US20120139345A1 - Control method of hybrid power battery charger - Google Patents
Control method of hybrid power battery charger Download PDFInfo
- Publication number
- US20120139345A1 US20120139345A1 US13/106,773 US201113106773A US2012139345A1 US 20120139345 A1 US20120139345 A1 US 20120139345A1 US 201113106773 A US201113106773 A US 201113106773A US 2012139345 A1 US2012139345 A1 US 2012139345A1
- Authority
- US
- United States
- Prior art keywords
- load
- circuit
- adapter
- power
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000008859 change Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000010432 diamond Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from AC or DC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the various circuit embodiments described herein relate in general to battery charging and controlling circuits and methods, and, more specifically, to battery charging and controlling circuits and methods in which current can be drawn from both a charging adapter and the battery in response to a high load demand for current.
- Rechargeable batteries typically lithium-ion batteries
- Rechargeable batteries are widely used in consumer electronic devices, especially portable computers and mobile devices.
- devices with which such batteries may be used are manifold, some recent examples include smartphone, notebook, tablet, and netbook computing devices, or the like, which have a CPU and memory that require operating power.
- an adapter is commonly used to power the device with which the battery is associated.
- the adapter provides power to a charging circuit in the device to charge the battery.
- a synchronous switching buck converter is often used to control the charging current to the battery, while providing a substantially constant voltage to the load.
- the charge current can be reduced to zero, thereby giving a higher priority to power the system than to charge the battery.
- the adapter may crash.
- An example of such condition is when the system is cold and the CPU power needed for application processing and speeding up data flow is much more than the power that the adapter can supply, even with zero charging current.
- boost converter in the charging circuit to convert the battery power for delivery to the system.
- the charger can operate in a synchronous buck mode during the battery charging and in a boost mode when additional power to CPU and system is needed. This type of charging circuit is referred to herein as a “hybrid power battery charger.”
- What is needed is a system and method that uses the battery charger as a boost converter to boost battery voltage to adapter voltage and control method for achieving smooth mode transition between buck charging mode and boost supplement mode, and optimized efficiency.
- the proposed system and method described herein uses the existing battery charger configuration, but a control method is used that allows the charger to operate in a hybrid mode in which the charger operates in a buck mode during battery charging and in a boost mode during the battery discharging to supplement additional power to the system.
- This allows the CPU to operate at very high speed to realize its highest performance.
- the system does not need to increase the adapter current capability, thereby avoiding extra cost to the adapter. It realizes high power conversion efficiency, low total system cost, with a minimum space requirement.
- a power supply system that is connectable to receive power from an adapter and supply power to a load, a rechargeable battery, a buck mode circuit, and a boost mode circuit are provided.
- a switching circuit is provided for switching between the buck mode circuit and boost mode circuit for supplying power to the load. If the power required by the load reaches a first predetermined level related to an adapter overload condition for a first predetermined time, the switching circuit disconnects said buck mode circuit from the load and connects the rechargeable battery and the boost mode circuit to said load.
- the first predetermined level may be established by a first predetermined percent of the current of a dynamic power management level established by the load, which may be related to a power level below that which can be provided by the adapter.
- a power supply system connectable to a load
- a power supply system having a rechargeable battery, a charging circuit, and an adapter connectable to receive power from a power supply source
- the charging circuit includes buck mode circuitry for selectively supplying power to the load in a normal operating mode and boost mode circuitry for selectively supplying power to the load in an adapter overload operating mode.
- Switching circuitry is provided for switching between the buck mode circuitry and the boost mode circuitry. If the power required by the load reaches an adapter overload condition, the charging circuit shuts down and waits a predetermined time.
- the charging circuit checks to determine whether the adapter overload condition still exists, and if the adapter overload is still exists, the charging circuit changes from the buck mode circuitry to the boost mode circuitry and connects the battery to the load to provide additional power to the load.
- the check to determine whether the adapter is still in the overload condition may be based, for example, on a system current.
- the buck mode circuit is operated to provide power to a load in a normal operating mode.
- An input current to the charger circuit is sensed. If the input current exceeds a first predetermined percent of a current of a dynamic power management level established by the load, the charger circuit is shut down for a first predetermined time. If the input current continues to exceed the first predetermined percent of a current of a dynamic power management level established by the load after the first predetermined time, the boost mode circuit is started and the rechargeable battery is connected to provide power to the load.
- FIG. 1 is a block diagram of an example of a hybrid battery charger environment in which battery charging and controlling circuits and methods described herein may be employed.
- FIG. 2 is an electrical schematic diagram illustrating an example of an embodiment of a charger circuit having a voltage boost function that may be used in the battery charging and controlling circuits and methods described herein.
- FIG. 3A is a block diagram of an example of feedback amplifier, duty cycle, and driver circuits for implementing the battery charging and controlling circuits and methods of FIG. 2 .
- FIG. 3B is a block diagram of an example of start/stop control circuits for implementing the battery charging and controlling circuits and methods of FIG. 2 .
- FIG. 4 is a flow chart illustrating one embodiment of a method for operating the circuit of FIG. 2 to enter a boost mode of operation.
- FIG. 5 is a flow chart illustrating one embodiment of a method for operating the circuit of FIG. 2 to exit a boost mode of operation.
- FIGS. 6A-6D are waveforms of various parameters verses time realized in the operation of the circuit of FIG. 2 .
- the hybrid battery charger environment 10 includes a system 12 , which may be, for instance, a smartphone, notebook, tablet, netbook computing devices, or the like, which has a CPU 14 and a memory 16 that require operating power.
- the CPU 14 and memory 16 are part of the system load 18 for which the operating power is needed.
- the operating power to the system load is provided by a buck/boost charger system 20 and an associated rechargeable battery pack 22 , in a manner described below in greater detail.
- the rechargeable battery pack 22 may be a lithium-ion battery pack, for example, although other rechargeable battery types may also be employed.
- An adapter 24 is provided, which is optionally connectable to receive ac power, typically from an ac outlet, not shown, to convert the ac power to dc power to supply power to the buck/boost charger system 20 to power the system load 18 and to charge an associated rechargeable battery pack 22 .
- a typical adapter may supply 90 W of power at about 20 V, thereby having the capability of supplying about 4.5 A current.
- the adapters are load dependent, and may vary greatly from one application to another; however, one of the advantages of the hybrid battery charger of the type described herein is that the power requirements of the particular adapter needed can be reduced from that which would be required if the adapter alone is used to supply operating power to the system load 18 .
- the adapter 24 may be supplied as a component that is external to the device or system that it is intended to supply power, and is selectively connectable thereto.
- a switch 26 connects the battery pack 22 to the system load 18 when the adapter 24 is not connected to receive ac power so that system load 18 is powered by the rechargeable battery pack 22 directly.
- switch 26 is opened to disconnect the rechargeable battery pack 22 from system load so that system load is powered by the ac adapter directly.
- the rechargeable battery pack 22 can supply additional power to the system load 18 when the capabilities of the adapter 24 are exceeded.
- the buck/boost charger system 20 may call upon the rechargeable battery pack 22 to provide the additional power, for example by switching the rechargeable battery pack 22 into the system by, for instance, changing the buck converter charger to a boost converter.
- the battery charge current is not only reduced to zero, but the buck/boost charger system 20 is operated in a boost mode so that the adapter and battery power the system simultaneously.
- the buck/boost charger system 20 if the power demanded by the system load 18 reaches an overload condition of the adapter 24 at or exceeding the maximum power limit of the adapter, the buck/boost charger system 20 immediately shuts down, and waits a predetermined period, referred to herein as a “deglitch time.” After the deglitch time, the buck/boost charger system 20 checks to determine whether the adapter 24 is still in an overload condition, based on the total system current. After the deglitch time, if the total system current is still higher than the maximum current limit of the adapter 24 , the buck/boost charger system changes from buck mode to boost mode and allows the rechargeable battery pack 22 to provide additional power to the system load 18 . As a result, the adapter 24 and the rechargeable battery pack 22 together provide sufficient system power, thereby avoiding an adapter crash and enabling the system load 18 , including its CPU 14 , to receive maximum available power for achieving its highest performance.
- FIG. 2 an electrical schematic diagram is shown, illustrating an example of an embodiment of a charger circuit 30 having a voltage boost function that may be used to provide the battery charging and controlling circuits and methods described herein.
- the charger circuit 30 has a dynamic power management (DPM) circuit 32 that receives input power on input node 34 from an adapter 24 of the type described above which can be selectively connected thereto.
- DPM dynamic power management
- the DPM loop 32 includes an input current sensing resistor 36 , the nodes on either side of which being designated “ACP” and “ACN,” which are connected as inputs to the charger control loops 38 , described below in greater detail.
- a pair of MOSFET devices 40 and 42 are connected to receive respective high-side and low-side driving voltages from the charger control loops 38 , depending on whether the charger is operating in buck or boost modes.
- An inductor 44 is connected to the rechargeable battery pack 22 by a charge current sensing resistor 46 .
- the respective sides of the charge current sensing resistor 46 are designated “SRP and “SRN,” and are connected as inputs to the charger control loops 38 , as described in greater detail below.
- the power output from the charger circuit 30 is represented by the VBUS voltage shown between line 48 and the reference potential, or ground line 50 , and by the current source I SYS 52 .
- the feedback amplifier 60 receives inputs ACP, ACN, SRP, and SRN respectively from the input current sensing resistor 36 and charge current sensing resistor 46 , providing an input to the type III compensation circuit 66 .
- the output from the compensation circuit 66 is applied to a control loop saturation determining circuit 68 and to a PWM circuit 70 .
- the output from the control loop saturation determining circuit 68 is connected to the boost stop and start circuit 64 , described below, and the output from the PWM circuit 70 is connected to the driver logic circuit 72 .
- the start boost and stop boost signals developed in the boost stop and start circuit 64 are also connected as inputs to the driver logic circuit 72 .
- the outputs HSON and LSON signals are connected to output drivers 74 and 76 , which are level adjusted by BTST, PHASE and REGN and GND voltages to provide drive signals to the MOSFET devices 40 and 42 ( FIG. 1 ) at the correct voltage levels.
- the boost start and stop circuit 64 is shown in FIG. 3B , to which reference is now additionally made.
- the boost start and stop circuit 64 receives inputs representing the voltage difference between ACP and ACN. This voltage difference may be developed, for example, in the feedback amplifier 60 of FIG. 3A , with appropriate scaling.
- the voltage difference between ACP and ACN is compared to a reference voltage, for example 1.05 ⁇ VREF_IAC by comparator 80 .
- VREF_IAC represents a particular upper current level that is established by the host below which operation of the adapter should be held to avoid crashing the adapter.
- the comparator 80 has hysteresis so that momentary changes in the ACP-ACN voltage difference do not cause the comparator 80 to change state.
- the reference voltage is established such that if the voltage difference ACP-ACN developed across the input current sensing resistor 36 reaches a predetermined percentage of the power limit of the adapter 24 , in this case 105%, the comparator 80 changes output state.
- the output from the comparator 80 is connected to a delay circuit 82 which operates to shut down the charger and begin a predetermined delay, for example 170 ⁇ s in response to the change of state in the output of the comparator 80 . If the voltage output from the comparator 80 returns to a low value before the predetermined delay, indicating that the boost mode is not required, the boost mode is not initiated and the charger is turned back on. However, after the expiration of the predetermined delay, the start boost output changes state, triggering the driver logic circuit 72 ( FIG. 3A ) to turn on the low-side MOSFET device 42 ( FIG. 2 ) via the low-side driver 76 and high-side MOSFET device ( FIG. 2 ) via the high-side driver 74 .
- a delay circuit 82 which operates to shut down the charger and begin a predetermined delay, for example 170 ⁇ s in response to the change of state in the output of the comparator 80 . If the voltage output from the comparator 80 returns to a low value before the predetermined delay, indicating that
- the stop boost signal With respect to the stop boost signal, four possible input signals can trigger the stop boost signal.
- the four signals are applied to an OR gate 83 , the output of which being the stop boost signal that is applied to the driver logic circuit 72 ( FIG. 3A ).
- the first input signal is an immediate trigger developed by comparator 84 when the voltage difference ACP-ACN is less than a predetermined voltage, such as 10 mV. When this condition occurs, the boost mode is immediately shut down to prevent ACOV (system bus over voltage).
- the second input signal is a trigger that occurs when the voltage difference ACP-ACN is a predetermined percentage below the VREF_IAC voltage level. In the example illustrated, the percentage is 93%, and is established by the comparator 86 . If the voltage difference ACP-ACN is a predetermined percentage below the VREF_IAC voltage level, and the output from the comparator 84 is not high, a 1 ms delay is timed by a timer 88 to trigger the stop boost output signal.
- the stop boost output signal is triggered.
- a watchdog timer 92 is provided to assure that the boost mode does not remain engage for a predetermined time, such as 175 seconds in the example shown.
- IDPM is the current threshold setting for the adapter so that at this threshold the charger will reduce charging current and even give discharging current to try to regulate adapter current at this threshold to avoid adapter overload. For example, if a 20 V, 90 W adapter can give 4.5 A current, and a system load is set to trigger at 4.1 A, when the adapter current is above 4.1 A, charging current is reduced to hold the adapter current at 4.1 A.
- the controller in the system load will throttle to reduce CPU power, so that adapter will not see a current higher than 4.5 A and crash.
- the 4.1 A is referred to as the IDPM current (DPM dynamic power management current).
- the charging current is dynamically changed based on system current, so that the total adapter current is well regulated on or below the IDPM set point.
- the determination is repeated. On the other hand, if the input current is greater than 105% of IDPM, then the charger is immediately shutdown, box 102 . A delay of a minimum of 100 ⁇ s, for example a typical delay may be 170 ⁇ s) is initiated, box 104 . If the input current is still greater than 105% of IDPM, diamond 106 , then the boost mode is started, box 108 , if the other conditions are all met. If the input current is not greater than 105% of IDPM, then the process is reinitiated at diamond 100 .
- the conditions to trigger the exit from a boost mode are shown in the flowchart 120 in FIG. 5 , to which reference is now additionally made. As described above with reference to FIG. 3B , four conditions are concurrently monitored. As shown in diamond 122 , a determination is made by comparator 84 to determine whether the input current is above a predetermined level to prevent ACOV, or system bus over voltage. If the input current is less than the predetermined level, for example less than 10 mV for a 10 milliohm sensing resistor, the boost mode is immediately shut down, box 124 .
- boost mode is also exited.
- a determination is made, diamond 126 , by comparator 86 whether the input current is less than a predetermined percentage of IDPM, for example 93% in the embodiment illustrated. If it is, a deglitch time, for example 1 ms, is timed, box 128 , after which the boost mode is exited, box 124 .
- FIGS. 6A-6D Various waveforms seen in the operation of the charger circuit 30 of FIG. 2 are shown in FIGS. 6A-6D , to which reference is now additionally made.
- the system current, I SYS is shown by waveform 140 in FIG. 6A , illustrating the increased system current in DPM mode.
- the adapter current, I ADP is shown by waveform 142 in FIG. 6B , illustrating the operation of the adapter current at the adapter current limit.
- the battery charge current, ICHG is shown by waveform 144 in FIG. 6C , illustrating the drop in charge current due to regulation of the input current.
- the constant output voltage is shown by waveform 146 in FIG. 6D .
- One of the advantages of the embodiments described herein is that the existing battery charger topology can used, but the control method of the embodiments may be used to allow the charger to operate in a buck mode during the battery charging and in a boost mode during the battery discharging for supplementing additional power to the system.
- Some of the benefits realized include allowing the CPU to operate at high speeds with the high performance, reducing the requirement for increased adapter current capability, eliminating extra cost for the adapter, enabling high power conversion efficiency, reducing the total system cost, and requiring minimum solution space.
- connections, couplings, and connections have been described with respect to various devices or elements.
- the connections and couplings may be direct or indirect.
- a connection between a first and second electrical device may be a direct electrical connection or may be an indirect electrical connection.
- An indirect electrical connection may include interposed elements that may process the signals from the first electrical device to the second electrical device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/106,773 US20120139345A1 (en) | 2010-12-01 | 2011-05-12 | Control method of hybrid power battery charger |
| CN2011800581983A CN103238263A (zh) | 2010-12-01 | 2011-12-01 | 混合动力电池充电器控制设备和方法 |
| JP2013542180A JP2013545431A (ja) | 2010-12-01 | 2011-12-01 | ハイブリッド電力バッテリー充電器制御装置及び方法 |
| PCT/US2011/062908 WO2012075301A2 (en) | 2010-12-01 | 2011-12-01 | Hybrid power battery charger control apparatus and method |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US41861610P | 2010-12-01 | 2010-12-01 | |
| US201161479284P | 2011-04-26 | 2011-04-26 | |
| US13/106,773 US20120139345A1 (en) | 2010-12-01 | 2011-05-12 | Control method of hybrid power battery charger |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120139345A1 true US20120139345A1 (en) | 2012-06-07 |
Family
ID=46161537
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/106,773 Abandoned US20120139345A1 (en) | 2010-12-01 | 2011-05-12 | Control method of hybrid power battery charger |
| US13/107,086 Active 2033-07-12 US9136724B2 (en) | 2010-12-01 | 2011-05-13 | Method for limiting battery discharging current in battery charger and discharger circuit |
| US14/853,607 Active US9735600B2 (en) | 2010-12-01 | 2015-09-14 | Method for limiting battery discharging current in battery charger and discharger circuit |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/107,086 Active 2033-07-12 US9136724B2 (en) | 2010-12-01 | 2011-05-13 | Method for limiting battery discharging current in battery charger and discharger circuit |
| US14/853,607 Active US9735600B2 (en) | 2010-12-01 | 2015-09-14 | Method for limiting battery discharging current in battery charger and discharger circuit |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US20120139345A1 (enExample) |
| JP (1) | JP2013545431A (enExample) |
| CN (1) | CN103238263A (enExample) |
| WO (1) | WO2012075301A2 (enExample) |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102735346A (zh) * | 2012-07-16 | 2012-10-17 | 中国船舶重工集团公司第七一七研究所 | 一种制冷红外热像仪及其电源管理方法 |
| AT513941A1 (de) * | 2013-01-15 | 2014-08-15 | Siemens Ag Oesterreich | On Board Unit mit Mikrocontroller und Akkumulator |
| EP2770604A1 (en) * | 2013-02-21 | 2014-08-27 | Dialog Semiconductor GmbH | Control circuit for determining a charge current of a battery |
| US20140327425A1 (en) * | 2013-05-02 | 2014-11-06 | Wistron Corporation | Portable electronic apparatus and power management method thereof |
| EP2843503A1 (en) * | 2013-08-28 | 2015-03-04 | Fujitsu Limited | Information processing apparatus and power supply monitoring circuit |
| US9136724B2 (en) | 2010-12-01 | 2015-09-15 | Texas Instruments Incorporated | Method for limiting battery discharging current in battery charger and discharger circuit |
| US20150293569A1 (en) * | 2014-04-15 | 2015-10-15 | Quanta Computer Inc. | Computer system and power management method thereof |
| US9325194B2 (en) | 2013-09-13 | 2016-04-26 | Semiconductor Components Industries, Llc | Method of forming a power supply controller and structure therefor |
| WO2017146962A1 (en) * | 2016-02-26 | 2017-08-31 | Microsoft Technology Licensing, Llc | Dynamic power control circuit |
| CN109525033A (zh) * | 2018-11-29 | 2019-03-26 | 威创集团股份有限公司 | 供电电路、方法及低功率投影设备 |
| US10250059B2 (en) | 2016-09-19 | 2019-04-02 | Microsoft Technology Licensing, Llc | Charging circuit for battery-powered device |
| US20190179387A1 (en) * | 2017-12-13 | 2019-06-13 | Merry Electronics(Shenzhen) Co., Ltd. | Power storage apparatus |
| WO2019190691A1 (en) * | 2018-03-30 | 2019-10-03 | Intel Corporation | Hybrid power boost charging with peak power protection |
| US10739842B2 (en) | 2017-04-01 | 2020-08-11 | Intel Corporation | Power management and protection |
| US10778482B2 (en) | 2019-02-12 | 2020-09-15 | Texas Instruments Incorporated | Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US10797358B2 (en) | 2015-04-23 | 2020-10-06 | Apple Inc. | Smart power bank system for efficient energy transfer |
| US10797921B2 (en) | 2019-02-12 | 2020-10-06 | Texas Instruments Incorporated | Threshold computation circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US20200412139A1 (en) * | 2015-09-22 | 2020-12-31 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Charge Control Method and Device, and Electronic Device |
| US11126232B2 (en) * | 2018-11-28 | 2021-09-21 | Intel Corporation | Battery heat balancing during peak power mode |
| US11190022B2 (en) | 2019-01-09 | 2021-11-30 | Texas Instruments Incorporated | Controller circuit for photovoltaic sub-module |
| US11205915B2 (en) | 2018-01-17 | 2021-12-21 | Renesas Electronics America | Autonomous adapter pass through mode for buck-boost battery charger |
| US11342787B2 (en) | 2019-03-20 | 2022-05-24 | Texas Instruments Incorporated | Controller circuit for photovoltaic module |
| US11350186B2 (en) | 2019-03-20 | 2022-05-31 | Texas Instruments Incorporated | Monitoring circuit for photovoltaic module |
| US11387667B2 (en) | 2018-08-21 | 2022-07-12 | Renesas Electronics America Inc. | Combo buck boost battery charger architecture with reverse boost mode |
| US11418048B2 (en) | 2018-08-21 | 2022-08-16 | Renesas Electronics America Inc. | System and method for providing reverse boost mode in battery charger application |
| US12079051B2 (en) | 2018-11-28 | 2024-09-03 | Intel Corporation | Battery heat balancing apparatus and method during peak mode |
| AU2023263494B2 (en) * | 2023-03-01 | 2025-02-27 | Getac Technology Corporation | Electronic device with hybrid power source and method for hybrid power supply |
| US12316225B2 (en) | 2021-10-19 | 2025-05-27 | Texas Instruments Incorporated | Blocking and startup transistor control in voltage converters |
Families Citing this family (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8525520B2 (en) * | 2010-05-26 | 2013-09-03 | Landis+Gyr Innovations, Inc. | System and method for low battery detection |
| KR101835007B1 (ko) * | 2011-10-25 | 2018-03-07 | 삼성전자주식회사 | 휴대용 단말기에서 충전 전류를 제어하기 위한 장치 및 방법 |
| WO2013074485A2 (en) * | 2011-11-17 | 2013-05-23 | Stryker Corporation | Battery capable of withstanding the effects of liquid submersion |
| JP5758276B2 (ja) * | 2011-11-18 | 2015-08-05 | 株式会社マキタ | バッテリアダプタ |
| US9134775B2 (en) * | 2012-02-27 | 2015-09-15 | Apple Inc. | Controlling a current drawn from an adapter by a computer system |
| TW201411325A (zh) * | 2012-09-04 | 2014-03-16 | Acer Inc | 電子系統、電子裝置以及電源管理方法 |
| US9337661B2 (en) | 2012-12-27 | 2016-05-10 | Intel Corporation | Power management system and method |
| TWI482391B (zh) | 2013-04-02 | 2015-04-21 | Wistron Corp | 用於一電子裝置之充電電路及其相關充電方法 |
| US9490644B2 (en) | 2013-09-09 | 2016-11-08 | Apple Inc. | Reconfigurable compensator with large-signal stabilizing network |
| US20170155274A1 (en) * | 2014-03-03 | 2017-06-01 | Robert Bosch Gmbh | Topology and control strategy for hybrid storage systems |
| JP6152241B2 (ja) * | 2014-04-23 | 2017-06-21 | レノボ・シンガポール・プライベート・リミテッド | 電力システム、携帯式電子機器および電力の供給方法 |
| CN104009529B (zh) * | 2014-06-13 | 2016-08-24 | 南京矽力杰半导体技术有限公司 | 控制电路、电池供电装置和控制方法 |
| US9715244B2 (en) * | 2015-02-24 | 2017-07-25 | Intersil Americas LLC | System and method for determining adapter current limit |
| CN114497782B (zh) * | 2015-09-08 | 2025-02-21 | 伏特技术有限公司 | 电压调节设备以及具有电压调节设备的可再充电电池 |
| CN105098931A (zh) * | 2015-09-22 | 2015-11-25 | 广西职业技术学院 | 笔记本电脑电池保护电路 |
| US20170093173A1 (en) * | 2015-09-24 | 2017-03-30 | Han Kung Chua | Front end charger bypass switch with linear regulation function and path for reverse boost |
| US10401931B2 (en) * | 2015-12-22 | 2019-09-03 | Intel Corporation | Power delivery architecture to increase performance of computing systems when docked |
| US10326296B2 (en) | 2016-02-01 | 2019-06-18 | Qualcomm Incorporated | Dual-phase operation for concurrently charging a battery and powering a peripheral device |
| US10199842B2 (en) | 2016-03-30 | 2019-02-05 | Intel Corporation | Power supply control system |
| CN109075583A (zh) * | 2016-03-31 | 2018-12-21 | 技领半导体股份有限公司 | 快速充电装置和方法 |
| US10985644B1 (en) | 2016-06-25 | 2021-04-20 | Active-Semi, Inc. | Optimized gate driver for low voltage power loss protection system |
| US10090675B1 (en) * | 2016-06-25 | 2018-10-02 | Active-Semi, Inc. | Fast settlement of supplement converter for power loss protection system |
| US9721742B1 (en) | 2016-06-25 | 2017-08-01 | Active-Semi, Inc. | Power integrated circuit with autonomous limit checking of ADC channel measurements |
| US10826480B1 (en) | 2016-07-01 | 2020-11-03 | Active-Semi, Inc. | Gate driver to decrease EMI with shorter dead-time |
| TWI624754B (zh) * | 2016-12-23 | 2018-05-21 | 廣達電腦股份有限公司 | 電子裝置、電子系統、以及控制方法 |
| US11451067B2 (en) * | 2017-12-19 | 2022-09-20 | Intel Corporation | Method, apparatus and system to enhance a device policy manager to manage devices based on battery condition |
| US10523116B2 (en) * | 2018-03-30 | 2019-12-31 | Texas Instruments Incorporated | Timer for creating a stable on time |
| JP7157598B2 (ja) * | 2018-08-31 | 2022-10-20 | 旭化成エレクトロニクス株式会社 | 充電装置 |
| US11411490B2 (en) | 2018-09-26 | 2022-08-09 | Analog Devices International Unlimited Company | Charge pumps with accurate output current limiting |
| US11418118B1 (en) * | 2019-02-08 | 2022-08-16 | Renesas Electronics America Inc. | Regulation loop control for voltage regulation in a switch mode power supply |
| EP3985819A4 (en) * | 2019-06-12 | 2023-08-16 | Positec Power Tools (Suzhou) Co., Ltd. | Battery pack |
| US11362528B2 (en) * | 2019-06-20 | 2022-06-14 | Microsoft Technology Licensing, Llc | Mitigation of audible output in a charging circuit |
| CN111555384A (zh) * | 2020-04-26 | 2020-08-18 | 合肥联宝信息技术有限公司 | 一种具有动态调整ptm功能的充电装置及方法 |
| CN114665524A (zh) * | 2020-12-22 | 2022-06-24 | 华为技术有限公司 | 一种电子设备及其控制方法 |
| TWI789111B (zh) * | 2021-11-10 | 2023-01-01 | 新盛力科技股份有限公司 | 具有降電壓放電機制的電池管理系統及其方法 |
| CN114825909A (zh) * | 2022-06-01 | 2022-07-29 | 广州小鹏汽车科技有限公司 | 电池包的配电结构、电池包及车辆 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070285048A1 (en) * | 2006-06-12 | 2007-12-13 | Leach David H | Fuel cell charger interface with multiple voltage outputs for portable devices |
| US20080100143A1 (en) * | 2006-11-01 | 2008-05-01 | O2Micro Inc. | Power management system with charger/boost controller |
| US7863865B2 (en) * | 2007-07-26 | 2011-01-04 | Summit Microelectronics, Inc. | Systems and methods for pulse charging a battery |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2762721B1 (fr) * | 1997-04-29 | 1999-06-11 | Sagem | Procede de charge d'une batterie et chargeur de batterie pour la mise en oeuvre du procede |
| US6502044B1 (en) * | 1999-07-12 | 2002-12-31 | Acuity Brands Inc. | Self-diagnostic circuitry for emergency lighting fixtures |
| US20040145348A1 (en) * | 2000-09-21 | 2004-07-29 | Constantin Bucur | Power management topologies |
| US6825644B2 (en) * | 2002-11-14 | 2004-11-30 | Fyre Storm, Inc. | Switching power converter |
| SG124315A1 (en) * | 2005-01-31 | 2006-08-30 | Stl Corp | Battery pack |
| US7719236B2 (en) | 2005-02-18 | 2010-05-18 | O2Micro International Limited | Parallel powering of portable electrical devices |
| US7560909B2 (en) * | 2005-11-14 | 2009-07-14 | Asahi Kasei Microsystems Co., Ltd. | Power converter using extrapolative conductance mode control |
| EP1821386A2 (en) * | 2006-02-17 | 2007-08-22 | Power Systems Co., Ltd. | Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source |
| JP4837408B2 (ja) * | 2006-03-20 | 2011-12-14 | 富士通セミコンダクター株式会社 | Dc−dcコンバータ、dc−dcコンバータの制御回路、及びdc−dcコンバータの制御方法 |
| US7737662B2 (en) | 2006-12-26 | 2010-06-15 | O2Micro International Ltd. | Power management circuit for battery pack |
| US8102162B2 (en) * | 2008-07-30 | 2012-01-24 | Intersil Americas Inc. | Buck controller having integrated boost control and driver |
| TWI372499B (en) | 2009-07-10 | 2012-09-11 | Richtek Technology Corp | Hybrid charger and control circuit and method thereof |
| US20120139345A1 (en) | 2010-12-01 | 2012-06-07 | Texas Instruments Incorporated | Control method of hybrid power battery charger |
-
2011
- 2011-05-12 US US13/106,773 patent/US20120139345A1/en not_active Abandoned
- 2011-05-13 US US13/107,086 patent/US9136724B2/en active Active
- 2011-12-01 CN CN2011800581983A patent/CN103238263A/zh active Pending
- 2011-12-01 JP JP2013542180A patent/JP2013545431A/ja active Pending
- 2011-12-01 WO PCT/US2011/062908 patent/WO2012075301A2/en not_active Ceased
-
2015
- 2015-09-14 US US14/853,607 patent/US9735600B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070285048A1 (en) * | 2006-06-12 | 2007-12-13 | Leach David H | Fuel cell charger interface with multiple voltage outputs for portable devices |
| US20080100143A1 (en) * | 2006-11-01 | 2008-05-01 | O2Micro Inc. | Power management system with charger/boost controller |
| US7863865B2 (en) * | 2007-07-26 | 2011-01-04 | Summit Microelectronics, Inc. | Systems and methods for pulse charging a battery |
Cited By (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9735600B2 (en) | 2010-12-01 | 2017-08-15 | Texas Instruments Incorporated | Method for limiting battery discharging current in battery charger and discharger circuit |
| US9136724B2 (en) | 2010-12-01 | 2015-09-15 | Texas Instruments Incorporated | Method for limiting battery discharging current in battery charger and discharger circuit |
| CN102735346A (zh) * | 2012-07-16 | 2012-10-17 | 中国船舶重工集团公司第七一七研究所 | 一种制冷红外热像仪及其电源管理方法 |
| AT513941A1 (de) * | 2013-01-15 | 2014-08-15 | Siemens Ag Oesterreich | On Board Unit mit Mikrocontroller und Akkumulator |
| AT513941B1 (de) * | 2013-01-15 | 2018-03-15 | Siemens Ag Oesterreich | On Board Unit mit Mikrocontroller und Akkumulator |
| EP2770604A1 (en) * | 2013-02-21 | 2014-08-27 | Dialog Semiconductor GmbH | Control circuit for determining a charge current of a battery |
| US9279859B2 (en) | 2013-02-21 | 2016-03-08 | Dialog Semiconductor Gmbh | Control circuit for determining a charge current of a battery |
| US20140327425A1 (en) * | 2013-05-02 | 2014-11-06 | Wistron Corporation | Portable electronic apparatus and power management method thereof |
| US9018927B2 (en) * | 2013-05-02 | 2015-04-28 | Wistron Corporation | Portable electronic apparatus and power management method thereof |
| EP2843503A1 (en) * | 2013-08-28 | 2015-03-04 | Fujitsu Limited | Information processing apparatus and power supply monitoring circuit |
| US9325194B2 (en) | 2013-09-13 | 2016-04-26 | Semiconductor Components Industries, Llc | Method of forming a power supply controller and structure therefor |
| US9304564B2 (en) * | 2014-04-15 | 2016-04-05 | Quanta Computer Inc. | Computer system and power management method thereof |
| US20150293569A1 (en) * | 2014-04-15 | 2015-10-15 | Quanta Computer Inc. | Computer system and power management method thereof |
| US10797358B2 (en) | 2015-04-23 | 2020-10-06 | Apple Inc. | Smart power bank system for efficient energy transfer |
| EP3286817B1 (en) * | 2015-04-23 | 2024-07-10 | Apple Inc. | Smart power bank and device for efficient energy transfer |
| US20200412139A1 (en) * | 2015-09-22 | 2020-12-31 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Charge Control Method and Device, and Electronic Device |
| WO2017146962A1 (en) * | 2016-02-26 | 2017-08-31 | Microsoft Technology Licensing, Llc | Dynamic power control circuit |
| US10320219B2 (en) | 2016-02-26 | 2019-06-11 | Microsoft Technology Licensing, Llc | Dynamic power control circuit |
| US10250059B2 (en) | 2016-09-19 | 2019-04-02 | Microsoft Technology Licensing, Llc | Charging circuit for battery-powered device |
| US10739842B2 (en) | 2017-04-01 | 2020-08-11 | Intel Corporation | Power management and protection |
| US20190179387A1 (en) * | 2017-12-13 | 2019-06-13 | Merry Electronics(Shenzhen) Co., Ltd. | Power storage apparatus |
| US11205915B2 (en) | 2018-01-17 | 2021-12-21 | Renesas Electronics America | Autonomous adapter pass through mode for buck-boost battery charger |
| US10790682B2 (en) | 2018-03-30 | 2020-09-29 | Intel Corporation | Hybrid power boost charging with peak power protection |
| WO2019190691A1 (en) * | 2018-03-30 | 2019-10-03 | Intel Corporation | Hybrid power boost charging with peak power protection |
| US11387667B2 (en) | 2018-08-21 | 2022-07-12 | Renesas Electronics America Inc. | Combo buck boost battery charger architecture with reverse boost mode |
| US11418048B2 (en) | 2018-08-21 | 2022-08-16 | Renesas Electronics America Inc. | System and method for providing reverse boost mode in battery charger application |
| US12079051B2 (en) | 2018-11-28 | 2024-09-03 | Intel Corporation | Battery heat balancing apparatus and method during peak mode |
| US11126232B2 (en) * | 2018-11-28 | 2021-09-21 | Intel Corporation | Battery heat balancing during peak power mode |
| US11644877B2 (en) | 2018-11-28 | 2023-05-09 | Intel Corporation | Battery heat balancing during peak power mode |
| CN109525033A (zh) * | 2018-11-29 | 2019-03-26 | 威创集团股份有限公司 | 供电电路、方法及低功率投影设备 |
| US11190022B2 (en) | 2019-01-09 | 2021-11-30 | Texas Instruments Incorporated | Controller circuit for photovoltaic sub-module |
| US10778482B2 (en) | 2019-02-12 | 2020-09-15 | Texas Instruments Incorporated | Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US11265191B2 (en) | 2019-02-12 | 2022-03-01 | Texas Instruments Incorporated | Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US11196596B2 (en) | 2019-02-12 | 2021-12-07 | Texas Instruments Incorporated | Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US10797921B2 (en) | 2019-02-12 | 2020-10-06 | Texas Instruments Incorporated | Threshold computation circuit for S-FSK receiver, integrated circuit, and method associated therewith |
| US11350186B2 (en) | 2019-03-20 | 2022-05-31 | Texas Instruments Incorporated | Monitoring circuit for photovoltaic module |
| US11342787B2 (en) | 2019-03-20 | 2022-05-24 | Texas Instruments Incorporated | Controller circuit for photovoltaic module |
| US11689027B2 (en) | 2019-03-20 | 2023-06-27 | Texas Instruments Incorporated | Controller circuit for photovoltaic module |
| US11877106B2 (en) | 2019-03-20 | 2024-01-16 | Texas Instruments Incorporated | Monitoring circuit for photovoltaic module |
| US12244984B2 (en) | 2019-03-20 | 2025-03-04 | Texas Instruments Incorporated | Monitoring circuit for photovoltaic module |
| US12316225B2 (en) | 2021-10-19 | 2025-05-27 | Texas Instruments Incorporated | Blocking and startup transistor control in voltage converters |
| AU2023263494B2 (en) * | 2023-03-01 | 2025-02-27 | Getac Technology Corporation | Electronic device with hybrid power source and method for hybrid power supply |
Also Published As
| Publication number | Publication date |
|---|---|
| US9136724B2 (en) | 2015-09-15 |
| JP2013545431A (ja) | 2013-12-19 |
| US9735600B2 (en) | 2017-08-15 |
| WO2012075301A3 (en) | 2012-09-20 |
| US20120139500A1 (en) | 2012-06-07 |
| WO2012075301A2 (en) | 2012-06-07 |
| CN103238263A (zh) | 2013-08-07 |
| US20160072331A1 (en) | 2016-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20120139345A1 (en) | Control method of hybrid power battery charger | |
| US6414403B2 (en) | Power unit | |
| JP3747381B2 (ja) | 電池内蔵の電子装置の電源制御回路 | |
| JP6152241B2 (ja) | 電力システム、携帯式電子機器および電力の供給方法 | |
| JP5589346B2 (ja) | 充電回路及びその充電方法 | |
| US9019726B2 (en) | Power converters with quasi-zero power consumption | |
| US8582322B2 (en) | Power reduction of a power supply unit at light loading or no loading | |
| CN107819340A (zh) | 混合电源升降压充电器 | |
| US8410764B2 (en) | Automatic current limit adjustment for linear and switching regulators | |
| US11387667B2 (en) | Combo buck boost battery charger architecture with reverse boost mode | |
| CN201266840Y (zh) | 一种直流电源管理器、电源转化电路及电池包 | |
| US9716408B2 (en) | Redundant residential power sources | |
| US11418048B2 (en) | System and method for providing reverse boost mode in battery charger application | |
| TW201317731A (zh) | 電壓調節器 | |
| TWI652888B (zh) | 單輸入多輸出直流電源供應系統及相關降壓調節控制電路 | |
| CN104062907A (zh) | 低功耗待机电路以及包含该电路的空调器 | |
| US11916426B2 (en) | Integrated battery charge regulation circuit based on power FET conductivity modulation | |
| CN113949127B (zh) | 一种用于系统供电的供电管理电路及控制方法 | |
| CN107204705A (zh) | Dc-dc调节器及其软启动的控制方法、控制器 | |
| CN115912602A (zh) | 一种单电源输入的备用电源的连接方法 | |
| CN118199225B (zh) | 充电控制方法、储能设备和可读存储介质 | |
| CN222775985U (zh) | 终端设备 | |
| US20240014680A1 (en) | Method and system using a battery voltage loop under high-current conditions | |
| CN110838747A (zh) | 移动电源的供电控制方法及移动电源 | |
| TWI440274B (zh) | 具過流保護升壓轉換器 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YE, MAO;STAIR, RICHARD;CHEN, SUHENG;AND OTHERS;REEL/FRAME:026331/0624 Effective date: 20110511 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |