electrode which is formed on the semiconductor element, an alignment mark which is formed on the semiconductor element so as to have a height greater than that of the connection electrode, a connection electrode which is formed on the pad electrode, and an underfill resin which is formed to cover the connection electrode; and
a second electronic component on which the first electronic component is mounted.
8. The semiconductor device according to claim 7, wherein a difference in height between the alignment mark and the connection electrode in the first electronic component is equal to or less than a height of the electrode of the second electronic component.
9. A method of manufacturing a semiconductor device comprising:
forming a first electronic component;
providing a second electronic component that has an alignment mark and a pad electrode; and
aligning a position of the first electronic component with a position of the second electronic component by using the alignment mark, electrically connecting the connection electrode and the pad electrode to each other, and mounting the first electronic component on the second electronic component,
wherein the forming of the first electronic component includes
providing a wafer on which a semiconductor element is formed,
forming a barrier layer on the wafer,
forming a first resist pattern, which has an opening portion located at a position of the formed alignment mark, on the barrier layer,
forming the alignment mark in the opening portion of the first resist pattern by using an electrolytic plating method,
forming a second resist pattern, which has an opening portion located at a position of a connection electrode of the semiconductor element so as to cover the barrier layer and the alignment mark, after removing the first resist pattern,
forming the alignment mark in the opening portion of the second resist pattern by using the electrolytic plating method, and
providing an underfill resin on the semiconductor element so as to cover the connection electrode.
US13/312,565 2010-12-17 2011-12-06 Semiconductor device and method of manufacturing semiconductor device Active 2032-01-01 US8841783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/462,776 US8962440B2 (en) 2010-12-17 2014-08-19 Semiconductor device and method of manufacturing semiconductor device
US14/600,371 US9202804B2 (en) 2010-12-17 2015-01-20 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-282082 2010-12-17
JP2010282082A JP5927756B2 (en) 2010-12-17 2010-12-17 Semiconductor device and manufacturing method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/462,776 Division US8962440B2 (en) 2010-12-17 2014-08-19 Semiconductor device and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
US20120153462A1 true US20120153462A1 (en) 2012-06-21
US8841783B2 US8841783B2 (en) 2014-09-23

Family

ID=46233316

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/312,565 Active 2032-01-01 US8841783B2 (en) 2010-12-17 2011-12-06 Semiconductor device and method of manufacturing semiconductor device
US14/462,776 Active US8962440B2 (en) 2010-12-17 2014-08-19 Semiconductor device and method of manufacturing semiconductor device
US14/600,371 Active US9202804B2 (en) 2010-12-17 2015-01-20 Semiconductor device and method of manufacturing semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/462,776 Active US8962440B2 (en) 2010-12-17 2014-08-19 Semiconductor device and method of manufacturing semiconductor device
US14/600,371 Active US9202804B2 (en) 2010-12-17 2015-01-20 Semiconductor device and method of manufacturing semiconductor device

Country Status (5)

Country Link
US (3) US8841783B2 (en)
JP (1) JP5927756B2 (en)
KR (1) KR101998884B1 (en)
CN (2) CN102543902B (en)
TW (1) TWI485814B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150001729A1 (en) * 2013-06-27 2015-01-01 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Trench and Disposing Semiconductor Die Over Substrate to Control Outward Flow of Underfill Material
CN105244289A (en) * 2014-07-08 2016-01-13 台湾积体电路制造股份有限公司 Methods of packaging semiconductor devices and packaged semiconductor devices
US20160358892A1 (en) * 2015-06-03 2016-12-08 Electronics And Telecommunications Research Institute Semiconductor package and method for manufacturing the same
CN107393879A (en) * 2016-03-25 2017-11-24 格罗方德半导体公司 The visualization of alignment mark on pre-coated bottom filler institute coating chip
US20190067226A1 (en) * 2017-08-29 2019-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit component package and method of fabricating the same
US10242949B2 (en) * 2015-04-15 2019-03-26 Osram Opto Semiconductors Gmbh Arrangement for spatially limiting a reservoir for a marker material
US10504850B2 (en) * 2015-08-14 2019-12-10 Pep Innovation Pte Ltd Semiconductor processing method
US20200198962A1 (en) * 2015-09-29 2020-06-25 Tronic's Microsystems Device for Attaching Two Elements Such as a Chip, an Interposer and a Support
US10916604B2 (en) * 2015-12-31 2021-02-09 Lg Display Co., Ltd. Organic light emitting display device having a multi-directional dam structure
KR20210098659A (en) * 2020-02-03 2021-08-11 삼성전자주식회사 Semiconductor packages having dam structure
CN113594119A (en) * 2021-06-25 2021-11-02 苏州汉天下电子有限公司 Semiconductor package and method of manufacturing the same
US20220068868A1 (en) * 2018-10-04 2022-03-03 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for manufacturing the same
US11417569B2 (en) * 2017-09-18 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having integrated circuit component with conductive terminals of different dimensions
US11600590B2 (en) * 2019-03-22 2023-03-07 Advanced Semiconductor Engineering, Inc. Semiconductor device and semiconductor package
US20230130356A1 (en) * 2021-10-27 2023-04-27 Samsung Electronics Co., Ltd. Package substrate and semiconductor package including the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207190B2 (en) * 2013-03-22 2017-10-04 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US9343386B2 (en) * 2013-06-19 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Alignment in the packaging of integrated circuits
JP6786781B2 (en) * 2015-09-25 2020-11-18 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6823717B2 (en) * 2017-05-26 2021-02-03 シャープ株式会社 Semiconductor module and its manufacturing method
US10998480B2 (en) * 2018-09-19 2021-05-04 Facebook Technologies, Llc Light-emitting structure alignment preservation in display fabrication
DE102020135087A1 (en) 2020-03-27 2021-09-30 Samsung Electronics Co., Ltd. Semiconductor package
JP7007607B2 (en) * 2020-04-16 2022-01-24 日亜化学工業株式会社 Manufacturing method of light emitting device
CN113471061B (en) * 2021-06-30 2024-07-16 颀中科技(苏州)有限公司 Preparation method of dielectric layer on wafer surface, wafer structure and forming method of bump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134515A1 (en) * 2007-11-26 2009-05-28 Phoenix Precision Technology Corporation Semiconductor package substrate
US20120126395A1 (en) * 2010-11-18 2012-05-24 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Uniform Height Insulating Layer Over Interposer Frame as Standoff for Semiconductor Die

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214629A (en) * 1990-01-18 1991-09-19 Fujitsu Ltd Manufacture of semiconductor device
JP2000196051A (en) 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Solid-state image sensor and manufacture thereof
JP2004079905A (en) * 2002-08-21 2004-03-11 Sony Corp Semiconductor device and its manufacturing method
TWI228814B (en) * 2003-06-26 2005-03-01 United Microelectronics Corp Parasitic capacitance-preventing dummy solder bump structure and method of making the same
US7247517B2 (en) * 2003-09-30 2007-07-24 Intel Corporation Method and apparatus for a dual substrate package
US7122906B2 (en) * 2004-01-29 2006-10-17 Micron Technology, Inc. Die-wafer package and method of fabricating same
TWI230993B (en) * 2004-02-09 2005-04-11 Au Optronics Corp Package alignment structure
JP4415717B2 (en) 2004-03-23 2010-02-17 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP4632690B2 (en) * 2004-05-11 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
JP4752586B2 (en) * 2006-04-12 2011-08-17 ソニー株式会社 Manufacturing method of semiconductor device
JP5137320B2 (en) * 2006-04-17 2013-02-06 株式会社テラミクロス Semiconductor device and manufacturing method thereof
JP2008109009A (en) * 2006-10-27 2008-05-08 Sony Corp Method of manufacturing semiconductor device
JP4889464B2 (en) * 2006-12-08 2012-03-07 パナソニック株式会社 Electronic component mounting method
KR100809726B1 (en) * 2007-05-14 2008-03-06 삼성전자주식회사 Align mark, semiconductor chip having the align mark, semiconductor package having the chip, and methods of fabricating the chip and the package
JP2009010057A (en) * 2007-06-27 2009-01-15 Toray Ind Inc Electron device mounting method
KR100927120B1 (en) * 2007-10-29 2009-11-18 옵토팩 주식회사 Semiconductor device packaging method
US20090127703A1 (en) * 2007-11-20 2009-05-21 Fujitsu Limited Method and System for Providing a Low-Profile Semiconductor Assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134515A1 (en) * 2007-11-26 2009-05-28 Phoenix Precision Technology Corporation Semiconductor package substrate
US20120126395A1 (en) * 2010-11-18 2012-05-24 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Uniform Height Insulating Layer Over Interposer Frame as Standoff for Semiconductor Die

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150001729A1 (en) * 2013-06-27 2015-01-01 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Trench and Disposing Semiconductor Die Over Substrate to Control Outward Flow of Underfill Material
US9627229B2 (en) * 2013-06-27 2017-04-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming trench and disposing semiconductor die over substrate to control outward flow of underfill material
US10043778B2 (en) * 2014-07-08 2018-08-07 Taiwan Semiconductor Manufacturing Company Methods of packaging semiconductor devices and packaged semiconductor devices
CN105244289A (en) * 2014-07-08 2016-01-13 台湾积体电路制造股份有限公司 Methods of packaging semiconductor devices and packaged semiconductor devices
US20160013152A1 (en) * 2014-07-08 2016-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of Packaging Semiconductor Devices and Packaged Semiconductor Devices
US10510719B2 (en) 2014-07-08 2019-12-17 Taiwan Semiconductor Manufacturing Company Methods of packaging semiconductor devices and packaged semiconductor devices
US9847317B2 (en) * 2014-07-08 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of packaging semiconductor devices and packaged semiconductor devices
US10242949B2 (en) * 2015-04-15 2019-03-26 Osram Opto Semiconductors Gmbh Arrangement for spatially limiting a reservoir for a marker material
US20160358892A1 (en) * 2015-06-03 2016-12-08 Electronics And Telecommunications Research Institute Semiconductor package and method for manufacturing the same
US10504850B2 (en) * 2015-08-14 2019-12-10 Pep Innovation Pte Ltd Semiconductor processing method
US20200198962A1 (en) * 2015-09-29 2020-06-25 Tronic's Microsystems Device for Attaching Two Elements Such as a Chip, an Interposer and a Support
US11968860B2 (en) 2015-12-31 2024-04-23 Lg Display Co., Ltd. Organic light emitting display device including dam structure and alignment mark
US11552141B2 (en) 2015-12-31 2023-01-10 Lg Display Co, Ltd. Organic light emitting display device including curve-shaped third dam structure
US10916604B2 (en) * 2015-12-31 2021-02-09 Lg Display Co., Ltd. Organic light emitting display device having a multi-directional dam structure
CN107393879A (en) * 2016-03-25 2017-11-24 格罗方德半导体公司 The visualization of alignment mark on pre-coated bottom filler institute coating chip
US10636757B2 (en) * 2017-08-29 2020-04-28 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit component package and method of fabricating the same
US20190067226A1 (en) * 2017-08-29 2019-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit component package and method of fabricating the same
US11417569B2 (en) * 2017-09-18 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure having integrated circuit component with conductive terminals of different dimensions
US20220068868A1 (en) * 2018-10-04 2022-03-03 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for manufacturing the same
US11973048B2 (en) * 2018-10-04 2024-04-30 Advanced Semiconductor Engineering, Inc. Semiconductor package and method for manufacturing the same
US11600590B2 (en) * 2019-03-22 2023-03-07 Advanced Semiconductor Engineering, Inc. Semiconductor device and semiconductor package
US11437293B2 (en) * 2020-02-03 2022-09-06 Samsung Electronics Co., Ltd. Semiconductor packages having a dam structure
KR20210098659A (en) * 2020-02-03 2021-08-11 삼성전자주식회사 Semiconductor packages having dam structure
KR102689648B1 (en) * 2020-02-03 2024-07-30 삼성전자주식회사 Semiconductor packages having dam structure
CN113594119A (en) * 2021-06-25 2021-11-02 苏州汉天下电子有限公司 Semiconductor package and method of manufacturing the same
US20230130356A1 (en) * 2021-10-27 2023-04-27 Samsung Electronics Co., Ltd. Package substrate and semiconductor package including the same

Also Published As

Publication number Publication date
TWI485814B (en) 2015-05-21
CN106098667B (en) 2019-12-17
US8962440B2 (en) 2015-02-24
CN102543902B (en) 2016-08-24
CN102543902A (en) 2012-07-04
JP2012129474A (en) 2012-07-05
JP5927756B2 (en) 2016-06-01
US9202804B2 (en) 2015-12-01
TW201250944A (en) 2012-12-16
US8841783B2 (en) 2014-09-23
CN106098667A (en) 2016-11-09
KR20120068690A (en) 2012-06-27
KR101998884B1 (en) 2019-07-10
US20150130056A1 (en) 2015-05-14
US20140357025A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US8962440B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI630693B (en) Opening in the pad for bonding integrated passive device in info package
KR101910198B1 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing wiring board
US6291264B1 (en) Flip-chip package structure and method of fabricating the same
US8569162B2 (en) Conductive bump structure on substrate and fabrication method thereof
US9362143B2 (en) Methods for forming semiconductor device packages with photoimageable dielectric adhesive material, and related semiconductor device packages
US20170125369A1 (en) Semiconductor package and method for manufacturing the same
KR20150136983A (en) Contact pad for semiconductor device
US9484308B2 (en) Semiconductor device
US10879146B2 (en) Electronic component and manufacturing method thereof
US9806045B2 (en) Interconnection structure including a metal post encapsulated by solder joint having a concave outer surface
KR101025349B1 (en) Semiconductor package and fabricating?method?thereof
US9960143B2 (en) Method for manufacturing electronic component and manufacturing apparatus of electronic component
WO2012035688A1 (en) Semiconductor device, semiconductor device unit, and semiconductor device production method
US7642662B2 (en) Semiconductor device and method of manufacturing the same
US20220344300A1 (en) Electronic device and manufacturing method thereof
US9768139B2 (en) Semiconductor device and semiconductor package
JP2013115336A (en) Semiconductor device and manufacturing method of the same
CN209912868U (en) Wafer with a plurality of chips
US9735132B1 (en) Semiconductor package
US20190096836A1 (en) Bump structure, semiconductor package including the bump structure, and method of forming the bump structure
CN109390307B (en) Semiconductor device and method for manufacturing the same
JP2013243318A (en) Electronic component mounting structure and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAKIYAMA, SATORU;REEL/FRAME:027335/0285

Effective date: 20110928

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8