US20120151479A1 - Horizontal splitting of tasks within a homogenous pool of virtual machines - Google Patents
Horizontal splitting of tasks within a homogenous pool of virtual machines Download PDFInfo
- Publication number
- US20120151479A1 US20120151479A1 US13/270,775 US201113270775A US2012151479A1 US 20120151479 A1 US20120151479 A1 US 20120151479A1 US 201113270775 A US201113270775 A US 201113270775A US 2012151479 A1 US2012151479 A1 US 2012151479A1
- Authority
- US
- United States
- Prior art keywords
- virtual machine
- requests
- tenant
- session
- application server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 description 20
- 238000013500 data storage Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 9
- 230000015654 memory Effects 0.000 description 8
- 238000007726 management method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 5
- 230000008520 organization Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000026676 system process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241001522296 Erithacus rubecula Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/125—Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/90—Buffering arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1008—Server selection for load balancing based on parameters of servers, e.g. available memory or workload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1014—Server selection for load balancing based on the content of a request
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
- G06F2209/5019—Workload prediction
Definitions
- Embodiments relate to techniques for task distribution in an environment having virtual machines. More particularly, embodiments relate to a horizontal distribution strategy that may be used in an environment having multiple virtual machines.
- FIG. 1 is a block diagram of one embodiment of a networked system of request sources and application servers that my service requests.
- FIG. 2 is a block diagram of one embodiment of an application server having one or more processors.
- FIG. 3 is a flow diagram of one embodiment of a technique for utilizing a primary virtual machine and a secondary virtual machine.
- FIG. 4 illustrates a block diagram of an environment where an on-demand database service might be used.
- FIG. 5 is a block diagram of an embodiment of a multitenant environment.
- Techniques described herein may be utilized to provide automatic lifecycle management (e.g., startup, teardown) of multiple virtual machines (e.g., JAVA Virtual Machines, or JVMs) on a single server machine (e.g., an application server, or app server), and the ease of configuration of services that determines which virtual machine the service runs on.
- multiple virtual machines e.g., JAVA Virtual Machines, or JVMs
- server machine e.g., an application server, or app server
- a secondary app server virtual machine is provided on the same physical computing device as a primary app server.
- the secondary app server may be used for background jobs.
- the secondary app server is run by one or more specified processor cores to prioritize certain types of requests. This may be accomplished by using LINUX utilities, for example, and may allow prioritization of real time requests over background jobs.
- FIG. 1 is a block diagram of one embodiment of a networked system of request sources and application servers that may service requests.
- the example of FIG. 1 provides an example with two request sources, one load balancer and two application servers; however, any number of request sources, load balancers and application servers can be supported using the techniques described herein.
- Network 100 may be any type of network that provides connections between request sources 110 and 120 and application servers 160 and 170 .
- Network 100 can be, for example, the Internet, a local area network (LAN), and/or any combination of networks and subnetworks.
- Request sources 110 and 120 operate to request services and/or resources from application servers 160 and 170 .
- Request sources 110 and 120 can be, for example, computer systems running browser applications that allow a user thereof to interact with application servers 160 and 170 .
- Load balancer 140 may operate to distribute requests from the request sources to the application servers in order to more efficiently utilize the resources provided by the application servers.
- Application servers 160 and 170 include one or more processor cores that support execution of virtual machines that may be utilized in servicing requests from request sources 110 and 120 .
- Application servers 160 and 170 function to provide primary and secondary virtual machines as described herein to service requests from request sources 110 and 120 .
- FIG. 2 is a block diagram of one embodiment of an application server having one or more processors.
- Alternative application servers may include more, fewer and/or different components.
- Application server 200 includes bus 205 or other communication device to communicate information, and processor 210 coupled to bus 205 that may process information. While application server 200 is illustrated with a single processor, application server 200 may include multiple processors and/or co-processors. Application server 200 further may include random access memory (RAM) or other dynamic storage device 220 (referred to as main memory), coupled to bus 205 and may store information and instructions that may be executed by processor 210 . Main memory 220 may also be used to store temporary variables or other intermediate information during execution of instructions by processor 210 .
- RAM random access memory
- main memory main memory
- One or more processors 210 support operation of multiple virtual machines as discussed herein.
- One or more processors 210 may further each include one or more processing cores.
- individual processor cores may be assigned to virtual machines.
- Application server 200 may also include read only memory (ROM) and/or other static storage device 230 coupled to bus 205 that may store static information and instructions for processor 210 .
- Data storage device 240 may be coupled to bus 205 to store information and instructions.
- Data storage device 240 such as a magnetic disk or optical disc and corresponding drive may be coupled to application server 200 .
- Application server 200 may also be coupled via bus 205 to display device 250 , such as a cathode ray tube (CRT) or liquid crystal display (LCD), to display information to a user.
- display device 250 such as a cathode ray tube (CRT) or liquid crystal display (LCD)
- Alphanumeric input device 260 may be coupled to bus 205 to communicate information and command selections to processor 210 .
- cursor control 270 is Another type of user input device, such as a mouse, a trackball, or cursor direction keys to communicate direction information and command selections to processor 210 and to control cursor movement on display 250 .
- Application server 200 further may include network interface(s) 280 to provide access to a network, such as a local area network.
- Network interface(s) 280 may include, for example, a wireless network interface having antenna 285 , which may represent one or more antenna(e).
- Network interface(s) 280 may also include, for example, a wired network interface to communicate with remote devices via network cable 287 , which may be, for example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, or a parallel cable.
- Instructions are provided to memory from a storage device, such as magnetic disk, a read-only memory (ROM) integrated circuit, CD-ROM, DVD, via a remote connection (e.g., over a network via network interface 280 ) that is either wired or wireless, etc.
- a storage device such as magnetic disk, a read-only memory (ROM) integrated circuit, CD-ROM, DVD
- ROM read-only memory
- remote connection e.g., over a network via network interface 280
- hard-wired circuitry can be used in place of or in combination with software instructions.
- execution of sequences of instructions is not limited to any specific combination of hardware circuitry and software instructions.
- a computer-readable medium includes any mechanism that provides (i.e., stores) content (e.g., computer executable instructions) in a form readable by an electronic device (e.g., a computer, a personal digital assistant, a cellular telephone).
- a computer-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.
- FIG. 3 is a flow diagram of one embodiment of a technique for utilizing a primary virtual machine and a secondary virtual machine.
- the virtual machines are provided in a multitenant database environment.
- Example embodiments of multitenant database environments are set forth below.
- a primary virtual machine is launched, 310 .
- the primary virtual machine provides a primary application server to service requests received from remote request sources.
- the remote request sources can be, for example, computing platforms that a user may utilize a browser or other application to access resources provided by the application server(s).
- the browser may generate requests that are received, and serviced, by the application server(s).
- the primary virtual machine launches the secondary virtual machine, 320 .
- the secondary virtual machine may provide a secondary application server.
- the secondary application server runs alongside true application servers only (e.g., no capps, indexers, batch servers, etc).
- the secondary application server is launched via an appserver startup task on the primary application server.
- the primary application server is responsible for killing secondary application server when appropriate (e.g. mbean+JVM shutdown hooks).
- the primary application server starts the secondary application server using current virtual machine arguments and class paths for the primary virtual machine. Certain properties (e.g., settings path, startup log) may be overridden.
- the secondary application server is allowed only as many connections as needed.
- the primary application server may monitor the secondary application server and revive the secondary application server if necessary.
- the secondary application server may also monitor the primary application server, and may kill itself when the good primary application dies. For example, if two-way monitoring is implemented with a blocking read on a local socket connection, when it reaches an EOF, the other application has died.
- the secondary application server may be configured with a unique appname for agent proxying. This appname may be configured in a CMS as a miniAppname, for example.
- a CMS may model the secondary application server by storing a value for the application port on the application instances that run secondary application server.
- an agent may start a core and a core application (e.g., the primary application server) and may start the secondary application server and manage the secondary application server's life cycle. However, in one embodiment, the secondary application server cannot start the core.
- virtual machines are assigned to particular processing cores on the same computing platform, 330 .
- the core assignments may be accomplished by utilizing operating system utilities and commands.
- the primary application server is utilized to process real time requests that are received from the request sources and the secondary application server is utilized to process background (or non-real time) requests. Thus, conceptually, this division of processing may be considered horizontal.
- requests may be evaluated as background or real time and assigned to the appropriate virtual machine and application server, 340 .
- the primary application server is exposed to realtime requests via the load balancer. As realtime requests come in, they are proxied to the application server port that the primary virtual machine is monitoring.
- services that consume background (e.g., asynchronous) jobs do not run on the primary virtual machine. They are configured to launch on the secondary virtual machine. These services consume scheduled/queued jobs. The secondary virtual machine is not exposed to the load balancer so it will not receive/serve any realtime requests. Once the application server receives the requests, the requests may be serviced, 350 .
- FIG. 4 illustrates a block diagram of an environment 410 wherein an on-demand database service might be used.
- Environment 410 may include user systems 412 , network 414 , system 416 , processor system 417 , application platform 418 , network interface 420 , tenant data storage 422 , system data storage 424 , program code 426 , and process space 428 .
- environment 410 may not have all of the components listed and/or may have other elements instead of, or in addition to, those listed above.
- Environment 410 is an environment in which an on-demand database service exists.
- User system 412 may be any machine or system that is used by a user to access a database user system.
- any of user systems 412 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices.
- user systems 412 might interact via a network 414 with an on-demand database service, which is system 416 .
- An on-demand database service such as system 416
- system 416 is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users).
- Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 416 ” and “system 416 ” will be used interchangeably herein.
- a database image may include one or more database objects.
- a relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s).
- Application platform 418 may be a framework that allows the applications of system 416 to run, such as the hardware and/or software, e.g., the operating system.
- on-demand database service 416 may include an application platform 418 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 412 , or third party application developers accessing the on-demand database service via user systems 412 .
- the users of user systems 412 may differ in their respective capacities, and the capacity of a particular user system 412 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 412 to interact with system 416 , that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 416 , that user system has the capacities allotted to that administrator.
- users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level.
- users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level.
- different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
- Network 414 is any network or combination of networks of devices that communicate with one another.
- network 414 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration.
- LAN local area network
- WAN wide area network
- telephone network wireless network
- point-to-point network star network
- token ring network token ring network
- hub network or other appropriate configuration.
- TCP/IP Transfer Control Protocol and Internet Protocol
- User systems 412 might communicate with system 416 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc.
- HTTP HyperText Transfer Protocol
- user system 412 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 416 .
- HTTP server might be implemented as the sole network interface between system 416 and network 414 , but other techniques might be used as well or instead.
- the interface between system 416 and network 414 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
- system 416 implements a web-based customer relationship management (CRM) system.
- system 416 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, webpages and other information to and from user systems 412 and to store to, and retrieve from, a database system related data, objects, and Webpage content.
- CRM customer relationship management
- data for multiple tenants may be stored in the same physical database object, however, tenant data typically is arranged so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared.
- system 416 implements applications other than, or in addition to, a CRM application.
- system 416 may provide tenant access to multiple hosted (standard and custom) applications, including a CRM application.
- User (or third party developer) applications which may or may not include CRM, may be supported by the application platform 418 , which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of the system 416 .
- FIG. 4 One arrangement for elements of system 416 is shown in FIG. 4 , including a network interface 420 , application platform 418 , tenant data storage 422 for tenant data 423 , system data storage 424 for system data 425 accessible to system 416 and possibly multiple tenants, program code 426 for implementing various functions of system 416 , and a process space 428 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute on system 416 include database indexing processes.
- each user system 412 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing device capable of interfacing directly or indirectly to the Internet or other network connection.
- WAP wireless access protocol
- User system 412 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) of user system 412 to access, process and view information, pages and applications available to it from system 416 over network 414 .
- HTTP client e.g., a browsing program, such as Microsoft's Internet Explorer browser, Netscape's Navigator browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like.
- Each user system 412 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided by system 416 or other systems or servers.
- GUI graphical user interface
- the user interface device can be used to access data and applications hosted by system 416 , and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user.
- embodiments are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
- VPN virtual private network
- each user system 412 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like.
- system 416 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 417 , which may include an Intel Pentium® processor or the like, and/or multiple processor units.
- each system 416 is configured to provide webpages, forms, applications, data and media content to user (client) systems 412 to support the access by user systems 412 as tenants of system 416 .
- system 416 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B).
- each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations.
- server is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein.
- database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
- FIG. 5 also illustrates environment 410 . However, in FIG. 5 elements of system 416 and various interconnections in an embodiment are further illustrated.
- user system 412 may include processor system 412 A, memory system 412 B, input system 412 C, and output system 412 D.
- FIG. 5 shows network 414 and system 416 .
- system 416 may include tenant data storage 422 , tenant data 423 , system data storage 424 , system data 425 , User Interface (UI) 530 , Application Program Interface (API) 532 , PL/SOQL 534 , save routines 536 , application setup mechanism 538 , applications servers 500 1 - 500 N , system process space 502 , tenant process spaces 504 , tenant management process space 510 , tenant storage area 512 , user storage 514 , and application metadata 516 .
- environment 410 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.
- processor system 412 A may be any combination of one or more processors.
- Memory system 412 B may be any combination of one or more memory devices, short term, and/or long term memory.
- Input system 412 C may be any combination of input devices, such as one or more keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks.
- Output system 412 D may be any combination of output devices, such as one or more monitors, printers, and/or interfaces to networks.
- system 416 may include a network interface 420 (of FIG. 4 ) implemented as a set of HTTP application servers 500 , an application platform 418 , tenant data storage 422 , and system data storage 424 .
- system process space 502 including individual tenant process spaces 504 and a tenant management process space 510 .
- Each application server 500 may be configured to tenant data storage 422 and the tenant data 423 therein, and system data storage 424 and the system data 425 therein to serve requests of user systems 412 .
- the tenant data 423 might be divided into individual tenant storage areas 512 , which can be either a physical arrangement and/or a logical arrangement of data.
- user storage 514 and application metadata 516 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 514 .
- MRU most recently used
- a UI 530 provides a user interface and an API 532 provides an application programmer interface to system 416 resident processes to users and/or developers at user systems 412 .
- the tenant data and the system data may be stored in various databases, such as one or more OracleTM databases.
- Application platform 418 includes an application setup mechanism 538 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 422 by save routines 536 for execution by subscribers as one or more tenant process spaces 504 managed by tenant management process 510 for example. Invocations to such applications may be coded using PL/SOQL 534 that provides a programming language style interface extension to API 532 . A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 40/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manages retrieving application metadata 516 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
- Each application server 500 may be communicably coupled to database systems, e.g., having access to system data 425 and tenant data 423 , via a different network connection.
- one application server 500 1 might be coupled via the network 414 (e.g., the Internet)
- another application server 500 N-1 might be coupled via a direct network link
- another application server 500 N might be coupled by yet a different network connection.
- Transfer Control Protocol and Internet Protocol TCP/IP
- TCP/IP Transfer Control Protocol and Internet Protocol
- each application server 500 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 500 . In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 500 and the user systems 412 to distribute requests to the application servers 500 .
- a load balancing function e.g., an F5 Big-IP load balancer
- the load balancer uses a least connections algorithm to route user requests to the application servers 500 .
- Other examples of load balancing algorithms such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 500 , and three requests from different users could hit the same application server 500 .
- system 416 is multi-tenant, wherein system 416 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
- one tenant might be a company that employs a sales force where each salesperson uses system 416 to manage their sales process.
- a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 422 ).
- tenant data storage 422 e.g., in tenant data storage 422 .
- the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
- user systems 412 (which may be client systems) communicate with application servers 500 to request and update system-level and tenant-level data from system 416 that may require sending one or more queries to tenant data storage 422 and/or system data storage 424 .
- System 416 e.g., an application server 500 in system 416
- System data storage 424 may generate query plans to access the requested data from the database.
- Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories.
- a “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to the present invention. It should be understood that “table” and “object” may be used interchangeably herein.
- Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema.
- Each row or record of a table contains an instance of data for each category defined by the fields.
- a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc.
- standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
- tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields.
- all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Computer Security & Cryptography (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Hardware Design (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Computer And Data Communications (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/270,775 US20120151479A1 (en) | 2010-12-10 | 2011-10-11 | Horizontal splitting of tasks within a homogenous pool of virtual machines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42198910P | 2010-12-10 | 2010-12-10 | |
US13/270,775 US20120151479A1 (en) | 2010-12-10 | 2011-10-11 | Horizontal splitting of tasks within a homogenous pool of virtual machines |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120151479A1 true US20120151479A1 (en) | 2012-06-14 |
Family
ID=46200542
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/270,775 Abandoned US20120151479A1 (en) | 2010-12-10 | 2011-10-11 | Horizontal splitting of tasks within a homogenous pool of virtual machines |
US13/276,531 Active 2033-07-02 US9026624B2 (en) | 2010-12-10 | 2011-10-19 | Methods and systems for making effective use of system resources |
US13/295,644 Active 2032-01-13 US9201696B2 (en) | 2010-12-10 | 2011-11-14 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US14/703,682 Active 2034-03-27 US10192169B2 (en) | 2010-12-10 | 2015-05-04 | Methods and systems for making effective use of system resources |
US14/805,056 Active US10762435B2 (en) | 2010-12-10 | 2015-07-21 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US14/953,672 Active US10452997B2 (en) | 2010-12-10 | 2015-11-30 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US16/259,964 Active US10810514B2 (en) | 2010-12-10 | 2019-01-28 | Methods and systems for making effective use of system resources |
US16/568,149 Active 2032-07-10 US11153371B2 (en) | 2010-12-10 | 2019-09-11 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US17/070,836 Active US11496555B2 (en) | 2010-12-10 | 2020-10-14 | Methods and systems for making effective use of system resources |
US17/936,301 Active US11888605B2 (en) | 2010-12-10 | 2022-09-28 | Methods and systems for making effective use of system resources |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/276,531 Active 2033-07-02 US9026624B2 (en) | 2010-12-10 | 2011-10-19 | Methods and systems for making effective use of system resources |
US13/295,644 Active 2032-01-13 US9201696B2 (en) | 2010-12-10 | 2011-11-14 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US14/703,682 Active 2034-03-27 US10192169B2 (en) | 2010-12-10 | 2015-05-04 | Methods and systems for making effective use of system resources |
US14/805,056 Active US10762435B2 (en) | 2010-12-10 | 2015-07-21 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US14/953,672 Active US10452997B2 (en) | 2010-12-10 | 2015-11-30 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US16/259,964 Active US10810514B2 (en) | 2010-12-10 | 2019-01-28 | Methods and systems for making effective use of system resources |
US16/568,149 Active 2032-07-10 US11153371B2 (en) | 2010-12-10 | 2019-09-11 | Systems and techniques for utilizing resource aware queues and/or service sharing in a multi-server environment |
US17/070,836 Active US11496555B2 (en) | 2010-12-10 | 2020-10-14 | Methods and systems for making effective use of system resources |
US17/936,301 Active US11888605B2 (en) | 2010-12-10 | 2022-09-28 | Methods and systems for making effective use of system resources |
Country Status (1)
Country | Link |
---|---|
US (10) | US20120151479A1 (enDataCreation) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120324449A1 (en) * | 2011-06-16 | 2012-12-20 | Ucirrus Corporation | Software virtual machine for data ingestion |
US20140108399A1 (en) * | 2012-09-05 | 2014-04-17 | Seth John White | Systems, methods and techniques for polymorphic queries |
US20140115183A1 (en) * | 2012-10-24 | 2014-04-24 | Fujitsu Limited | Information processing method, recording medium, and information processing apparatus |
US8763004B1 (en) * | 2013-04-24 | 2014-06-24 | QRC, Inc. | System and method for RF digitization and collection |
US20170068572A1 (en) * | 2015-09-07 | 2017-03-09 | Docapost Dps | Digital safe architecture usable for numerical objects integrity protection in the time |
CN109905459A (zh) * | 2019-01-16 | 2019-06-18 | 平安科技(深圳)有限公司 | 一种数据传输方法及装置 |
US10884775B2 (en) * | 2014-06-17 | 2021-01-05 | Nokia Solutions And Networks Oy | Methods and apparatus to control a virtual machine |
US11303306B2 (en) | 2020-01-20 | 2022-04-12 | Parsons Corporation | Narrowband IQ extraction and storage |
US11569848B2 (en) | 2020-04-17 | 2023-01-31 | Parsons Corporation | Software-defined radio linking systems |
US11575407B2 (en) | 2020-04-27 | 2023-02-07 | Parsons Corporation | Narrowband IQ signal obfuscation |
US11605166B2 (en) | 2019-10-16 | 2023-03-14 | Parsons Corporation | GPU accelerated image segmentation |
US11619700B2 (en) | 2020-04-07 | 2023-04-04 | Parsons Corporation | Retrospective interferometry direction finding |
US11849347B2 (en) | 2021-01-05 | 2023-12-19 | Parsons Corporation | Time axis correlation of pulsed electromagnetic transmissions |
Families Citing this family (222)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8577918B2 (en) * | 2008-09-12 | 2013-11-05 | Salesforce.Com, Inc. | Method and system for apportioning opportunity among campaigns in a CRM system |
US8839209B2 (en) | 2010-05-12 | 2014-09-16 | Salesforce.Com, Inc. | Software performance profiling in a multi-tenant environment |
US8655867B2 (en) | 2010-05-13 | 2014-02-18 | Salesforce.Com, Inc. | Method and system for optimizing queries in a multi-tenant database environment |
US9280596B2 (en) | 2010-07-01 | 2016-03-08 | Salesforce.Com, Inc. | Method and system for scoring articles in an on-demand services environment |
US8539078B2 (en) * | 2010-07-08 | 2013-09-17 | International Business Machines Corporation | Isolating resources between tenants in a software-as-a-service system using the estimated costs of service requests |
US20120151479A1 (en) * | 2010-12-10 | 2012-06-14 | Salesforce.Com, Inc. | Horizontal splitting of tasks within a homogenous pool of virtual machines |
US8789065B2 (en) | 2012-06-08 | 2014-07-22 | Throughputer, Inc. | System and method for input data load adaptive parallel processing |
TWI414161B (zh) * | 2011-01-28 | 2013-11-01 | Univ Nat Chiao Tung | 負載分配方法 |
US9448847B2 (en) | 2011-07-15 | 2016-09-20 | Throughputer, Inc. | Concurrent program execution optimization |
US20130066943A1 (en) * | 2011-09-13 | 2013-03-14 | International Business Machines Corporation | Application-Aware Quality Of Service In Network Applications |
US9032484B2 (en) | 2011-10-31 | 2015-05-12 | International Business Machines Corporation | Access control in a hybrid environment |
US9053141B2 (en) * | 2011-10-31 | 2015-06-09 | International Business Machines Corporation | Serialization of access to data in multi-mainframe computing environments |
US9298494B2 (en) | 2012-05-14 | 2016-03-29 | Qualcomm Incorporated | Collaborative learning for efficient behavioral analysis in networked mobile device |
US9202047B2 (en) | 2012-05-14 | 2015-12-01 | Qualcomm Incorporated | System, apparatus, and method for adaptive observation of mobile device behavior |
US20130304677A1 (en) * | 2012-05-14 | 2013-11-14 | Qualcomm Incorporated | Architecture for Client-Cloud Behavior Analyzer |
US9690635B2 (en) | 2012-05-14 | 2017-06-27 | Qualcomm Incorporated | Communicating behavior information in a mobile computing device |
US9324034B2 (en) | 2012-05-14 | 2016-04-26 | Qualcomm Incorporated | On-device real-time behavior analyzer |
US9609456B2 (en) | 2012-05-14 | 2017-03-28 | Qualcomm Incorporated | Methods, devices, and systems for communicating behavioral analysis information |
US9383988B2 (en) | 2012-07-03 | 2016-07-05 | Salesforce, Inc. | System and method for using directed acyclic graph (DAG) for application updates |
US9330257B2 (en) | 2012-08-15 | 2016-05-03 | Qualcomm Incorporated | Adaptive observation of behavioral features on a mobile device |
US9747440B2 (en) | 2012-08-15 | 2017-08-29 | Qualcomm Incorporated | On-line behavioral analysis engine in mobile device with multiple analyzer model providers |
US9319897B2 (en) | 2012-08-15 | 2016-04-19 | Qualcomm Incorporated | Secure behavior analysis over trusted execution environment |
US9495537B2 (en) | 2012-08-15 | 2016-11-15 | Qualcomm Incorporated | Adaptive observation of behavioral features on a mobile device |
US9195506B2 (en) | 2012-12-21 | 2015-11-24 | International Business Machines Corporation | Processor provisioning by a middleware processing system for a plurality of logical processor partitions |
US9311149B2 (en) * | 2012-12-21 | 2016-04-12 | International Business Machines Corporation | Processor provisioning by a middleware processing system |
US9686023B2 (en) | 2013-01-02 | 2017-06-20 | Qualcomm Incorporated | Methods and systems of dynamically generating and using device-specific and device-state-specific classifier models for the efficient classification of mobile device behaviors |
US9684870B2 (en) | 2013-01-02 | 2017-06-20 | Qualcomm Incorporated | Methods and systems of using boosted decision stumps and joint feature selection and culling algorithms for the efficient classification of mobile device behaviors |
US10089582B2 (en) | 2013-01-02 | 2018-10-02 | Qualcomm Incorporated | Using normalized confidence values for classifying mobile device behaviors |
US9742559B2 (en) | 2013-01-22 | 2017-08-22 | Qualcomm Incorporated | Inter-module authentication for securing application execution integrity within a computing device |
US9491187B2 (en) | 2013-02-15 | 2016-11-08 | Qualcomm Incorporated | APIs for obtaining device-specific behavior classifier models from the cloud |
US9953054B2 (en) | 2013-04-22 | 2018-04-24 | Salesforce.Com, Inc. | Systems and methods for implementing and maintaining sampled tables in a database system |
US9760847B2 (en) | 2013-05-29 | 2017-09-12 | Sap Se | Tenant selection in quota enforcing request admission mechanisms for shared applications |
US9715406B2 (en) * | 2013-06-14 | 2017-07-25 | Microsoft Technology Licensing, Llc | Assigning and scheduling threads for multiple prioritized queues |
GB2517408A (en) | 2013-07-05 | 2015-02-25 | Blue Prism Ltd | System for automating processes |
US9584588B2 (en) | 2013-08-21 | 2017-02-28 | Sap Se | Multi-stage feedback controller for prioritizing tenants for multi-tenant applications |
US9722908B2 (en) | 2013-10-17 | 2017-08-01 | International Business Machines Corporation | Problem determination in a hybrid environment |
US10257259B2 (en) | 2013-10-25 | 2019-04-09 | Salesforce.Com, Inc. | Manifest schema to provide application flows |
US20150200872A1 (en) * | 2014-01-13 | 2015-07-16 | Cisco Technology, Inc. | Cloud resource placement based on stochastic analysis of service requests |
US10366102B2 (en) | 2014-02-19 | 2019-07-30 | Snowflake Inc. | Resource management systems and methods |
US10521730B1 (en) * | 2014-09-10 | 2019-12-31 | Amazon Technoiogies. Inc. | Computing instance launch workflow |
US10268958B1 (en) * | 2014-09-10 | 2019-04-23 | Amazon Technologies, Inc. | Recommended launch configuration |
US10402746B2 (en) * | 2014-09-10 | 2019-09-03 | Amazon Technologies, Inc. | Computing instance launch time |
US11146629B2 (en) * | 2014-09-26 | 2021-10-12 | Red Hat, Inc. | Process transfer between servers |
US9146764B1 (en) | 2014-09-30 | 2015-09-29 | Amazon Technologies, Inc. | Processing event messages for user requests to execute program code |
US9715402B2 (en) | 2014-09-30 | 2017-07-25 | Amazon Technologies, Inc. | Dynamic code deployment and versioning |
US9323556B2 (en) | 2014-09-30 | 2016-04-26 | Amazon Technologies, Inc. | Programmatic event detection and message generation for requests to execute program code |
US10048974B1 (en) | 2014-09-30 | 2018-08-14 | Amazon Technologies, Inc. | Message-based computation request scheduling |
US9600312B2 (en) | 2014-09-30 | 2017-03-21 | Amazon Technologies, Inc. | Threading as a service |
US9678773B1 (en) | 2014-09-30 | 2017-06-13 | Amazon Technologies, Inc. | Low latency computational capacity provisioning |
US9830193B1 (en) | 2014-09-30 | 2017-11-28 | Amazon Technologies, Inc. | Automatic management of low latency computational capacity |
US10491664B2 (en) * | 2014-10-13 | 2019-11-26 | Salesforce.Com, Inc. | Asynchronous web service callouts and servlet handling |
US10904122B2 (en) * | 2014-10-28 | 2021-01-26 | Salesforce.Com, Inc. | Facilitating workload-aware shuffling and management of message types in message queues in an on-demand services environment |
US10129078B2 (en) | 2014-10-30 | 2018-11-13 | Equinix, Inc. | Orchestration engine for real-time configuration and management of interconnections within a cloud-based services exchange |
US9537788B2 (en) | 2014-12-05 | 2017-01-03 | Amazon Technologies, Inc. | Automatic determination of resource sizing |
US9727725B2 (en) | 2015-02-04 | 2017-08-08 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9588790B1 (en) | 2015-02-04 | 2017-03-07 | Amazon Technologies, Inc. | Stateful virtual compute system |
US9733967B2 (en) | 2015-02-04 | 2017-08-15 | Amazon Technologies, Inc. | Security protocols for low latency execution of program code |
US9749353B1 (en) | 2015-03-16 | 2017-08-29 | Wells Fargo Bank, N.A. | Predictive modeling for anti-malware solutions |
US9794265B1 (en) | 2015-03-16 | 2017-10-17 | Wells Fargo Bank, N.A. | Authentication and authorization without the use of supplicants |
US10628388B2 (en) * | 2015-04-01 | 2020-04-21 | International Business Machines Corporation | Supporting multi-tenant applications on a shared database using pre-defined attributes |
US9785476B2 (en) | 2015-04-08 | 2017-10-10 | Amazon Technologies, Inc. | Endpoint management system and virtual compute system |
US9930103B2 (en) | 2015-04-08 | 2018-03-27 | Amazon Technologies, Inc. | Endpoint management system providing an application programming interface proxy service |
US10255336B2 (en) | 2015-05-07 | 2019-04-09 | Datometry, Inc. | Method and system for transparent interoperability between applications and data management systems |
WO2016188706A1 (en) * | 2015-05-22 | 2016-12-01 | British Telecommunications Public Limited Company | Network resource management |
US10594779B2 (en) * | 2015-08-27 | 2020-03-17 | Datometry, Inc. | Method and system for workload management for data management systems |
US9928108B1 (en) | 2015-09-29 | 2018-03-27 | Amazon Technologies, Inc. | Metaevent handling for on-demand code execution environments |
US10042660B2 (en) | 2015-09-30 | 2018-08-07 | Amazon Technologies, Inc. | Management of periodic requests for compute capacity |
US9811363B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10013267B1 (en) * | 2015-12-16 | 2018-07-03 | Amazon Technologies, Inc. | Pre-triggers for code execution environments |
US9811434B1 (en) | 2015-12-16 | 2017-11-07 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US10754701B1 (en) | 2015-12-16 | 2020-08-25 | Amazon Technologies, Inc. | Executing user-defined code in response to determining that resources expected to be utilized comply with resource restrictions |
US9830175B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Predictive management of on-demand code execution |
US9830449B1 (en) | 2015-12-16 | 2017-11-28 | Amazon Technologies, Inc. | Execution locations for request-driven code |
US9910713B2 (en) | 2015-12-21 | 2018-03-06 | Amazon Technologies, Inc. | Code execution request routing |
US10002026B1 (en) | 2015-12-21 | 2018-06-19 | Amazon Technologies, Inc. | Acquisition and maintenance of dedicated, reserved, and variable compute capacity |
US10067801B1 (en) | 2015-12-21 | 2018-09-04 | Amazon Technologies, Inc. | Acquisition and maintenance of compute capacity |
CN107025223B (zh) * | 2016-01-29 | 2019-11-22 | 华为技术有限公司 | 一种面向多租户的缓冲区管理方法及服务器 |
US11102188B2 (en) * | 2016-02-01 | 2021-08-24 | Red Hat, Inc. | Multi-tenant enterprise application management |
US10162672B2 (en) | 2016-03-30 | 2018-12-25 | Amazon Technologies, Inc. | Generating data streams from pre-existing data sets |
US11132213B1 (en) | 2016-03-30 | 2021-09-28 | Amazon Technologies, Inc. | Dependency-based process of pre-existing data sets at an on demand code execution environment |
US10891145B2 (en) | 2016-03-30 | 2021-01-12 | Amazon Technologies, Inc. | Processing pre-existing data sets at an on demand code execution environment |
US10878079B2 (en) | 2016-05-11 | 2020-12-29 | Oracle International Corporation | Identity cloud service authorization model with dynamic roles and scopes |
US10454940B2 (en) | 2016-05-11 | 2019-10-22 | Oracle International Corporation | Identity cloud service authorization model |
US9781122B1 (en) | 2016-05-11 | 2017-10-03 | Oracle International Corporation | Multi-tenant identity and data security management cloud service |
US10341410B2 (en) | 2016-05-11 | 2019-07-02 | Oracle International Corporation | Security tokens for a multi-tenant identity and data security management cloud service |
US9838376B1 (en) | 2016-05-11 | 2017-12-05 | Oracle International Corporation | Microservices based multi-tenant identity and data security management cloud service |
US10581820B2 (en) | 2016-05-11 | 2020-03-03 | Oracle International Corporation | Key generation and rollover |
US10425386B2 (en) | 2016-05-11 | 2019-09-24 | Oracle International Corporation | Policy enforcement point for a multi-tenant identity and data security management cloud service |
US9838377B1 (en) * | 2016-05-11 | 2017-12-05 | Oracle International Corporation | Task segregation in a multi-tenant identity and data security management cloud service |
US9952896B2 (en) | 2016-06-28 | 2018-04-24 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US10282229B2 (en) | 2016-06-28 | 2019-05-07 | Amazon Technologies, Inc. | Asynchronous task management in an on-demand network code execution environment |
US10191686B2 (en) * | 2016-06-28 | 2019-01-29 | Vmware, Inc. | Rate limiting in a decentralized control plane of a computing system |
US10102040B2 (en) | 2016-06-29 | 2018-10-16 | Amazon Technologies, Inc | Adjusting variable limit on concurrent code executions |
US10203990B2 (en) | 2016-06-30 | 2019-02-12 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10277708B2 (en) | 2016-06-30 | 2019-04-30 | Amazon Technologies, Inc. | On-demand network code execution with cross-account aliases |
US10530578B2 (en) | 2016-08-05 | 2020-01-07 | Oracle International Corporation | Key store service |
US10585682B2 (en) | 2016-08-05 | 2020-03-10 | Oracle International Corporation | Tenant self-service troubleshooting for a multi-tenant identity and data security management cloud service |
US10721237B2 (en) | 2016-08-05 | 2020-07-21 | Oracle International Corporation | Hierarchical processing for a virtual directory system for LDAP to SCIM proxy service |
US10735394B2 (en) | 2016-08-05 | 2020-08-04 | Oracle International Corporation | Caching framework for a multi-tenant identity and data security management cloud service |
US10516672B2 (en) | 2016-08-05 | 2019-12-24 | Oracle International Corporation | Service discovery for a multi-tenant identity and data security management cloud service |
US10255061B2 (en) | 2016-08-05 | 2019-04-09 | Oracle International Corporation | Zero down time upgrade for a multi-tenant identity and data security management cloud service |
US10263947B2 (en) | 2016-08-05 | 2019-04-16 | Oracle International Corporation | LDAP to SCIM proxy service |
US10484382B2 (en) | 2016-08-31 | 2019-11-19 | Oracle International Corporation | Data management for a multi-tenant identity cloud service |
US10846390B2 (en) | 2016-09-14 | 2020-11-24 | Oracle International Corporation | Single sign-on functionality for a multi-tenant identity and data security management cloud service |
US10511589B2 (en) | 2016-09-14 | 2019-12-17 | Oracle International Corporation | Single logout functionality for a multi-tenant identity and data security management cloud service |
US10594684B2 (en) | 2016-09-14 | 2020-03-17 | Oracle International Corporation | Generating derived credentials for a multi-tenant identity cloud service |
US10484243B2 (en) | 2016-09-16 | 2019-11-19 | Oracle International Corporation | Application management for a multi-tenant identity cloud service |
US10791087B2 (en) | 2016-09-16 | 2020-09-29 | Oracle International Corporation | SCIM to LDAP mapping using subtype attributes |
US10567364B2 (en) | 2016-09-16 | 2020-02-18 | Oracle International Corporation | Preserving LDAP hierarchy in a SCIM directory using special marker groups |
US10445395B2 (en) | 2016-09-16 | 2019-10-15 | Oracle International Corporation | Cookie based state propagation for a multi-tenant identity cloud service |
CN109565511B (zh) | 2016-09-16 | 2021-06-29 | 甲骨文国际公司 | 用于多租户身份和数据安全管理云服务的租户和服务管理 |
US10341354B2 (en) | 2016-09-16 | 2019-07-02 | Oracle International Corporation | Distributed high availability agent architecture |
US10904074B2 (en) | 2016-09-17 | 2021-01-26 | Oracle International Corporation | Composite event handler for a multi-tenant identity cloud service |
US10884787B1 (en) | 2016-09-23 | 2021-01-05 | Amazon Technologies, Inc. | Execution guarantees in an on-demand network code execution system |
US10061613B1 (en) | 2016-09-23 | 2018-08-28 | Amazon Technologies, Inc. | Idempotent task execution in on-demand network code execution systems |
US11119813B1 (en) | 2016-09-30 | 2021-09-14 | Amazon Technologies, Inc. | Mapreduce implementation using an on-demand network code execution system |
GB2571651B (en) * | 2016-10-21 | 2022-09-21 | Datarobot Inc | Systems for predictive data analytics, and related methods and apparatus |
US20180129712A1 (en) * | 2016-11-09 | 2018-05-10 | Ca, Inc. | Data provenance and data pedigree tracking |
US11194809B2 (en) * | 2016-12-02 | 2021-12-07 | International Business Machines Corporation | Predicting performance of database queries |
US9996293B1 (en) * | 2016-12-12 | 2018-06-12 | International Business Machines Corporation | Dynamic management of memory allocation in a database |
US11436223B2 (en) | 2017-01-30 | 2022-09-06 | Salesforce, Inc. | Query pin planner |
GB201702450D0 (en) * | 2017-02-15 | 2017-03-29 | Blue Prism Ltd | System for optimising distribution of processing an automated process |
US9847950B1 (en) * | 2017-03-16 | 2017-12-19 | Flexera Software Llc | Messaging system thread pool |
US10261836B2 (en) | 2017-03-21 | 2019-04-16 | Oracle International Corporation | Dynamic dispatching of workloads spanning heterogeneous services |
US10454915B2 (en) | 2017-05-18 | 2019-10-22 | Oracle International Corporation | User authentication using kerberos with identity cloud service |
US10728166B2 (en) * | 2017-06-27 | 2020-07-28 | Microsoft Technology Licensing, Llc | Throttling queue for a request scheduling and processing system |
US10397127B2 (en) * | 2017-07-20 | 2019-08-27 | Cisco Technology, Inc. | Prioritized de-queueing |
US10348858B2 (en) | 2017-09-15 | 2019-07-09 | Oracle International Corporation | Dynamic message queues for a microservice based cloud service |
US10831789B2 (en) | 2017-09-27 | 2020-11-10 | Oracle International Corporation | Reference attribute query processing for a multi-tenant cloud service |
US11271969B2 (en) | 2017-09-28 | 2022-03-08 | Oracle International Corporation | Rest-based declarative policy management |
US10834137B2 (en) | 2017-09-28 | 2020-11-10 | Oracle International Corporation | Rest-based declarative policy management |
US10705823B2 (en) | 2017-09-29 | 2020-07-07 | Oracle International Corporation | Application templates and upgrade framework for a multi-tenant identity cloud service |
US10635493B2 (en) | 2017-11-14 | 2020-04-28 | Salesforce.Com, Inc. | Computing resource allocation based on number of items in a queue and configurable list of computing resource allocation steps |
US10564946B1 (en) | 2017-12-13 | 2020-02-18 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10303492B1 (en) | 2017-12-13 | 2019-05-28 | Amazon Technologies, Inc. | Managing custom runtimes in an on-demand code execution system |
US10606661B2 (en) * | 2017-12-15 | 2020-03-31 | Rubrik, Inc. | On-demand provisioning of customized developer environments |
US10715564B2 (en) | 2018-01-29 | 2020-07-14 | Oracle International Corporation | Dynamic client registration for an identity cloud service |
US10733085B1 (en) | 2018-02-05 | 2020-08-04 | Amazon Technologies, Inc. | Detecting impedance mismatches due to cross-service calls |
US10353678B1 (en) | 2018-02-05 | 2019-07-16 | Amazon Technologies, Inc. | Detecting code characteristic alterations due to cross-service calls |
US10572375B1 (en) | 2018-02-05 | 2020-02-25 | Amazon Technologies, Inc. | Detecting parameter validity in code including cross-service calls |
US10831898B1 (en) | 2018-02-05 | 2020-11-10 | Amazon Technologies, Inc. | Detecting privilege escalations in code including cross-service calls |
US10725752B1 (en) | 2018-02-13 | 2020-07-28 | Amazon Technologies, Inc. | Dependency handling in an on-demand network code execution system |
US10776091B1 (en) | 2018-02-26 | 2020-09-15 | Amazon Technologies, Inc. | Logging endpoint in an on-demand code execution system |
US10931656B2 (en) | 2018-03-27 | 2021-02-23 | Oracle International Corporation | Cross-region trust for a multi-tenant identity cloud service |
US11165634B2 (en) | 2018-04-02 | 2021-11-02 | Oracle International Corporation | Data replication conflict detection and resolution for a multi-tenant identity cloud service |
US10798165B2 (en) | 2018-04-02 | 2020-10-06 | Oracle International Corporation | Tenant data comparison for a multi-tenant identity cloud service |
US11258775B2 (en) | 2018-04-04 | 2022-02-22 | Oracle International Corporation | Local write for a multi-tenant identity cloud service |
US11847241B1 (en) * | 2018-04-20 | 2023-12-19 | Amazon Technologies, Inc. | Management of service permissions |
US10778547B2 (en) * | 2018-04-26 | 2020-09-15 | At&T Intellectual Property I, L.P. | System for determining a predicted buffer condition based on flow metrics and classifier rules generated in response to the creation of training data sets |
US10862811B1 (en) * | 2018-06-08 | 2020-12-08 | West Corporation | Message brokering for asynchronous status updates |
US11012444B2 (en) | 2018-06-25 | 2021-05-18 | Oracle International Corporation | Declarative third party identity provider integration for a multi-tenant identity cloud service |
US10853115B2 (en) | 2018-06-25 | 2020-12-01 | Amazon Technologies, Inc. | Execution of auxiliary functions in an on-demand network code execution system |
US10649749B1 (en) | 2018-06-26 | 2020-05-12 | Amazon Technologies, Inc. | Cross-environment application of tracing information for improved code execution |
US10764273B2 (en) | 2018-06-28 | 2020-09-01 | Oracle International Corporation | Session synchronization across multiple devices in an identity cloud service |
US11146569B1 (en) | 2018-06-28 | 2021-10-12 | Amazon Technologies, Inc. | Escalation-resistant secure network services using request-scoped authentication information |
US10949237B2 (en) | 2018-06-29 | 2021-03-16 | Amazon Technologies, Inc. | Operating system customization in an on-demand network code execution system |
US11099870B1 (en) | 2018-07-25 | 2021-08-24 | Amazon Technologies, Inc. | Reducing execution times in an on-demand network code execution system using saved machine states |
US11243953B2 (en) | 2018-09-27 | 2022-02-08 | Amazon Technologies, Inc. | Mapreduce implementation in an on-demand network code execution system and stream data processing system |
US11099917B2 (en) | 2018-09-27 | 2021-08-24 | Amazon Technologies, Inc. | Efficient state maintenance for execution environments in an on-demand code execution system |
US11693835B2 (en) | 2018-10-17 | 2023-07-04 | Oracle International Corporation | Dynamic database schema allocation on tenant onboarding for a multi-tenant identity cloud service |
US11321187B2 (en) | 2018-10-19 | 2022-05-03 | Oracle International Corporation | Assured lazy rollback for a multi-tenant identity cloud service |
US11943093B1 (en) | 2018-11-20 | 2024-03-26 | Amazon Technologies, Inc. | Network connection recovery after virtual machine transition in an on-demand network code execution system |
US10884812B2 (en) | 2018-12-13 | 2021-01-05 | Amazon Technologies, Inc. | Performance-based hardware emulation in an on-demand network code execution system |
US11294869B1 (en) | 2018-12-19 | 2022-04-05 | Datometry, Inc. | Expressing complexity of migration to a database candidate |
US11620291B1 (en) | 2018-12-19 | 2023-04-04 | Datometry, Inc. | Quantifying complexity of a database application |
US11468043B1 (en) | 2018-12-20 | 2022-10-11 | Datometry, Inc. | Batching database queries for migration to a different database |
US10768923B2 (en) | 2019-01-29 | 2020-09-08 | Salesforce.Com, Inc. | Release orchestration for performing pre release, version specific testing to validate application versions |
US11003434B2 (en) | 2019-01-29 | 2021-05-11 | Salesforce.Com, Inc. | Cloud services release orchestration with a reusable deployment pipeline |
US10776099B2 (en) | 2019-01-29 | 2020-09-15 | Salesforce.Com, Inc. | Release orchestration for cloud services |
US11651357B2 (en) | 2019-02-01 | 2023-05-16 | Oracle International Corporation | Multifactor authentication without a user footprint |
US11010188B1 (en) | 2019-02-05 | 2021-05-18 | Amazon Technologies, Inc. | Simulated data object storage using on-demand computation of data objects |
US11061929B2 (en) | 2019-02-08 | 2021-07-13 | Oracle International Corporation | Replication of resource type and schema metadata for a multi-tenant identity cloud service |
US11321343B2 (en) | 2019-02-19 | 2022-05-03 | Oracle International Corporation | Tenant replication bootstrap for a multi-tenant identity cloud service |
US11669321B2 (en) | 2019-02-20 | 2023-06-06 | Oracle International Corporation | Automated database upgrade for a multi-tenant identity cloud service |
US11792226B2 (en) | 2019-02-25 | 2023-10-17 | Oracle International Corporation | Automatic api document generation from scim metadata |
US11423111B2 (en) | 2019-02-25 | 2022-08-23 | Oracle International Corporation | Client API for rest based endpoints for a multi-tenant identify cloud service |
CN111666147B (zh) * | 2019-03-07 | 2022-06-07 | 上海商汤智能科技有限公司 | 资源调度方法、设备、系统及中心服务器 |
US12327133B1 (en) | 2019-03-22 | 2025-06-10 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11861386B1 (en) | 2019-03-22 | 2024-01-02 | Amazon Technologies, Inc. | Application gateways in an on-demand network code execution system |
US11025713B2 (en) * | 2019-04-15 | 2021-06-01 | Adobe Inc. | Dynamic allocation of execution resources |
US11275616B2 (en) * | 2019-06-13 | 2022-03-15 | Apple Inc. | Resource access management |
US11119809B1 (en) | 2019-06-20 | 2021-09-14 | Amazon Technologies, Inc. | Virtualization-based transaction handling in an on-demand network code execution system |
US11190609B2 (en) | 2019-06-28 | 2021-11-30 | Amazon Technologies, Inc. | Connection pooling for scalable network services |
US11115404B2 (en) | 2019-06-28 | 2021-09-07 | Amazon Technologies, Inc. | Facilitating service connections in serverless code executions |
US11159528B2 (en) | 2019-06-28 | 2021-10-26 | Amazon Technologies, Inc. | Authentication to network-services using hosted authentication information |
US11093485B2 (en) | 2019-08-27 | 2021-08-17 | Salesforce.Com, Inc. | Branch-based recovery in a database system |
CN111193700B (zh) * | 2019-08-27 | 2021-10-08 | 腾讯科技(深圳)有限公司 | 一种安全防护方法、安全防护装置和存储介质 |
US11687378B2 (en) | 2019-09-13 | 2023-06-27 | Oracle International Corporation | Multi-tenant identity cloud service with on-premise authentication integration and bridge high availability |
US11870770B2 (en) | 2019-09-13 | 2024-01-09 | Oracle International Corporation | Multi-tenant identity cloud service with on-premise authentication integration |
US11494408B2 (en) | 2019-09-24 | 2022-11-08 | Salesforce.Com, Inc. | Asynchronous row to object enrichment of database change streams |
US11263220B2 (en) | 2019-09-27 | 2022-03-01 | Amazon Technologies, Inc. | On-demand execution of object transformation code in output path of object storage service |
US11055112B2 (en) | 2019-09-27 | 2021-07-06 | Amazon Technologies, Inc. | Inserting executions of owner-specified code into input/output path of object storage service |
US11106477B2 (en) | 2019-09-27 | 2021-08-31 | Amazon Technologies, Inc. | Execution of owner-specified code during input/output path to object storage service |
US11250007B1 (en) | 2019-09-27 | 2022-02-15 | Amazon Technologies, Inc. | On-demand execution of object combination code in output path of object storage service |
US11550944B2 (en) | 2019-09-27 | 2023-01-10 | Amazon Technologies, Inc. | Code execution environment customization system for object storage service |
US11023416B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | Data access control system for object storage service based on owner-defined code |
US10996961B2 (en) | 2019-09-27 | 2021-05-04 | Amazon Technologies, Inc. | On-demand indexing of data in input path of object storage service |
US11360948B2 (en) | 2019-09-27 | 2022-06-14 | Amazon Technologies, Inc. | Inserting owner-specified data processing pipelines into input/output path of object storage service |
US10908927B1 (en) | 2019-09-27 | 2021-02-02 | Amazon Technologies, Inc. | On-demand execution of object filter code in output path of object storage service |
US11656892B1 (en) | 2019-09-27 | 2023-05-23 | Amazon Technologies, Inc. | Sequential execution of user-submitted code and native functions |
US11416628B2 (en) | 2019-09-27 | 2022-08-16 | Amazon Technologies, Inc. | User-specific data manipulation system for object storage service based on user-submitted code |
US11023311B2 (en) | 2019-09-27 | 2021-06-01 | Amazon Technologies, Inc. | On-demand code execution in input path of data uploaded to storage service in multiple data portions |
US11394761B1 (en) | 2019-09-27 | 2022-07-19 | Amazon Technologies, Inc. | Execution of user-submitted code on a stream of data |
US11386230B2 (en) | 2019-09-27 | 2022-07-12 | Amazon Technologies, Inc. | On-demand code obfuscation of data in input path of object storage service |
US11611548B2 (en) | 2019-11-22 | 2023-03-21 | Oracle International Corporation | Bulk multifactor authentication enrollment |
US10942795B1 (en) | 2019-11-27 | 2021-03-09 | Amazon Technologies, Inc. | Serverless call distribution to utilize reserved capacity without inhibiting scaling |
US11119826B2 (en) | 2019-11-27 | 2021-09-14 | Amazon Technologies, Inc. | Serverless call distribution to implement spillover while avoiding cold starts |
GB2590967A (en) | 2020-01-10 | 2021-07-14 | Blue Prism Ltd | Method of remote access |
US11714682B1 (en) | 2020-03-03 | 2023-08-01 | Amazon Technologies, Inc. | Reclaiming computing resources in an on-demand code execution system |
US11188391B1 (en) | 2020-03-11 | 2021-11-30 | Amazon Technologies, Inc. | Allocating resources to on-demand code executions under scarcity conditions |
US11775640B1 (en) | 2020-03-30 | 2023-10-03 | Amazon Technologies, Inc. | Resource utilization-based malicious task detection in an on-demand code execution system |
US11233845B1 (en) | 2020-07-06 | 2022-01-25 | Oracle International Corporation | Centralized approach for managing cross-service data of cloud resources |
US11500555B2 (en) * | 2020-09-04 | 2022-11-15 | Micron Technology, Inc. | Volatile memory to non-volatile memory interface for power management |
US11936763B2 (en) | 2020-10-28 | 2024-03-19 | International Business Machines Corporation | Handling deferrable network requests |
US11550713B1 (en) | 2020-11-25 | 2023-01-10 | Amazon Technologies, Inc. | Garbage collection in distributed systems using life cycled storage roots |
US11593270B1 (en) | 2020-11-25 | 2023-02-28 | Amazon Technologies, Inc. | Fast distributed caching using erasure coded object parts |
CN113111083B (zh) * | 2021-03-31 | 2024-07-16 | 北京沃东天骏信息技术有限公司 | 数据查询的方法、装置、设备、存储介质和程序产品 |
US20220414101A1 (en) * | 2021-06-24 | 2022-12-29 | Microsoft Technology Licensing, Llc | Shifting left database degradation detection |
US11388210B1 (en) | 2021-06-30 | 2022-07-12 | Amazon Technologies, Inc. | Streaming analytics using a serverless compute system |
US11968280B1 (en) | 2021-11-24 | 2024-04-23 | Amazon Technologies, Inc. | Controlling ingestion of streaming data to serverless function executions |
US12015603B2 (en) | 2021-12-10 | 2024-06-18 | Amazon Technologies, Inc. | Multi-tenant mode for serverless code execution |
US11922026B2 (en) | 2022-02-16 | 2024-03-05 | T-Mobile Usa, Inc. | Preventing data loss in a filesystem by creating duplicates of data in parallel, such as charging data in a wireless telecommunications network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040172629A1 (en) * | 2003-02-28 | 2004-09-02 | Azul Systems | Segmented virtual machine |
US6850953B1 (en) * | 1999-08-23 | 2005-02-01 | Sun Microsystems, Inc. | Creating multiple sets of data by spawning a secondary virtual machine |
US20070074208A1 (en) * | 2005-09-29 | 2007-03-29 | Xiaofeng Ling | Apparatus and method for expedited virtual machine (VM) launch in VM cluster environment |
US20070089111A1 (en) * | 2004-12-17 | 2007-04-19 | Robinson Scott H | Virtual environment manager |
Family Cites Families (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5649104A (en) | 1993-03-19 | 1997-07-15 | Ncr Corporation | System for allowing user of any computer to draw image over that generated by the host computer and replicating the drawn image to other computers |
US5608872A (en) | 1993-03-19 | 1997-03-04 | Ncr Corporation | System for allowing all remote computers to perform annotation on an image and replicating the annotated image on the respective displays of other comuters |
US5577188A (en) | 1994-05-31 | 1996-11-19 | Future Labs, Inc. | Method to provide for virtual screen overlay |
GB2300991B (en) | 1995-05-15 | 1997-11-05 | Andrew Macgregor Ritchie | Serving signals to browsing clients |
US5715450A (en) | 1995-09-27 | 1998-02-03 | Siebel Systems, Inc. | Method of selecting and presenting data from a database using a query language to a user of a computer system |
US5831610A (en) | 1996-02-23 | 1998-11-03 | Netsuite Development L.P. | Designing networks |
US5821937A (en) | 1996-02-23 | 1998-10-13 | Netsuite Development, L.P. | Computer method for updating a network design |
US5873096A (en) | 1997-10-08 | 1999-02-16 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
US6604117B2 (en) | 1996-03-19 | 2003-08-05 | Siebel Systems, Inc. | Method of maintaining a network of partially replicated database system |
WO1998040804A2 (en) | 1997-02-26 | 1998-09-17 | Siebel Systems, Inc. | Distributed relational database |
WO1998038762A2 (en) | 1997-02-26 | 1998-09-03 | Siebel Systems, Inc. | Determining visibility to a remote database client |
WO1998038587A1 (en) | 1997-02-26 | 1998-09-03 | Siebel Systems, Inc. | Method of using a cache to determine the visibility to a remote database client of a plurality of database transactions |
WO1998038586A1 (en) | 1997-02-26 | 1998-09-03 | Siebel Systems, Inc. | Method of determining the visibility to a remote databaseclient of a plurality of database transactions using simplified visibility rules |
WO1998038583A1 (en) | 1997-02-26 | 1998-09-03 | Siebel Systems, Inc. | Method of determining visibility to a remote database client of a plurality of database transactions having variable visibility strengths |
AU6336798A (en) | 1997-02-27 | 1998-09-29 | Siebel Systems, Inc. | Method of synchronizing independently distributed software and database schema |
EP1019807B1 (en) | 1997-02-27 | 2017-04-05 | Siebel Systems, Inc. | Method of migrating to a successive level of a software distribution incorporating local modifications |
JP2001513926A (ja) | 1997-02-28 | 2001-09-04 | シーベル システムズ,インコーポレイティド | 複数レベルのリモート・クライアントを持つ部分的複製分散データベース |
US6169534B1 (en) | 1997-06-26 | 2001-01-02 | Upshot.Com | Graphical user interface for customer information management |
US6560461B1 (en) | 1997-08-04 | 2003-05-06 | Mundi Fomukong | Authorized location reporting paging system |
US5918159A (en) | 1997-08-04 | 1999-06-29 | Fomukong; Mundi | Location reporting satellite paging system with optional blocking of location reporting |
US6128279A (en) | 1997-10-06 | 2000-10-03 | Web Balance, Inc. | System for balancing loads among network servers |
US6091709A (en) | 1997-11-25 | 2000-07-18 | International Business Machines Corporation | Quality of service management for packet switched networks |
US20020059095A1 (en) | 1998-02-26 | 2002-05-16 | Cook Rachael Linette | System and method for generating, capturing, and managing customer lead information over a computer network |
US6732111B2 (en) | 1998-03-03 | 2004-05-04 | Siebel Systems, Inc. | Method, apparatus, system, and program product for attaching files and other objects to a partially replicated database |
US5963953A (en) | 1998-03-30 | 1999-10-05 | Siebel Systems, Inc. | Method, and system for product configuration |
DE19822543A1 (de) | 1998-05-20 | 1999-11-25 | Alcatel Sa | Verfahren zum Zuteilen von Aufträgen, Datenverarbeitssystem, Client-Datenbearbeitungsknoten und computerlesbares Speichermedium |
EP1105826A1 (en) | 1998-08-27 | 2001-06-13 | Upshot Corporation | A method and apparatus for network-based sales force management |
US6549908B1 (en) | 1998-11-18 | 2003-04-15 | Siebel Systems, Inc. | Methods and apparatus for interpreting user selections in the context of a relation distributed as a set of orthogonalized sub-relations |
US6601087B1 (en) | 1998-11-18 | 2003-07-29 | Webex Communications, Inc. | Instant document sharing |
US6728960B1 (en) | 1998-11-18 | 2004-04-27 | Siebel Systems, Inc. | Techniques for managing multiple threads in a browser environment |
JP2002531899A (ja) | 1998-11-30 | 2002-09-24 | シーベル システムズ,インコーポレイティド | プロセス監視用の状態モデル |
JP2002531890A (ja) | 1998-11-30 | 2002-09-24 | シーベル システムズ,インコーポレイティド | クライアントサーバーアプリケーションにおける開発ツール、方法及びシステム |
EP1163604A4 (en) | 1998-11-30 | 2002-01-09 | Siebel Systems Inc | ASSIGNMENT MANAGER |
JP2002531896A (ja) | 1998-11-30 | 2002-09-24 | シーベル システムズ,インコーポレイティド | スマートスクリプトを用いたコールセンター |
US6574635B2 (en) | 1999-03-03 | 2003-06-03 | Siebel Systems, Inc. | Application instantiation based upon attributes and values stored in a meta data repository, including tiering of application layers objects and components |
US20020072951A1 (en) | 1999-03-03 | 2002-06-13 | Michael Lee | Marketing support database management method, system and program product |
US6463454B1 (en) * | 1999-06-17 | 2002-10-08 | International Business Machines Corporation | System and method for integrated load distribution and resource management on internet environment |
US6621834B1 (en) | 1999-11-05 | 2003-09-16 | Raindance Communications, Inc. | System and method for voice transmission over network protocols |
US6535909B1 (en) | 1999-11-18 | 2003-03-18 | Contigo Software, Inc. | System and method for record and playback of collaborative Web browsing session |
US7062556B1 (en) | 1999-11-22 | 2006-06-13 | Motorola, Inc. | Load balancing method in a communication network |
US6324568B1 (en) | 1999-11-30 | 2001-11-27 | Siebel Systems, Inc. | Method and system for distributing objects over a network |
US6654032B1 (en) | 1999-12-23 | 2003-11-25 | Webex Communications, Inc. | Instant sharing of documents on a remote server |
US20060173873A1 (en) * | 2000-03-03 | 2006-08-03 | Michel Prompt | System and method for providing access to databases via directories and other hierarchical structures and interfaces |
US6577726B1 (en) | 2000-03-31 | 2003-06-10 | Siebel Systems, Inc. | Computer telephony integration hotelling method and system |
US6336137B1 (en) | 2000-03-31 | 2002-01-01 | Siebel Systems, Inc. | Web client-server system and method for incompatible page markup and presentation languages |
US7266502B2 (en) | 2000-03-31 | 2007-09-04 | Siebel Systems, Inc. | Feature centric release manager method and system |
US6732100B1 (en) | 2000-03-31 | 2004-05-04 | Siebel Systems, Inc. | Database access method and system for user role defined access |
US6434550B1 (en) | 2000-04-14 | 2002-08-13 | Rightnow Technologies, Inc. | Temporal updates of relevancy rating of retrieved information in an information search system |
US6842748B1 (en) | 2000-04-14 | 2005-01-11 | Rightnow Technologies, Inc. | Usage based strength between related information in an information retrieval system |
US6665655B1 (en) | 2000-04-14 | 2003-12-16 | Rightnow Technologies, Inc. | Implicit rating of retrieved information in an information search system |
US7730072B2 (en) | 2000-04-14 | 2010-06-01 | Rightnow Technologies, Inc. | Automated adaptive classification system for knowledge networks |
US6763501B1 (en) | 2000-06-09 | 2004-07-13 | Webex Communications, Inc. | Remote document serving |
US6877034B1 (en) * | 2000-08-31 | 2005-04-05 | Benchmark Portal, Inc. | Performance evaluation through benchmarking using an on-line questionnaire based system and method |
KR100365357B1 (ko) | 2000-10-11 | 2002-12-18 | 엘지전자 주식회사 | 무선통신 단말기의 데이터 통신 방법 |
US7669051B2 (en) * | 2000-11-13 | 2010-02-23 | DigitalDoors, Inc. | Data security system and method with multiple independent levels of security |
US9311499B2 (en) * | 2000-11-13 | 2016-04-12 | Ron M. Redlich | Data security system and with territorial, geographic and triggering event protocol |
US8176563B2 (en) * | 2000-11-13 | 2012-05-08 | DigitalDoors, Inc. | Data security system and method with editor |
US20020141351A1 (en) * | 2000-12-07 | 2002-10-03 | Maltz David A. | Method and system for validating network transformation instructions |
US20020143926A1 (en) * | 2000-12-07 | 2002-10-03 | Maltz David A. | Method and system for collecting traffic data in a computer network |
US20020143929A1 (en) * | 2000-12-07 | 2002-10-03 | Maltz David A. | Method and system for collection and storage of traffic data from heterogeneous network elements in a computer network |
US20020143927A1 (en) * | 2000-12-07 | 2002-10-03 | Maltz David A. | Method and system for configuring a network element in a computer network |
US7581230B2 (en) | 2001-02-06 | 2009-08-25 | Siebel Systems, Inc. | Adaptive communication application programming interface |
USD454139S1 (en) | 2001-02-20 | 2002-03-05 | Rightnow Technologies | Display screen for a computer |
US8112303B2 (en) | 2001-02-28 | 2012-02-07 | Digonex Technologies, Inc. | Digital online exchange for pricing items to exhaust inventory by an expiration time |
US7174514B2 (en) | 2001-03-28 | 2007-02-06 | Siebel Systems, Inc. | Engine to present a user interface based on a logical structure, such as one for a customer relationship management system, across a web site |
US7363388B2 (en) | 2001-03-28 | 2008-04-22 | Siebel Systems, Inc. | Method and system for direct server synchronization with a computing device |
US20020143942A1 (en) * | 2001-03-28 | 2002-10-03 | Hua Li | Storage area network resource management |
US6829655B1 (en) | 2001-03-28 | 2004-12-07 | Siebel Systems, Inc. | Method and system for server synchronization with a computing device via a companion device |
US20030206192A1 (en) | 2001-03-31 | 2003-11-06 | Mingte Chen | Asynchronous message push to web browser |
US20030018705A1 (en) | 2001-03-31 | 2003-01-23 | Mingte Chen | Media-independent communication server |
US8363647B2 (en) * | 2001-04-03 | 2013-01-29 | Voxpath Networks, Inc. | System and method for configuring an IP telephony device |
US6732095B1 (en) | 2001-04-13 | 2004-05-04 | Siebel Systems, Inc. | Method and apparatus for mapping between XML and relational representations |
US7761288B2 (en) | 2001-04-30 | 2010-07-20 | Siebel Systems, Inc. | Polylingual simultaneous shipping of software |
US6782383B2 (en) | 2001-06-18 | 2004-08-24 | Siebel Systems, Inc. | System and method to implement a persistent and dismissible search center frame |
US6711565B1 (en) | 2001-06-18 | 2004-03-23 | Siebel Systems, Inc. | Method, apparatus, and system for previewing search results |
US6944678B2 (en) * | 2001-06-18 | 2005-09-13 | Transtech Networks Usa, Inc. | Content-aware application switch and methods thereof |
US6728702B1 (en) | 2001-06-18 | 2004-04-27 | Siebel Systems, Inc. | System and method to implement an integrated search center supporting a full-text search and query on a database |
US6763351B1 (en) | 2001-06-18 | 2004-07-13 | Siebel Systems, Inc. | Method, apparatus, and system for attaching search results |
US7315892B2 (en) * | 2001-06-27 | 2008-01-01 | International Business Machines Corporation | In-kernel content-aware service differentiation |
US7409335B1 (en) * | 2001-06-29 | 2008-08-05 | Microsoft Corporation | Inferring informational goals and preferred level of detail of answers based on application being employed by the user |
US20030004971A1 (en) | 2001-06-29 | 2003-01-02 | Gong Wen G. | Automatic generation of data models and accompanying user interfaces |
US6912533B1 (en) * | 2001-07-31 | 2005-06-28 | Oracle International Corporation | Data mining agents for efficient hardware utilization |
US20030041167A1 (en) | 2001-08-15 | 2003-02-27 | International Business Machines Corporation | Method and system for managing secure geographic boundary resources within a network management framework |
US20030041238A1 (en) | 2001-08-15 | 2003-02-27 | International Business Machines Corporation | Method and system for managing resources using geographic location information within a network management framework |
US6993712B2 (en) | 2001-09-28 | 2006-01-31 | Siebel Systems, Inc. | System and method for facilitating user interaction in a browser environment |
US7761535B2 (en) | 2001-09-28 | 2010-07-20 | Siebel Systems, Inc. | Method and system for server synchronization with a computing device |
US6724399B1 (en) | 2001-09-28 | 2004-04-20 | Siebel Systems, Inc. | Methods and apparatus for enabling keyboard accelerators in applications implemented via a browser |
US6978445B2 (en) | 2001-09-28 | 2005-12-20 | Siebel Systems, Inc. | Method and system for supporting user navigation in a browser environment |
US6826582B1 (en) | 2001-09-28 | 2004-11-30 | Emc Corporation | Method and system for using file systems for content management |
US7962565B2 (en) | 2001-09-29 | 2011-06-14 | Siebel Systems, Inc. | Method, apparatus and system for a mobile web client |
US7146617B2 (en) | 2001-09-29 | 2006-12-05 | Siebel Systems, Inc. | Method, apparatus, and system for implementing view caching in a framework to support web-based applications |
US6901595B2 (en) | 2001-09-29 | 2005-05-31 | Siebel Systems, Inc. | Method, apparatus, and system for implementing a framework to support a web-based application |
US8359335B2 (en) | 2001-09-29 | 2013-01-22 | Siebel Systems, Inc. | Computing system and method to implicitly commit unsaved data for a world wide web application |
US6886041B2 (en) * | 2001-10-05 | 2005-04-26 | Bea Systems, Inc. | System for application server messaging with multiple dispatch pools |
US7289949B2 (en) | 2001-10-09 | 2007-10-30 | Right Now Technologies, Inc. | Method for routing electronic correspondence based on the level and type of emotion contained therein |
US6804330B1 (en) | 2002-01-04 | 2004-10-12 | Siebel Systems, Inc. | Method and system for accessing CRM data via voice |
US7058890B2 (en) | 2002-02-13 | 2006-06-06 | Siebel Systems, Inc. | Method and system for enabling connectivity to a data system |
US7131071B2 (en) | 2002-03-29 | 2006-10-31 | Siebel Systems, Inc. | Defining an approval process for requests for approval |
US7672853B2 (en) | 2002-03-29 | 2010-03-02 | Siebel Systems, Inc. | User interface for processing requests for approval |
US6850949B2 (en) | 2002-06-03 | 2005-02-01 | Right Now Technologies, Inc. | System and method for generating a dynamic interface via a communications network |
US6946715B2 (en) * | 2003-02-19 | 2005-09-20 | Micron Technology, Inc. | CMOS image sensor and method of fabrication |
US7437720B2 (en) | 2002-06-27 | 2008-10-14 | Siebel Systems, Inc. | Efficient high-interactivity user interface for client-server applications |
US8639542B2 (en) | 2002-06-27 | 2014-01-28 | Siebel Systems, Inc. | Method and apparatus to facilitate development of a customer-specific business process model |
US7594181B2 (en) | 2002-06-27 | 2009-09-22 | Siebel Systems, Inc. | Prototyping graphical user interfaces |
US20040010489A1 (en) | 2002-07-12 | 2004-01-15 | Rightnow Technologies, Inc. | Method for providing search-specific web pages in a network computing environment |
US7403993B2 (en) * | 2002-07-24 | 2008-07-22 | Kasenna, Inc. | System and method for highly-scalable real-time and time-based data delivery using server clusters |
US7251787B2 (en) | 2002-08-28 | 2007-07-31 | Siebel Systems, Inc. | Method and apparatus for an integrated process modeller |
US7386532B2 (en) * | 2002-12-19 | 2008-06-10 | Mathon Systems, Inc. | System and method for managing versions |
US20080177994A1 (en) * | 2003-01-12 | 2008-07-24 | Yaron Mayer | System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows |
US9448860B2 (en) | 2003-03-21 | 2016-09-20 | Oracle America, Inc. | Method and architecture for providing data-change alerts to external applications via a push service |
WO2004086197A2 (en) | 2003-03-24 | 2004-10-07 | Siebel Systems, Inc. | Custom common object |
US7904340B2 (en) | 2003-03-24 | 2011-03-08 | Siebel Systems, Inc. | Methods and computer-readable medium for defining a product model |
EP1606740A4 (en) | 2003-03-24 | 2007-10-03 | Siebel Systems Inc | COMMON OBJECT |
US8762415B2 (en) | 2003-03-25 | 2014-06-24 | Siebel Systems, Inc. | Modeling of order data |
US7685515B2 (en) | 2003-04-04 | 2010-03-23 | Netsuite, Inc. | Facilitating data manipulation in a browser-based user interface of an enterprise business application |
US7620655B2 (en) | 2003-05-07 | 2009-11-17 | Enecto Ab | Method, device and computer program product for identifying visitors of websites |
US7472159B2 (en) * | 2003-05-15 | 2008-12-30 | International Business Machines Corporation | System and method for adaptive admission control and resource management for service time guarantees |
US7409336B2 (en) | 2003-06-19 | 2008-08-05 | Siebel Systems, Inc. | Method and system for searching data based on identified subset of categories and relevance-scored text representation-category combinations |
US20040260659A1 (en) | 2003-06-23 | 2004-12-23 | Len Chan | Function space reservation system |
US7237227B2 (en) | 2003-06-30 | 2007-06-26 | Siebel Systems, Inc. | Application user interface template with free-form layout |
US7694314B2 (en) | 2003-08-28 | 2010-04-06 | Siebel Systems, Inc. | Universal application network architecture |
US7685016B2 (en) | 2003-10-07 | 2010-03-23 | International Business Machines Corporation | Method and system for analyzing relationships between persons |
US8713418B2 (en) * | 2004-04-12 | 2014-04-29 | Google Inc. | Adding value to a rendered document |
US20060011801A1 (en) | 2004-07-16 | 2006-01-19 | Michael Benic | Retaining system |
US7546308B1 (en) * | 2004-09-17 | 2009-06-09 | Symantec Operating Corporation | Model and method of an n-tier quality-of-service (QoS) |
US7240136B2 (en) * | 2004-12-16 | 2007-07-03 | International Business Machines Corporation | System and method for request priority transfer across nodes in a multi-tier data processing system network |
US7289976B2 (en) | 2004-12-23 | 2007-10-30 | Microsoft Corporation | Easy-to-use data report specification |
US8818331B2 (en) | 2005-04-29 | 2014-08-26 | Jasper Technologies, Inc. | Method for enabling a wireless device for geographically preferential services |
US20060268764A1 (en) | 2005-05-26 | 2006-11-30 | Harris John M | Method, apparatus and system for use in allocating reverse channel resources |
US20080015194A1 (en) * | 2006-01-23 | 2008-01-17 | Joseph Errico | Methods and compositions of targeted drug development |
US8243999B2 (en) * | 2006-05-03 | 2012-08-14 | Ut-Battelle, Llc | Method and system for the diagnosis of disease using retinal image content and an archive of diagnosed human patient data |
US8160056B2 (en) * | 2006-09-08 | 2012-04-17 | At&T Intellectual Property Ii, Lp | Systems, devices, and methods for network routing |
US7506001B2 (en) | 2006-11-01 | 2009-03-17 | I3Solutions | Enterprise proposal management system |
US8954500B2 (en) | 2008-01-04 | 2015-02-10 | Yahoo! Inc. | Identifying and employing social network relationships |
US8159961B1 (en) | 2007-03-30 | 2012-04-17 | Amazon Technologies, Inc. | Load balancing utilizing adaptive thresholding |
US8639563B2 (en) | 2007-04-03 | 2014-01-28 | International Business Machines Corporation | Generating customized marketing messages at a customer level using current events data |
US20080250016A1 (en) * | 2007-04-04 | 2008-10-09 | Michael Steven Farrar | Optimized smith-waterman search |
US8200527B1 (en) * | 2007-04-25 | 2012-06-12 | Convergys Cmg Utah, Inc. | Method for prioritizing and presenting recommendations regarding organizaion's customer care capabilities |
US9398346B2 (en) * | 2007-05-04 | 2016-07-19 | Time Warner Cable Enterprises Llc | Methods and apparatus for predictive capacity allocation |
US7840413B2 (en) * | 2007-05-09 | 2010-11-23 | Salesforce.Com, Inc. | Method and system for integrating idea and on-demand services |
US20080306819A1 (en) * | 2007-06-08 | 2008-12-11 | Yahoo! Inc. | System and method for shaping relevance scores for position auctions |
WO2008157842A1 (en) | 2007-06-21 | 2008-12-24 | Sreedhar Gaddam | System and method for managing data and communications over a network |
US7987261B2 (en) * | 2007-07-31 | 2011-07-26 | Yahoo! Inc. | Traffic predictor for network-accessible information modules |
US8195661B2 (en) | 2007-11-27 | 2012-06-05 | Umber Systems | Method and apparatus for storing data on application-level activity and other user information to enable real-time multi-dimensional reporting about user of a mobile data network |
US20090172035A1 (en) * | 2007-12-31 | 2009-07-02 | Pieter Lessing | System and method for capturing and storing casino information in a relational database system |
US20090193121A1 (en) * | 2008-01-29 | 2009-07-30 | George Shin | Critical Resource Management |
WO2009126305A1 (en) * | 2008-04-11 | 2009-10-15 | The Trustees Of Columbia University | Glucose metabolism modulating compounds |
US20090313067A1 (en) | 2008-06-11 | 2009-12-17 | Visa U.S.A. Inc. | System and method for business to business sales and marketing integration |
US9189523B2 (en) * | 2008-07-05 | 2015-11-17 | Hewlett-Packard Development Company, L.P. | Predicting performance of multiple queries executing in a database |
JP5200721B2 (ja) * | 2008-07-16 | 2013-06-05 | 富士通株式会社 | 制御方法、制御装置、及びプログラム |
US8423534B2 (en) * | 2008-11-18 | 2013-04-16 | Teradata Us, Inc. | Actively managing resource bottlenecks in a database system |
US8351912B2 (en) | 2008-12-12 | 2013-01-08 | Research In Motion Limited | System and method for providing traffic notifications to mobile devices |
US8615581B2 (en) | 2008-12-19 | 2013-12-24 | Openpeak Inc. | System for managing devices and method of operation of same |
US20110010236A1 (en) | 2009-07-11 | 2011-01-13 | Michelle Bayana Trillana | Portable, organized, sustainable, transparent and technological alternative portfolio management system and business method |
US8532574B2 (en) | 2009-08-05 | 2013-09-10 | Honda Motor Co., Ltd. | Destination information sharing for the automobile environment |
US8473582B2 (en) * | 2009-12-16 | 2013-06-25 | International Business Machines Corporation | Disconnected file operations in a scalable multi-node file system cache for a remote cluster file system |
US20110153368A1 (en) * | 2009-12-17 | 2011-06-23 | XtremeGIS, Inc. | User Interactive Reinsurance Risk Analysis Application |
US9183560B2 (en) * | 2010-05-28 | 2015-11-10 | Daniel H. Abelow | Reality alternate |
EP2403186B1 (en) | 2010-07-02 | 2017-12-27 | Vodafone IP Licensing limited | Telecommunication networks |
US8539078B2 (en) * | 2010-07-08 | 2013-09-17 | International Business Machines Corporation | Isolating resources between tenants in a software-as-a-service system using the estimated costs of service requests |
US9582062B2 (en) | 2010-11-05 | 2017-02-28 | Microsoft Technology Licensing, Llc | Decentralized sleep management |
US20120151479A1 (en) | 2010-12-10 | 2012-06-14 | Salesforce.Com, Inc. | Horizontal splitting of tasks within a homogenous pool of virtual machines |
US8880640B2 (en) | 2011-06-20 | 2014-11-04 | Facebook, Inc. | Social mode for managing communications between a mobile device and a social networking system |
US8595264B2 (en) | 2011-06-30 | 2013-11-26 | Bm Software, Inc. | Event processing based on meta-relationship definition |
US20130021370A1 (en) | 2011-07-18 | 2013-01-24 | Salesforce.Com, Inc. | Computer implemented methods and apparatus for presentation of feed items in an information feed to be displayed on a display device |
CN103827900B (zh) | 2011-07-26 | 2018-02-09 | 美国联合包裹服务公司 | 用于评价移动资产效率的系统和方法 |
US9143529B2 (en) | 2011-10-11 | 2015-09-22 | Citrix Systems, Inc. | Modifying pre-existing mobile applications to implement enterprise security policies |
US20130305169A1 (en) | 2012-05-11 | 2013-11-14 | Robert Evan Gold | Methods and Systems for Providing Feedback in Interactive, Interest Centric Communications Environment |
US8896440B2 (en) | 2012-05-24 | 2014-11-25 | Webtech Wireless Inc. | Event-triggered dynamic landmark creation system and method |
US20130339099A1 (en) | 2012-06-15 | 2013-12-19 | Daood Aidroos | Method and system for business program and service planning, delivery and management |
US20160094414A1 (en) | 2013-05-15 | 2016-03-31 | Client Lifecycle Solutions LLC | System, method and computer-implemented algorithm for client lifecycle exchange management |
US10096173B2 (en) | 2013-06-11 | 2018-10-09 | Here Global B.V. | Parking payment detection |
US9319535B2 (en) | 2013-06-25 | 2016-04-19 | Syniverse Technologies, Llc | Method and apparatus to collect, analyze, and utilize network data |
US20150120587A1 (en) | 2013-10-28 | 2015-04-30 | Microsoft Corporation | Use of a social network to enhance hiring team collaboration |
US9356978B2 (en) | 2013-11-14 | 2016-05-31 | Sap Se | Feed routing for object based collaboration |
US10169715B2 (en) * | 2014-06-30 | 2019-01-01 | Amazon Technologies, Inc. | Feature processing tradeoff management |
US9672474B2 (en) * | 2014-06-30 | 2017-06-06 | Amazon Technologies, Inc. | Concurrent binning of machine learning data |
CA3019911A1 (en) | 2015-07-27 | 2017-02-02 | Datagrid Systems, Inc. | Techniques for evaluating server system reliability, vulnerability and component compatibility using crowdsourced server and vulnerability data |
US11580107B2 (en) * | 2016-09-26 | 2023-02-14 | Splunk Inc. | Bucket data distribution for exporting data to worker nodes |
WO2019005098A1 (en) * | 2017-06-30 | 2019-01-03 | Go Logic Decision Time, Llc | METHODS AND SYSTEMS FOR PROJECTIVE ASSERTION SIMULATION |
JP6832013B2 (ja) * | 2017-11-24 | 2021-02-24 | 株式会社アクセル | 処理装置、推論装置、学習装置、処理システム、処理方法、及び処理プログラム |
US10558614B2 (en) * | 2018-01-31 | 2020-02-11 | Splunk Inc. | Network ingestion of multimodal multisource machine data to traffic regulated network storage volume |
WO2020180364A2 (en) * | 2018-12-04 | 2020-09-10 | Msm, Llc | Single-use shell casing |
EP3759622B1 (en) * | 2019-05-06 | 2024-07-03 | Google LLC | Triggering local extensions based on inferred intent |
US11664568B2 (en) * | 2019-06-11 | 2023-05-30 | Intel Corporation | Waveguides including at least one ridge associated with at least one dielectric core and the waveguides are surrounded by a conductive shell |
US11061727B1 (en) * | 2019-08-28 | 2021-07-13 | Amazon Technologies, Inc. | Preventing performance degradation over time in a cache |
US11914482B2 (en) * | 2020-11-20 | 2024-02-27 | Pelatro Pte. Ltd. | System and method for robust, efficient, adaptive streaming replication application protocol with dancing recovery for high-volume distributed live subscriber datasets |
US11321296B1 (en) * | 2021-01-21 | 2022-05-03 | Nasdaq, Inc. | Dynamically selecting among learned and non-learned indexes for data access |
US11620285B2 (en) * | 2021-09-09 | 2023-04-04 | Servicenow, Inc. | Automatic database query translation |
-
2011
- 2011-10-11 US US13/270,775 patent/US20120151479A1/en not_active Abandoned
- 2011-10-19 US US13/276,531 patent/US9026624B2/en active Active
- 2011-11-14 US US13/295,644 patent/US9201696B2/en active Active
-
2015
- 2015-05-04 US US14/703,682 patent/US10192169B2/en active Active
- 2015-07-21 US US14/805,056 patent/US10762435B2/en active Active
- 2015-11-30 US US14/953,672 patent/US10452997B2/en active Active
-
2019
- 2019-01-28 US US16/259,964 patent/US10810514B2/en active Active
- 2019-09-11 US US16/568,149 patent/US11153371B2/en active Active
-
2020
- 2020-10-14 US US17/070,836 patent/US11496555B2/en active Active
-
2022
- 2022-09-28 US US17/936,301 patent/US11888605B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6850953B1 (en) * | 1999-08-23 | 2005-02-01 | Sun Microsystems, Inc. | Creating multiple sets of data by spawning a secondary virtual machine |
US20040172629A1 (en) * | 2003-02-28 | 2004-09-02 | Azul Systems | Segmented virtual machine |
US20070089111A1 (en) * | 2004-12-17 | 2007-04-19 | Robinson Scott H | Virtual environment manager |
US20070074208A1 (en) * | 2005-09-29 | 2007-03-29 | Xiaofeng Ling | Apparatus and method for expedited virtual machine (VM) launch in VM cluster environment |
Non-Patent Citations (10)
Title |
---|
A Study and Performance Evaluation of the Multi-Tenant Data Tier Design Patterns for Service Oriented ComputingZhi Hu Wang, Chang Jie Guo, Bo Gao, Wei Sun, Zhen Zhang, Wen Hao AnPublished: 2008 * |
Alternatives for Scheduling Virtual Machines in Real-Time Embedded SystemsRobert KaiserPublished: 2008 * |
CROSSBROKER: A GRID METASCHEDULER FOR INTERACTIVE AND PARALLEL JOBSEnol Fernandez, Andres Cencerrado Elisa Heymann, Miquel A. SenarPublished: 2008 * |
java newbie question: richer java subprocessesgatoatigrado, Alain O'Dea et al.Published: 06/01/09 - 12/11/2012; Portion relied upon: 08/03/2010 * |
JavaInvoke allows you to spawn additional Java VMs during testingAri GesherPublished: July 28, 2009 * |
List: groovy-dev; Subject: [groovy-dev] Groovyc Ant task -- joint compiler non-fork modeRussel Winder, Jochen TheodorouPublished: 01/18/2008 * |
Oracle Application Server Forms Services Deployment Guide 10g Release 2 (10.1.2)Orlando CorderoPublished: 2005 * |
Server virtualization in autonomic management of heterogeneous workloadsMalgorzata Steinder, Ian Whalley, David Carrerat, Ilona Gawedat and David ChessPublished: 2007 * |
Virtualizing METACenter Resources Using MagratheaJiri Denemark, Miroslav Ruda, Ludek MatyskaPublished: 2007 * |
VSched: Mixing Batch And Interactive Virtual Machines Using Periodic Real-time SchedulingBin Lin Peter A. DindaPublished: 2005 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9027022B2 (en) * | 2011-06-16 | 2015-05-05 | Argyle Data, Inc. | Software virtual machine for acceleration of transactional data processing |
US8381224B2 (en) * | 2011-06-16 | 2013-02-19 | uCIRRUS | Software virtual machine for data ingestion |
US8645958B2 (en) * | 2011-06-16 | 2014-02-04 | uCIRRUS | Software virtual machine for content delivery |
US20120324449A1 (en) * | 2011-06-16 | 2012-12-20 | Ucirrus Corporation | Software virtual machine for data ingestion |
AU2012271352B2 (en) * | 2011-06-16 | 2015-05-07 | Argyle Data, Inc. | Software virtual machine for acceleration of transactional data processing |
US10019479B2 (en) | 2012-09-05 | 2018-07-10 | Salesforce.Com, Inc. | Systems, methods and techniques for polymorphic queries |
US11036731B2 (en) | 2012-09-05 | 2021-06-15 | Salesforce.Com, Inc. | Systems, methods and techniques for polymorphic queries |
US9442974B2 (en) * | 2012-09-05 | 2016-09-13 | Salesforce.Com, Inc. | Systems, methods and techniques for polymorphic queries |
US20140108399A1 (en) * | 2012-09-05 | 2014-04-17 | Seth John White | Systems, methods and techniques for polymorphic queries |
US10496641B2 (en) | 2012-09-05 | 2019-12-03 | Salesforce.Com, Inc. | Systems, methods and techniques for polymorphic queries |
US20140115183A1 (en) * | 2012-10-24 | 2014-04-24 | Fujitsu Limited | Information processing method, recording medium, and information processing apparatus |
US9197566B2 (en) * | 2012-10-24 | 2015-11-24 | Fujitsu Limited | Information processing method, recording medium, and information processing apparatus |
US9348608B2 (en) | 2013-04-24 | 2016-05-24 | QRC, Inc. | System and method for registering application and application transforms on a radiofrequency digitization and collection device |
US10303494B2 (en) | 2013-04-24 | 2019-05-28 | Qrc, Llc | System and method for RF digitization and collection |
US8763004B1 (en) * | 2013-04-24 | 2014-06-24 | QRC, Inc. | System and method for RF digitization and collection |
US10884775B2 (en) * | 2014-06-17 | 2021-01-05 | Nokia Solutions And Networks Oy | Methods and apparatus to control a virtual machine |
US20170068572A1 (en) * | 2015-09-07 | 2017-03-09 | Docapost Dps | Digital safe architecture usable for numerical objects integrity protection in the time |
CN109905459A (zh) * | 2019-01-16 | 2019-06-18 | 平安科技(深圳)有限公司 | 一种数据传输方法及装置 |
US11605166B2 (en) | 2019-10-16 | 2023-03-14 | Parsons Corporation | GPU accelerated image segmentation |
US11303306B2 (en) | 2020-01-20 | 2022-04-12 | Parsons Corporation | Narrowband IQ extraction and storage |
US11619700B2 (en) | 2020-04-07 | 2023-04-04 | Parsons Corporation | Retrospective interferometry direction finding |
US11569848B2 (en) | 2020-04-17 | 2023-01-31 | Parsons Corporation | Software-defined radio linking systems |
US11575407B2 (en) | 2020-04-27 | 2023-02-07 | Parsons Corporation | Narrowband IQ signal obfuscation |
US11849347B2 (en) | 2021-01-05 | 2023-12-19 | Parsons Corporation | Time axis correlation of pulsed electromagnetic transmissions |
Also Published As
Publication number | Publication date |
---|---|
US20160080273A1 (en) | 2016-03-17 |
US11888605B2 (en) | 2024-01-30 |
US20150326650A1 (en) | 2015-11-12 |
US20230016877A1 (en) | 2023-01-19 |
US9026624B2 (en) | 2015-05-05 |
US9201696B2 (en) | 2015-12-01 |
US20190354891A1 (en) | 2019-11-21 |
US10192169B2 (en) | 2019-01-29 |
US11496555B2 (en) | 2022-11-08 |
US10762435B2 (en) | 2020-09-01 |
US20120151062A1 (en) | 2012-06-14 |
US20210211491A1 (en) | 2021-07-08 |
US20150235144A1 (en) | 2015-08-20 |
US11153371B2 (en) | 2021-10-19 |
US10452997B2 (en) | 2019-10-22 |
US20120151063A1 (en) | 2012-06-14 |
US20200005190A1 (en) | 2020-01-02 |
US10810514B2 (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120151479A1 (en) | Horizontal splitting of tasks within a homogenous pool of virtual machines | |
US10911516B2 (en) | Techniques for metadata-driven dynamic content serving | |
US10992740B2 (en) | Dynamically balancing partitions within a distributed streaming storage platform | |
US10616352B2 (en) | Integrating third-party vendors' APIs | |
US10616230B2 (en) | Managing authorization tokens for calling third-party vendors | |
US11232102B2 (en) | Background processing to provide automated database query tuning | |
US8745625B2 (en) | System, method and computer program product for conditionally executing related reports in parallel based on an estimated execution time | |
US9038074B2 (en) | System, method and computer program product for recursively executing a process control operation to use an ordered list of tags to initiate corresponding functional operations | |
US10452630B2 (en) | Techniques and architectures for reverse mapping of database queries | |
US8443366B1 (en) | Techniques for establishing a parallel processing framework for a multi-tenant on-demand database system | |
US8688640B2 (en) | System, method and computer program product for distributed execution of related reports | |
US10121110B2 (en) | System, method and computer program product for progressive rendering of report results | |
US8589348B2 (en) | System, method and computer program product for converting a format of report results | |
US8776067B1 (en) | Techniques for utilizing computational resources in a multi-tenant on-demand database system | |
US20190312926A1 (en) | Partition balancing in an on-demand services environment | |
US20150046928A1 (en) | System, method and computer program product for dynamically increasing resources utilized for processing tasks | |
US20130031141A1 (en) | System, method and computer program product for locally defining related reports using a global definition | |
US9418003B2 (en) | System, method and computer program product for conditionally performing garbage collection | |
US10936587B2 (en) | Techniques and architectures for providing and operating an application-aware database environment | |
US9495430B2 (en) | Systems and methods for batch processing of data records in an on-demand system | |
US8589540B2 (en) | System, method and computer program product for determining a rate at which an entity is polled | |
US20140173033A1 (en) | System, method and computer program product for processing data in a dynamic and generic manner | |
US20130117224A1 (en) | System, method and computer program product for cloning a child object with a parent object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SALESFORCE.COM, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOTHARI, PALLAV;REEL/FRAME:027044/0502 Effective date: 20111011 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |