US20120117890A1 - Solar roof - Google Patents

Solar roof Download PDF

Info

Publication number
US20120117890A1
US20120117890A1 US13/144,266 US201013144266A US2012117890A1 US 20120117890 A1 US20120117890 A1 US 20120117890A1 US 201013144266 A US201013144266 A US 201013144266A US 2012117890 A1 US2012117890 A1 US 2012117890A1
Authority
US
United States
Prior art keywords
roof
roof panel
solar
building
ball joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/144,266
Other languages
English (en)
Inventor
Josep Maria Adell Argilès
Sergio Vega Sángchez
César Bedoya Frutos
Alfonso García Santos
Javier Neila González
Juan Carlos Klainsek Zizmond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Politecnica de Madrid
Original Assignee
Universidad Politecnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica de Madrid filed Critical Universidad Politecnica de Madrid
Assigned to UNIVERSIDAD POLITECNICA DE MADRID reassignment UNIVERSIDAD POLITECNICA DE MADRID ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GARCIA SANTOS, ALFONSO, VEGA SANCHEZ, SERGIO, ADELL ARGILES, JOSEP MARIA, BEDOYA FRUTOS, CESAR, KLAINSEK ZIZMOND, JUAN CARLOS, NEILA GONZALEZ, JAVIER
Publication of US20120117890A1 publication Critical patent/US20120117890A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/16Roof structures with movable roof parts
    • E04B7/163Roof structures with movable roof parts characterised by a pivoting movement of the movable roof parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/17Spherical joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • Self orienting tilting solar roof panel characterized as being a roof panel ( 1 ), designed as a square, rectangular or polygon, that balances on a central axis or point of equilibrium ( 6 ), thanks to the effort applied at a minimum of three points ( 9 ), clearly spaced between them and between the central axis ( 6 ), without it overlapping the perimeter in its horizontal position.
  • the objective of this invention is the construction of a roof panel of a building that can orient itself towards the sun all of the time, but always remaining within the confines of the ground plan of the building, and therefore without overhanging the eaves themselves, starting from the maximum surface of the ground plan offered by the building, which allows it to balance on its own centre of gravity.
  • the patent overcomes the technical problem of the existing industrial turning panels when they are arranged on top of a building at its maximum dimension where, when it sweeps a surface that overhangs the building itself.
  • the patent also avoids it needing to surround both the ground plan and the angle of the gables of the traditional roof panels of a building when wanting to cover it with solar panels.
  • the buildings have inclined roof panels to allow rainwater to run off. They are usually set out on the top of the building itself with several gables that normally direct the water towards the different facades.
  • the gables of the buildings have a determined slope and different orientations.
  • the roof panel could correspond to one, two, three or four pitches which could allow the water to run off to four different facades. This means that the gables go in different orientations of the space and could lead to four possible different cases:
  • the gable oriented towards the north will not receive any direct radiation and capture almost no energy, while the other two gables in the building facing east and west will capture less energy that that obtained by the gable facing the south but with the same ground plan surface.
  • the panels are industrially designed to rotate to track the sun. However they have the disadvantage of a central support of large dimensions, together with their corresponding large foundations as the panel has to be supported on a large single pillar because of the pressure and the hurricane winds that might damage it.
  • the central pillar is not the most suitable method for a central support in an habitable building.
  • the self-orientating, tilting solar roof panel object of this new invention, proposes to subdivide the traditional roof panel into two different and therefore novel roof panels, as they have their usual features separated:
  • the upper roof panel goes on to be active and mobile, self orientating towards the sun, allows snow to run off and can allow rainwater to run off or not (towards the lower roof panel) but never compromises the insulation of the building.
  • the lower roof panel becomes passive, and it is fixed to the building itself and being able to allow water to run off (if it is not collected on the upper roof panel). It is also part of the insulation of the building in order to avoid energy losses through it.
  • It is a square or rectangular roof panel, which in principle is supported at its centre of gravity, thus making it capable of balancing on itself, so as to enable it to orient itself at any time towards the facade of the house upon which the sun is shining throughout the day.
  • the invention means that the square or rectangular roof panel on the ground plan, horizontally laid out, tilting on its centre of gravity so as to be able to move any of its sides or vertices, with the area generated on the ground plan being, logically, is less than that of the roof panel in its horizontal position.
  • This invention contrasts, therefore, with the traditional solar roof panels which rotate instead of balancing) on certain axes, and where on its route it overlaps the surface that it initially occupies on the floor, which does not happen with our invention.
  • an appropriate mechanism is necessary capable of varying the orientation of the roof panel at all times, as well as making it stable not only as a result of its load, but also against the action of the wind, snow, etc.
  • the mechanism consists basically of four cables, located at an appreciable distance from the centre of gravity and support of the tilting roof panel, which are secured from below at four opposing points and which, in reality, there are just two interrelated cables placed diagonally across the rectangular roof panel.
  • each of the diagonally opposed cables acts in one direction at the extremes (tensioning, shortening) at the same time as the opposite extreme but in a contrary manner (not-driving, lengthening).
  • tensioning tensioning
  • shortening the extremes at the opposite extreme but in a contrary manner
  • tensioning not-driving, lengthening
  • each of the diagonally arranged cables works by means of its corresponding motor which, when turning, works in conjunction with the driving motor of the other cable.
  • the dimensions of the cables, secured to the lower part of the mobile roof panel, at the diagonally opposed extremes may be lengthened or shortened.
  • the whole of the roof panel is perfectly designed with both its masses and weights tilting by a support at its centre of gravity, which could even be on top of it so as to facilitate its resting position in the horizontal position.
  • the roof panel When dealing with a roof panel that balances on a central support system to which a tensioning is added at one, two, three or four different points, according to the mechanism of the tensioning system, the roof panel becomes very stable against the action of the wind, making it resistant to even the strongest gusts leaving it immobile at the desired solar angle.
  • the central support requires a ball joint capable of allowing there roof panel to turn at least in the directions; east, south and west, although it would be desirable for the ball joint to turn even to the north so as to facilitate the cleaning of the roof panel by acting on its four edges.
  • the turning ball joint includes its corresponding securing mechanism to avoid high-speed gusts of wind generating a force capable of lifting the weight of the roof panel, acting said ball joint as traction, instead of a compression in which the transmission of forces are referred to.
  • the turning solar panels usually have a central support of large proportions, since it is also needed to absorb the weight of the roof panel and the action of the wind of a much greater value than the previous one.
  • the system allows a simple deviation of the central load below the barycentre of the roof panel, towards 3 or more extreme points, which are usually four (although it could also be five, six or eight) if it is a construction with an orthogonal structure.
  • the ball joint must be placed on a pyramid structure at an angle of 15°, 30°, 45° or 60° in respect to the horizontal, so as to allow the appropriate balance of the roof panel in relation to the sun, as set out by the latitude at which the building is located.
  • the aforementioned pyramid structure may be complemented by hydraulic jacks capable of varying its angel and/or height in accordance with the time of the year and therefore, in accordance with the angle of the sun, so as to adapt the whole of the roof panel easily in its turning, until it becomes orthogonal to the rays of solar light.
  • the aforementioned roof panel although conceived with the aim of optimizing the solar capture of a building with a certain ground plan, it does not mean that instead of covering just homes or buildings, it can also be applied advantageously to car parks, areas of shade, garden areas etc., given that the technology of the invention can be adapted perfectly to a wide spectrum of applications.
  • the Self-Orienting, Solar Roof Panel must allow the rotation of the roof panel in accordance with the latitude of the location in which it is used. As it may be used in prefabricated or mobile homes which are able to change its geographical location, the possibility of complementing the central support of the roof panel with at least one hydraulic jack must be considered which will allow it to vary its position of origin, with the aim of being able to vary, more or less, the balancing angles of the roof panel in relation to its geographical location and the position of the sun.
  • the present invention is also useful as umbrella or covering of any kind, or any ground.
  • FIG. 1 Shows, as a schematic representation in perspective, a two-storey home under a roof pitched in four slopes and with eaves.
  • FIG. 1 a Shows, in perspective representation, the A-A′ section shown in FIG. 1 , where it is seen that the roof has a slope of 15°.
  • FIG. 2 Shows, as a schematic representation in perspective, a two-storey home under a roof pitched in four slopes and with eaves.
  • FIG. 2 a Shows, in perspective representation, the B-B′ section shown in FIG. 2 , where it is seen that the roof has a slope of 30°.
  • FIG. 3 Shows, as a schematic representation in perspective, a two-storey home under a roof pitched in four slopes and with eaves.
  • FIG. 3 a Shows, in perspective representation, the C-C′ section shown in FIG. 3 , where it is seen that the roof has a slope of 45°.
  • FIG. 4 Shows, as a schematic representation in perspective, a two-storey home under a roof pitched in four slopes and with eaves, in which the interior structure of the roof panel can be appreciated.
  • FIG. 4 a Shows, in perspective representation, the D-D′ section shown in FIG. 4 , where the geometrical characteristics of the roof panel can be seen.
  • FIG. 5 Shows, as a schematic representation in perspective, a two-storey home under a roof pitched in four slopes and with eaves, in which the interior structure of the roof panel in FIG. 4 can be appreciated, on which another equivalent one has been put in but in an inverted position leaving its upper surface horizontal and supporting it in its centre.
  • FIG. 5 a Shows, in perspective representation, the E-E′ section shown in FIG. 5 , where the geometrical characteristics of the lower roof panel can be seen and the upper roof panel inverted and supported at its centre.
  • FIG. 6 Shows, as a schematic representation in perspective, the upper roof panel inverted as in FIG. 5 , where the support structure of the lower roof panel and the geometry of the upper roof panel has been simplified.
  • FIG. 6 a Shows, in perspective representation, a transversal section of FIG. 6 , where the centre of gravity “G” of the upper roof panel can be seen.
  • FIG. 7 Shows, in perspective representation, the balancing of the roof panel in FIGS. 6 and 6 a, —by its central support point and in the perpendicular ground plan of an edge of a building or at 90°.
  • FIG. 7 a Shows, in a schematic ground plan, the balancing of the roof panel in FIG. 7 , carried out at 90° in respect to a facade.
  • FIG. 7 b Shows, in a schematic section, the balancing of the roof panel in FIGS. 7 and 7 a, a 90° of a facade.
  • FIG. 8 Shows, in a schematic perspective, the balancing of the roof panel in FIGS. 6 and 6 a, by its central support point and in the perpendicular ground plan of an edge of a building or at 45°.
  • FIG. 8 a Shows, in a schematic ground plan, the balancing of the roof panel in FIG. 8 , carried out at 45° in respect to a facade.
  • FIG. 8 b Shows, in a schematic section, the balancing of the roof panel in FIGS. 8 and 8 a, at 45° of a facade.
  • FIG. 9 Shows, in a schematic section, the instrumentation necessary to generate the movement of the upper roof panel in FIGS. 6 , 6 a, 7 , 7 a, 7 b, 8 , 8 a and 8 b .
  • FIG. 9 a Shows, in a schematic perspective, the movements necessary in the instrumentation applied in order to generate the balance of the roof panel at 90° in respect to a facade.
  • FIG. 9 b Shows, in a schematic perspective, the movements necessary in the instrumentation applied in order to generate the balance of the roof panel at 45° in respect to a facade.
  • FIG. 10 Shows, in a schematic perspective, the joint application of an inverted upper roof panel on another lower one, together with the instrumentation necessary to generate the movement of the upper roof panel as detailed in FIGS. 9 , 9 a and 9 b.
  • FIG. 11 Shows, in a detailed perspective and an assembly in 3 phases, the realization of a possible main structure of the inverted upper roof panel, together with a possible cutting of the secondary structure which in turn supports a generic cutting of the solar, photovoltaic and thermal panels.
  • FIGS. 1 , 2 , 3 with their corresponding sections ( FIGS. 1 a, 2 a, 3 a ), a two-storey building can be seen ( 2 , 2 ′, 2 ′′) with roof panel inclined in 4 slopes ( 1 , 1 ′, 1 ′′), with variations in the slope of its gables of 15°, 30° and 45°, clearly differentiated in the sections, the prismatic part of the building, the triangular section of the roof with its different slopes.
  • FIGS. 4 and 4 a Going on to a more detailed form in the specific case of a roof with a 15° slope ( 1 ), in FIGS. 4 and 4 a, you can see in both perspective and in section, not only the volume of the two-storey building ( 2 ) below which there is a roof panel ( 1 ) made up of 4 gables with their corresponding eaves ( 3 ) and hips ( 4 ), that covers a framework structure (triangulated) ( 5 ), that supports the perimeter of the structure.
  • a roof panel ( 1 ) made up of 4 gables with their corresponding eaves ( 3 ) and hips ( 4 ), that covers a framework structure (triangulated) ( 5 ), that supports the perimeter of the structure.
  • FIGS. 5 and 5 a that start from a schematic perspective of the previous dwelling ( 2 ) with its traditional 15° slope ( 1 ) and with another roof panel inverted on top of it ( 1 ), supporting it at the point where the hips converge ( 4 ), with its corresponding structural frameworks ( 5 ), that is, at its apex ( 6 ), we have a horizontal ground plan looking upwards towards the firmament.
  • This is precisely what we are interested in having in order to be able to organize a solar panel of the maximum proportions possible from the floor of the building and looking towards the sky, although we still need to be able to orient it in the specific direction of the sun at all times.
  • the meeting point between both roof panels is the apex between both roof panels, made up of a rotating ball joint ( 6 ) so as to achieve a suitable orientation of the solar panels laid out on top of it, as set out previously in numbers ( 21 ) ( 22 ) and FIG. 11
  • FIGS. 6 and 6 a it is evident that the structural solution of the roof panel with a large edge, detailed in FIGS. 4 , 4 a, 5 and 5 a, from the triangular frameworks ( 5 ), can be simplified when it is necessary to optimize the structure of the roof panel ( 8 ) with the minimum edge to support the roof panel covered with the corresponding solar cells ( 1 ), on the central structural support ( 7 ), which is also simplified in this case, making up a four-sided pyramid.
  • FIG. 6 referring to the image of the schematic perspective, and in FIG. 6 a, referring to its transversal section, you can see the existence of at least four points ( 9 ) clearly separated from the central support ( 6 ), and perfectly differentiated as A, B, C, D, which allow the connections of the roof to be created ( 1 ) with the appropriate instrument (which will be detailed later in FIGS. 9 , 9 a, 9 b and 10 ), in order to generate the movement capable of pointing the position of the roof panel in the direction of the sun at all times.
  • points ( 9 ) clearly separated from the central support ( 6 ), and perfectly differentiated as A, B, C, D, which allow the connections of the roof to be created ( 1 ) with the appropriate instrument (which will be detailed later in FIGS. 9 , 9 a, 9 b and 10 ), in order to generate the movement capable of pointing the position of the roof panel in the direction of the sun at all times.
  • FIG. 6 how the ground plan of the roof panel ( 1 ) that makes up the solar panel, takes up the same area as the projection to points of the lower roof panel. Also note that in FIG. 6 a, as the support ball joint ( 6 ) of the structure ( 8 ) of the roof panel ( 1 ) is located on top of the lines of dots and dashes that indicate the centre of gravity “G” of the aforementioned roof panel. The fact that the support of rotating point ( 6 ), is more elevated than the centre of gravity “G”, offers us the security that the roof panel ( 1 ) remains in the horizontal plane at all times, provided that it is not requested on any side, assuming that there is no wind.
  • FIG. 7 it can be seen as how the horizontal plane of the roof panel ( 1 ) indicated as points, can balance at an angle “ ⁇ ” from the ball joint ( 6 ), where it transmits its weight, which it can do in any of the direction of its four facades at 90°, totaling four positions.
  • FIG. 8 it can be seen as how the horizontal plane of the roof panel ( 1 ) indicated as points, can balance at an angle “ ⁇ ” from the ball joint ( 6 ), where it transmits its weight, which it can do in any of the direction of its four facades at 45°, making up four intermediate positions from the previous ones, thus totaling eight.
  • FIGS. 7 a and 8 a are added where the points of the ground plan of the roof panel in a horizontal position are drawn, showing at all times that the balancing of the roof panel ( 1 ) that allows it to orient itself towards the sun, is able to prevent it from overlapping the perimeter of the ground plan in all of its possible positions and its intermediate values.
  • FIGS. 7 b and 8 b The previous graphic demonstration is extended in FIGS. 7 b and 8 b, with the lateral view of the schematic perspective of FIGS. 7 and 8 , where the capacity for the rotation of the structure ( 8 ) of the roof panel ( 1 ), on the ball joint ( 6 ) at the upper extreme of the pyramid support ( 7 ) can be seen.
  • FIGS. 9 , 9 a, 9 b and 10 The minimum instruments necessary to bring about the balancing movements for the solar tracking of the roof panel is detailed in FIGS. 9 , 9 a, 9 b and 10 , and start from the central support of the ball joint ( 6 ), together with the mechanical operation on the points ( 9 ) A, B, C, D, taken as two by two (A-B and/or C-D).
  • FIG. 9 the schematic perspective and in the horizontal position are shown, the instruments appropriate to permit the movement of the structure ( 8 ) of the roof panel on top of the pyramid to take place ( 7 ) by means of the ball joint ( 6 ) and which mainly consists of two cables: cable ( 10 - 10 ′) which joins A to B, and has been drawn as a dotted and dashed line; and cable ( 11 - 11 ′) which joins C to D, and has been drawn as a discontinuous dashed line. Both cables are operated by their respective motors ( 12 ) ( 13 ) and circulate by means of their corresponding pulleys ( 14 ).
  • the motor ( 12 ) operating the cable ( 10 - 10 ′) can vary in its rotation, positions A and B, by lengthening or shortening the extremes ( 10 - 10 ′) of the aforementioned cable.
  • the motor ( 13 ) operating the cable ( 11 - 11 ′) can vary in its rotation, positions C and D, by lengthening or shortening the extremes ( 11 - 11 ′) of the aforementioned cable.
  • FIG. 9 a the schematic perspective is detailed, the balancing of the roof panel at an angle of 90° in respect to any of the facades, achieved from the variation of the length undergone by the cables ( 10 - 10 ′) ( 11 - 11 ′). So it can be seen by comparing the previous FIG. 9 , how the cable ( 10 - 10 ′) is now longer than before at point A, at the same time as the other is shorter at point B. On the other hand, it can also be seen that the cable ( 11 - 11 ′) is now shorter than before in its position C, as opposed to the longer one now at its position D, in respect to that seen in the previous FIG. 9 . All of this is due to the rotation generated by the corresponding motors ( 12 ) ( 13 ) in the first and second case respectively.
  • FIG. 9 b the schematic perspective can be seen, the balancing of the roof panel at an angle of 45° in respect to any of the corners, achieved from the variation of the length experienced by the cables ( 10 - 10 ′) ( 11 - 11 ′). So it can be seen by comparing the previous FIG. 9 , how the cable ( 10 - 10 ′) does not vary at all in any of the stretches at point A or at point B. On the other hand, it can be clearly seen that the cable ( 11 - 11 ′) is now shorter than before in its position C, as opposed to the longer one as before at its position D, in respect to that seen in the previous FIG. 9 . All of this has been due to the rotation generated by the motor ( 13 ) on the cable ( 11 - 11 ′), by keeping the motor ( 12 ) on the cable ( 10 - 10 ′) still.
  • FIG. 10 the explanations made on the mechanical working of the balancing of the roof panel are grouped together in FIGS. 9 , 9 a and 9 b, on the roof panel of a traditional building, with its inverted solar panel proposed in this invention.
  • the traditional roof with four slopes ( 1 ) with its framework structure ( 5 ) is laid out on the building ( 2 ), with a high ground plan with perimeter supports.
  • FIG. 10 In the drawing of FIG. 10 itself, it can be seen how the solar roof panel is in its horizontal position, since the cables ( 10 - 10 ′) and ( 11 - 11 ′) are of the same length at the extremes A-B, C-D, as the motors ( 12 ) ( 13 ), have not yet generated any rotation to change the balance of the roof panel to any specific position.
  • Points A′ B′ C′ D′ have been drawn as rubber spheres ( 15 ) which avoid vibrations of the roof in its balance when secured to them.
  • telescopic supports have been deployed ( 16 ) which are set into the structure ( 2 ), overlapping the aforementioned (A′ B′ C′ D′) to join them to the corresponding points (A B C D).
  • the objective of this mechanism is that the aforementioned sets of points (A-A′; B-B′; C-C′; D-D′) can remain perfectly static as a result of the combined effects of the tensioning of the cables ( 10 - 10 ′) ( 11 - 11 ′) which by circulating through their interior compress the said telescopic tubes ( 16 ) once extended and secured in their maximum lengthened position, so as to achieve a stable, horizontal and shored up leveling of the solar roof panel.
  • FIG. 11 shows in a apilable dissected perspective, how the roof panel ( 1 ) shown as points, houses the structure centrally ( 8 ) and which rests on its ball joint ( 6 ) and which can be operated by means of points ( 9 ) A, B, C, D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
US13/144,266 2009-01-12 2010-01-07 Solar roof Abandoned US20120117890A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200900068A ES2345085B2 (es) 2009-01-12 2009-01-12 Cubierta solar de un edificio.
ESP200900068 2009-01-12
PCT/ES2010/000003 WO2010079249A1 (es) 2009-01-12 2010-01-07 Cubierta solar basculante auto-orientable

Publications (1)

Publication Number Publication Date
US20120117890A1 true US20120117890A1 (en) 2012-05-17

Family

ID=42316280

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/144,266 Abandoned US20120117890A1 (en) 2009-01-12 2010-01-07 Solar roof

Country Status (4)

Country Link
US (1) US20120117890A1 (es)
EP (1) EP2381189A4 (es)
ES (1) ES2345085B2 (es)
WO (1) WO2010079249A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197418A1 (en) * 2010-02-16 2011-08-18 Michael Charles Overturf String Solar Panel Mounting System
US20140259899A1 (en) * 2013-03-15 2014-09-18 Alain Poivet Movable building crown
US20150285536A1 (en) * 2012-11-19 2015-10-08 Ideematec Deutschland Gmbh Stabilizing System
US10277159B2 (en) 2008-11-17 2019-04-30 Kbfx Llc Finished multi-sensor units
US11063553B2 (en) 2008-11-17 2021-07-13 Kbfx Llc Solar carports, solar-tracking carports, and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI535984B (zh) * 2012-11-02 2016-06-01 Big Sun Energy Tech Inc Traction control device for Japanese solar power generation mechanism
TW201432119A (zh) * 2013-02-08 2014-08-16 Topper Sun Energy Technology 具有太陽能追日裝置之建築物體

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872854A (en) * 1974-02-07 1975-03-25 William H Raser Sunlight concentrator for energy conversion
US4930493A (en) * 1988-05-09 1990-06-05 Sallis Daniel V Multi-lever rim-drive heliostat
US5125608A (en) * 1989-04-25 1992-06-30 700 Solar Club, Inc. Photovoltaic panel support assembly
EP1256414A2 (fr) * 2001-05-10 2002-11-13 Fundacion Fatronik Système cinématique pour poupée de machine
US6559371B2 (en) * 2001-06-27 2003-05-06 Pinnacle West Capital Corp. High-concentration photovoltaic assembly for a utility-scale power generation system
US6820611B2 (en) * 2000-11-10 2004-11-23 Mikio Kinoshita Solar radiation concentrator and method of concentration solar radiation
US8100122B2 (en) * 2008-02-11 2012-01-24 Collins Kenneth D Solar roof tracker
US8278547B2 (en) * 2003-04-02 2012-10-02 P4P Holdings Llc Solar array support methods and systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425904A (en) * 1980-10-01 1984-01-17 The United States Of America As Represented By The United States Department Of Energy Tracking system for solar collectors
JPS57184852A (en) * 1981-05-06 1982-11-13 Ohbayashigumi Ltd Building installed with solar heat collector
US4762298A (en) * 1987-03-23 1988-08-09 The United States Of America As Represented By The United States Department Of Energy Support and maneuvering device
HU51370A (es) * 1988-01-22 1990-04-30
DE10015465A1 (de) * 2000-04-18 2001-12-20 Neumann Rene Vorrichtung zum Schwenken von Photovotaikmodulen und Sonnenkollektoren
ES2257949B1 (es) * 2004-11-30 2007-07-16 Fundacion Fatronix Seguidor solar basado en cinematica paralela.
DE102006022982B4 (de) * 2006-04-12 2014-09-04 Georg Kredler Vorrichtung zur Montierung wenigstens eines Solarmoduls zur wenigstens einachsigen Nachführung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872854A (en) * 1974-02-07 1975-03-25 William H Raser Sunlight concentrator for energy conversion
US4930493A (en) * 1988-05-09 1990-06-05 Sallis Daniel V Multi-lever rim-drive heliostat
US5125608A (en) * 1989-04-25 1992-06-30 700 Solar Club, Inc. Photovoltaic panel support assembly
US6820611B2 (en) * 2000-11-10 2004-11-23 Mikio Kinoshita Solar radiation concentrator and method of concentration solar radiation
EP1256414A2 (fr) * 2001-05-10 2002-11-13 Fundacion Fatronik Système cinématique pour poupée de machine
US6559371B2 (en) * 2001-06-27 2003-05-06 Pinnacle West Capital Corp. High-concentration photovoltaic assembly for a utility-scale power generation system
US8278547B2 (en) * 2003-04-02 2012-10-02 P4P Holdings Llc Solar array support methods and systems
US8100122B2 (en) * 2008-02-11 2012-01-24 Collins Kenneth D Solar roof tracker

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277159B2 (en) 2008-11-17 2019-04-30 Kbfx Llc Finished multi-sensor units
US11063553B2 (en) 2008-11-17 2021-07-13 Kbfx Llc Solar carports, solar-tracking carports, and methods
US11283393B2 (en) 2008-11-17 2022-03-22 Kbfx Llc Movable building crown
US20110197418A1 (en) * 2010-02-16 2011-08-18 Michael Charles Overturf String Solar Panel Mounting System
US20150285536A1 (en) * 2012-11-19 2015-10-08 Ideematec Deutschland Gmbh Stabilizing System
US9927150B2 (en) * 2012-11-19 2018-03-27 Ideematec Deutschland Gmbh Stabilizing system
US20140259899A1 (en) * 2013-03-15 2014-09-18 Alain Poivet Movable building crown

Also Published As

Publication number Publication date
WO2010079249A1 (es) 2010-07-15
EP2381189A1 (en) 2011-10-26
ES2345085B2 (es) 2011-11-15
ES2345085A1 (es) 2010-09-14
EP2381189A4 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
US20120117890A1 (en) Solar roof
US11063553B2 (en) Solar carports, solar-tracking carports, and methods
WO2015113445A1 (zh) 一种改进型光伏跟踪控制系统
US6563040B2 (en) Structure for supporting a photovoltaic module in a solar energy collection system
US8322332B2 (en) Self-erecting gimbal mounted solar radiation collectors
KR101275078B1 (ko) 솔라패널 어레이 지지시스템
US7992350B2 (en) Column borne building construction
US20110155218A1 (en) Solar installation
US4676045A (en) Post-tensioned steel structure
JP2010522430A (ja) ソーラーコレクタアセンブリ用チルトアセンブリ
EP3818312B1 (en) Solar-tracking carports
US10917036B2 (en) Tilting solar panel mount
JP2022079556A (ja) 建物
KR20200046302A (ko) 태양광을 이용한 에너지 하베스트 시스템
US20120012157A1 (en) System of mobile solar panels for construction
CN102235030B (zh) 超大跨度变截面预应力正放抽空四角锥网架及其制作方法
RU99802U1 (ru) Многофункциональное сейсмостойкое здание (два варианта)
US20220149774A1 (en) Rocking solar panel sun tracking mounting system
KR100882192B1 (ko) 태양광 추적식 에너지발전장치
JP3195783B1 (ja) シーソー式ソーラーシステム
EP3888241B1 (en) Apparatus for solar tracking
EP3129726A1 (en) Supporting structure for solar panels
JP2002076415A (ja) 太陽光発電設備
ES2969989T3 (es) Seguidor solar de un solo eje y modo de funcionamiento del mismo
KR20190096124A (ko) 태양광 발전 시스템

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSIDAD POLITECNICA DE MADRID, SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADELL ARGILES, JOSEP MARIA;VEGA SANCHEZ, SERGIO;BEDOYA FRUTOS, CESAR;AND OTHERS;SIGNING DATES FROM 20110720 TO 20110721;REEL/FRAME:027006/0955

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION