US20120067128A1 - Ultrasonic Testing System - Google Patents

Ultrasonic Testing System Download PDF

Info

Publication number
US20120067128A1
US20120067128A1 US13/273,804 US201113273804A US2012067128A1 US 20120067128 A1 US20120067128 A1 US 20120067128A1 US 201113273804 A US201113273804 A US 201113273804A US 2012067128 A1 US2012067128 A1 US 2012067128A1
Authority
US
United States
Prior art keywords
light
ultrasonic
laser
measurement area
receiver unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/273,804
Other languages
English (en)
Inventor
Dietmar Oberhoff
Guido Flohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20120067128A1 publication Critical patent/US20120067128A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2431Probes using other means for acoustic excitation, e.g. heat, microwaves, electron beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Definitions

  • the invention generally relates to ultrasonic testing systems.
  • Embodiments of the invention represent an improvement over the state of the art with respect to ultrasonic testing systems.
  • Embodiments of the invention relate to an ultrasonic testing system comprising at least one transmitting unit and at least one receiver unit, to a transmitting apparatus for an ultrasonic testing system for testing a test object, comprising at least one transmitting unit, to a receiving system for an ultrasonic testing system for testing a test object, comprising a laser for illuminating at least two measurement areas on the surface of the test object and comprising at least two receiver units for optically measuring the vibration of the surface of the test object and to a method for operating an ultrasonic testing system.
  • the methods of non-destructive ultrasonic testing and measurement engineering reveal a substantial potential for quality improvement.
  • ultrasonic testing an ultrasonic wave is generated in the test body and strip thickness and possibly imperfections in the material or on the surface of the test body can be established from the run time of the sound signal and interfering signals which may occur, in particular echoes from defects.
  • a reliable online testing of this type for possible internal and superficial defects or of the wall thickness measurement during the production process leads to a great economic advantage.
  • Information ascertained early on about the state of the product not only ensures the quality of the finished product, but also permits production-management measures, as a result of which productivity and quality can be substantially increased during further processing and the safety of the staff during the production process can be enhanced.
  • Typical parameters of rolled heavy plates are:
  • laser ultrasound is understood as meaning a contact-free ultrasonic measuring and testing method, characterised by ultrasonic excitation by means of a short laser pulse in connection with the optical—generally interferometric—detection of the ultrasonic deflection.
  • a laser pulse of typically a few nanoseconds duration strikes the surface of a material, part of its energy is absorbed while the rest is transmitted or reflected. Most of the absorbed energy is converted into heat, but a small amount is transported away in the form of an ultrasonic wave.
  • thermoelastic excitation can be fully explained by local absorption, heating and thermal expansion. It determines the ultrasound source when there is low laser pulse intensity. If the intensity is increased, adhering layers peel off, the material evaporates and plasma forms. This is the excitation mechanism with the greatest practical significance, where the influence of the surface in the case of steel remains restricted to a layer in the micrometer range.
  • the ultrasonic vibrations generated by laser pulses are characterised by a complex spatial and temporal structure.
  • interferometers are suitable for detecting the ultrasonic deflections which are typically within a range of a few angstroms to nanometers.
  • speckle effects which are inevitably associated with laser irradiation greatly limit the choice on industrial surfaces.
  • Delay time interferometers and Fabry-Perot interferometers have hitherto been available for fast-moving surfaces. The delay time interferometer is very large and is thus difficult to use in practice.
  • the efficiency of transforming optical energy into ultrasonic energy is very poor. Therefore, the power, for example 360 mJ/transmission pulse, of the transmission lasers in the known systems has to be very high, meaning the pulse repetition rate is low, for example below 100 Hz, because the available laser power is distributed over the generated transmission pulses.
  • the pulse repetition rate is low, for example below 100 Hz, because the available laser power is distributed over the generated transmission pulses.
  • signals are received which have a poor signal/noise ratio at a low pulse repetition rate.
  • the transmitting unit in an ultrasonic testing system generates a spark gap which generates an ultrasonic vibration on the surface and/or in the test object, and that the receiver unit optically measures the vibration of the surface of the test object.
  • a spark gap i.e., plasma produced by an electric discharge, is generated to produce the ultrasound.
  • the spark gap is ignited and transmitted between the transmitting unit and the surface of the test object.
  • the plasma of the spark gap, produced during the discharge, impacts on the surface and generates the pressure pulse required for the ultrasonic measurement on the surface.
  • the transmitting unit has at least one ignition coil and an electronic control system for igniting the ignition coil at predetermined times.
  • the electronic system required for this purpose in particular an ignition coil or an ignition capacitor and electronic control system can be produced very economically and thus can be configured in multiple ways.
  • the efficiency of the transformation from electrical energy into ultrasonic energy is much better compared to the transformation of optical energy into ultrasonic energy. For this reason, a multitude of transmitting units, in particular more than 100 transmitting units can be used in order to achieve a sufficiently large test width.
  • the electromagnetic pulse generated during transmission does not adversely affect the optical system of the receiver unit and thus it can be combined effectively with the spark gap.
  • the light of the spark can preferably be shadowed by a suitable screen between the strike region of the spark and the measurement area of the optical receiver unit to reduce any influence on the measurement.
  • a commercially available laser-ultrasonic receiving system for receiving the ultrasound, a commercially available laser-ultrasonic receiving system can be used in particular which is characterized in that an illumination laser is provided, the light of which illuminates the surface in a measurement area, the receiver unit receiving light which is incident in the receiver unit from the measurement area.
  • an illumination laser is provided, the light of which illuminates the surface in a measurement area, the receiver unit receiving light which is incident in the receiver unit from the measurement area.
  • a multitude of receiver units can be provided, in particular more than 100 receiver units. Thus greater test widths can also be obtained, the multitude of receiver units preferably being adapted to the multitude of transmitting units.
  • a preferred embodiment is characterized by an illumination laser and measurement areas, where a measurement area is associated with a respective receiver unit, so that the receiver unit receives light which is incident in the receiver unit from the measurement area, a light guiding system radiating the light of the laser in a first position of the light guiding system into a first measurement area and radiating the light of the laser in a second position of the light guiding system into a second measurement area.
  • a measurement area is associated with a respective receiver unit, so that the receiver unit receives light which is incident in the receiver unit from the measurement area, a light guiding system radiating the light of the laser in a first position of the light guiding system into a first measurement area and radiating the light of the laser in a second position of the light guiding system into a second measurement area.
  • a light guiding system can split the light of the laser and radiate it into one measurement area and into another measurement area, in particular into many different measurement areas.
  • a laser-ultrasonic receiving system can be connected to many receiving lenses via optical multiplexers or matrix switches with optical fibers.
  • the receiver unit comprises an interferometer, or a light guiding system transmits light, which is incident in the receiver unit, to an interferometer.
  • a transmitting system with a relatively high efficiency for example a spark gap
  • the primary power of the transmitting system can be much smaller, the pulse repetition rate can be increased and the system costs can be significantly reduced.
  • Laser-optical ultrasonic receiving systems operate with illumination lasers, for the most part Nd: YAG lasers, in continuous wave mode with a relatively low power of approximately 500 mW ⁇ 2 W.
  • the receiving system can be expensive with a single test channel, i.e. a receiver unit which considers only a single measurement area, compared to the conventional ultrasound method. Due to the use of optical multiplexers, it is possible to use a laser-optical ultrasonic receiving system for N receiving sites or receiver units. This allows the construction of an economically-priced ultrasonic system because the price per receiving channel or receiver unit is very low.
  • the maximum SNR signal is also limited by the noise of the receiving illumination laser.
  • the amplitude noise and the phase noise of the receiving laser are the fundamental noise sources.
  • Fabry-Perot interferometers with one resonator achieve an SNR of approximately 26 dB.
  • Fabry-Perot interferometers with two resonators achieve an SNR of approximately 45 dB, because the amplitude noise can be eliminated by a differential measuring method.
  • the systems with two resonators can be used for the testing method with an average error susceptibility.
  • the systems with a resonator are in fact only suitable for wall thickness measurement.
  • a laser-ultrasonic receiving system which uses a photorefractive crystal instead of an optical interferometer.
  • the photorefractive effect describes the light-induced refractive index change in photoconductive, electro-optical crystals.
  • This receiving system is particularly suitable for use under operating conditions.
  • This interferometer can be constructed in a very compact manner, reacts in a less sensitive way to environmental shocks and does not require an active stabilisation.
  • Optical switches operate by different methods.
  • An electromechanical method operating with microscopically small mirrors Micro Electromechanical Mirrors (MEM).
  • MEM Micro Electromechanical Mirrors
  • the axes of the micro mirrors are tilted.
  • Another method operates with transparent mirrors.
  • the mirrors can reflect or can let the light signals through as a non-reflecting disc.
  • the described testing method allows continuous and automatic quality testing at a high speed in a harsh industrial environment.
  • the improved measuring and testing method makes it possible for the production processes to be carried out within relatively narrow limits, which will lead to an increase in quality and a greater output.
  • the latter is one of the most efficient methods for increasing the sustainability of industrial products, since as a result, less material has to be produced and thus raw material and energy are saved and emissions are prevented.
  • the development can be used by all steel manufacturers and producers of nonferrous metals.
  • the transmitting apparatus for an ultrasonic testing system for testing a test object is configured with at least one transmitting unit so that the transmitting unit comprises means for generating a spark gap, the spark gap generating an ultrasonic vibration on the surface and/or in the test object.
  • the generation of ultrasound by spark transmission onto the test object is more effective, because the production as well as the operation of the transmitting apparatus is cheaper compared to the method of laser-ultrasound generation or piezo-ultrasound generation known from the prior art.
  • the strong pulse of the plasma of the spark can be controlled very precisely and both the time and duration can be set exactly. In this respect, the accuracy of the switching time and the switching duration can be adjusted within wide limits.
  • the transmitting unit preferably comprises an ignition coil and an electronic control system for igniting the ignition coil at predetermined times.
  • This embodiment of the transmitting unit can be advantageously connected on the low voltage side, so that the electronic system outlay is low.
  • the transmitting unit can also comprise an ignition capacitor and an electronic control system for charging and discharging the ignition capacitor at predetermined times.
  • the high voltage has to be quickly switched, which necessitates a greater expense, the switching accuracy is further increased by the configuration.
  • the receiving system for an ultrasonic testing system for testing a test object comprises a laser for illuminating at least two measurement areas on the surface of the test object and at least two receiver units for optically measuring the vibration of the surface of the test object. Furthermore, an interferometer and a receiving light guiding system are provided, said receiving light guiding system, in different positions, guides light in each case from different measurement areas onto the interferometer. In this respect, the interferometer and the receiving light guiding system form a receiver unit in respectively one of the positions.
  • a multi-channel arrangement is realised in that a part of the receiving light guiding system is associated in one position with each measurement area.
  • this part can be selectively controlled so that in this position of the receiving light guiding system, the light which is picked up is guided onto the interferometer.
  • the light guiding system may include any optical components, for example mirror arrangements.
  • At least two light guides which each capture one of the measurement areas and an optical switch is provided which can guide light from respectively one of the light guides onto the interferometer.
  • an optical switch is provided which can guide light from respectively one of the light guides onto the interferometer.
  • the light picked up by a light guide from a specific measurement area is then guided onto the interferometer.
  • This type of multiplexing makes it possible to successively survey a large number of measurement areas.
  • a light guiding system radiates the light of the laser in different positions into different measurement areas.
  • the laser light can be guided by a light guiding system onto the test body such that laser light is only radiated onto that measurement area from which light is currently also received by the receiving light guiding system.
  • the laser power can be intentionally employed where the light is used. Consequently, either an overall lower laser power can be used, or an available laser power can be used more effectively.
  • the light guiding system may include any optical components, for example mirror arrangements.
  • At least two light guides are preferably used which are associated with one of the measurement areas each, and an optical switch guides the laser light selectively into each one of the light guides.
  • This effectively operating illumination system can distribute the laser light by fast switching procedures such that, for example, it is possible to process the above-mentioned 300 test tracks each with a 100 Hz pulse repetition rate.
  • the previously described transmitting apparatus according to the second teaching of the present invention and the receiving system according to the third teaching of the present invention can be used together in an ultrasonic testing system of the type described above.
  • an ultrasonic testing system of the type described above Through the use of two coordinated optical systems which in particular allow an optical multi-channel system by means of optical switches, it is possible to test large bandwidths at fast running times.
  • Embodiments of the invention also relate to a method for operating a previously mentioned ultrasonic testing system according to embodiments of the invention, in which method ultrasonic waves are generated by means of spark gaps in a test body using a transmitting apparatus comprising at least two parallel-operating transmitting units, in which method the ultrasonic signal is measured by a receiving system comprising at least two optical receiver units, in each case one transmitting unit and one receiver unit are associated with one another, the mutually associated transmitting unit and receiver unit are activated under temporal coordination with one another, and a grid of measured points is surveyed by a serial activation of the transmitting apparatus and the receiver unit on the test body.
  • FIG. 1 shows an exemplary embodiment of an ultrasonic testing system according to an embodiment of the invention with a transmitting apparatus according to an embodiment of the invention and a receiving system according to an embodiment of the invention;
  • FIGS. 2-4 show graphic illustrations of measuring signals.
  • FIG. 1 shows an ultrasonic testing system according to an embodiment of the invention which is provided with a transmitting apparatus, according to an embodiment of the invention, and a receiving system, according to an embodiment of the invention. Furthermore, a method, according to an embodiment of the invention, can be carried out using this ultrasonic testing system.
  • the measuring arrangement illustrated in FIG. 1 firstly comprises a control 2 which performs and coordinates the control of the components, described in the following, of the ultrasonic testing system.
  • the transmitting apparatus 4 comprises transmitting electronics 6 , an ignition coil 8 and an electrode 10 which together form a transmitting apparatus.
  • the ignition coil 8 together with the electrode 10 , presents means for generating a spark gap 12 , wherein the spark gap 12 generates an ultrasonic vibration on the surface and/or within the test object 14 .
  • the control 2 transmits a control signal to the transmitting electronics 6 via a line 16 , as a result of which a precise temporal sequence, in particular with regard to the ignition time and ignition duration, is achieved for generating the spark gap 12 .
  • the transmitting electronics 6 interrupts the direct current on the primary side of a transformer arranged in the ignition coil, as a result of which a voltage sufficient for generating the spark gap 12 is generated on the secondary side by the breaking-down magnetic field.
  • an ignition coil arrangement it is also possible to provide an ignition capacitor, although the voltage generated by the control electronics 6 must be sufficient per se in order to charge the capacitor to such an extent that it can ignite the spark gap.
  • FIG. 1 three schematic planes 18 indicate that a multitude of transmitting units is arranged parallel next to one another.
  • the term “plane” is not to be understood as meaning that those arranged there are arranged geometrically in one plane, but that each “plane” comprises a separate arrangement and the different arrangements are arranged parallel to one another.
  • each plane 18 Provided in each plane 18 are transmitting electronics 6 , an ignition coil 8 and an electrode 10 which are controlled by the control 2 via one of the lines 16 .
  • the transmitting units arranged in parallel to one another can generate in series spark gaps 12 to induce ultrasonic pulses at different points on the surface of the test body 14 .
  • the transmitting apparatus can include one or more transmitting units, depending on the requirements imposed on the test body to be measured.
  • FIG. 1 also shows a receiving system for an ultrasonic testing system.
  • a laser 20 generates a laser beam which is inducted by an optical switch 22 into a light guide 24 , or an optical waveguide (OWG).
  • the light guide 24 transmits the light onto a measurement area 30 in a first plane 18 by means of a suitable optical system 26 and 28 .
  • the light reflected from the measurement area 30 is coupled out of the light path by a beam splitter 32 and is inducted into a light guide 36 by a suitable lens 34 .
  • An optical switch 38 then couples the light out of the light guide 36 and inducts it into an interferometer 40 .
  • a detector 42 generates an output signal which is transmitted into an evaluation unit 44 . There, the signal is evaluated in the conventional manner with A/D transformation and real time signal processing, the result of which is transferred to a computer 46 .
  • phase- or frequency-modulated light vibrations are then transformed interferometrically into an amplitude-modulated signal which can be measured by a photodetector.
  • the previously described construction is provided in a large number of planes 16 , in each of which a previously described receiver unit is arranged in order to be able to capture a multitude of measurement areas 30 .
  • the control 2 then controls via a line 48 the two optical switches 22 and 38 such that they assume different positions.
  • the laser light is inducted into the light guide 24 at the same time as the reflected light, picked up by the light guide 36 , is guided onto the interferometer 40 . Therefore, both light guides 22 and 38 are “active” at the same time.
  • FIG. 1 also shows the cooperation of the transmitting apparatus and the receiving system of the ultrasonic testing system.
  • the control 2 takes over the synchronisation of the transmitting apparatus and the receiving system.
  • the transmitting electronics 6 is activated in one of the planes 18 in order to generate by means of the ignition coil 8 and the electrode 10 a spark gap 12 with a defined start and finish time.
  • the spark gap 12 induces an ultrasonic pulse in the test body 14 .
  • the receiving system and in particular the optical switches 22 and 38 are activated such that the receiving system is active in the same plane 18 and measures a surface vibration based on the ultrasonic signal.
  • the components of the receiving system in the respective plane 18 are left switched to active until a period of time has elapsed which is long enough for a run time measurement. This time period depends on the material parameters and on the thickness of the test body and is, for example 30 to 50 ⁇ s.
  • both the transmitting apparatus and the receiving system can be activated in different planes successively in time. Due to the time sequence of the activation of the planes, adjacently located measurement areas can be captured. Thus a grid of measurement areas is detected successively. If the test body moves transversely to the arrangement of the planes or if the transmitting and receiving systems move over the body to be tested and if the width of the arrangement of the planes or the movement amplitude of the transmitting and receiving systems substantially corresponds to the width of the test body, then the entire test body can be successively examined in a narrow grid of measurement areas.
  • FIG. 1 also shows that a screen 50 is provided between the spark gap 12 and the measurement area 30 , which screen 50 screens the intensive light, occurring during generation of the spark gap 12 , from the measurement area 30 .
  • the signal-to-noise ratio can be further improved by the use of suitable optical band filters which preferably only allow through the wavelength range of the laser light.
  • suitable optical band filters which preferably only allow through the wavelength range of the laser light.
  • such an optical filter can be arranged between the beam splitter 32 and the lens 34 .
  • FIGS. 2 to 4 show examples of signals which are recorded during a run time measurement.
  • the output signal of the interferometer is shown at the top in each case, while the lower curve shows the envelope (for example the quadrature-demodulated signal or the low pass-filtered course of the upper measurement curve).
  • the labelling of the x-axis of the diagrams represents the sampling points of the signal which correspond to an arbitrary unit of time.
  • the y-axis represents the respective intensity of the curve in arbitrary units.
  • FIG. 2 shows an idealised, noise-free and undisturbed signal.
  • a vibration can be seen at regular intervals, the amplitude of which becomes smaller from one incidence to the next.
  • These vibrations are generated by the ultrasonic signal which is repeatedly reflected on the surface of the test body opposite the observed surface. As a result of repeatedly passing through the test body, the amplitude of the signal decreases.
  • the signal path shown in FIG. 2 is undisturbed, because only the regularly occurring vibration signals arise.
  • the thickness of the test body can be calculated from the intervals of the maxima in the lower curve, when the speed of sound inside the test body is known.
  • FIG. 3 shows an idealized, noise-free signal which this time is disturbed. It is possible to see at regular intervals firstly a vibration, as in FIG. 2 , the amplitude of which becomes smaller from one incidence to another. Between each pair of vibration cycles, there are respectively smaller signals, which indicates a shorter run time of the ultrasonic signal inside the test body. Such an additional signal can be the result of a disturbance inside the test body which produces a reflection of the ultrasonic wave in the region between the two surfaces. Thus, this additional signal or its frequency and amplitude of occurrence can be used as a measure of the quality of the test body.
  • FIG. 4 shows the signal represented in FIG. 3 with a superimposed noise, so that these measurement curves represent a realistic case. It should be recognised that the determination of the maxima is complicated by the noise. For this reason, when the interferometer is selected, attention must always be paid to the signal-to-noise ratio to be achieved thereby.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
US13/273,804 2009-04-15 2011-10-14 Ultrasonic Testing System Abandoned US20120067128A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009017106.1 2009-04-15
DE102009017106 2009-04-15
EPPCT/EP2010/054954 2010-04-15
PCT/EP2010/054954 WO2010119094A2 (de) 2009-04-15 2010-04-15 Ultraschallprüfsystem

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054954 Continuation WO2010119094A2 (de) 2009-04-15 2010-04-15 Ultraschallprüfsystem

Publications (1)

Publication Number Publication Date
US20120067128A1 true US20120067128A1 (en) 2012-03-22

Family

ID=42982926

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/273,804 Abandoned US20120067128A1 (en) 2009-04-15 2011-10-14 Ultrasonic Testing System

Country Status (10)

Country Link
US (1) US20120067128A1 (ru)
EP (1) EP2419710B1 (ru)
JP (1) JP5128004B2 (ru)
KR (1) KR20120002535A (ru)
CN (1) CN102395872B (ru)
BR (1) BRPI1016098A2 (ru)
CA (1) CA2757715A1 (ru)
ES (1) ES2403687T3 (ru)
RU (1) RU2528578C2 (ru)
WO (1) WO2010119094A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111103A1 (en) * 2009-07-28 2012-05-10 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
US20120304774A1 (en) * 2010-02-26 2012-12-06 Masahito Ishioka Laser ultrasonic flaw detection apparatus
US20130160552A1 (en) * 2010-08-27 2013-06-27 Hitachi, Ltd. Internal defect inspection method and apparatus for the same
CN110333285A (zh) * 2019-07-04 2019-10-15 大连海洋大学 基于变分模态分解的超声兰姆波缺陷信号识别方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20145205L (fi) * 2014-03-04 2015-09-05 Photono Oy Menetelmä ja järjestelmä silmänpainemittauksiin
RU2635851C2 (ru) * 2016-01-11 2017-11-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" (ФГБОУ ВО ИрГУПС) Способ неконтактной импульсной ультразвуковой дефектоскопии
WO2018104783A2 (en) 2016-12-07 2018-06-14 Abb Schweiz Ag Systems and method for inspecting a machine
CN109212794A (zh) * 2018-10-17 2019-01-15 深圳市华星光电技术有限公司 一种液晶气泡分析方法及分析装置
CN111998763B (zh) * 2020-08-27 2021-04-16 四川大学 高温电磁超声波金属体厚度在线监测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782177A (en) * 1972-04-20 1974-01-01 Nasa Method and apparatus for non-destructive testing
US4353256A (en) * 1981-01-19 1982-10-12 The Electricity Council Non-contact measurement of physical properties of continuously moving metal strip
US4567769A (en) * 1984-03-08 1986-02-04 Rockwell International Corporation Contact-free ultrasonic transduction for flaw and acoustic discontinuity detection
US4633715A (en) * 1985-05-08 1987-01-06 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Laser heterodyne interferometric method and system for measuring ultrasonic displacements
CN1024846C (zh) * 1989-10-05 1994-06-01 住友电气工业株式会社 传导激光光束的光纤
CA2013406C (en) * 1990-03-29 1998-06-16 Rene Heon Optical detection of a surface motion of an object
JP3101099B2 (ja) * 1992-10-30 2000-10-23 科学技術振興事業団 超音波によるロボットの3次元位置・姿勢計測装置及びその計測方法
US5505090A (en) * 1993-11-24 1996-04-09 Holographics Inc. Method and apparatus for non-destructive inspection of composite materials and semi-monocoque structures
FR2752325B1 (fr) * 1996-08-06 1998-10-09 Cogema Procede et dispositif de depouissierage de pastilles de combustible nucleaire au moyen d'un faisceau laser
EP1679513A3 (en) * 1996-11-22 2007-01-10 Perceptron, Inc. Physical parameter measuring apparatus and method thereof
US6543288B1 (en) * 1998-11-04 2003-04-08 National Research Council Of Canada Laser-ultrasonic measurement of elastic properties of a thin sheet and of tension applied thereon
US6907799B2 (en) * 2001-11-13 2005-06-21 Bae Systems Advanced Technologies, Inc. Apparatus and method for non-destructive inspection of large structures
JP4094503B2 (ja) * 2003-07-25 2008-06-04 株式会社東芝 レーザー超音波検査装置および検査方法
CN102253120B (zh) * 2006-06-20 2014-12-03 东芝三菱电机产业系统株式会社 组织材质测定装置及组织材质测定方法
DE102006061003B4 (de) * 2006-12-22 2009-03-26 Mähner, Bernward Vorrichtung zum Prüfen eines Prüfobjekts, insbesondere eines Reifens, mittels eines zerstörungsfreien Messverfahrens
RU2337353C1 (ru) * 2006-12-27 2008-10-27 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС) Способ неконтактной ультразвуковой диагностики сварных соединений
DE102007009040C5 (de) * 2007-02-16 2013-05-08 Bernward Mähner Vorrichtung und Verfahren zum Prüfen eines Reifens, insbesondere mittels eines interferometrischen Messverfahrens
JP5410651B2 (ja) * 2007-02-22 2014-02-05 株式会社東芝 表面劣化検出装置およびその方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111103A1 (en) * 2009-07-28 2012-05-10 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
US8813552B2 (en) * 2009-07-28 2014-08-26 Toyota Jidosha Kabushiki Kaisha Detecting apparatus
US20120304774A1 (en) * 2010-02-26 2012-12-06 Masahito Ishioka Laser ultrasonic flaw detection apparatus
US8978478B2 (en) * 2010-02-26 2015-03-17 Mitsubishi Heavy Industries, Ltd. Laser ultrasonic flaw detection apparatus
US20130160552A1 (en) * 2010-08-27 2013-06-27 Hitachi, Ltd. Internal defect inspection method and apparatus for the same
US9134279B2 (en) * 2010-08-27 2015-09-15 Hitachi, Ltd. Internal defect inspection method and apparatus for the same
CN110333285A (zh) * 2019-07-04 2019-10-15 大连海洋大学 基于变分模态分解的超声兰姆波缺陷信号识别方法

Also Published As

Publication number Publication date
ES2403687T3 (es) 2013-05-21
CN102395872A (zh) 2012-03-28
WO2010119094A3 (de) 2011-03-31
CA2757715A1 (en) 2010-10-21
EP2419710B1 (de) 2013-02-13
JP2012524250A (ja) 2012-10-11
BRPI1016098A2 (pt) 2017-07-18
WO2010119094A2 (de) 2010-10-21
JP5128004B2 (ja) 2013-01-23
RU2528578C2 (ru) 2014-09-20
KR20120002535A (ko) 2012-01-05
CN102395872B (zh) 2013-11-13
EP2419710A2 (de) 2012-02-22
RU2011146131A (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
US20120067128A1 (en) Ultrasonic Testing System
US5608166A (en) Generation and detection of ultrasound with long pulse lasers
US4619529A (en) Interferometric contact-free measuring method for sensing motional surface deformation of workpiece subjected to ultrasonic wave vibration
JP4386709B2 (ja) レーザ超音波による材料非破壊検査方法及び装置
JP4113654B2 (ja) レーザ超音波検査装置
JP4094503B2 (ja) レーザー超音波検査装置および検査方法
Hayashi et al. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate
CA2810630C (en) Measuring apparatus and measuring method for metallic microstructures or material properties
Pierce et al. Surface-bonded optical fibre sensors for the inspection of CFRP plates using ultrasonic Lamb waves
US7821645B2 (en) Microstructural feature and material property monitoring device for metallic material
CN102162795B (zh) 一种全方位在线检测带钢缺陷的方法
Hosoya et al. Measurements of S0 mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave
Hayashi High-speed non-contact defect imaging for a plate-like structure
WO1998048252A1 (en) Laser detection of material thickness
MX2011010846A (es) Sistema de prueba ultrasonica.
JPH10260163A (ja) レーザー超音波検査装置
JP4665000B2 (ja) レーザー超音波検査装置
KR20050022585A (ko) 레이저 여기 집속형 램파를 이용한 판재 결함 검출 시스템
WO2004003541A1 (en) Optoacoustic measurement of material properties by a two-point laser-induced generation of ultrasonic waves
Požar et al. Interferometric determination of the high-intensity laser-pulse-material interaction site
WO2002103347A2 (en) Grain-size measurement
KR101538311B1 (ko) 레이저 초음파 측정 장치
Bouchard et al. J.-P. Monchalin'", J.-D. Aussel", R. Héon*, JF Bussière
JP2011064697A (ja) レーザー超音波検査装置
JPH0376418B2 (ru)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION