US20120028264A1 - Method for using gene expression to determine prognosis of prostate cancer - Google Patents

Method for using gene expression to determine prognosis of prostate cancer Download PDF

Info

Publication number
US20120028264A1
US20120028264A1 US13/190,391 US201113190391A US2012028264A1 US 20120028264 A1 US20120028264 A1 US 20120028264A1 US 201113190391 A US201113190391 A US 201113190391A US 2012028264 A1 US2012028264 A1 US 2012028264A1
Authority
US
United States
Prior art keywords
hsa
mir
gene
expression level
recurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/190,391
Inventor
Steven Shak
Frederick L. Baehner
Tara Maddala
Mark Lee
Robert J. Pelham
Wayne Cowens
Diana Cherbavaz
Michael C. Kiefer
Michael Crager
Audrey Goddard
Joffre B. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mdxhealth SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/190,391 priority Critical patent/US20120028264A1/en
Assigned to GENOMIC HEALTH, INC. reassignment GENOMIC HEALTH, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COWENS, WAYNE, BAKER, JOFFRE B., PELHAM, ROBERT J., GODDARD, AUDREY, KIEFER, MICHAEL C., LEE, MARK, SHAK, STEVEN, BAEHNER, FREDERICK L., CHERBAVAZ, DIANA, CRAGER, MICHAEL, MADDALA, TARA
Publication of US20120028264A1 publication Critical patent/US20120028264A1/en
Priority to US14/887,605 priority patent/US10260104B2/en
Priority to US16/282,540 priority patent/US20190249260A1/en
Priority to US16/800,292 priority patent/US20200255911A1/en
Assigned to MDXHEALTH SA reassignment MDXHEALTH SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENOMIC HEALTH, INC.
Priority to US17/820,987 priority patent/US20220396842A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present disclosure relates to molecular diagnostic assays that provide information concerning methods to use gene expression profiles to determine prognostic information for cancer patients.
  • the present disclosure provides genes and microRNAs, the expression levels of which may be used to determine the likelihood that a prostate cancer patient will experience a local or distant cancer recurrence.
  • Prostate cancer is the most common solid malignancy in men and the second most common cause of cancer-related death in men in North America and the European Union (EU). In 2008, over 180,000 patients will be diagnosed with prostate cancer in the United States alone and nearly 30,000 will die of this disease. Age is the single most important risk factor for the development of prostate cancer, and applies across all racial groups that have been studied. With the aging of the U.S. population, it is projected that the annual incidence of prostate cancer will double by 2025 to nearly 400,000 cases per year.
  • PSA prostate-specific antigen
  • This application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.
  • the likelihood of cancer recurrence could be described in terms of a score based on clinical or biochemical recurrence-free interval.
  • this application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained to identify a risk classification for a prostate cancer patient.
  • patients may be stratified using expression level(s) of one or more genes or microRNAs associated, positively or negatively, with cancer recurrence or death from cancer, or with a prognostic factor.
  • the prognostic factor is Gleason pattern.
  • the biological sample may be obtained from standard methods, including surgery, biopsy, or bodily fluids. It may comprise tumor tissue or cancer cells, and, in some cases, histologically normal tissue, e.g., histologically normal tissue adjacent the tumor tissue. In exemplary embodiments, the biological sample is positive or negative for a TMPRSS2 fusion.
  • expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a particular clinical outcome in prostate cancer are used to determine prognosis and appropriate therapy.
  • the genes disclosed herein may be used alone or arranged in functional gene subsets, such as cell adhesion/migration, immediate-early stress response, and extracellular matrix-associated. Each gene subset comprises the genes disclosed herein, as well as genes that are co-expressed with one or more of the disclosed genes. The calculation may be performed on a computer, programmed to execute the gene expression analysis.
  • the microRNAs disclosed herein may also be used alone or in combination with any one or more of the microRNAs and/or genes disclosed.
  • the molecular assay may involve expression levels for at least two genes.
  • the genes, or gene subsets, may be weighted according to strength of association with prognosis or tumor microenvironment.
  • the molecular assay may involve expression levels of at least one gene and at least one microRNA.
  • the gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.
  • FIG. 1 shows the distribution of clinical and pathology assessments of biopsy Gleason score, baseline PSA level, and clinical T-stage.
  • tumor tissue sample refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • a tumor tissue sample may comprise multiple biological elements, such as one or more cancer cells, partial or fragmented cells, tumors in various stages, surrounding histologically normal-appearing tissue, and/or macro or micro-dissected tissue.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • Examples of cancer in the present disclosure include cancer of the urogenital tract, such as prostate cancer.
  • the “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
  • prostate cancer is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.
  • T1 clinically inapparent tumor not palpable or visible by imaging
  • T1a tumor incidental histological finding in 5% or less of tissue resected
  • T1b tumor incidental histological finding in more than 5% of tissue resected
  • T1c tumor identified by needle biopsy
  • T2 tumor confined within prostate
  • T2a tumor involves one half of one lobe or less
  • T2b tumor involves more than half of one lobe, but not both lobes
  • T2c tumor involves both lobes
  • T3 tumor extends through the prostatic capsule
  • T3a extracapsular extension (unilateral or bilateral)
  • T3b tumor invades seminal vesicle(s)
  • T4 tumor is fixed or invades adjacent structures other than seminal ves
  • the Gleason Grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy.
  • a Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time.
  • Gleason scores comprise grades of the two most common tumor patterns. These patterns are referred to as Gleason patterns 1-5, with pattern 1 being the most well-differentiated. Most have a mixture of patterns. To obtain a Gleason score or grade, the dominant pattern is added to the second most prevalent pattern to obtain a number between 2 and 10.
  • the Gleason Grades include: G1: well differentiated (slight anaplasia) (Gleason 2-4); G2: moderately differentiated (moderate anaplasia) (Gleason 5-6); G3-4: poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10).
  • Stage groupings Stage I: T1a N0 M0 G1; Stage II: (T1a N0M0G2-4) or (T1b, c, T1, T2, N0 M0 Any G); Stage III: T3 N0 M0 Any G; Stage 1V: (T4 N0 M0 Any G) or (Any T N1 M0 Any G) or (Any T Any N M1 Any G).
  • tumor tissue refers to a biological sample containing one or more cancer cells, or a fraction of one or more cancer cells.
  • biological sample may additionally comprise other biological components, such as histologically appearing normal cells (e.g., adjacent the tumor), depending upon the method used to obtain the tumor tissue, such as surgical resection, biopsy, or bodily fluids.
  • AUA risk group refers to the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, which clinicians use to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy.
  • AUA American Urological Association
  • adjacent tissue refers to histologically “normal” cells that are adjacent a tumor.
  • the AT expression profile may be associated with disease recurrence and survival.
  • non-tumor prostate tissue refers to histologically normal-appearing tissue adjacent a prostate tumor.
  • Prognostic factors are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, increased tumor stage, PSA level at presentation, and Gleason grade or pattern. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
  • prognosis is used herein to refer to the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as prostate cancer.
  • a “good prognosis” would include long term survival without recurrence and a “bad prognosis” would include cancer recurrence.
  • expression level refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.
  • gene product or “expression product” are used herein to refer to the RNA (ribonucleic acid) transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts.
  • a gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.
  • RNA transcript refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.
  • microRNA is used herein to refer to a small, non-coding, single-stranded RNA of ⁇ 18-25 nucleotides that may regulate gene expression.
  • RISC RNA-induced silencing complex
  • the complex binds to specific mRNA targets and causes translation repression or cleavage of these mRNA sequences.
  • each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.
  • the terms “correlated” and “associated” are used interchangeably herein to refer to the association between two measurements (or measured entities).
  • the disclosure provides genes, gene subsets, microRNAs, or microRNAs in combination with genes or gene subsets, the expression levels of which are associated with tumor stage.
  • the increased expression level of a gene or microRNA may be positively correlated (positively associated) with a good or positive prognosis.
  • Such a positive correlation may be demonstrated statistically in various ways, e.g. by a cancer recurrence hazard ratio less than one.
  • the increased expression level of a gene or microRNA may be negatively correlated (negatively associated) with a good or positive prognosis. In that case, for example, the patient may experience a cancer recurrence.
  • good prognosis or “positive prognosis” as used herein refer to a beneficial clinical outcome, such as long-term survival without recurrence.
  • bad prognosis or “negative prognosis” as used herein refer to a negative clinical outcome, such as cancer recurrence.
  • risk classification means a grouping of subjects by the level of risk (or likelihood) that the subject will experience a particular clinical outcome.
  • a subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk.
  • a “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
  • long-term survival is used herein to refer to survival for a particular time period, e.g., for at least 5 years, or for at least 10 years.
  • recurrence is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer.
  • prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles.
  • the cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area.
  • Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs.
  • Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence detected by, for example, sustained follow-up prostate-specific antigen (PSA) levels ⁇ 0.4 ng/mL or the initiation of salvage therapy as a result of a rising PSA level.
  • PSA prostate-specific antigen
  • cRFI clinical recurrence-free interval
  • biochemical recurrence-free interval bRFI
  • bRFI biological recurrence-free interval
  • OS Overall Survival
  • PCSS Prostate Cancer-Specific Survival
  • upgrading or “upstaging” as used herein refers to a change in Gleason grade from 3+3 at the time of biopsy to 3+4 or greater at the time of radical prostatectomy (RP), or Gleason grade 3+4 at the time of biopsy to 4+3 or greater at the time of RP, or seminal vessical involvement (SVI), or extracapsular involvement (ECE) at the time of RP.
  • RP radical prostatectomy
  • SVI seminal vessical involvement
  • ECE extracapsular involvement
  • microarray refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.
  • polynucleotide generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • polynucleotide specifically includes cDNAs.
  • the term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases.
  • DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases are included within the term “polynucleotides” as defined herein.
  • polynucleotide embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
  • oligonucleotide refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
  • Ct refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.
  • qPCR quantitative polymerase chain reaction
  • Cp refers to “crossing point.”
  • the Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value.
  • the Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
  • threshold or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. D. Cox, Journal of the Royal Statistical Society, Series B 34:187-220 (1972). Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.
  • amplicon refers to pieces of DNA that have been synthesized using amplification techniques, such as polymerase chain reactions (PCR) and ligase chain reactions.
  • PCR polymerase chain reactions
  • ligase chain reactions ligase chain reactions
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5 ⁇ SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 ⁇ Denhardt's solution, sonicated salmon sperm DNA (50 ⁇ g/ml), 0.1% SDS, and 10% dextran sulfate at
  • Modely stringent conditions may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above.
  • washing solution and hybridization conditions e.g., temperature, ionic strength and % SDS
  • An example of moderately stringent conditions is overnight incubation at 37° C.
  • splicing and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.
  • co-express and “co-expressed”, as used herein, refer to a statistical correlation between the amounts of different transcript sequences across a population of different patients. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized expression data. A gene is said to be co-expressed with a particular disclosed gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6.
  • a “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information.
  • the minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage.
  • CPU central processing unit
  • the data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.
  • Record data programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.
  • a “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it.
  • a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable).
  • suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based).
  • a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.
  • active surveillance and “watchful waiting” mean closely monitoring a patient's condition without giving any treatment until symptoms appear or change.
  • watchful waiting is usually used in older men with other medical problems and early-stage disease.
  • the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including pelvic lymphadenectomy, radical prostatectomy, transurethral resection of the prostate (TURP), excision, dissection, and tumor biopsy/removal.
  • the tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.
  • the term “therapy” includes radiation, hormonal therapy, cryosurgery, chemotherapy, biologic therapy, and high-intensity focused ultrasound.
  • TMPRSS fusion and “TMPRSS2 fusion” are used interchangeably and refer to a fusion of the androgen-driven TMPRSS2 gene with the ERG oncogene, which has been demonstrated to have a significant association with prostate cancer.
  • positive TMPRSS fusion status indicates that the TMPRSS fusion is present in a tissue sample
  • negative TMPRSS fusion status indicates that the TMPRSS fusion is not present in a tissue sample.
  • TMPRSS fusion status there are numerous ways to determine TMPRSS fusion status, such as real-time, quantitative PCR or high-throughput sequencing. See, e.g., K. Mertz, et al., Neoplasis 9(3):200-206 (2007); C. Maher, Nature 458(7234):97-101 (2009).
  • the present disclosure provides molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.
  • the present disclosure further provides methods to classify a prostate tumor based on expression level(s) of one or more genes and/or microRNAs.
  • the disclosure further provides genes and/or microRNAs that are associated, positively or negatively, with a particular prognostic outcome.
  • the clinical outcomes include cRFI and bRFI.
  • patients may be classified in risk groups based on the expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a prognostic factor.
  • that prognostic factor is Gleason pattern.
  • the expression level of each gene or microRNA may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity.
  • the expression level(s) of one or more genes and/or microRNAs may be measured in tumor tissue.
  • the tumor tissue may obtained upon surgical removal or resection of the tumor, or by tumor biopsy.
  • the tumor tissue may be or include histologically “normal” tissue, for example histologically “normal” tissue adjacent to a tumor.
  • the expression level of genes and/or microRNAs may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).
  • the expression product that is assayed can be, for example, RNA or a polypeptide.
  • the expression product may be fragmented.
  • the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Table A (inserted in specification prior to claims).
  • RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pat. No. 7,587,279).
  • Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.
  • Prostate cancer is currently diagnosed using a digital rectal exam (DRE) and Prostate-specific antigen (PSA) test. If PSA results are high, patients will generally undergo a prostate tissue biopsy. The pathologist will review the biopsy samples to check for cancer cells and determine a Gleason score. Based on the Gleason score, PSA, clinical stage, and other factors, the physician must make a decision whether to monitor the patient, or treat the patient with surgery and therapy.
  • DRE digital rectal exam
  • PSA Prostate-specific antigen
  • tumor factors such as clinical stage (e.g. T1, T2), PSA level at presentation, and Gleason grade, that are very strong prognostic factors in determining outcome
  • host factors such as age at diagnosis and co-morbidity
  • T1 prostate cancer Patients with T1 prostate cancer have disease that is not clinically apparent but is discovered either at transurethral resection of the prostate (TURP, T1a, T1b) or at biopsy performed because of an elevated PSA (>4 ng/mL, T1c). Approximately 80% of the cases presenting in 2007 are clinical T1 at diagnosis. In a Scandinavian trial, OS at 10 years was 85% for patients with early stage prostate cancer (T1/T2) and Gleason score ⁇ 7, after radical prostatectomy.
  • T2 prostate cancer patients with T2 prostate cancer have disease that is clinically evident and is organ confined; patients with T3 tumors have disease that has penetrated the prostatic capsule and/or has invaded the seminal vesicles. It is known from surgical series that clinical staging underestimates pathological stage, so that about 20% of patients who are clinically T2 will be pT3 after prostatectomy. Most of patients with T2 or T3 prostate cancer are treated with local therapy, either prostatectomy or radiation. The data from the Scandinavian trial suggest that for T2 patients with Gleason grade ⁇ 7, the effect of prostatectomy on survival is at most 5% at 10 years; the majority of patients do not benefit from surgical treatment at the time of diagnosis.
  • the gene/microRNA expression assay and associated information provided by the practice of the methods disclosed herein provide a molecular assay method to facilitate optimal treatment decision-making in early stage prostate cancer.
  • An exemplary embodiment provides genes and microRNAs, the expression levels of which are associated (positively or negatively) with prostate cancer recurrence. For example, such a clinical tool would enable physicians to identify T2/T3 patients who are likely to recur following definitive therapy and need adjuvant treatment.
  • the methods disclosed herein may allow physicians to classify tumors, at a molecular level, based on expression level(s) of one or more genes and/or microRNAs that are significantly associated with prognostic factors, such as Gleason pattern and TMPRSS fusion status. These methods would not be impacted by the technical difficulties of intra-patient variability, histologically determining Gleason pattern in biopsy samples, or inclusion of histologically normal appearing tissue adjacent to tumor tissue. Multi-analyte gene/microRNA expression tests can be used to measure the expression level of one or more genes and/or microRNAs involved in each of several relevant physiologic processes or component cellular characteristics. The methods disclosed herein may group the genes and/or microRNAs.
  • the grouping of genes and microRNAs may be performed at least in part based on knowledge of the contribution of those genes and/or microRNAs according to physiologic functions or component cellular characteristics, such as in the groups discussed above. Furthermore, one or more microRNAs may be combined with one or moregenes. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.
  • the formation of groups (or gene subsets), in addition, can facilitate the mathematical weighting of the contribution of various expression levels to cancer recurrence. The weighting of a gene/microRNA group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome.
  • the methods disclosed may be used to classify patients by risk, for example risk of recurrence.
  • Patients can be partitioned into subgroups (e.g., tertiles or quartiles) and the values chosen will define subgroups of patients with respectively greater or lesser risk.
  • the utility of a disclosed gene marker in predicting prognosis may not be unique to that marker.
  • An alternative marker having an expression pattern that is parallel to that of a disclosed gene may be substituted for, or used in addition to, that co-expressed gene or microRNA. Due to the co-expression of such genes or microRNAs, substitution of expression level values should have little impact on the overall utility of the test.
  • the closely similar expression patterns of two genes or microRNAs may result from involvement of both genes or microRNAs in the same process and/or being under common regulatory control in prostate tumor cells.
  • the present disclosure thus contemplates the use of such co-expressed genes, gene subsets, or microRNAs as substitutes for, or in addition to, genes of the present disclosure.
  • Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods.
  • Exemplary methods known in the art for the quantification of RNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)).
  • RT-PCR reverse transcription PCT
  • Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
  • Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
  • RT-PCR Reverse Transcriptase PCR
  • mRNA or microRNA is isolated from a test sample.
  • the starting material is typically total RNA isolated from a human tumor, usually from a primary tumor.
  • normal tissues from the same patient can be used as an internal control.
  • Such normal tissue can be histologically-appearing normal tissue adjacent a tumor.
  • mRNA or microRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).
  • RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns.
  • RNA isolation kits include MasterPureTM Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
  • the sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction.
  • the two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT).
  • AMV-RT avilo myeloblastosis virus reverse transcriptase
  • MMLV-RT Moloney murine leukemia virus reverse transcriptase
  • the reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling.
  • extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions.
  • the derived cDNA can then be used as a template in the subsequent PCR reaction.
  • PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase.
  • TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used.
  • Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product.
  • a third oligonucleotide, or probe can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers.
  • the probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration.
  • a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore.
  • One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
  • TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany).
  • high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany).
  • the procedure is run on a LightCycler® 480 (Roche Diagnostics) real-time PCR system, which is a microwell plate-based cycler platform.
  • C T 5′-Nuclease assay data are commonly initially expressed as a threshold cycle (“C T ”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction.
  • the threshold cycle (C T ) is generally described as the point when the fluorescent signal is first recorded as statistically significant. Alternatively, data may be expressed as a crossing point (“Cp”).
  • the Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
  • RT-PCR is usually performed using an internal standard.
  • the ideal internal standard gene (also referred to as a reference gene) is expressed at a quite constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly affected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy), and expressed at a quite constant level among the same tissue taken from different patients.
  • reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous prostate as compared to normal prostate tissue.
  • RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and (3-actin.
  • exemplary reference genes used for normalization comprise one or more of the following genes: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1.
  • Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes.
  • Reference-normalized expression measurements can range from 2 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
  • Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR.
  • quantitative competitive PCR where internal competitor for each target sequence is used for normalization
  • quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR.
  • RNA isolation, purification, primer extension and amplification can be performed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 ⁇ m thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.
  • PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest.
  • Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.
  • repetitive sequences of the target sequence can be masked to mitigate non-specific signals.
  • exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked.
  • the masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. See S. Rrawetz, S. Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386 (Humana Press).
  • PCR primer design Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence.
  • optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.
  • Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.
  • the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard.
  • the cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides.
  • SAP post-PCR shrimp alkaline phosphatase
  • the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis.
  • MALDI-TOF MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • the cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
  • PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).
  • BeadArray® technology Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques
  • RNA expression levels of a gene or microArray of interest can also be assessed using the microarray technique.
  • polynucleotide sequences of interest including cDNAs and oligonucleotides
  • the arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from RNA of a test sample.
  • the source of RNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines.
  • RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
  • PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate.
  • the microarrayed genes, immobilized on the microchip at 10,000 elements each are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array.
  • the chip After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding RNA abundance.
  • Serial analysis of gene expression is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript.
  • a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript.
  • many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously.
  • the expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).
  • Nucleic acid sequencing technologies are suitable methods for analysis of gene expression.
  • the principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the RNA corresponding to that sequence.
  • DGE Digital Gene Expression
  • Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable.
  • RNA for expression analysis from blood, plasma and serum (see, e.g., K. Enders, et al., Clin Chem 48, 1647-53 (2002) (and references cited therein) and from urine (see, e.g., R. Boom, et al., J Clin Microbiol. 28, 495-503 (1990) and references cited therein) have been described.
  • Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein.
  • Antibodies e.g., monoclonal antibodies
  • the antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten’ labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase.
  • unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
  • proteome is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time.
  • Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”).
  • Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.
  • RNA sample section e.g. about 10 ⁇ m thick sections of a paraffin-embedded tumor tissue sample.
  • RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired.
  • the sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.
  • the present invention provides a stratified cohort sampling design (a form of case-control sampling) using tissue and data from prostate cancer patients. Selection of specimens was stratified by T stage (T1, T2), year cohort ( ⁇ 1993, ⁇ 1993), and prostatectomy Gleason Score (low/intermediate, high). All patients with clinical recurrence were selected and a sample of patients who did not experience a clinical recurrence was selected. For each patient, up to two enriched tumor specimens and one normal-appearing tissue sample was assayed.
  • the present disclosure provides a method to determine tumor stage based on the expression of staging genes, or genes that co-express with particular staging genes.
  • genes often work together in a concerted way, i.e. they are co-expressed.
  • Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for tumor status and disease progression. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the staging gene with which they are co-expressed.
  • the joint correlation of gene expression levels among prostate cancer specimens under study may be assessed.
  • the correlation structures among genes and specimens may be examined through hierarchical cluster methods. This information may be used to confirm that genes that are known to be highly correlated in prostate cancer specimens cluster together as expected. Only genes exhibiting a nominally significant (unadjusted p ⁇ 0.05) relationship with cRFI in the univariate Cox PH regression analysis will be included in these analyses.
  • co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies.
  • gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).)
  • Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct or Cp measurements, and the like.
  • sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.
  • Assays can provide for normalization by incorporating the expression of certain normalizing genes, which do not significantly differ in expression levels under the relevant conditions.
  • Exemplary normalization genes disclosed herein include housekeeping genes. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (Ct or Cp) of all of the assayed genes or a large subset thereof (global normalization approach).
  • the normalizing genes also referred to as reference genes should be genes that are known not to exhibit significantly different expression in prostate cancer as compared to non-cancerous prostate tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.
  • one or more of the following genes are used as references by which the mRNA or microRNA expression data is normalized: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1.
  • one or more of the following microRNAs are used as references by which the expression data of microRNAs are normalized: hsa-miR-106a; hsa-miR-146b-5p; hsa-miR-191; hsa-miR-19b; and hsa-miR-92a.
  • the calibrated weighted average C T or Cp measurements for each of the prognostic and predictive genes or microRNAs may be normalized relative to the mean of five or more reference genes or microRNAs.
  • Standardization refers to a process to effectively put all the genes or microRNAs on a comparable scale. This is performed because some genes or microRNAs will exhibit more variation (a broader range of expression) than others. Standardization is performed by dividing each expression value by its standard deviation across all samples for that gene or microRNA. Hazard ratios are then interpreted as the relative risk of recurrence per 1 standard deviation increase in expression.
  • kits comprising agents, which may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment.
  • agents may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment.
  • kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification.
  • the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention.
  • kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various materials or reagents (typically in concentrated form) utilized in the methods, including, for example, chromatographic columns, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase).
  • nucleotide triphosphates e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP
  • reverse transcriptase DNA polymerase
  • RNA polymerase
  • a report may include information concerning expression levels of one or more genes and/or microRNAs, classification of the tumor or the patient's risk of recurrence, the patient's likely prognosis or risk classification, clinical and pathologic factors, and/or other information.
  • the methods and reports of this invention can further include storing the report in a database.
  • the method can create a record in a database for the subject and populate the record with data.
  • the report may be a paper report, an auditory report, or an electronic record.
  • the report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient.
  • the receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.
  • the values from the assays described above, such as expression data, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product.
  • the present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it.
  • the program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, standardization, thresholding, and conversion of values from assays to a score and/or text or graphical depiction of tumor stage and related information).
  • the computer program product has stored therein a computer program for performing the calculation.
  • the present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates an expression score, thresholding, or other functions described herein.
  • the methods provided by the present invention may also be automated in whole or in part.
  • All aspects of the present invention may also be practiced such that a limited number of additional genes and/or microRNAs that are co-expressed or functionally related with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a test in addition to and/or in place of disclosed genes.
  • RNA extraction yields and gene expression profiles using an RT-PCR assay to characterize RNA from manually micro-dissected fixed paraffin embedded (FPE) prostate cancer needle biopsy cores. It also investigated the association of RNA yields and gene expression profiles with Gleason score in these specimens.
  • FPE fixed paraffin embedded
  • RNA from enriched tumor samples was extracted using a manual RNA extraction process. RNA was quantitated using the RiboGreen® assay and tested for the presence of genomic DNA contamination. Samples with sufficient RNA yield and free of genomic DNA tested for gene expression levels of a 24-gene panel of reference and cancer-related genes using quantitative RT-PCR. The expression was normalized to the average of 6 reference genes (AAMP, ARF1, ATP5E, CLTC, EEF1A1, and GPX1).
  • Descriptive statistics and graphical displays were used to summarize standard pathology metrics and gene expression, with stratification for Gleason Score category and percentage tumor involvement category. Ordinal logistic regression was used to evaluate the relationship between gene expression and Gleason Score category.
  • this gene expression study included tissue and data from 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomies performed between 1987 and 2004 for treatment of early stage (T1, T2) prostate cancer.
  • FPE tissue specimens Two fixed paraffin embedded (FPE) tissue specimens were obtained from prostate tumor specimens in each patient.
  • the sampling method (sampling method A or B) depended on whether the highest Gleason pattern is also the primary Gleason pattern.
  • the invasive cancer cells were at least 5.0 mm in dimension, except in the instances of pattern 5, where 2.2 mm was accepted. Specimens were spatially distinct where possible.
  • NAT Histologically normal appearing tissue adjacent to the tumor specimen
  • non-tumor tissue Histologically normal appearing tissue adjacent to the tumor specimen
  • Adjacent tissue was collected 3 mm from the tumor to 3 mm from the edge of the FPET block.
  • NAT was preferentially sampled adjacent to the primary Gleason pattern. In cases where there was insufficient NAT adjacent to the primary Gleason pattern, then NAT was sampled adjacent to the secondary or highest Gleason pattern (A2 or B1) per the method set forth in Table 2.
  • Six (6) 10 ⁇ m sections with beginning H&E at 5 ⁇ m and ending unstained slide at 5 ⁇ m were prepared from each fixed paraffin-embedded tumor (FPET) block included in the study. All cases were histologically reviewed and manually micro-dissected to yield two enriched tumor samples and, where possible, one normal tissue sample adjacent to the tumor specimen.
  • RT-PCR analysis was used to determine RNA expression levels for 738 genes and chromosomal rearrangements (e.g., TMPRSS2-ERG fusion or other ETS family genes) in prostate cancer tissue and surrounding NAT in patients with early-stage prostate cancer treated with radical prostatectomy.
  • 738 genes and chromosomal rearrangements e.g., TMPRSS2-ERG fusion or other ETS family genes
  • the samples were quantified using the RiboGreen assay and a subset tested for presence of genomic DNA contamination. Samples were taken into reverse transcription (RT) and quantitative polymerase chain reaction (qPCR). All analyses were conducted on reference-normalized gene expression levels using the average of the of replicate well crossing point (CP) values for the 6 reference genes (AAMP, ARF1, ATP5E, CLTC, GPS1, PGK1).
  • RT reverse transcription
  • qPCR quantitative polymerase chain reaction
  • a patient was included in a specified analysis if at least one sample for that patient was evaluable. Unless otherwise stated, all hypothesis tests were reported using two-sided p-values.
  • Tables 3A and 3B provide genes significantly associated (p ⁇ 0.05), positively or negatively, with Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 3A is positively associated with higher Gleason score, while increased expression of genes in Table 3B are negatively associated with higher Gleason score.
  • Tables 4A and 4B provide genes that were associated, positively or negatively, with cRFI and/or bRFI in the primary and/or highest Gleason pattern. Increased expression of genes in Table 4A is negatively associated with good prognosis, while increased expression of genes in Table 4B is positively associated with good prognosis.
  • Tables 5A and 5B provide genes that were significantly associated (p ⁇ 0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for AUA risk group in the primary and/or highest Gleason pattern. Increased expression of genes in Table 5A is negatively associated with good prognosis, while increased expression of genes in Table 5B is positively associated with good prognosis.
  • Tables 6A and 6B provide genes that were significantly associated (p ⁇ 0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 6A is negatively associated with good prognosis, while increased expression of gene in Table 6B is positively associated with good prognosis.
  • Tables 7A and 7B provide genes significantly associated (p ⁇ 0.05), positively or negatively, with clinical recurrence (cRFI) in negative TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 7A is negatively associated with good prognosis, while increased expression of genes in Table 7B is positively associated with good prognosis.
  • Tables 8A and 8B provide genes that were significantly associated (p ⁇ 0.05), positively or negatively, with clinical recurrence (cRFI) in positive TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 8A is negatively associated with good prognosis, while increased expression of genes in Table 8B is positively associated with good prognosis.
  • cRFI clinical recurrence
  • Tables 9A and 9B provide genes significantly associated (p ⁇ 0.05), positively or negatively, with TMPRSS fusion status in the primary Gleason pattern. Increased expression of genes in Table 9A are positively associated with TMPRSS fusion positivity, while increased expression of genes in Table 10A are negatively associated with TMPRSS fusion positivity.
  • Tables 10A and 10B provide genes significantly associated (p ⁇ 0.05), positively or negatively, with cRFI or bRFI in non-tumor samples. Table 10A is negatively associated with good prognosis, while increased expression of genes in Table 10B is positively associated with good prognosis.
  • Table 11 provides genes that are significantly associated (p ⁇ 0.05) with cRFI or bRFI after adjustment for Gleason pattern or highest Gleason pattern.
  • Tables 12A and 12B provide genes that are significantly associated (p ⁇ 0.05) with prostate cancer specific survival (PCSS) in the primary Gleason pattern. Increased expression of genes in Table 12A is negatively associated with good prognosis, while increased expression of genes in Table 12B is positively associated with good prognosis.
  • PCSS prostate cancer specific survival
  • Tables 13A and 13B provide genes significantly associated (p ⁇ 0.05), positively or negatively, with upgrading/upstaging in the primary and/or highest Gleason pattern. Increased expression of genes in Table 13A is positively associated with higher risk of upgrading/upstaging (poor prognosis), while increased expression of genes in Table 13B is negatively associated with risk of upgrading/upstaging (good prognosis).
  • COL6A1 0.62 0.0125 0.60 0.0050 COL6A3 0.65 0.0080 0.68 0.0181 CSRP1 0.43 0.0001 0.40 0.0002 CTSB 0.66 0.0042 0.67 0.0051 CTSD 0.64 0.0355 . . CTSK 0.69 0.0171 . . CTSL1 0.72 0.0402 . . CUL1 0.61 0.0024 0.70 0.0120 CXCL12 0.69 0.0287 0.63 0.0053 CYP3A5 0.68 0.0099 0.62 0.0026 DDR2 0.68 0.0324 0.62 0.0050 DES 0.54 0.0013 0.46 0.0002 DHX9 0.67 0.0164 . . DLGAP1 . .
  • OLFML3 0.56 0.0035 0.51 0.0011 OMD 0.61 0.0011 0.73 0.0357
  • PAGE4 0.42 ⁇ 0.0001 0.36 ⁇ 0.0001 PAK6 0.72 0.0335 .
  • PCDHGB7 0.70 0.0262 0.55 0.0004 PGF 0.72 0.0358 0.71 0.0270 PLP2 0.66 0.0088 0.63 0.0041 PPAP2B 0.44 ⁇ 0.0001 0.50 0.0001 PPP1R12A 0.45 0.0001 0.40 ⁇ 0.0001 PRIMA1 . . 0.63 0.0102 PRKAR2B 0.71 0.0226 . . PRKCA 0.34 ⁇ 0.0001 0.42 ⁇ 0.0001 PRKCB 0.66 0.0120 0.49 ⁇ 0.0001 PROM1 0.61 0.0030 . .
  • TRAF3IP2 0.62 0.0064 0.59 0.0053 TRO 0.57 0.0003 0.51 0.0001 VCL 0.52 0.0005 0.52 0.0004 VIM 0.65 0.0072 0.65 0.0045 WDR19 0.66 0.0097 . . WFDC1 0.58 0.0023 0.60 0.0026 ZFHX3 0.69 0.0144 0.62 0.0046 ZNF827 0.62 0.0030 0.53 0.0001
  • MicroRNAs function by binding to portions of messenger RNA (mRNA) and changing how frequently the mRNA is translated into protein. They can also influence the turnover of mRNA and thus how long the mRNA remains intact in the cell. Since microRNAs function primarily as an adjunct to mRNA, this study evaluated the joint prognostic value of microRNA expression and gene (mRNA) expression. Since the expression of certain microRNAs may be a surrogate for expression of genes that are not in the assessed panel, we also evaluated the prognostic value of microRNA expression by itself.
  • Samples from the 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy described in Example 2 were used in this study.
  • the final analysis set comprised 416 samples from patients in which both gene expression and microRNA expression were successfully assayed. Of these, 106 patients exhibited clinical recurrence and 310 did not have clinical recurrence.
  • Tissue samples were taken from each prostate sample representing (1) the primary Gleason pattern in the sample, and (2) the highest Gleason pattern in the sample.
  • NAT histologically normal-appearing tissue adjacent to the tumor
  • test microRNAs and 5 reference microRNAs were determined from RNA extracted from fixed paraffin-embedded (FPE) tissue.
  • MicroRNA expression in all three tissue type was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) using the crossing point (C p ) obtained from the Taqman® MicroRNA Assay kit (Applied Biosystems, Inc., Carlsbad, Calif.).
  • microRNA expression normalized by the average expression for the 5 reference microRNAs hsa-miR-106a, hsa-miR-146b-5p, hsa-miR-191, hsa-miR-19b, and hsa-miR-92a, and reference-normalized gene expression of the 733 genes (including the reference genes) discussed above, were assessed for association with clinical recurrence and death due to prostate cancer. Standardized hazard ratios (the proportional change in the hazard associated with a change of one standard deviation in the covariate value) were calculated.
  • the four tiers were pre-determined based on the likelihood (Tier 1 representing the highest likelihood) that the gene-microRNA pair functionally interacted or that the microRNA was related to prostate cancer based on a review of the literature and existing microarray data sets.
  • False discovery rates (FDR) (Benjamini and Hochberg, Journal of the Royal Statistical Society, Series B 57:289-300, 1995) were assessed using Efron's separate class methodology (Efron, Annals of Applied Statistics 2:197-223., 2008).
  • the false discovery rate is the expected proportion of the rejected null hypotheses that are rejected incorrectly (and thus are false discoveries).
  • Efron's methodology allows separate FDR assessment (q-values) (Storey, Journal of the Royal Statistical Society, Series B 64:479-498, 2002) within each class while utilizing the data from all the classes to improve the accuracy of the calculation.
  • the q-value for a microRNA or microRNA-gene pair can be interpreted as the empirical Bayes probability that the microRNA or microRNA-gene pair identified as being associated with clinical outcome is in fact a false discovery given the data.
  • the separate class approach was applied to a true discovery rate degree of association (TDRDA) analysis (Crager, Statistics in Medicine 29:33-45, 2010) to determine sets of microRNAs or microRNA-gene pairs that have standardized hazard ratio for clinical recurrence or prostate cancer-specific death of at least a specified amount while controlling the FDR at 10%.
  • TDRDA true discovery rate degree of association
  • a maximum lower bound (MLB) standardized hazard ratio was computed, showing the highest lower bound for which the microRNA or microRNA-gene pair was included in a TDRDA set with 10% FDR. Also calculated was an estimate of the true standardized hazard ratio corrected for regression to the mean (RM) that occurs in subsequent studies when the best predictors are selected from a long list (Crager, 2010 above).
  • the RM-corrected estimate of the standardized hazard ratio is a reasonable estimate of what could be expected if the selected microRNA or microRNA-gene pair were studied in a separate, subsequent study.
  • microRNAs assayed from primary Gleason pattern tumor tissue that were associated with clinical recurrence of prostate cancer after radical prostatectomy, allowing a false discovery rate of 10% (Table 15).
  • Results were similar for microRNAs assessed from highest Gleason pattern tumor tissue (Table 16), suggesting that the association of microRNA expression with clinical recurrence does not change markedly depending on the location within a tumor tissue sample.
  • No microRNA assayed from normal adjacent tissue was associated with the risk of clinical recurrence at a false discovery rate of 10%.
  • the sequences of the microRNAs listed in Tables 15-21 are shown in Table B.
  • Table 17 shows microRNAs assayed from primary Gleason pattern tissue that were identified as being associated with the risk of prostate-cancer-specific death, with a false discovery rate of 10%.
  • Table 18 shows the corresponding analysis for microRNAs assayed from highest Gleason pattern tissue. No microRNA assayed from normal adjacent tissue was associated with the risk of prostate-cancer-specific death at a false discovery rate of 10%.
  • Table 19 and Table 20 shows the microRNAs that can be identified as being associated with the risk of clinical recurrence while adjusting for the clinical and pathology covariates of biopsy Gleason score, baseline PSA level, and clinical T-stage. The distributions of these covariates are shown in FIG. 1 . Fifteen (15) of the microRNAs identified in Table 15 are also present in Table 19, indicating that these microRNAs have predictive value for clinical recurrence that is independent of the Gleason score, baseline PSA, and clinical T-stage.
  • the normalized expression levels of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c are positively associated with an increased risk of recurrence; and hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa
  • Table 22 shows the number of microRNA-gene pairs that were grouped in each tier (Tiers 1-4) and the number and percentage of those that were predictive of clinical recurrence at a false discovery rate of 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Molecular assays that involve measurement of expression levels of prognostic biomarkers, or co-expressed biomarkers, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likely prognosis for said patient, and likelihood that said patient will have a recurrence of prostate cancer, or to classify the tumor by likelihood of clinical outcome or TMPRSS2 fusion status, are provided herein.

Description

  • This application claims the benefit of priority to U.S. Provisional Application Nos. 61/368,217, filed Jul. 27, 2010; 61/414,310, filed Nov. 16, 2010; and 61/485,536, filed May 12, 2011, all of which are hereby incorporated by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to molecular diagnostic assays that provide information concerning methods to use gene expression profiles to determine prognostic information for cancer patients. Specifically, the present disclosure provides genes and microRNAs, the expression levels of which may be used to determine the likelihood that a prostate cancer patient will experience a local or distant cancer recurrence.
  • INTRODUCTION
  • Prostate cancer is the most common solid malignancy in men and the second most common cause of cancer-related death in men in North America and the European Union (EU). In 2008, over 180,000 patients will be diagnosed with prostate cancer in the United States alone and nearly 30,000 will die of this disease. Age is the single most important risk factor for the development of prostate cancer, and applies across all racial groups that have been studied. With the aging of the U.S. population, it is projected that the annual incidence of prostate cancer will double by 2025 to nearly 400,000 cases per year.
  • Since the introduction of prostate-specific antigen (PSA) screening in the 1990's, the proportion of patients presenting with clinically evident disease has fallen dramatically such that patients categorized as “low risk” now constitute half of new diagnoses today. PSA is used as a tumor marker to determine the presence of prostate cancer as high PSA levels are associated with prostate cancer. Despite a growing proportion of localized prostate cancer patients presenting with low-risk features such as low stage (T1) disease, greater than 90% of patients in the US still undergo definitive therapy, including prostatectomy or radiation. Only about 15% of these patients would develop metastatic disease and die from their prostate cancer, even in the absence of definitive therapy. A. Bill-Axelson, et al., J Nat'l Cancer Inst. 100(16):1144-1154 (2008). Therefore, the majority of prostate cancer patients are being over-treated.
  • Estimates of recurrence risk and treatment decisions in prostate cancer are currently based primarily on PSA levels and/or tumor stage. Although tumor stage has been demonstrated to have significant association with outcome sufficient to be included in pathology reports, the College of American Pathologists Consensus Statement noted that variations in approach to the acquisition, interpretation, reporting, and analysis of this information exist. C. Compton, et al., Arch Pathol Lab Med 124:979-992 (2000). As a consequence, existing pathologic staging methods have been criticized as lacking reproducibility and therefore may provide imprecise estimates of individual patient risk.
  • SUMMARY
  • This application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence. For example, the likelihood of cancer recurrence could be described in terms of a score based on clinical or biochemical recurrence-free interval.
  • In addition, this application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained to identify a risk classification for a prostate cancer patient. For example, patients may be stratified using expression level(s) of one or more genes or microRNAs associated, positively or negatively, with cancer recurrence or death from cancer, or with a prognostic factor. In an exemplary embodiment, the prognostic factor is Gleason pattern.
  • The biological sample may be obtained from standard methods, including surgery, biopsy, or bodily fluids. It may comprise tumor tissue or cancer cells, and, in some cases, histologically normal tissue, e.g., histologically normal tissue adjacent the tumor tissue. In exemplary embodiments, the biological sample is positive or negative for a TMPRSS2 fusion.
  • In exemplary embodiments, expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a particular clinical outcome in prostate cancer are used to determine prognosis and appropriate therapy. The genes disclosed herein may be used alone or arranged in functional gene subsets, such as cell adhesion/migration, immediate-early stress response, and extracellular matrix-associated. Each gene subset comprises the genes disclosed herein, as well as genes that are co-expressed with one or more of the disclosed genes. The calculation may be performed on a computer, programmed to execute the gene expression analysis. The microRNAs disclosed herein may also be used alone or in combination with any one or more of the microRNAs and/or genes disclosed.
  • In exemplary embodiments, the molecular assay may involve expression levels for at least two genes. The genes, or gene subsets, may be weighted according to strength of association with prognosis or tumor microenvironment. In another exemplary embodiment, the molecular assay may involve expression levels of at least one gene and at least one microRNA. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows the distribution of clinical and pathology assessments of biopsy Gleason score, baseline PSA level, and clinical T-stage.
  • DEFINITIONS
  • Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.
  • One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described herein. For purposes of the invention, the following terms are defined below.
  • The terms “tumor” and “lesion” as used herein, refer to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. Those skilled in the art will realize that a tumor tissue sample may comprise multiple biological elements, such as one or more cancer cells, partial or fragmented cells, tumors in various stages, surrounding histologically normal-appearing tissue, and/or macro or micro-dissected tissue.
  • The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer in the present disclosure include cancer of the urogenital tract, such as prostate cancer.
  • The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
  • As used herein, the term “prostate cancer” is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.
  • According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC), AJCC Cancer Staging Manual (7th Ed., 2010), the various stages of prostate cancer are defined as follows: Tumor: T1: clinically inapparent tumor not palpable or visible by imaging, T1a: tumor incidental histological finding in 5% or less of tissue resected, T1b: tumor incidental histological finding in more than 5% of tissue resected, T1c: tumor identified by needle biopsy; T2: tumor confined within prostate, T2a: tumor involves one half of one lobe or less, T2b: tumor involves more than half of one lobe, but not both lobes, T2c: tumor involves both lobes; T3: tumor extends through the prostatic capsule, T3a: extracapsular extension (unilateral or bilateral), T3b: tumor invades seminal vesicle(s); T4: tumor is fixed or invades adjacent structures other than seminal vesicles (bladder neck, external sphincter, rectum, levator muscles, or pelvic wall). Node: NO: no regional lymph node metastasis; N1: metastasis in regional lymph nodes. Metastasis: M0: no distant metastasis; M1: distant metastasis present.
  • The Gleason Grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy. A Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy). Gleason scores (or sums) comprise grades of the two most common tumor patterns. These patterns are referred to as Gleason patterns 1-5, with pattern 1 being the most well-differentiated. Most have a mixture of patterns. To obtain a Gleason score or grade, the dominant pattern is added to the second most prevalent pattern to obtain a number between 2 and 10. The Gleason Grades include: G1: well differentiated (slight anaplasia) (Gleason 2-4); G2: moderately differentiated (moderate anaplasia) (Gleason 5-6); G3-4: poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10).
  • Stage groupings: Stage I: T1a N0 M0 G1; Stage II: (T1a N0M0G2-4) or (T1b, c, T1, T2, N0 M0 Any G); Stage III: T3 N0 M0 Any G; Stage 1V: (T4 N0 M0 Any G) or (Any T N1 M0 Any G) or (Any T Any N M1 Any G).
  • As used herein, the term “tumor tissue” refers to a biological sample containing one or more cancer cells, or a fraction of one or more cancer cells. Those skilled in the art will recognize that such biological sample may additionally comprise other biological components, such as histologically appearing normal cells (e.g., adjacent the tumor), depending upon the method used to obtain the tumor tissue, such as surgical resection, biopsy, or bodily fluids.
  • As used herein, the term “AUA risk group” refers to the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, which clinicians use to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy.
  • As used herein, the term “adjacent tissue (AT)” refers to histologically “normal” cells that are adjacent a tumor. For example, the AT expression profile may be associated with disease recurrence and survival.
  • As used herein “non-tumor prostate tissue” refers to histologically normal-appearing tissue adjacent a prostate tumor.
  • Prognostic factors are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, increased tumor stage, PSA level at presentation, and Gleason grade or pattern. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
  • The term “prognosis” is used herein to refer to the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as prostate cancer. For example, a “good prognosis” would include long term survival without recurrence and a “bad prognosis” would include cancer recurrence.
  • As used herein, the term “expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.
  • The term “gene product” or “expression product” are used herein to refer to the RNA (ribonucleic acid) transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.
  • The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.
  • The term “microRNA” is used herein to refer to a small, non-coding, single-stranded RNA of ˜18-25 nucleotides that may regulate gene expression. For example, when associated with the RNA-induced silencing complex (RISC), the complex binds to specific mRNA targets and causes translation repression or cleavage of these mRNA sequences.
  • Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.
  • The terms “correlated” and “associated” are used interchangeably herein to refer to the association between two measurements (or measured entities). The disclosure provides genes, gene subsets, microRNAs, or microRNAs in combination with genes or gene subsets, the expression levels of which are associated with tumor stage. For example, the increased expression level of a gene or microRNA may be positively correlated (positively associated) with a good or positive prognosis. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a cancer recurrence hazard ratio less than one. In another example, the increased expression level of a gene or microRNA may be negatively correlated (negatively associated) with a good or positive prognosis. In that case, for example, the patient may experience a cancer recurrence.
  • The terms “good prognosis” or “positive prognosis” as used herein refer to a beneficial clinical outcome, such as long-term survival without recurrence. The terms “bad prognosis” or “negative prognosis” as used herein refer to a negative clinical outcome, such as cancer recurrence.
  • The term “risk classification” means a grouping of subjects by the level of risk (or likelihood) that the subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
  • The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 5 years, or for at least 10 years.
  • The term “recurrence” is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer. For example, prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs. Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence detected by, for example, sustained follow-up prostate-specific antigen (PSA) levels ≧0.4 ng/mL or the initiation of salvage therapy as a result of a rising PSA level.
  • The term “clinical recurrence-free interval (cRFI)” is used herein as time (in months) from surgery to first clinical recurrence or death due to clinical recurrence of prostate cancer. Losses due to incomplete follow-up, other primary cancers or death prior to clinical recurrence are considered censoring events; when these occur, the only information known is that up through the censoring time, clinical recurrence has not occurred in this subject. Biochemical recurrences are ignored for the purposes of calculating cRFI.
  • The term “biochemical recurrence-free interval (bRFI)” is used herein to mean the time (in months) from surgery to first biochemical recurrence of prostate cancer. Clinical recurrences, losses due to incomplete follow-up, other primary cancers, or death prior to biochemical recurrence are considered censoring events.
  • The term “Overall Survival (OS)” is used herein to refer to the time (in months) from surgery to death from any cause. Losses due to incomplete follow-up are considered censoring events. Biochemical recurrence and clinical recurrence are ignored for the purposes of calculating OS.
  • The term “Prostate Cancer-Specific Survival (PCSS)” is used herein to describe the time (in years) from surgery to death from prostate cancer. Losses due to incomplete follow-up or deaths from other causes are considered censoring events. Clinical recurrence and biochemical recurrence are ignored for the purposes of calculating PCSS.
  • The term “upgrading” or “upstaging” as used herein refers to a change in Gleason grade from 3+3 at the time of biopsy to 3+4 or greater at the time of radical prostatectomy (RP), or Gleason grade 3+4 at the time of biopsy to 4+3 or greater at the time of RP, or seminal vessical involvement (SVI), or extracapsular involvement (ECE) at the time of RP.
  • In practice, the calculation of the measures listed above may vary from study to study depending on the definition of events to be considered censored.
  • The term “microarray” refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.
  • The term “polynucleotide” generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons, are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
  • The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
  • The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.
  • The term “Cp” as used herein refers to “crossing point.” The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
  • The terms “threshold” or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. D. Cox, Journal of the Royal Statistical Society, Series B 34:187-220 (1972). Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.
  • As used herein, the term “amplicon,” refers to pieces of DNA that have been synthesized using amplification techniques, such as polymerase chain reactions (PCR) and ligase chain reactions.
  • “Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).
  • “Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.
  • “Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-500 C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
  • The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.
  • The terms “co-express” and “co-expressed”, as used herein, refer to a statistical correlation between the amounts of different transcript sequences across a population of different patients. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized expression data. A gene is said to be co-expressed with a particular disclosed gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6.
  • A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.
  • To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.
  • A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.
  • As used herein, the terms “active surveillance” and “watchful waiting” mean closely monitoring a patient's condition without giving any treatment until symptoms appear or change. For example, in prostate cancer, watchful waiting is usually used in older men with other medical problems and early-stage disease.
  • As used herein, the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including pelvic lymphadenectomy, radical prostatectomy, transurethral resection of the prostate (TURP), excision, dissection, and tumor biopsy/removal. The tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.
  • As used herein, the term “therapy” includes radiation, hormonal therapy, cryosurgery, chemotherapy, biologic therapy, and high-intensity focused ultrasound.
  • As used herein, the term “TMPRSS fusion” and “TMPRSS2 fusion” are used interchangeably and refer to a fusion of the androgen-driven TMPRSS2 gene with the ERG oncogene, which has been demonstrated to have a significant association with prostate cancer. S. Perner, et al., Urologe A. 46(7):754-760 (2007); S. A. Narod, et al., Br J Cancer 99(6):847-851 (2008). As used herein, positive TMPRSS fusion status indicates that the TMPRSS fusion is present in a tissue sample, whereas negative TMPRSS fusion status indicates that the TMPRSS fusion is not present in a tissue sample. Experts skilled in the art will recognize that there are numerous ways to determine TMPRSS fusion status, such as real-time, quantitative PCR or high-throughput sequencing. See, e.g., K. Mertz, et al., Neoplasis 9(3):200-206 (2007); C. Maher, Nature 458(7234):97-101 (2009).
  • Gene Expression Methods Using Genes, Gene Subsets, and microRNAs
  • The present disclosure provides molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.
  • The present disclosure further provides methods to classify a prostate tumor based on expression level(s) of one or more genes and/or microRNAs. The disclosure further provides genes and/or microRNAs that are associated, positively or negatively, with a particular prognostic outcome. In exemplary embodiments, the clinical outcomes include cRFI and bRFI. In another embodiment, patients may be classified in risk groups based on the expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a prognostic factor. In an exemplary embodiment, that prognostic factor is Gleason pattern.
  • Various technological approaches for determination of expression levels of the disclosed genes and microRNAs are set forth in this specification, including, without limitation, RT-PCR, microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE) and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene or microRNA may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity.
  • The expression level(s) of one or more genes and/or microRNAs may be measured in tumor tissue. For example, the tumor tissue may obtained upon surgical removal or resection of the tumor, or by tumor biopsy. The tumor tissue may be or include histologically “normal” tissue, for example histologically “normal” tissue adjacent to a tumor. The expression level of genes and/or microRNAs may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).
  • The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Table A (inserted in specification prior to claims).
  • The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pat. No. 7,587,279). Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.
  • Clinical Utility
  • Prostate cancer is currently diagnosed using a digital rectal exam (DRE) and Prostate-specific antigen (PSA) test. If PSA results are high, patients will generally undergo a prostate tissue biopsy. The pathologist will review the biopsy samples to check for cancer cells and determine a Gleason score. Based on the Gleason score, PSA, clinical stage, and other factors, the physician must make a decision whether to monitor the patient, or treat the patient with surgery and therapy.
  • At present, clinical decision-making in early stage prostate cancer is governed by certain histopathologic and clinical factors. These include: (1) tumor factors, such as clinical stage (e.g. T1, T2), PSA level at presentation, and Gleason grade, that are very strong prognostic factors in determining outcome; and (2) host factors, such as age at diagnosis and co-morbidity. Because of these factors, the most clinically useful means of stratifying patients with localized disease according to prognosis has been through multifactorial staging, using the clinical stage, the serum PSA level, and tumor grade (Gleason grade) together. In the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, these parameters have been grouped to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy. I. Thompson, et al., Guideline for the management of clinically localized prostate cancer, J Urol. 177(6):2106-31 (2007).
  • Although such classifications have proven to be helpful in distinguishing patients with localized disease who may need adjuvant therapy after surgery/radiation, they have less ability to discriminate between indolent cancers, which do not need to be treated with local therapy, and aggressive tumors, which require local therapy. In fact, these algorithms are of increasingly limited use for deciding between conservative management and definitive therapy because the bulk of prostate cancers diagnosed in the PSA screening era now present with clinical stage T1c and PSA ≦10 ng/mL.
  • Patients with T1 prostate cancer have disease that is not clinically apparent but is discovered either at transurethral resection of the prostate (TURP, T1a, T1b) or at biopsy performed because of an elevated PSA (>4 ng/mL, T1c). Approximately 80% of the cases presenting in 2007 are clinical T1 at diagnosis. In a Scandinavian trial, OS at 10 years was 85% for patients with early stage prostate cancer (T1/T2) and Gleason score ≦7, after radical prostatectomy.
  • Patients with T2 prostate cancer have disease that is clinically evident and is organ confined; patients with T3 tumors have disease that has penetrated the prostatic capsule and/or has invaded the seminal vesicles. It is known from surgical series that clinical staging underestimates pathological stage, so that about 20% of patients who are clinically T2 will be pT3 after prostatectomy. Most of patients with T2 or T3 prostate cancer are treated with local therapy, either prostatectomy or radiation. The data from the Scandinavian trial suggest that for T2 patients with Gleason grade ≦7, the effect of prostatectomy on survival is at most 5% at 10 years; the majority of patients do not benefit from surgical treatment at the time of diagnosis. For T2 patients with Gleason >7 or for T3 patients, the treatment effect of prostatectomy is assumed to be significant but has not been determined in randomized trials. It is known that these patients have a significant risk (10-30%) of recurrence at 10 years after local treatment, however, there are no prospective randomized trials that define the optimal local treatment (radical prostatectomy, radiation) at diagnosis, which patients are likely to benefit from neo-adjuvant/adjuvant androgen deprivation therapy, and whether treatment (androgen deprivation, chemotherapy) at the time of biochemical failure (elevated PSA) has any clinical benefit.
  • Accurately determining Gleason scores from needle biopsies presents several technical challenges. First, interpreting histology that is “borderline” between Gleason pattern is highly subjective, even for urologic pathologists. Second, incomplete biopsy sampling is yet another reason why the “predicted” Gleason score on biopsy does not always correlate with the actual “observed” Gleason score of the prostate cancer in the gland itself. Hence, the accuracy of Gleason scoring is dependent upon not only the expertise of the pathologist reading the slides, but also on the completeness and adequacy of the prostate biopsy sampling strategy. T. Stamey, Urology 45:2-12 (1995). The gene/microRNA expression assay and associated information provided by the practice of the methods disclosed herein provide a molecular assay method to facilitate optimal treatment decision-making in early stage prostate cancer. An exemplary embodiment provides genes and microRNAs, the expression levels of which are associated (positively or negatively) with prostate cancer recurrence. For example, such a clinical tool would enable physicians to identify T2/T3 patients who are likely to recur following definitive therapy and need adjuvant treatment.
  • In addition, the methods disclosed herein may allow physicians to classify tumors, at a molecular level, based on expression level(s) of one or more genes and/or microRNAs that are significantly associated with prognostic factors, such as Gleason pattern and TMPRSS fusion status. These methods would not be impacted by the technical difficulties of intra-patient variability, histologically determining Gleason pattern in biopsy samples, or inclusion of histologically normal appearing tissue adjacent to tumor tissue. Multi-analyte gene/microRNA expression tests can be used to measure the expression level of one or more genes and/or microRNAs involved in each of several relevant physiologic processes or component cellular characteristics. The methods disclosed herein may group the genes and/or microRNAs. The grouping of genes and microRNAs may be performed at least in part based on knowledge of the contribution of those genes and/or microRNAs according to physiologic functions or component cellular characteristics, such as in the groups discussed above. Furthermore, one or more microRNAs may be combined with one or moregenes. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact. The formation of groups (or gene subsets), in addition, can facilitate the mathematical weighting of the contribution of various expression levels to cancer recurrence. The weighting of a gene/microRNA group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome.
  • Optionally, the methods disclosed may be used to classify patients by risk, for example risk of recurrence. Patients can be partitioned into subgroups (e.g., tertiles or quartiles) and the values chosen will define subgroups of patients with respectively greater or lesser risk.
  • The utility of a disclosed gene marker in predicting prognosis may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a disclosed gene may be substituted for, or used in addition to, that co-expressed gene or microRNA. Due to the co-expression of such genes or microRNAs, substitution of expression level values should have little impact on the overall utility of the test. The closely similar expression patterns of two genes or microRNAs may result from involvement of both genes or microRNAs in the same process and/or being under common regulatory control in prostate tumor cells. The present disclosure thus contemplates the use of such co-expressed genes, gene subsets, or microRNAs as substitutes for, or in addition to, genes of the present disclosure.
  • Methods of Assaying Expression Levels of a Gene Product
  • The methods and compositions of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Exemplary techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).
  • Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. Exemplary methods known in the art for the quantification of RNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
  • Reverse Transcriptase PCR (RT-PCR)
  • Typically, mRNA or microRNA is isolated from a test sample. The starting material is typically total RNA isolated from a human tumor, usually from a primary tumor. Optionally, normal tissues from the same patient can be used as an internal control. Such normal tissue can be histologically-appearing normal tissue adjacent a tumor. mRNA or microRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).
  • General methods for mRNA and microRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
  • The sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.
  • PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase. For example, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product. A third oligonucleotide, or probe, can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers. The probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration. Where a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
  • TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the procedure is run on a LightCycler® 480 (Roche Diagnostics) real-time PCR system, which is a microwell plate-based cycler platform.
  • 5′-Nuclease assay data are commonly initially expressed as a threshold cycle (“CT”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The threshold cycle (CT) is generally described as the point when the fluorescent signal is first recorded as statistically significant. Alternatively, data may be expressed as a crossing point (“Cp”). The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.
  • To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard gene (also referred to as a reference gene) is expressed at a quite constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly affected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy), and expressed at a quite constant level among the same tissue taken from different patients. For example, reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous prostate as compared to normal prostate tissue. RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and (3-actin. Exemplary reference genes used for normalization comprise one or more of the following genes: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes. Reference-normalized expression measurements can range from 2 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
  • Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).
  • The steps of a representative protocol for use in the methods of the present disclosure use fixed, paraffin-embedded tissues as the RNA source. For example, mRNA isolation, purification, primer extension and amplification can be performed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.
  • Design of Intron-Based PCR Primers and Probes
  • PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.
  • Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. See S. Rrawetz, S. Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386 (Humana Press).
  • Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.
  • For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, CW. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press,. New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.
  • Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.
  • MassARRAY® System
  • In MassARRAY-based methods, such as the exemplary method developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivarion of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
  • Other PCR-Based Methods
  • Further PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).
  • Microarrays
  • Expression levels of a gene or microArray of interest can also be assessed using the microarray technique. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are arrayed on a substrate. The arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from RNA of a test sample. As in the RT-PCR method, the source of RNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines. RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
  • For example, PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate. For example, the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding RNA abundance.
  • With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et at, Proc. Natl. Acad. ScL USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip® technology, or Incyte's microarray technology.
  • Serial Analysis of Gene Expression (SAGE)
  • Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).
  • Gene Expression Analysis by Nucleic Acid Sequencing
  • Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the RNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).
  • Isolating RNA from Body Fluids
  • Methods of isolating RNA for expression analysis from blood, plasma and serum (see, e.g., K. Enders, et al., Clin Chem 48, 1647-53 (2002) (and references cited therein) and from urine (see, e.g., R. Boom, et al., J Clin Microbiol. 28, 495-503 (1990) and references cited therein) have been described.
  • Immunohistochemistry
  • Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein. Antibodies (e.g., monoclonal antibodies) that specifically bind a gene product of a gene of interest can be used in such methods. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten’ labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
  • Proteomics
  • The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.
  • General Description of the mRNA/microRNA Isolation, Purification and Amplification
  • The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA or microRNA isolation, purification, primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey, et al., J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)). Briefly, a representative process starts with cutting a tissue sample section (e.g. about 10 μm thick sections of a paraffin-embedded tumor tissue sample). The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired. The sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.
  • Statistical Analysis of Expression Levels in Identification of Genes and microRNAs
  • One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between a parameter of interest (e.g., recurrence) and expression levels of a marker gene/microRNA as described here. In an exemplary embodiment, the present invention provides a stratified cohort sampling design (a form of case-control sampling) using tissue and data from prostate cancer patients. Selection of specimens was stratified by T stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason Score (low/intermediate, high). All patients with clinical recurrence were selected and a sample of patients who did not experience a clinical recurrence was selected. For each patient, up to two enriched tumor specimens and one normal-appearing tissue sample was assayed.
  • All hypothesis tests were reported using two-sided p-values. To investigate if there is a significant relationship of outcomes (clinical recurrence-free interval (cRFI), biochemical recurrence-free interval (bRFI), prostate cancer-specific survival (PCSS), and overall survival (OS)) with individual genes and/or microRNAs, demographic or clinical covariates Cox Proportional Hazards (PH) models using maximum weighted pseudo partial-likelihood estimators were used and p-values from Wald tests of the null hypothesis that the hazard ratio (HR) is one are reported. To investigate if there is a significant relationship between individual genes and/or microRNAs and Gleason pattern of a particular sample, ordinal logistic regression models using maximum weighted likelihood methods were used and p-values from Wald tests of the null hypothesis that the odds ratio (OR) is one are reported.
  • Coexpression Analysis
  • The present disclosure provides a method to determine tumor stage based on the expression of staging genes, or genes that co-express with particular staging genes. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for tumor status and disease progression. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the staging gene with which they are co-expressed.
  • In an exemplary embodiment, the joint correlation of gene expression levels among prostate cancer specimens under study may be assessed. For this purpose, the correlation structures among genes and specimens may be examined through hierarchical cluster methods. This information may be used to confirm that genes that are known to be highly correlated in prostate cancer specimens cluster together as expected. Only genes exhibiting a nominally significant (unadjusted p<0.05) relationship with cRFI in the univariate Cox PH regression analysis will be included in these analyses.
  • One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).)
  • Normalization of Expression Levels
  • The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct or Cp measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.
  • Assays can provide for normalization by incorporating the expression of certain normalizing genes, which do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes disclosed herein include housekeeping genes. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (Ct or Cp) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in prostate cancer as compared to non-cancerous prostate tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.
  • In exemplary embodiments, one or more of the following genes are used as references by which the mRNA or microRNA expression data is normalized: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. In another exemplary embodiment, one or more of the following microRNAs are used as references by which the expression data of microRNAs are normalized: hsa-miR-106a; hsa-miR-146b-5p; hsa-miR-191; hsa-miR-19b; and hsa-miR-92a. The calibrated weighted average CT or Cp measurements for each of the prognostic and predictive genes or microRNAs may be normalized relative to the mean of five or more reference genes or microRNAs.
  • Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.
  • Standardization of Expression Levels
  • The expression data used in the methods disclosed herein can be standardized. Standardization refers to a process to effectively put all the genes or microRNAs on a comparable scale. This is performed because some genes or microRNAs will exhibit more variation (a broader range of expression) than others. Standardization is performed by dividing each expression value by its standard deviation across all samples for that gene or microRNA. Hazard ratios are then interpreted as the relative risk of recurrence per 1 standard deviation increase in expression.
  • Kits of the Invention
  • The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well-known procedures. The present disclosure thus provides kits comprising agents, which may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various materials or reagents (typically in concentrated form) utilized in the methods, including, for example, chromatographic columns, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.
  • Reports
  • The methods of this invention, when practiced for commercial diagnostic purposes, generally produce a report or summary of information obtained from the herein-described methods. For example, a report may include information concerning expression levels of one or more genes and/or microRNAs, classification of the tumor or the patient's risk of recurrence, the patient's likely prognosis or risk classification, clinical and pathologic factors, and/or other information. The methods and reports of this invention can further include storing the report in a database. The method can create a record in a database for the subject and populate the record with data. The report may be a paper report, an auditory report, or an electronic record. The report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.
  • Computer Program
  • The values from the assays described above, such as expression data, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, standardization, thresholding, and conversion of values from assays to a score and/or text or graphical depiction of tumor stage and related information). The computer program product has stored therein a computer program for performing the calculation.
  • The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates an expression score, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.
  • All aspects of the present invention may also be practiced such that a limited number of additional genes and/or microRNAs that are co-expressed or functionally related with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a test in addition to and/or in place of disclosed genes.
  • Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.
  • EXAMPLES Example 1 RNA Yield and Gene Expression Profiles in Prostate Cancer Biopsy Cores
  • Clinical tools based on prostate needle core biopsies are needed to guide treatment planning at diagnosis for men with localized prostate cancer. Limiting tissue in needle core biopsy specimens poses significant challenges to the development of molecular diagnostic tests. This study examined RNA extraction yields and gene expression profiles using an RT-PCR assay to characterize RNA from manually micro-dissected fixed paraffin embedded (FPE) prostate cancer needle biopsy cores. It also investigated the association of RNA yields and gene expression profiles with Gleason score in these specimens.
  • Patients and Samples
  • This study determined the feasibility of gene expression profile analysis in prostate cancer needle core biopsies by evaluating the quantity and quality of RNA extracted from fixed paraffin-embedded (FPE) prostate cancer needle core biopsy specimens. Forty-eight (48) formalin-fixed blocks from prostate needle core biopsy specimens were used for this study. Classification of specimens was based on interpretation of the Gleason score (2005 Int'l Society of Urological Pathology Consensus Conference) and percentage tumor (<33%, 33-66%, >66%) involvement as assessed by pathologists.
  • TABLE 1
    Distribution of cases
    Gleason score ~<33% ~33-66% ~>66%
    Category Tumor Tumor Tumor
    Low (≦6) 5 5 6
    Intermediate (7) 5 5 6
    High (8, 9, 10) 5 5 6
    Total 15 15 18
  • Assay Methods
  • Fourteen (14) serial 5 μm unstained sections from each FPE tissue block were included in the study. The first and last sections for each case were H&E stained and histologically reviewed to confirm the presence of tumor and for tumor enrichment by manual micro-dissection.
  • RNA from enriched tumor samples was extracted using a manual RNA extraction process. RNA was quantitated using the RiboGreen® assay and tested for the presence of genomic DNA contamination. Samples with sufficient RNA yield and free of genomic DNA tested for gene expression levels of a 24-gene panel of reference and cancer-related genes using quantitative RT-PCR. The expression was normalized to the average of 6 reference genes (AAMP, ARF1, ATP5E, CLTC, EEF1A1, and GPX1).
  • Statistical Methods
  • Descriptive statistics and graphical displays were used to summarize standard pathology metrics and gene expression, with stratification for Gleason Score category and percentage tumor involvement category. Ordinal logistic regression was used to evaluate the relationship between gene expression and Gleason Score category.
  • Results
  • The RNA yield per unit surface area ranged from 16 to 2406 ng/mm2. Higher RNA yield was observed in samples with higher percent tumor involvement (p=0.02) and higher Gleason score (p=0.01). RNA yield was sufficient (>200 ng) in 71% of cases to permit 96-well RT-PCR, with 87% of cases having >100 ng RNA yield. The study confirmed that gene expression from prostate biopsies, as measured by qRT-PCR, was comparable to FPET samples used in commercial molecular assays for breast cancer. In addition, it was observed that greater biopsy RNA yields are found with higher Gleason score and higher percent tumor involvement. Nine genes were identified as significantly associated with Gleason score (p<0.05) and there was a large dynamic range observed for many test genes.
  • Example 2 Gene Expression Analysis for Genes Associated with Prognosis in Prostate Cancer
  • Patients and Samples
  • Approximately 2600 patients with clinical stage T1/T2 prostate cancer treated with radical prostatectomy (RP) at the Cleveland Clinic between 1987 and 2004 were identified. Patients were excluded from the study design if they received neo-adjuvant and/or adjuvant therapy, if pre-surgical PSA levels were missing, or if no tumor block was available from initial diagnosis. 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy were randomly selected using a cohort sampling design. The specimens were stratified by T stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason score (low/intermediate, high). Of the 501 sampled patients, 51 were excluded for insufficient tumor; 7 were excluded due to clinical ineligibility; 2 were excluded due to poor quality of gene expression data; and 10 were excluded because primary Gleason pattern was unavailable. Thus, this gene expression study included tissue and data from 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomies performed between 1987 and 2004 for treatment of early stage (T1, T2) prostate cancer.
  • Two fixed paraffin embedded (FPE) tissue specimens were obtained from prostate tumor specimens in each patient. The sampling method (sampling method A or B) depended on whether the highest Gleason pattern is also the primary Gleason pattern. For each specimen selected, the invasive cancer cells were at least 5.0 mm in dimension, except in the instances of pattern 5, where 2.2 mm was accepted. Specimens were spatially distinct where possible.
  • TABLE 2
    Sampling Methods
    Sampling Method A Sampling Method B
    For patients whose prostatectomy For patients whose prostatectomy
    primary Gleason pattern is also primary Gleason pattern is not
    the highest Gleason pattern the highest Gleason pattern
    Specimen 1 (A1) = primary Specimen 1 (B1) = highest
    Gleason pattern Gleason pattern
    Select and mark largest focus Select highest Gleason pattern tissue
    (greatest cross-sectional area) of from spatially distinct area from
    primary Gleason pattern tissue. specimen B2, if possible. Invasive
    Invasive cancer area ≧5.0 mm. cancer area at least 5.0 mm if
    selecting secondary pattern, at
    least 2.2 mm if selecting Gleason
    pattern
    5.
    Specimen 2 (A2) = secondary Specimen 2 (B2) = primary
    Gleason pattern Gleason pattern
    Select and mark secondary Gleason Select largest focus (greatest
    pattern tissue from spatially cross-sectional area) of primary
    distinct area from specimen A1. Gleason pattern tissue. Invasive
    Invasive cancer area ≧5.0 mm. cancer area ≧5.0 mm.
  • Histologically normal appearing tissue (NAT) adjacent to the tumor specimen (also referred to in these Examples as “non-tumor tissue”) was also evaluated. Adjacent tissue was collected 3 mm from the tumor to 3 mm from the edge of the FPET block. NAT was preferentially sampled adjacent to the primary Gleason pattern. In cases where there was insufficient NAT adjacent to the primary Gleason pattern, then NAT was sampled adjacent to the secondary or highest Gleason pattern (A2 or B1) per the method set forth in Table 2. Six (6) 10 μm sections with beginning H&E at 5 μm and ending unstained slide at 5 μm were prepared from each fixed paraffin-embedded tumor (FPET) block included in the study. All cases were histologically reviewed and manually micro-dissected to yield two enriched tumor samples and, where possible, one normal tissue sample adjacent to the tumor specimen.
  • Assay Method
  • In this study, RT-PCR analysis was used to determine RNA expression levels for 738 genes and chromosomal rearrangements (e.g., TMPRSS2-ERG fusion or other ETS family genes) in prostate cancer tissue and surrounding NAT in patients with early-stage prostate cancer treated with radical prostatectomy.
  • The samples were quantified using the RiboGreen assay and a subset tested for presence of genomic DNA contamination. Samples were taken into reverse transcription (RT) and quantitative polymerase chain reaction (qPCR). All analyses were conducted on reference-normalized gene expression levels using the average of the of replicate well crossing point (CP) values for the 6 reference genes (AAMP, ARF1, ATP5E, CLTC, GPS1, PGK1).
  • Statistical Analysis and Results
  • Primary statistical analyses involved 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomy for early-stage prostate cancer stratified by T-stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason score (low/intermediate, high). Gleason score categories are defined as follows: low (Gleason score ≦6), intermediate (Gleason score=7), and high (Gleason score ≧8). A patient was included in a specified analysis if at least one sample for that patient was evaluable. Unless otherwise stated, all hypothesis tests were reported using two-sided p-values. The method of Storey was applied to the resulting set of p-values to control the false discovery rate (FDR) at 20%. J. Storey, R. Tibshirani, Estimating the Positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays, Dept. of Statistics, Stanford Univ. (2001).
  • Analysis of gene expression and recurrence-free interval was based on univariate Cox Proportional Hazards (PH) models using maximum weighted pseudo-partial-likelihood estimators for each evaluable gene in the gene list (727 test genes and 5 reference genes). P-values were generated using Wald tests of the null hypothesis that the hazard ratio (HR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).
  • Analysis of gene expression and Gleason pattern (3, 4, 5) was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).
  • It was determined whether there is a significant relationship between cRFI and selected demographic, clinical, and pathology variables, including age, race, clinical tumor stage, pathologic tumor stage, location of selected tumor specimens within the prostate (peripheral versus transitional zone), PSA at the time of surgery, overall Gleason score from the radical prostatectomy, year of surgery, and specimen Gleason pattern. Separately for each demographic or clinical variable, the relationship between the clinical covariate and cRFI was modeled using univariate Cox PH regression using weighted pseudo partial-likelihood estimators and a p-value was generated using Wald's test of the null hypothesis that the hazard ratio (HR) is one. Covariates with unadjusted p-values <0.2 may have been included in the covariate-adjusted analyses.
  • It was determined whether there was a significant relationship between each of the individual cancer-related genes and cRFI after controlling for important demographic and clinical covariates. Separately for each gene, the relationship between gene expression and cRFI was modeled using multivariate Cox PH regression using weighted pseudo partial-likelihood estimators including important demographic and clinical variables as covariates. The independent contribution of gene expression to the prediction of cRFI was tested by generating a p-value from a Wald test using a model that included clinical covariates for each nodule (specimens as defined in Table 2). Un-adjusted p-values <0.05 were considered statistically significant.
  • Tables 3A and 3B provide genes significantly associated (p<0.05), positively or negatively, with Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 3A is positively associated with higher Gleason score, while increased expression of genes in Table 3B are negatively associated with higher Gleason score.
  • TABLE 3A
    Table 3A Gene significantly (p < 0.05) associated with
    Gleason pattern for all specimens in the primary Gleason pattern
    or highest Gleason pattern odds ratio (OR) > 1.0 (Increased
    expression is positively associated with higher Gleason Score)
    Primary Pattern Highest Pattern
    Official Symbol OR p-value OR p-value
    ALCAM 1.73 <.001 1.36 0.009
    ANLN 1.35 0.027
    APOC1 1.47 0.005 1.61 <.001
    APOE 1.87 <.001 2.15 <.001
    ASAP2 1.53 0.005
    ASPN 2.62 <.001 2.13 <.001
    ATP5E 1.35 0.035
    AURKA 1.44 0.010
    AURKB 1.59 <.001 1.56 <.001
    BAX 1.43 0.006
    BGN 2.58 <.001 2.82 <.001
    BIRC5 1.45 0.003 1.79 <.001
    BMP6 2.37 <.001 1.68 <.001
    BMPR1B 1.58 0.002
    BRCA2 1.45 0.013
    BUB1 1.73 <.001 1.57 <.001
    CACNA1D 1.31 0.045 1.31 0.033
    CADPS 1.30 0.023
    CCNB1 1.43 0.023
    CCNE2 1.52 0.003 1.32 0.035
    CD276 2.20 <.001 1.83 <.001
    CD68 1.36 0.022
    CDC20 1.69 <.001 1.95 <.001
    CDC6 1.38 0.024 1.46 <.001
    CDH11 1.30 0.029
    CDKN2B 1.55 0.001 1.33 0.023
    CDKN2C 1.62 <.001 1.52 <.001
    CDKN3 1.39 0.010 1.50 0.002
    CENPF 1.96 <.001 1.71 <.001
    CHRAC1 1.34 0.022
    CLDN3 1.37 0.029
    COL1A1 2.23 <.001 2.22 <.001
    COL1A2 1.42 0.005
    COL3A1 1.90 <.001 2.13 <.001
    COL8A1 1.88 <.001 2.35 <.001
    CRISP3 1.33 0.040 1.26 0.050
    CTHRC1 2.01 <.001 1.61 <.001
    CTNND2 1.48 0.007 1.37 0.011
    DAPK1 1.44 0.014
    DIAPH1 1.34 0.032 1.79 <.001
    DIO2 1.56 0.001
    DLL4 1.38 0.026 1.53 <.001
    ECE1 1.54 0.012 1.40 0.012
    ENY2 1.35 0.046 1.35 0.012
    EZH2 1.39 0.040
    F2R 2.37 <.001 2.60 <.001
    FAM49B 1.57 0.002 1.33 0.025
    FAP 2.36 <.001 1.89 <.001
    FCGR3A 2.10 <.001 1.83 <.001
    GNPTAB 1.78 <.001 1.54 <.001
    GSK3B 1.39 0.018
    HRAS 1.62 0.003
    HSD17B4 2.91 <.001 1.57 <.001
    HSPA8 1.48 0.012 1.34 0.023
    IFI30 1.64 <.001 1.45 0.013
    IGFBP3 1.29 0.037
    IL11 1.52 0.001 1.31 0.036
    INHBA 2.55 <.001 2.30 <.001
    ITGA4 1.35 0.028
    JAG1 1.68 <.001 1.40 0.005
    KCNN2 1.50 0.004
    KCTD12 1.38 0.012
    KHDRBS3 1.85 <.001 1.72 <.001
    KIF4A 1.50 0.010 1.50 <.001
    KLK14 1.49 0.001 1.35 <.001
    KPNA2 1.68 0.004 1.65 0.001
    KRT2 1.33 0.022
    KRT75 1.27 0.028
    LAMC1 1.44 0.029
    LAPTM5 1.36 0.025 1.31 0.042
    LTBP2 1.42 0.023 1.66 <.001
    MANF 1.34 0.019
    MAOA 1.55 0.003 1.50 <.001
    MAP3K5 1.55 0.006 1.44 0.001
    MDK 1.47 0.013 1.29 0.041
    MDM2 1.31 0.026
    MELK 1.64 <.001 1.64 <.001
    MMP11 2.33 <.001 1.66 <.001
    MYBL2 1.41 0.007 1.54 <.001
    MYO6 1.32 0.017
    NETO2 1.36 0.018
    NOX4 1.84 <.001 1.73 <.001
    NPM1 1.68 0.001
    NRIP3 1.36 0.009
    NRP1 1.80 0.001 1.36 0.019
    OSM 1.33 0.046
    PATE1 1.38 0.032
    PECAM1 1.38 0.021 1.31 0.035
    PGD 1.56 0.010
    PLK1 1.51 0.004 1.49 0.002
    PLOD2 1.29 0.027
    POSTN 1.70 0.047 1.55 0.006
    PPP3CA 1.38 0.037 1.37 0.006
    PTK6 1.45 0.007 1.53 <.001
    PTTG1 1.51 <.001
    RAB31 1.31 0.030
    RAD21 2.05 <.001 1.38 0.020
    RAD51 1.46 0.002 1.26 0.035
    RAF1 1.46 0.017
    RALBP1 1.37 0.043
    RHOC 1.33 0.021
    ROBO2 1.52 0.003 1.41 0.006
    RRM2 1.77 <.001 1.50 <.001
    SAT1 1.67 0.002 1.61 <.001
    SDC1 1.66 0.001 1.46 0.014
    SEC14L1 1.53 0.003 1.62 <.001
    SESN3 1.76 <.001 1.45 <.001
    SFRP4 2.69 <.001 2.03 <.001
    SHMT2 1.69 0.007 1.45 0.003
    SKIL 1.46 0.005
    SOX4 1.42 0.016 1.27 0.031
    SPARC 1.40 0.024 1.55 <.001
    SPINK1 1.29 0.002
    SPP1 1.51 0.002 1.80 <.001
    TFDP1 1.48 0.014
    THBS2 1.87 <.001 1.65 <.001
    THY1 1.58 0.003 1.64 <.001
    TK1 1.79 <.001 1.42 0.001
    TOP2A 2.30 <.001 2.01 <.001
    TPD52 1.95 <.001 1.30 0.037
    TPX2 2.12 <.001 1.86 <.001
    TYMP 1.36 0.020
    TYMS 1.39 0.012 1.31 0.036
    UBE2C 1.66 <.001 1.65 <.001
    UBE2T 1.59 <.001 1.33 0.017
    UGDH 1.28 0.049
    UGT2B15 1.46 0.001 1.25 0.045
    UHRF1 1.95 <.001 1.62 <.001
    VDR 1.43 0.010 1.39 0.018
    WNT5A 1.54 0.001 1.44 0.013
  • TABLE 3B
    Table 3B. Gene significantly (p < 0.05) associated with
    Gleason pattern for all specimens in the primary Gleason pattern
    or highest Gleason pattern odds ratio (OR) < 1.0 (Increased
    expression is negatively associated with higher Gleason score)
    Primary Highest
    Pattern Pattern
    Official Symbol OR p-value OR p-value
    ABCA5 0.78 0.041
    ABCG2 0.65 0.001 0.72 0.012
    ACOX2 0.44 <.001 0.53 <.001
    ADH5 0.45 <.001 0.42 <.001
    AFAP1 0.79 0.038
    AIG1 0.77 0.024
    AKAP1 0.63 0.002
    AKR1C1 0.66 0.003 0.63 <.001
    AKT3 0.68 0.006 0.77 0.010
    ALDH1A2 0.28 <.001 0.33 <.001
    ALKBH3 0.77 0.040 0.77 0.029
    AMPD3 0.67 0.007
    ANPEP 0.68 0.008 0.59 <.001
    ANXA2 0.72 0.018
    APC 0.69 0.002
    AXIN2 0.46 <.001 0.54 <.001
    AZGP1 0.52 <.001 0.53 <.001
    BIK 0.69 0.006 0.73 0.003
    BIN1 0.43 <.001 0.61 <.001
    BTG3 0.79 0.030
    BTRC 0.48 <.001 0.62 <.001
    C7 0.37 <.001 0.55 <.001
    CADM1 0.56 <.001 0.69 0.001
    CAV1 0.58 0.002 0.70 0.009
    CAV2 0.65 0.029
    CCNH 0.67 0.006 0.77 0.048
    CD164 0.59 0.003 0.57 <.001
    CDC25B 0.77 0.035
    CDH1 0.66 <.001
    CDK2 0.71 0.003
    CDKN1C 0.58 <.001 0.57 <.001
    CDS2 0.69 0.002
    CHN1 0.66 0.002
    COL6A1 0.44 <.001 0.66 <.001
    COL6A3 0.66 0.006
    CSRP1 0.42 0.006
    CTGF 0.74 0.043
    CTNNA1 0.70 <.001 0.83 0.018
    CTNNB1 0.70 0.019
    CTNND1 0.75 0.028
    CUL1 0.74 0.011
    CXCL12 0.54 <.001 0.74 0.006
    CYP3A5 0.52 <.001 0.66 0.003
    CYR61 0.64 0.004 0.68 0.005
    DDR2 0.57 0.002 0.73 0.004
    DES 0.34 <.001 0.58 <.001
    DLGAP1 0.54 <.001 0.62 <.001
    DNM3 0.67 0.004
    DPP4 0.41 <.001 0.53 <.001
    DPT 0.28 <.001 0.48 <.001
    DUSP1 0.59 <.001 0.63 <.001
    EDNRA 0.64 0.004 0.74 0.008
    EGF 0.71 0.012
    EGR1 0.59 <.001 0.67 0.009
    EGR3 0.72 0.026 0.71 0.025
    EIF5 0.76 0.025
    ELK4 0.58 0.001 0.70 0.008
    ENPP2 0.66 0.002 0.70 0.005
    EPHA3 0.65 0.006
    EPHB2 0.60 <.001 0.78 0.023
    EPHB4 0.75 0.046 0.73 0.006
    ERBB3 0.76 0.040 0.75 0.013
    ERBB4 0.74 0.023
    ERCC1 0.63 <.001 0.77 0.016
    FAAH 0.67 0.003 0.71 0.010
    FAM107A 0.35 <.001 0.59 <.001
    FAM13C 0.37 <.001 0.48 <.001
    FAS 0.73 0.019 0.72 0.008
    FGF10 0.53 <.001 0.58 <.001
    FGF7 0.52 <.001 0.59 <.001
    FGFR2 0.60 <.001 0.59 <.001
    FKBP5 0.70 0.039 0.68 0.003
    FLNA 0.39 <.001 0.56 <.001
    FLNC 0.33 <.001 0.52 <.001
    FOS 0.58 <.001 0.66 0.005
    FOXO1 0.57 <.001 0.67 <.001
    FOXQ1 0.74 0.023
    GADD45B 0.62 0.002 0.71 0.010
    GHR 0.62 0.002 0.72 0.009
    GNRH1 0.74 0.049 0.75 0.026
    GPM6B 0.48 <.001 0.68 <.001
    GPS1 0.68 0.003
    GSN 0.46 <.001 0.77 0.027
    GSTM1 0.44 <.001 0.62 <.001
    GSTM2 0.29 <.001 0.49 <.001
    HGD 0.77 0.020
    HIRIP3 0.75 0.034
    HK1 0.48 <.001 0.66 0.001
    HLF 0.42 <.001 0.55 <.001
    HNF1B 0.67 0.006 0.74 0.010
    HPS1 0.66 0.001 0.65 <.001
    HSP90AB1 0.75 0.042
    HSPA5 0.70 0.011
    HSPB2 0.52 <.001 0.70 0.004
    IGF1 0.35 <.001 0.59 <.001
    IGF2 0.48 <.001 0.70 0.005
    IGFBP2 0.61 <.001 0.77 0.044
    IGFBP5 0.63 <.001
    IGFBP6 0.45 <.001 0.64 <.001
    IL6ST 0.55 0.004 0.63 <.001
    ILK 0.40 <.001 0.57 <.001
    ING5 0.56 <.001 0.78 0.033
    ITGA1 0.56 0.004 0.61 <.001
    ITGA3 0.78 0.035
    ITGA5 0.71 0.019 0.75 0.017
    ITGA7 0.37 <.001 0.52 <.001
    ITGB3 0.63 0.003 0.70 0.005
    ITPR1 0.46 <.001 0.64 <.001
    ITPR3 0.70 0.013
    ITSN1 0.62 0.001
    JUN 0.48 <.001 0.60 <.001
    JUNB 0.72 0.025
    KIT 0.51 <.001 0.68 0.007
    KLC1 0.58 <.001
    KLK1 0.69 0.028 0.66 0.003
    KLK2 0.60 <.001
    KLK3 0.63 <.001 0.69 0.012
    KRT15 0.56 <.001 0.60 <.001
    KRT18 0.74 0.034
    KRT5 0.64 <.001 0.62 <.001
    LAMA4 0.47 <.001 0.73 0.010
    LAMB3 0.73 0.018 0.69 0.003
    LGALS3 0.59 0.003 0.54 <.001
    LIG3 0.75 0.044
    MAP3K7 0.66 0.003 0.79 0.031
    MCM3 0.73 0.013 0.80 0.034
    MGMT 0.61 0.001 0.71 0.007
    MGST1 0.75 0.017
    MLXIP 0.70 0.013
    MMP2 0.57 <.001 0.72 0.010
    MMP7 0.69 0.009
    MPPED2 0.70 0.009 0.59 <.001
    MSH6 0.78 0.046
    MTA1 0.69 0.007
    MTSS1 0.55 <.001 0.54 <.001
    MYBPC1 0.45 <.001 0.45 <.001
    NCAM1 0.51 <.001 0.65 <.001
    NCAPD3 0.42 <.001 0.53 <.001
    NCOR2 0.68 0.002
    NDUFS5 0.66 0.001 0.70 0.013
    NEXN 0.48 <.001 0.62 <.001
    NFAT5 0.55 <.001 0.67 0.001
    NFKBIA 0.79 0.048
    NRG1 0.58 0.001 0.62 0.001
    OLFML3 0.42 <.001 0.58 <.001
    OMD 0.67 0.004 0.71 0.004
    OR51E2 0.65 <.001 0.76 0.007
    PAGE4 0.27 <.001 0.46 <.001
    PCA3 0.68 0.004
    PCDHGB7 0.70 0.025 0.65 <.001
    PGF 0.62 0.001
    PGR 0.63 0.028
    PHTF2 0.69 0.033
    PLP2 0.54 <.001 0.71 0.003
    PPAP2B 0.41 <.001 0.54 <.001
    PPP1R12A 0.48 <.001 0.60 <.001
    PRIMA1 0.62 0.003 0.65 <.001
    PRKAR1B 0.70 0.009
    PRKAR2B 0.79 0.038
    PRKCA 0.37 <.001 0.55 <.001
    PRKCB 0.47 <.001 0.56 <.001
    PTCH1 0.70 0.021
    PTEN 0.66 0.010 0.64 <.001
    PTGER3 0.76 0.015
    PTGS2 0.70 0.013 0.68 0.005
    PTH1R 0.48 <.001
    PTK2B 0.67 0.014 0.69 0.002
    PYCARD 0.72 0.023
    RAB27A 0.76 0.017
    RAGE 0.77 0.040 0.57 <.001
    RARB 0.66 0.002 0.69 0.002
    RECK 0.65 <.001
    RHOA 0.73 0.043
    RHOB 0.61 0.005 0.62 <.001
    RND3 0.63 0.006 0.66 <.001
    SDHC 0.69 0.002
    SEC23A 0.61 <.001 0.74 0.010
    SEMA3A 0.49 <.001 0.55 <.001
    SERPINA3 0.70 0.034 0.75 0.020
    SH3RF2 0.33 <.001 0.42 <.001
    SLC22A3 0.23 <.001 0.37 <.001
    SMAD4 0.33 <.001 0.39 <.001
    SMARCC2 0.62 0.003 0.74 0.008
    SMO 0.53 <.001 0.73 0.009
    SORBS1 0.40 <.001 0.55 <.001
    SPARCL1 0.42 <.001 0.63 <.001
    SRD5A2 0.28 <.001 0.37 <.001
    ST5 0.52 <.001 0.63 <.001
    STAT5A 0.60 <.001 0.75 0.020
    STAT5B 0.54 <.001 0.65 <.001
    STS 0.78 0.035
    SUMO1 0.75 0.017 0.71 0.002
    SVIL 0.45 <.001 0.62 <.001
    TARP 0.72 0.017
    TGFB1I1 0.37 <.001 0.53 <.001
    TGFB2 0.61 0.025 0.59 <.001
    TGFB3 0.46 <.001 0.60 <.001
    TIMP2 0.62 0.001
    TIMP3 0.55 <.001 0.76 0.019
    TMPRSS2 0.71 0.014
    TNF 0.65 0.010
    TNFRSF10A 0.71 0.014 0.74 0.010
    TNFRSF10B 0.74 0.030 0.73 0.016
    TNFSF10 0.69 0.004
    TP53 0.73 0.011
    TP63 0.62 <.001 0.68 0.003
    TPM1 0.43 <.001 0.47 <.001
    TPM2 0.30 <.001 0.47 <.001
    TPP2 0.58 <.001 0.69 0.001
    TRA2A 0.71 0.006
    TRAF3IP2 0.50 <.001 0.63 <.001
    TRO 0.40 <.001 0.59 <.001
    TRPC6 0.73 0.030
    TRPV6 0.80 0.047
    VCL 0.44 <.001 0.55 <.001
    VEGFB 0.73 0.029
    VIM 0.72 0.013
    VTI1B 0.78 0.046
    WDR19 0.65 <.001
    WFDC1 0.50 <.001 0.72 0.010
    YY1 0.75 0.045
    ZFHX3 0.52 <.001 0.54 <.001
    ZFP36 0.65 0.004 0.69 0.012
    ZNF827 0.59 <.001 0.69 0.004
  • To identify genes associated with recurrence (cRFI, bRFI) in the primary and the highest Gleason pattern, each of 727 genes were analyzed in univariate models using specimens A1 and B2 (see Table 2, above). Tables 4A and 4B provide genes that were associated, positively or negatively, with cRFI and/or bRFI in the primary and/or highest Gleason pattern. Increased expression of genes in Table 4A is negatively associated with good prognosis, while increased expression of genes in Table 4B is positively associated with good prognosis.
  • TABLE 4A
    Table 4A.
    Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary
    Gleason pattern or highest Gleason pattern with hazard ratio (HR) > 1.0
    (increased expression is negatively associated with good prognosis)
    cRFI cRFI bRFI bRFI
    Primary Highest Primary Highest
    Pattern Pattern Pattern Pattern
    Official p- p- p- p-
    Symbol HR value HR value HR value HR value
    AKR1C3 1.304 0.022 1.312 0.013
    ANLN 1.379 0.002 1.579 <.001 1.465 <.001 1.623 <.001
    AQP2 1.184 0.027 1.276 <.001
    ASAP2 1.442 0.006
    ASPN 2.272 <.001 2.106 <.001 1.861 <.001 1.895 <.001
    ATP5E 1.414 0.013 1.538 <.001
    BAG5 1.263 0.044
    BAX 1.332 0.026 1.327 0.012 1.438 0.002
    BGN 1.947 <.001 2.061 <.001 1.339 0.017
    BIRC5 1.497 <.001 1.567 <.001 1.478 <.001 1.575 <.001
    BMP6 1.705 <.001 2.016 <.001 1.418 0.004 1.541 <.001
    BMPR1B 1.401 0.013 1.325 0.016
    BRCA2 1.259 0.007
    BUB1 1.411 <.001 1.435 <.001 1.352 <.001 1.242 0.002
    CADPS 1.387 0.009 1.294 0.027
    CCNB1 1.296 0.016 1.376 0.002
    CCNE2 1.468 <.001 1.649 <.001 1.729 <.001 1.563 <.001
    CD276 1.678 <.001 1.832 <.001 1.581 <.001 1.385 0.002
    CDC20 1.547 <.001 1.671 <.001 1.446 <.001 1.540 <.001
    CDC6 1.400 0.003 1.290 0.030 1.403 0.002 1.276 0.019
    CDH7 1.403 0.003 1.413 0.002
    CDKN2B 1.569 <.001 1.752 <.001 1.333 0.017 1.347 0.006
    CDKN2C 1.612 <.001 1.780 <.001 1.323 0.005 1.335 0.004
    CDKN3 1.384 <.001 1.255 0.024 1.285 0.003 1.216 0.028
    CENPF 1.578 <.001 1.692 <.001 1.740 <.001 1.705 <.001
    CKS2 1.390 0.007 1.418 0.005 1.291 0.018
    CLTC 1.368 0.045
    COL1A1 1.873 <.001 2.103 <.001 1.491 <.001 1.472 <.001
    COL1A2 1.462 0.001
    COL3A1 1.827 <.001 2.005 <.001 1.302 0.012 1.298 0.018
    COL4A1 1.490 0.002 1.613 <.001
    COL8A1 1.692 <.001 1.926 <.001 1.307 0.013 1.317 0.010
    CRISP3 1.425 0.001 1.467 <.001 1.242 0.045
    CTHRC1 1.505 0.002 2.025 <.001 1.425 0.003 1.369 0.005
    CTNND2 1.412 0.003
    CXCR4 1.312 0.023 1.355 0.008
    DDIT4 1.543 <.001 1.763 <.001
    DYNLL1 1.290 0.039 1.201 0.004
    EIF3H 1.428 0.012
    ENY2 1.361 0.014 1.392 0.008 1.371 0.001
    EZH2 1.311 0.010
    F2R 1.773 <.001 1.695 <.001 1.495 <.001 1.277 0.018
    FADD 1.292 0.018
    FAM171B 1.285 0.036
    FAP 1.455 0.004 1.560 0.001 1.298 0.022 1.274 0.038
    FASN 1.263 0.035
    FCGR3A 1.654 <.001 1.253 0.033 1.350 0.007
    FGF5 1.219 0.030
    GNPTAB 1.388 0.007 1.503 0.003 1.355 0.005 1.434 0.002
    GPR68 1.361 0.008
    GREM1 1.470 0.003 1.716 <.001 1.421 0.003 1.316 0.017
    HDAC1 1.290 0.025
    HDAC9 1.395 0.012
    HRAS 1.424 0.006 1.447 0.020
    HSD17B4 1.342 0.019 1.282 0.026 1.569 <.001 1.390 0.002
    HSPA8 1.290 0.034
    IGFBP3 1.333 0.022 1.442 0.003 1.253 0.040 1.323 0.005
    INHBA 2.368 <.001 2.765 <.001 1.466 0.002 1.671 <.001
    JAG1 1.359 0.006 1.367 0.005 1.259 0.024
    KCNN2 1.361 0.011 1.413 0.005 1.312 0.017 1.281 0.030
    KHDRBS3 1.387 0.006 1.601 <.001 1.573 <.001 1.353 0.006
    KIAA0196 1.249 0.037
    KIF4A 1.212 0.016 1.149 0.040 1.278 0.003
    KLK14 1.167 0.023 1.180 0.007
    KPNA2 1.425 0.009 1.353 0.005 1.305 0.019
    KRT75 1.164 0.028
    LAMA3 1.327 0.011
    LAMB1 1.347 0.019
    LAMC1 1.555 0.001 1.310 0.030 1.349 0.014
    LIMS1 1.275 0.022
    LOX 1.358 0.003 1.410 <.001
    LTBP2 1.396 0.009 1.656 <.001 1.278 0.022
    LUM 1.315 0.021
    MANF 1.660 <.001 1.323 0.011
    MCM2 1.345 0.011 1.387 0.014
    MCM6 1.307 0.023 1.352 0.008 1.244 0.039
    MELK 1.293 0.014 1.401 <.001 1.501 <.001 1.256 0.012
    MMP11 1.680 <.001 1.474 <.001 1.489 <.001 1.257 0.030
    MRPL13 1.260 0.025
    MSH2 1.295 0.027
    MYBL2 1.664 <.001 1.670 <.001 1.399 <.001 1.431 <.001
    MYO6 1.301 0.033
    NETO2 1.412 0.004 1.302 0.027 1.298 0.009
    NFKB1 1.236 0.050
    NOX4 1.492 <.001 1.507 0.001 1.555 <.001 1.262 0.019
    NPM1 1.287 0.036
    NRIP3 1.219 0.031 1.218 0.018
    NRP1 1.482 0.002 1.245 0.041
    OLFML2B 1.362 0.015
    OR51E1 1.531 <.001 1.488 0.003
    PAK6 1.269 0.033
    PATE1 1.308 <.001 1.332 <.001 1.164 0.044
    PCNA 1.278 0.020
    PEX10 1.436 0.005 1.393 0.009
    PGD 1.298 0.048 1.579 <.001
    PGK1 1.274 0.023 1.262 0.009
    PLA2G7 1.315 0.011 1.346 0.005
    PLAU 1.319 0.010
    PLK1 1.309 0.021 1.563 <.001 1.410 0.002 1.372 0.003
    PLOD2 1.284 0.019 1.272 0.014 1.332 0.005
    POSTN 1.599 <.001 1.514 0.002 1.391 0.005
    PPP3CA 1.402 0.007 1.316 0.018
    PSMD13 1.278 0.040 1.297 0.033 1.279 0.017 1.373 0.004
    PTK6 1.640 <.001 1.932 <.001 1.369 0.001 1.406 <.001
    PTTG1 1.409 <.001 1.510 <.001 1.347 0.001 1.558 <.001
    RAD21 1.315 0.035 1.402 0.004 1.589 <.001 1.439 <.001
    RAF1 1.503 0.002
    RALA 1.521 0.004 1.403 0.007 1.563 <.001 1.229 0.040
    RALBP1 1.277 0.033
    RGS7 1.154 0.015 1.266 0.010
    RRM1 1.570 0.001 1.602 <.001
    RRM2 1.368 <.001 1.289 0.004 1.396 <.001 1.230 0.015
    SAT1 1.482 0.016 1.403 0.030
    SDC1 1.340 0.018 1.396 0.018
    SEC14L1 1.260 0.048 1.360 0.002
    SESN3 1.485 <.001 1.631 <.001 1.232 0.047 1.292 0.014
    SFRP4 1.800 <.001 1.814 <.001 1.496 <.001 1.289 0.027
    SHMT2 1.807 <.001 1.658 <.001 1.673 <.001 1.548 <.001
    SKIL 1.327 0.008
    SLC25A21 1.398 0.001 1.285 0.018
    SOX4 1.286 0.020 1.280 0.030
    SPARC 1.539 <.001 1.842 <.001 1.269 0.026
    SPP1 1.322 0.022
    SQLE 1.359 0.020 1.270 0.036
    STMN1 1.402 0.007 1.446 0.005 1.279 0.031
    SULF1 1.587 <.001
    TAF2 1.273 0.027
    TFDP1 1.328 0.021 1.400 0.005 1.416 0.001
    THBS2 1.812 <.001 1.960 <.001 1.320 0.012 1.256 0.038
    THY1 1.362 0.020 1.662 <.001
    TK1 1.251 0.011 1.377 <.001 1.401 <.001
    TOP2A 1.670 <.001 1.920 <.001 1.869 <.001 1.927 <.001
    TPD52 1.324 0.011 1.366 0.002 1.351 0.005
    TPX2 1.884 <.001 2.154 <.001 1.874 <.001 1.794 <.001
    UAP1 1.244 0.044
    UBE2C 1.403 <.001 1.541 <.001 1.306 0.002 1.323 <.001
    UBE2T 1.667 <.001 1.282 0.023 1.502 <.001 1.298 0.005
    UGT2B15 1.295 0.001 1.275 0.002
    UGT2B17 1.294 0.025
    UHRF1 1.454 <.001 1.531 <.001 1.257 0.029
    VCPIP1 1.390 0.009 1.414 0.004 1.294 0.021 1.283 0.021
    WNT5A 1.274 0.038 1.298 0.020
    XIAP 1.464 0.006
    ZMYND8 1.277 0.048
    ZWINT 1.259 0.047
  • TABLE 4B
    Table 4B.
    Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary
    Gleason pattern or highest Gleason pattern with hazard ratio (HR) < 1.0
    (increased expression is positively associated with good prognosis)
    cRFI cRFI bRFI bRFI
    Primary Highest Primary Highest
    Pattern Pattern Pattern Pattern
    Official p- p- p- p-
    Symbol HR value HR value HR value HR value
    AAMP 0.564 <.001 0.571 <.001 0.764 0.037 0.786 0.034
    ABCA5 0.755 <.001 0.695 <.001 0.800 0.006
    ABCB1 0.777 0.026
    ABCG2 0.788 0.033 0.784 0.040 0.803 0.018 0.750 0.004
    ABHD2 0.734 0.011
    ACE 0.782 0.048
    ACOX2 0.639 <.001 0.631 <.001 0.713 <.001 0.716 0.002
    ADH5 0.625 <.001 0.637 <.001 0.753 0.026
    AKAP1 0.764 0.006 0.800 0.005 0.837 0.046
    AKR1C1 0.773 0.033 0.802 0.032
    AKT1 0.714 0.005
    AKT3 0.811 0.015 0.809 0.021
    ALDH1A2 0.606 <.001 0.498 <.001 0.613 <.001 0.624 <.001
    AMPD3 0.793 0.024
    ANPEP 0.584 <.001 0.493 <.001
    ANXA2 0.753 0.013 0.781 0.036 0.762 0.008 0.795 0.032
    APRT 0.758 0.026 0.780 0.044 0.746 0.008
    ATXN1 0.673 0.001 0.776 0.029 0.809 0.031 0.812 0.043
    AXIN2 0.674 <.001 0.571 <.001 0.776 0.005 0.757 0.005
    AZGP1 0.585 <.001 0.652 <.001 0.664 <.001 0.746 <.001
    BAD 0.765 0.023
    BCL2 0.788 0.033 0.778 0.036
    BDKRB1 0.728 0.039
    BIK 0.712 0.005
    BIN1 0.607 <.001 0.724 0.002 0.726 <.001 0.834 0.034
    BTG3 0.847 0.034
    BTRC 0.688 0.001 0.713 0.003
    C7 0.589 <.001 0.639 <.001 0.629 <.001 0.691 <.001
    CADM1 0.546 <.001 0.529 <.001 0.743 0.008 0.769 0.015
    CASP1 0.769 0.014 0.799 0.028 0.799 0.010 0.815 0.018
    CAV1 0.736 0.011 0.711 0.005 0.675 <.001 0.743 0.006
    CAV2 0.636 0.010 0.648 0.012 0.685 0.012
    CCL2 0.759 0.029 0.764 0.024
    CCNH 0.689 <.001 0.700 <.001
    CD164 0.664 <.001 0.651 <.001
    CD1A 0.687 0.004
    CD44 0.545 <.001 0.600 <.001 0.788 0.018 0.799 0.023
    CD82 0.771 0.009 0.748 0.004
    CDC25B 0.755 0.006 0.817 0.025
    CDK14 0.845 0.043
    CDK2 0.819 0.032
    CDK3 0.733 0.005 0.772 0.006 0.838 0.017
    CDKN1A 0.766 0.041
    CDKN1C 0.662 <.001 0.712 0.002 0.693 <.001 0.761 0.009
    CHN1 0.788 0.036
    COL6A1 0.608 <.001 0.767 0.013 0.706 <.001 0.775 0.007
    CSF1 0.626 <.001 0.709 0.003
    CSK 0.837 0.029
    CSRP1 0.793 0.024 0.782 0.019
    CTNNB1 0.898 0.042 0.885 <.001
    CTSB 0.701 0.004 0.713 0.007 0.715 0.002 0.803 0.038
    CTSK 0.815 0.042
    CXCL12 0.652 <.001 0.802 0.044 0.711 0.001
    CYP3A5 0.463 <.001 0.436 <.001 0.727 0.003
    CYR61 0.652 0.002 0.676 0.002
    DAP 0.761 0.026 0.775 0.025 0.802 0.048
    DARC 0.725 0.005 0.792 0.032
    DDR2 0.719 0.001 0.763 0.008
    DES 0.619 <.001 0.737 0.005 0.638 <.001 0.793 0.017
    DHRS9 0.642 0.003
    DHX9 0.888 <.001
    DLC1 0.710 0.007 0.715 0.009
    DLGAP1 0.613 <.001 0.551 <.001 0.779 0.049
    DNM3 0.679 <.001 0.812 0.037
    DPP4 0.591 <.001 0.613 <.001 0.761 0.003
    DPT 0.613 <.001 0.576 <.001 0.647 <.001 0.677 <.001
    DUSP1 0.662 0.001 0.665 0.001 0.785 0.024
    DUSP6 0.713 0.005 0.668 0.002
    EDNRA 0.702 0.002 0.779 0.036
    EGF 0.738 0.028
    EGR1 0.569 <.001 0.577 <.001 0.782 0.022
    EGR3 0.601 <.001 0.619 <.001 0.800 0.038
    EIF2S3 0.756 0.015
    EIF5 0.776 0.023 0.787 0.028
    ELK4 0.628 <.001 0.658 <.001
    EPHA2 0.720 0.011 0.663 0.004
    EPHA3 0.727 0.003 0.772 0.005
    ERBB2 0.786 0.019 0.738 0.003 0.815 0.041
    ERBB3 0.728 0.002 0.711 0.002 0.828 0.043 0.813 0.023
    ERCC1 0.771 0.023 0.725 0.007 0.806 0.049 0.704 0.002
    EREG 0.754 0.016 0.777 0.034
    ESR2 0.731 0.026
    FAAH 0.708 0.004 0.758 0.012 0.784 0.031 0.774 0.007
    FAM107A 0.517 <.001 0.576 <.001 0.642 <.001 0.656 <.001
    FAM13C 0.568 <.001 0.526 <.001 0.739 0.002 0.639 <.001
    FAS 0.755 0.014
    FASLG 0.706 0.021
    FGF10 0.653 <.001 0.685 <.001 0.766 0.022
    FGF17 0.746 0.023 0.781 0.015 0.805 0.028
    FGF7 0.794 0.030 0.820 0.037 0.811 0.040
    FGFR2 0.683 <.001 0.686 <.001 0.674 <.001 0.703 <.001
    FKBP5 0.676 0.001
    FLNA 0.653 <.001 0.741 0.010 0.682 <.001 0.771 0.016
    FLNC 0.751 0.029 0.779 0.047 0.663 <.001 0.725 <.001
    FLT1 0.799 0.044
    FOS 0.566 <.001 0.543 <.001 0.757 0.006
    FOXO1 0.816 0.039 0.798 0.023
    FOXQ1 0.753 0.017 0.757 0.024 0.804 0.018
    FYN 0.779 0.031
    GADD45B 0.590 <.001 0.619 <.001
    GDF15 0.759 0.019 0.794 0.048
    GHR 0.702 0.005 0.630 <.001 0.673 <.001 0.590 <.001
    GNRH1 0.742 0.014
    GPM6B 0.653 <.001 0.633 <.001 0.696 <.001 0.768 0.007
    GSN 0.570 <.001 0.697 0.001 0.697 <.001 0.758 0.005
    GSTM1 0.612 <.001 0.588 <.001 0.718 <.001 0.801 0.020
    GSTM2 0.540 <.001 0.630 <.001 0.602 <.001 0.706 <.001
    HGD 0.796 0.020 0.736 0.002
    HIRIP3 0.753 0.011 0.824 0.050
    HK1 0.684 <.001 0.683 <.001 0.799 0.011 0.804 0.014
    HLA-G 0.726 0.022
    HLF 0.555 <.001 0.582 <.001 0.703 <.001 0.702 <.001
    HNF1B 0.690 <.001 0.585 <.001
    HPS1 0.744 0.003 0.784 0.020 0.836 0.047
    HSD3B2 0.733 0.016
    HSP90AB1 0.801 0.036
    HSPA5 0.776 0.034
    HSPB1 0.813 0.020
    HSPB2 0.762 0.037 0.699 0.002 0.783 0.034
    HSPG2 0.794 0.044
    ICAM1 0.743 0.024 0.768 0.040
    IER3 0.686 0.002 0.663 <.001
    IFIT1 0.649 <.001 0.761 0.026
    IGF1 0.634 <.001 0.537 <.001 0.696 <.001 0.688 <.001
    IGF2 0.732 0.004
    IGFBP2 0.548 <.001 0.620 <.001
    IGFBP5 0.681 <.001
    IGFBP6 0.577 <.001 0.675 <.001
    IL1B 0.712 0.005 0.742 0.009
    IL6 0.763 0.028
    IL6R 0.791 0.039
    IL6ST 0.585 <.001 0.639 <.001 0.730 0.002 0.768 0.006
    IL8 0.624 <.001 0.662 0.001
    ILK 0.712 0.009 0.728 0.012 0.790 0.047 0.790 0.042
    ING5 0.625 <.001 0.658 <.001 0.728 0.002
    ITGA5 0.728 0.006 0.803 0.039
    ITGA6 0.779 0.007 0.775 0.006
    ITGA7 0.584 <.001 0.700 0.001 0.656 <.001 0.786 0.014
    ITGAD 0.657 0.020
    ITGB4 0.718 0.007 0.689 <.001 0.818 0.041
    ITGB5 0.801 0.050
    ITPR1 0.707 0.001
    JUN 0.556 <.001 0.574 <.001 0.754 0.008
    JUNB 0.730 0.017 0.715 0.010
    KIT 0.644 0.004 0.705 0.019 0.605 <.001 0.659 0.001
    KLC1 0.692 0.003 0.774 0.024 0.747 0.008
    KLF6 0.770 0.032 0.776 0.039
    KLK1 0.646 <.001 0.652 0.001 0.784 0.037
    KLK10 0.716 0.006
    KLK2 0.647 <.001 0.628 <.001 0.786 0.009
    KLK3 0.706 <.001 0.748 <.001 0.845 0.018
    KRT1 0.734 0.024
    KRT15 0.627 <.001 0.526 <.001 0.704 <.001 0.782 0.029
    KRT18 0.624 <.001 0.617 <.001 0.738 0.005 0.760 0.005
    KRT5 0.640 <.001 0.550 <.001 0.740 <.001 0.798 0.023
    KRT8 0.716 0.006 0.744 0.008
    L1CAM 0.738 0.021 0.692 0.009 0.761 0.036
    LAG3 0.741 0.013 0.729 0.011
    LAMA4 0.686 0.011 0.592 0.003
    LAMA5 0.786 0.025
    LAMB3 0.661 <.001 0.617 <.001 0.734 <.001
    LGALS3 0.618 <.001 0.702 0.001 0.734 0.001 0.793 0.012
    LIG3 0.705 0.008 0.615 <.001
    LRP1 0.786 0.050 0.795 0.023 0.770 0.009
    MAP3K7 0.789 0.003
    MGMT 0.632 <.001 0.693 <.001
    MICA 0.781 0.014 0.653 <.001 0.833 0.043
    MPPED2 0.655 <.001 0.597 <.001 0.719 <.001 0.759 0.006
    MSH6 0.793 0.015
    MTSS1 0.613 <.001 0.746 0.008
    MVP 0.792 0.028 0.795 0.045 0.819 0.023
    MYBPC1 0.648 <.001 0.496 <.001 0.701 <.001 0.629 <.001
    NCAM1 0.773 0.015
    NCAPD3 0.574 <.001 0.463 <.001 0.679 <.001 0.640 <.001
    NEXN 0.701 0.002 0.791 0.035 0.725 0.002 0.781 0.016
    NFAT5 0.515 <.001 0.586 <.001 0.785 0.017
    NFATC2 0.753 0.023
    NFKBIA 0.778 0.037
    NRG1 0.644 0.004 0.696 0.017 0.698 0.012
    OAZ1 0.777 0.034 0.775 0.022
    OLFML3 0.621 <.001 0.720 0.001 0.600 <.001 0.626 <.001
    OMD 0.706 0.003
    OR51E2 0.820 0.037 0.798 0.027
    PAGE4 0.549 <.001 0.613 <.001 0.542 <.001 0.628 <.001
    PCA3 0.684 <.001 0.635 <.001
    PCDHGB7 0.790 0.045 0.725 0.002 0.664 <.001
    PGF 0.753 0.017
    PGR 0.740 0.021 0.728 0.018
    PIK3CG 0.803 0.024
    PLAUR 0.778 0.035
    PLG 0.728 0.028
    PPAP2B 0.575 <.001 0.629 <.001 0.643 <.001 0.699 <.001
    PPP1R12A 0.647 <.001 0.683 0.002 0.782 0.023 0.784 0.030
    PRIMA1 0.626 <.001 0.658 <.001 0.703 0.002 0.724 0.003
    PRKCA 0.642 <.001 0.799 0.029 0.677 0.001 0.776 0.006
    PRKCB 0.675 0.001 0.648 <.001 0.747 0.006
    PROM1 0.603 0.018 0.659 0.014 0.493 0.008
    PTCH1 0.680 0.001 0.753 0.010 0.789 0.018
    PTEN 0.732 0.002 0.747 0.005 0.744 <.001 0.765 0.002
    PTGS2 0.596 <.001 0.610 <.001
    PTH1R 0.767 0.042 0.775 0.028 0.788 0.047
    PTHLH 0.617 0.002 0.726 0.025 0.668 0.002 0.718 0.007
    PTK2B 0.744 0.003 0.679 <.001 0.766 0.002 0.726 <.001
    PTPN1 0.760 0.020 0.780 0.042
    PYCARD 0.748 0.012
    RAB27A 0.708 0.004
    RAB30 0.755 0.008
    RAGE 0.817 0.048
    RAP1B 0.818 0.050
    RARB 0.757 0.007 0.677 <.001 0.789 0.007 0.746 0.003
    RASSF1 0.816 0.035
    RHOB 0.725 0.009 0.676 0.001 0.793 0.039
    RLN1 0.742 0.033 0.762 0.040
    RND3 0.636 <.001 0.647 <.001
    RNF114 0.749 0.011
    SDC2 0.721 0.004
    SDHC 0.725 0.003 0.727 0.006
    SEMA3A 0.757 0.024 0.721 0.010
    SERPINA3 0.716 0.008 0.660 0.001
    SERPINB5 0.747 0.031 0.616 0.002
    SH3RF2 0.577 <.001 0.458 <.001 0.702 <.001 0.640 <.001
    SLC22A3 0.565 <.001 0.540 <.001 0.747 0.004 0.756 0.007
    SMAD4 0.546 <.001 0.573 <.001 0.636 <.001 0.627 <.001
    SMARCD1 0.718 <.001 0.775 0.017
    SMO 0.793 0.029 0.754 0.021 0.718 0.003
    SOD1 0.757 0.049 0.707 0.006
    SORBS1 0.645 <.001 0.716 0.003 0.693 <.001 0.784 0.025
    SPARCL1 0.821 0.028 0.829 0.014 0.781 0.030
    SPDEF 0.778 <.001
    SPINT1 0.732 0.009 0.842 0.026
    SRC 0.647 <.001 0.632 <.001
    SRD5A1 0.813 0.040
    SRD5A2 0.489 <.001 0.533 <.001 0.544 <.001 0.611 <.001
    ST5 0.713 0.002 0.783 0.011 0.725 <.001 0.827 0.025
    STAT3 0.773 0.037 0.759 0.035
    STAT5A 0.695 <.001 0.719 0.002 0.806 0.020 0.783 0.008
    STAT5B 0.633 <.001 0.655 <.001 0.814 0.028
    SUMO1 0.790 0.015
    SVIL 0.659 <.001 0.713 0.002 0.711 0.002 0.779 0.010
    TARP 0.800 0.040
    TBP 0.761 0.010
    TFF3 0.734 0.010 0.659 <.001
    TGFB1I1 0.618 <.001 0.693 0.002 0.637 <.001 0.719 0.004
    TGFB2 0.679 <.001 0.747 0.005 0.805 0.030
    TGFB3 0.791 0.037
    TGFBR2 0.778 0.035
    TIMP3 0.751 0.011
    TMPRSS2 0.745 0.003 0.708 <.001
    TNF 0.670 0.013 0.697 0.015
    TNFRSF10A 0.780 0.018 0.752 0.006 0.817 0.032
    TNFRSF10B 0.576 <.001 0.655 <.001 0.766 0.004 0.778 0.002
    TNFRSF18 0.648 0.016 0.759 0.034
    TNFSF10 0.653 <.001 0.667 0.004
    TP53 0.729 0.003
    TP63 0.759 0.016 0.636 <.001 0.698 <.001 0.712 0.001
    TPM1 0.778 0.048 0.743 0.012 0.783 0.032 0.811 0.046
    TPM2 0.578 <.001 0.634 <.001 0.611 <.001 0.710 0.001
    TPP2 0.775 0.037
    TRAF3IP2 0.722 0.002 0.690 <.001 0.792 0.021 0.823 0.049
    TRO 0.744 0.003 0.725 0.003 0.765 0.002 0.821 0.041
    TUBB2A 0.639 <.001 0.625 <.001
    TYMP 0.786 0.039
    VCL 0.594 <.001 0.657 0.001 0.682 <.001
    VEGFA 0.762 0.024
    VEGFB 0.795 0.037
    VIM 0.739 0.009 0.791 0.021
    WDR19 0.776 0.015
    WFDC1 0.746 <.001
    YY1 0.683 0.001 0.728 0.002
    ZFHX3 0.684 <.001 0.661 <.001 0.801 0.010 0.762 0.001
    ZFP36 0.605 <.001 0.579 <.001 0.815 0.043
    ZNF827 0.624 <.001 0.730 0.007 0.738 0.004
  • Tables 5A and 5B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for AUA risk group in the primary and/or highest Gleason pattern. Increased expression of genes in Table 5A is negatively associated with good prognosis, while increased expression of genes in Table 5B is positively associated with good prognosis.
  • TABLE 5A
    Table 5A.
    Gene significantly (p < 0.05) associated with cRFI or bRFI after
    adjustment for AUA risk group in the primary Gleason pattern or highest
    Gleason pattern with hazard ratio (HR) > 1.0 (increased expression
    negatively associated with good prognosis)
    cRFI cRFI bRFI bRFI
    Primary Highest Primary Highest
    Pattern Pattern Pattern Pattern
    Official p- p- p- p-
    Symbol HR value HR value HR value HR value
    AKR1C3 1.315 0.018 1.283 0.024
    ALOX12 1.198 0.024
    ANLN 1.406 <.001 1.519 <.001 1.485 <.001 1.632 <.001
    AQP2 1.209 <.001 1.302 <.001
    ASAP2 1.582 <.001 1.333 0.011 1.307 0.019
    ASPN 1.872 <.001 1.741 <.001 1.638 <.001 1.691 <.001
    ATP5E 1.309 0.042 1.369 0.012
    BAG5 1.291 0.044
    BAX 1.298 0.025 1.420 0.004
    BGN 1.746 <.001 1.755 <.001
    BIRC5 1.480 <.001 1.470 <.001 1.419 <.001 1.503 <.001
    BMP6 1.536 <.001 1.815 <.001 1.294 0.033 1.429 0.001
    BRCA2 1.184 0.037
    BUB1 1.288 0.001 1.391 <.001 1.254 <.001 1.189 0.018
    CACNA1D 1.313 0.029
    CADPS 1.358 0.007 1.267 0.022
    CASP3 1.251 0.037
    CCNB1 1.261 0.033 1.318 0.005
    CCNE2 1.345 0.005 1.438 <.001 1.606 <.001 1.426 <.001
    CD276 1.482 0.002 1.668 <.001 1.451 <.001 1.302 0.011
    CDC20 1.417 <.001 1.547 <.001 1.355 <.001 1.446 <.001
    CDC6 1.340 0.011 1.265 0.046 1.367 0.002 1.272 0.025
    CDH7 1.402 0.003 1.409 0.002
    CDKN2B 1.553 <.001 1.746 <.001 1.340 0.014 1.369 0.006
    CDKN2C 1.411 <.001 1.604 <.001 1.220 0.033
    CDKN3 1.296 0.004 1.226 0.015
    CENPF 1.434 0.002 1.570 <.001 1.633 <.001 1.610 <.001
    CKS2 1.419 0.008 1.374 0.022 1.380 0.004
    COL1A1 1.677 <.001 1.809 <.001 1.401 <.001 1.352 0.003
    COL1A2 1.373 0.010
    COL3A1 1.669 <.001 1.781 <.001 1.249 0.024 1.234 0.047
    COL4A1 1.475 0.002 1.513 0.002
    COL8A1 1.506 0.001 1.691 <.001
    CRISP3 1.406 0.004 1.471 <.001
    CTHRC1 1.426 0.009 1.793 <.001 1.311 0.019
    CTNND2 1.462 <.001
    DDIT4 1.478 0.003 1.783 <.001 1.236 0.039
    DYNLL1 1.431 0.002 1.193 0.004
    EIF3H 1.372 0.027
    ENY2 1.325 0.023 1.270 0.017
    ERG 1.303 0.041
    EZH2 1.254 0.049
    F2R 1.540 0.002 1.448 0.006 1.286 0.023
    FADD 1.235 0.041 1.404 <.001
    FAP 1.386 0.015 1.440 0.008 1.253 0.048
    FASN 1.303 0.028
    FCGR3A 1.439 0.011 1.262 0.045
    FGF5 1.289 0.006
    GNPTAB 1.290 0.033 1.369 0.022 1.285 0.018 1.355 0.008
    GPR68 1.396 0.005
    GREM1 1.341 0.022 1.502 0.003 1.366 0.006
    HDAC1 1.329 0.016
    HDAC9 1.378 0.012
    HRAS 1.465 0.006
    HSD17B4 1.442 <.001 1.245 0.028
    IGFBP3 1.366 0.019 1.302 0.011
    INHBA 2.000 <.001 2.336 <.001 1.486 0.002
    JAG1 1.251 0.039
    KCNN2 1.347 0.020 1.524 <.001 1.312 0.023 1.346 0.011
    KHDRBS3 1.500 0.001 1.426 0.001 1.267 0.032
    KIAA0196 1.272 0.028
    KIF4A 1.199 0.022 1.262 0.004
    KPNA2 1.252 0.016
    LAMA3 1.332 0.004 1.356 0.010
    LAMB1 1.317 0.028
    LAMC1 1.516 0.003 1.302 0.040 1.397 0.007
    LIMS1 1.261 0.027
    LOX 1.265 0.016 1.372 0.001
    LTBP2 1.477 0.002
    LUM 1.321 0.020
    MANF 1.647 <.001 1.284 0.027
    MCM2 1.372 0.003 1.302 0.032
    MCM3 1.269 0.047
    MCM6 1.276 0.033 1.245 0.037
    MELK 1.294 0.005 1.394 <.001
    MKI67 1.253 0.028 1.246 0.029
    MMP11 1.557 <.001 1.290 0.035 1.357 0.005
    MRPL13 1.275 0.003
    MSH2 1.355 0.009
    MYBL2 1.497 <.001 1.509 <.001 1.304 0.003 1.292 0.007
    MYO6 1.367 0.010
    NDRG1 1.270 0.042 1.314 0.025
    NEK2 1.338 0.020 1.269 0.026
    NETO2 1.434 0.004 1.303 0.033 1.283 0.012
    NOX4 1.413 0.006 1.308 0.037 1.444 <.001
    NRIP3 1.171 0.026
    NRP1 1.372 0.020
    ODC1 1.450 <.001
    OR51E1 1.559 <.001 1.413 0.008
    PAK6 1.233 0.047
    PATE1 1.262 <.001 1.375 <.001 1.143 0.034 1.191 0.036
    PCNA 1.227 0.033 1.318 0.003
    PEX10 1.517 <.001 1.500 0.001
    PGD 1.363 0.028 1.316 0.039 1.652 <.001
    PGK1 1.224 0.034 1.206 0.024
    PIM1 1.205 0.042
    PLA2G7 1.298 0.018 1.358 0.005
    PLAU 1.242 0.032
    PLK1 1.464 0.001 1.299 0.018 1.275 0.031
    PLOD2 1.206 0.039 1.261 0.025
    POSTN 1.558 0.001 1.356 0.022 1.363 0.009
    PPP3CA 1.445 0.002
    PSMD13 1.301 0.017 1.411 0.003
    PTK2 1.318 0.031
    PTK6 1.582 <.001 1.894 <.001 1.290 0.011 1.354 0.003
    PTTG1 1.319 0.004 1.430 <.001 1.271 0.006 1.492 <.001
    RAD21 1.278 0.028 1.435 0.004 1.326 0.008
    RAF1 1.504 <.001
    RALA 1.374 0.028 1.459 0.001
    RGS7 1.203 0.031
    RRM1 1.535 0.001 1.525 <.001
    RRM2 1.302 0.003 1.197 0.047 1.342 <.001
    SAT1 1.374 0.043
    SDC1 1.344 0.011 1.473 0.008
    SEC14L1 1.297 0.006
    SESN3 1.337 0.002 1.495 <.001 1.223 0.038
    SFRP4 1.610 <.001 1.542 0.002 1.370 0.009
    SHMT2 1.567 0.001 1.522 <.001 1.485 0.001 1.370 <.001
    SKIL 1.303 0.008
    SLC25A21 1.287 0.020 1.306 0.017
    SLC44A1 1.308 0.045
    SNRPB2 1.304 0.018
    SOX4 1.252 0.031
    SPARC 1.445 0.004 1.706 <.001 1.269 0.026
    SPP1 1.376 0.016
    SQLE 1.417 0.007 1.262 0.035
    STAT1 1.209 0.029
    STMN1 1.315 0.029
    SULF1 1.504 0.001
    TAF2 1.252 0.048 1.301 0.019
    TFDP1 1.395 0.010 1.424 0.002
    THBS2 1.716 <.001 1.719 <.001
    THY1 1.343 0.035 1.575 0.001
    TK1 1.320 <.001 1.304 <.001
    TOP2A 1.464 0.001 1.688 <.001 1.715 <.001 1.761 <.001
    TPD52 1.286 0.006 1.258 0.023
    TPX2 1.644 <.001 1.964 <.001 1.699 <.001 1.754 <.001
    TYMS 1.315 0.014
    UBE2C 1.270 0.019 1.558 <.001 1.205 0.027 1.333 <.001
    UBE2G1 1.302 0.041
    UBE2T 1.451 <.001 1.309 0.003
    UGT2B15 1.222 0.025
    UHRF1 1.370 0.003 1.520 <.001 1.247 0.020
    VCPIP1 1.332 0.015
    VTI1B 1.237 0.036
    XIAP 1.486 0.008
    ZMYND8 1.408 0.007
    ZNF3 1.284 0.018
    ZWINT 1.289 0.028
  • TABLE 5B
    Table 5B.
    Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for
    AUA risk group in the primary Gleason pattern or highest Gleason pattern with
    hazard ratio (HR) < 1.0 (increased expression is positively associated with
    good prognosis)
    cRFI cRFI bRFI bRFI
    Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
    Symbol HR p-value HR p-value HR p-value HR p-value
    AAMP 0.535 <.001 0.581 <.001 0.700 0.002 0.759 0.006
    ABCA5 0.798 0.007 0.745 0.002 0.841 0.037
    ABCC1 0.800 0.044
    ABCC4 0.787 0.022
    ABHD2 0.768 0.023
    ACOX2 0.678 0.002 0.749 0.027 0.759 0.004
    ADH5 0.645 <.001 0.672 0.001
    AGTR1 0.780 0.030
    AKAP1 0.815 0.045 0.758 <.001
    AKT1 0.732 0.010
    ALDH1A2 0.646 <.001 0.548 <.001 0.671 <.001 0.713 0.001
    ANPEP 0.641 <.001 0.535 <.001
    ANXA2 0.772 0.035 0.804 0.046
    ATXN1 0.654 <.001 0.754 0.020 0.797 0.017
    AURKA 0.788 0.030
    AXIN2 0.744 0.005 0.655 <.001
    AZGP1 0.656 <.001 0.676 <.001 0.754 0.001 0.791 0.004
    BAD 0.700 0.004
    BIN1 0.650 <.001 0.764 0.013 0.803 0.015
    BTG3 0.836 0.025
    BTRC 0.730 0.005
    C7 0.617 <.001 0.680 <.001 0.667 <.001 0.755 0.005
    CADM1 0.559 <.001 0.566 <.001 0.772 0.020 0.802 0.046
    CASP1 0.781 0.030 0.779 0.021 0.818 0.027 0.828 0.036
    CAV1 0.775 0.034
    CAV2 0.677 0.019
    CCL2 0.752 0.023
    CCNH 0.679 <.001 0.682 <.001
    CD164 0.721 0.002 0.724 0.005
    CD1A 0.710 0.014
    CD44 0.591 <.001 0.642 <.001
    CD82 0.779 0.021 0.771 0.024
    CDC25B 0.778 0.035 0.818 0.023
    CDK14 0.788 0.011
    CDK3 0.752 0.012 0.779 0.005 0.841 0.020
    CDKN1A 0.770 0.049 0.712 0.014
    CDKN1C 0.684 <.001 0.697 <.001
    CHN1 0.772 0.031
    COL6A1 0.648 <.001 0.807 0.046 0.768 0.004
    CSF1 0.621 <.001 0.671 0.001
    CTNNB1 0.905 0.008
    CTSB 0.754 0.030 0.716 0.011 0.756 0.014
    CXCL12 0.641 <.001 0.796 0.038 0.708 <.001
    CYP3A5 0.503 <.001 0.528 <.001 0.791 0.028
    CYR61 0.639 0.001 0.659 0.001 0.797 0.048
    DARC 0.707 0.004
    DDR2 0.750 0.011
    DES 0.657 <.001 0.758 0.022 0.699 <.001
    DHRS9 0.625 0.002
    DHX9 0.846 <.001
    DIAPH1 0.682 0.007 0.723 0.008 0.780 0.026
    DLC1 0.703 0.005 0.702 0.008
    DLGAP1 0.703 0.008 0.636 <.001
    DNM3 0.701 0.001 0.817 0.042
    DPP4 0.686 <.001 0.716 0.001
    DPT 0.636 <.001 0.633 <.001 0.709 0.006 0.773 0.024
    DUSP1 0.683 0.006 0.679 0.003
    DUSP6 0.694 0.003 0.605 <.001
    EDN1 0.773 0.031
    EDNRA 0.716 0.007
    EGR1 0.575 <.001 0.575 <.001 0.771 0.014
    EGR3 0.633 0.002 0.643 <.001 0.792 0.025
    EIF4E 0.722 0.002
    ELK4 0.710 0.009 0.759 0.027
    ENPP2 0.786 0.039
    EPHA2 0.593 0.001
    EPHA3 0.739 0.006 0.802 0.020
    ERBB2 0.753 0.007
    ERBB3 0.753 0.009 0.753 0.015
    ERCC1 0.727 0.001
    EREG 0.722 0.012 0.769 0.040
    ESR1 0.742 0.015
    FABP5 0.756 0.032
    FAM107A 0.524 <.001 0.579 <.001 0.688 <.001 0.699 0.001
    FAM13C 0.639 <.001 0.601 <.001 0.810 0.019 0.709 <.001
    FAS 0.770 0.033
    FASLG 0.716 0.028 0.683 0.017
    FGF10 0.798 0.045
    FGF17 0.718 0.018 0.793 0.024 0.790 0.024
    FGFR2 0.739 0.007 0.783 0.038 0.740 0.004
    FGFR4 0.746 0.050
    FKBP5 0.689 0.003
    FLNA 0.701 0.006 0.766 0.029 0.768 0.037
    FLNC 0.755 <.001 0.820 0.022
    FLT1 0.729 0.008
    FOS 0.572 <.001 0.536 <.001 0.750 0.005
    FOXQ1 0.778 0.033 0.820 0.018
    FYN 0.708 0.006
    GADD45B 0.577 <.001 0.589 <.001
    GDF15 0.757 0.013 0.743 0.006
    GHR 0.712 0.004 0.679 0.001
    GNRH1 0.791 0.048
    GPM6B 0.675 <.001 0.660 <.001 0.735 <.001 0.823 0.049
    GSK3B 0.783 0.042
    GSN 0.587 <.001 0.705 0.002 0.745 0.004 0.796 0.021
    GSTM1 0.686 0.001 0.631 <.001 0.807 0.018
    GSTM2 0.607 <.001 0.683 <.001 0.679 <.001 0.800 0.027
    HIRIP3 0.692 <.001 0.782 0.007
    HK1 0.724 0.002 0.718 0.002
    HLF 0.580 <.001 0.571 <.001 0.759 0.008 0.750 0.004
    HNF1B 0.669 <.001
    HPS1 0.764 0.008
    HSD17B10 0.802 0.045
    HSD17B2 0.723 0.048
    HSD3B2 0.709 0.010
    HSP90AB1 0.780 0.034 0.809 0.041
    HSPA5 0.738 0.017
    HSPB1 0.770 0.006 0.801 0.032
    HSPB2 0.788 0.035
    ICAM1 0.728 0.015 0.716 0.010
    IER3 0.735 0.016 0.637 <.001 0.802 0.035
    IFIT1 0.647 <.001 0.755 0.029
    IGF1 0.675 <.001 0.603 <.001 0.762 0.006 0.770 0.030
    IGF2 0.761 0.011
    IGFBP2 0.601 <.001 0.605 <.001
    IGFBP5 0.702 <.001
    IGFBP6 0.628 <.001 0.726 0.003
    IL1B 0.676 0.002 0.716 0.004
    IL6 0.688 0.005 0.766 0.044
    IL6R 0.786 0.036
    IL6ST 0.618 <.001 0.639 <.001 0.785 0.027 0.813 0.042
    IL8 0.635 <.001 0.628 <.001
    ILK 0.734 0.018 0.753 0.026
    ING5 0.684 <.001 0.681 <.001 0.756 0.006
    ITGA4 0.778 0.040
    ITGA5 0.762 0.026
    ITGA6 0.811 0.038
    ITGA7 0.592 <.001 0.715 0.006 0.710 0.002
    ITGAD 0.576 0.006
    ITGB4 0.693 0.003
    ITPR1 0.789 0.029
    JUN 0.572 <.001 0.581 <.001 0.777 0.019
    JUNB 0.732 0.030 0.707 0.016
    KCTD12 0.758 0.036
    KIT 0.691 0.009 0.738 0.028
    KLC1 0.741 0.024 0.781 0.024
    KLF6 0.733 0.018 0.727 0.014
    KLK1 0.744 0.028
    KLK2 0.697 0.002 0.679 <.001
    KLK3 0.725 <.001 0.715 <.001 0.841 0.023
    KRT15 0.660 <.001 0.577 <.001 0.750 0.002
    KRT18 0.623 <.001 0.642 <.001 0.702 <.001 0.760 0.006
    KRT2 0.740 0.044
    KRT5 0.674 <.001 0.588 <.001 0.769 0.005
    KRT8 0.768 0.034
    L1CAM 0.737 0.036
    LAG3 0.711 0.013 0.748 0.029
    LAMA4 0.649 0.009
    LAMB3 0.709 0.002 0.684 0.006 0.768 0.006
    LGALS3 0.652 <.001 0.752 0.015 0.805 0.028
    LIG3 0.728 0.016 0.667 <.001
    LRP1 0.811 0.043
    MDM2 0.788 0.033
    MGMT 0.645 <.001 0.766 0.015
    MICA 0.796 0.043 0.676 <.001
    MPPED2 0.675 <.001 0.616 <.001 0.750 0.006
    MRC1 0.788 0.028
    MTSS1 0.654 <.001 0.793 0.036
    MYBPC1 0.706 <.001 0.534 <.001 0.773 0.004 0.692 <.001
    NCAPD3 0.658 <.001 0.566 <.001 0.753 0.011 0.733 0.009
    NCOR1 0.838 0.045
    NEXN 0.748 0.025 0.785 0.020
    NFAT5 0.531 <.001 0.626 <.001
    NFATC2 0.759 0.024
    OAZ1 0.766 0.024
    OLFML3 0.648 <.001 0.748 0.005 0.639 <.001 0.675 <.001
    OR51E2 0.823 0.034
    PAGE4 0.599 <.001 0.698 0.002 0.606 <.001 0.726 <.001
    PCA3 0.705 <.001 0.647 <.001
    PCDHGB7 0.712 <.001
    PGF 0.790 0.039
    PLG 0.764 0.048
    PLP2 0.766 0.037
    PPAP2B 0.589 <.001 0.647 <.001 0.691 <.001 0.765 0.013
    PPP1R12A 0.673 0.001 0.677 0.001 0.807 0.045
    PRIMA1 0.622 <.001 0.712 0.008 0.740 0.013
    PRKCA 0.637 <.001 0.694 <.001
    PRKCB 0.741 0.020 0.664 <.001
    PROM1 0.599 0.017 0.527 0.042 0.610 0.006 0.420 0.002
    PTCH1 0.752 0.027 0.762 0.011
    PTEN 0.779 0.011 0.802 0.030 0.788 0.009
    PTGS2 0.639 <.001 0.606 <.001
    PTHLH 0.632 0.007 0.739 0.043 0.654 0.002 0.740 0.015
    PTK2B 0.775 0.019 0.831 0.028 0.810 0.017
    PTPN1 0.721 0.012 0.737 0.024
    PYCARD 0.702 0.005
    RAB27A 0.736 0.008
    RAB30 0.761 0.011
    RARB 0.746 0.010
    RASSF1 0.805 0.043
    RHOB 0.755 0.029 0.672 0.001
    RLN1 0.742 0.036 0.740 0.036
    RND3 0.607 <.001 0.633 <.001
    RNF114 0.782 0.041 0.747 0.013
    SDC2 0.714 0.002
    SDHC 0.698 <.001 0.762 0.029
    SERPINA3 0.752 0.030
    SERPINB5 0.669 0.014
    SH3RF2 0.705 0.012 0.568 <.001 0.755 0.016
    SLC22A3 0.650 <.001 0.582 <.001
    SMAD4 0.636 <.001 0.684 0.002 0.741 0.007 0.738 0.007
    SMARCD1 0.757 0.001
    SMO 0.790 0.049 0.766 0.013
    SOD1 0.741 0.037 0.713 0.007
    SORBS1 0.684 0.003 0.732 0.008 0.788 0.049
    SPDEF 0.840 0.012
    SPINT1 0.837 0.048
    SRC 0.674 <.001 0.671 <.001
    SRD5A2 0.553 <.001 0.588 <.001 0.618 <.001 0.701 <.001
    ST5 0.747 0.012 0.761 0.010 0.780 0.016 0.832 0.041
    STAT3 0.735 0.020
    STAT5A 0.731 0.005 0.743 0.009 0.817 0.027
    STAT5B 0.708 <.001 0.696 0.001
    SUMO1 0.815 0.037
    SVIL 0.689 0.003 0.739 0.008 0.761 0.011
    TBP 0.792 0.037
    TFF3 0.719 0.007 0.664 0.001
    TGFB1I1 0.676 0.003 0.707 0.007 0.709 0.005 0.777 0.035
    TGFB2 0.741 0.010 0.785 0.017
    TGFBR2 0.759 0.022
    TIMP3 0.785 0.037
    TMPRSS2 0.780 0.012 0.742 <.001
    TNF 0.654 0.007 0.682 0.006
    TNFRSF10B 0.623 <.001 0.681 <.001 0.801 0.018 0.815 0.019
    TNFSF10 0.721 0.004
    TP53 0.759 0.011
    TP63 0.737 0.020 0.754 0.007
    TPM2 0.609 <.001 0.671 <.001 0.673 <.001 0.789 0.031
    TRAF3IP2 0.795 0.041 0.727 0.005
    TRO 0.793 0.033 0.768 0.027 0.814 0.023
    TUBB2A 0.626 <.001 0.590 <.001
    VCL 0.613 <.001 0.701 0.011
    VIM 0.716 0.005 0.792 0.025
    WFDC1 0.824 0.029
    YY1 0.668 <.001 0.787 0.014 0.716 0.001 0.819 0.011
    ZFHX3 0.732 <.001 0.709 <.001
    ZFP36 0.656 0.001 0.609 <.001 0.818 0.045
    ZNF827 0.750 0.022
  • Tables 6A and 6B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 6A is negatively associated with good prognosis, while increased expression of gene in Table 6B is positively associated with good prognosis.
  • TABLE 6A
    Table 6A.
    Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for
    Gleason pattern in the primary Gleason pattern or highest Gleason pattern with
    a hazard ratio (HR) > 1.0 (increased expression is negatively associated with
    good prognosis)
    cRFI cRFI bRFI bRFI
    Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
    Symbol HR p-value HR p-value HR p-value HR p-value
    AKR1C3 1.258 0.039
    ANLN 1.292 0.023 1.449 <.001 1.420 0.001
    AQP2 1.178 0.008 1.287 <.001
    ASAP2 1.396 0.015
    ASPN 1.809 <.001 1.508 0.009 1.506 0.002 1.438 0.002
    BAG5 1.367 0.012
    BAX 1.234 0.044
    BGN 1.465 0.009 1.342 0.046
    BIRC5 1.338 0.008 1.364 0.004 1.279 0.006
    BMP6 1.369 0.015 1.518 0.002
    BUB1 1.239 0.024 1.227 0.001 1.236 0.004
    CACNA1D 1.337 0.025
    CADPS 1.280 0.029
    CCNE2 1.256 0.043 1.577 <.001 1.324 0.001
    CD276 1.320 0.029 1.396 0.007 1.279 0.033
    CDC20 1.298 0.016 1.334 0.002 1.257 0.032 1.279 0.003
    CDH7 1.258 0.047 1.338 0.013
    CDKN2B 1.342 0.032 1.488 0.009
    CDKN2C 1.344 0.010 1.450 <.001
    CDKN3 1.284 0.012
    CENPF 1.289 0.048 1.498 0.001 1.344 0.010
    COL1A1 1.481 0.003 1.506 0.002
    COL3A1 1.459 0.004 1.430 0.013
    COL4A1 1.396 0.015
    COL8A1 1.413 0.008
    CRISP3 1.346 0.012 1.310 0.025
    CTHRC1 1.588 0.002
    DDIT4 1.363 0.020 1.379 0.028
    DICER1 1.294 0.008
    ENY2 1.269 0.024
    FADD 1.307 0.010
    FAS 1.243 0.025
    FGF5 1.328 0.002
    GNPTAB 1.246 0.037
    GREM1 1.332 0.024 1.377 0.013 1.373 0.011
    HDAC1 1.301 0.018 1.237 0.021
    HSD17B4 1.277 0.011
    IFN-γ 1.219 0.048
    IMMT 1.230 0.049
    INHBA 1.866 <.001 1.944 <.001
    JAG1 1.298 0.030
    KCNN2 1.378 0.020 1.282 0.017
    KHDRBS3 1.353 0.029 1.305 0.014
    LAMA3 1.344 <.001 1.232 0.048
    LAMC1 1.396 0.015
    LIMS1 1.337 0.004
    LOX 1.355 0.001 1.341 0.002
    LTBP2 1.304 0.045
    MAGEA4 1.215 0.024
    MANF 1.460 <.001
    MCM6 1.287 0.042 1.214 0.046
    MELK 1.329 0.002
    MMP11 1.281 0.050
    MRPL13 1.266 0.021
    MYBL2 1.453 <.001 1.274 0.019
    MYC 1.265 0.037
    MYO6 1.278 0.047
    NETO2 1.322 0.022
    NFKB1 1.255 0.032
    NOX4 1.266 0.041
    OR51E1 1.566 <.001 1.428 0.003
    PATE1 1.242 <.001 1.347 <.001 1.177 0.011
    PCNA 1.251 0.025
    PEX10 1.302 0.028
    PGD 1.335 0.045 1.379 0.014 1.274 0.025
    PIM1 1.254 0.019
    PLA2G7 1.289 0.025 1.250 0.031
    PLAU 1.267 0.031
    PSMD13 1.333 0.005
    PTK6 1.432 <.001 1.577 <.001 1.223 0.040
    PTTG1 1.279 0.013 1.308 0.006
    RAGE 1.329 0.011
    RALA 1.363 0.044 1.471 0.003
    RGS7 1.120 0.040 1.173 0.031
    RRM1 1.490 0.004 1.527 <.001
    SESN3 1.353 0.017
    SFRP4 1.370 0.025
    SHMT2 1.460 0.008 1.410 0.006 1.407 0.008 1.345 <.001
    SKIL 1.307 0.025
    SLC25A21 1.414 0.002 1.330 0.004
    SMARCC2 1.219 0.049
    SPARC 1.431 0.005
    TFDP1 1.283 0.046 1.345 0.003
    THBS2 1.456 0.005 1.431 0.012
    TK1 1.214 0.015 1.222 0.006
    TOP2A 1.367 0.018 1.518 0.001 1.480 <.001
    TPX2 1.513 0.001 1.607 <.001 1.588 <.001 1.481 <.001
    UBE2T 1.409 0.002 1.285 0.018
    UGT2B15 1.216 0.009 1.182 0.021
    XIAP 1.336 0.037 1.194 0.043
  • TABLE 6B
    Table 6B.
    Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for
    Gleason pattern in the primary Gleason pattern or highest Gleason pattern with
    hazard ration (HR) < 1.0 (increased expression is positively associated with
    good prognosis)
    cRFI cRFI bRFI bRFI
    Official Primary Pattern Highest Pattern Primary Pattern Highest Pattern
    Symbol HR p-value HR p-value HR p-value HR p-value
    AAMP 0.660 0.001 0.675 <.001 0.836 0.045
    ABCA5 0.807 0.014 0.737 <.001 0.845 0.030
    ABCC1 0.780 0.038 0.794 0.015
    ABCG2 0.807 0.035
    ABHD2 0.720 0.002
    ADH5 0.750 0.034
    AKAP1 0.721 <.001
    ALDH1A2 0.735 0.009 0.592 <.001 0.756 0.007 0.781 0.021
    ANGPT2 0.741 0.036
    ANPEP 0.637 <.001 0.536 <.001
    ANXA2 0.762 0.044
    APOE 0.707 0.013
    APRT 0.727 0.004 0.771 0.006
    ATXN1 0.725 0.013
    AURKA 0.784 0.037 0.735 0.003
    AXIN2 0.744 0.004 0.630 <.001
    AZGP1 0.672 <.001 0.720 <.001 0.764 0.001
    BAD 0.687 <.001
    BAK1 0.783 0.014
    BCL2 0.777 0.033 0.772 0.036
    BIK 0.768 0.040
    BIN1 0.691 <.001
    BTRC 0.776 0.029
    C7 0.707 0.004 0.791 0.024
    CADM1 0.587 <.001 0.593 <.001
    CASP1 0.773 0.023 0.820 0.025
    CAV1 0.753 0.014
    CAV2 0.627 0.009 0.682 0.003
    CCL2 0.740 0.019
    CCNH 0.736 0.003
    CCR1 0.755 0.022
    CD1A 0.740 0.025
    CD44 0.590 <.001 0.637 <.001
    CD68 0.757 0.026
    CD82 0.778 0.012 0.759 0.016
    CDC25B 0.760 0.021
    CDK3 0.762 0.024 0.774 0.007
    CDKN1A 0.714 0.015
    CDKN1C 0.738 0.014 0.768 0.021
    COL6A1 0.690 <.001 0.805 0.048
    CSF1 0.675 0.002 0.779 0.036
    CSK 0.825 0.004
    CTNNB1 0.884 0.045 0.888 0.027
    CTSB 0.740 0.017 0.676 0.003 0.755 0.010
    CTSD 0.673 0.031 0.722 0.009
    CTSK 0.804 0.034
    CTSL2 0.748 0.019
    CXCL12 0.731 0.017
    CYP3A5 0.523 <.001 0.518 <.001
    CYR61 0.744 0.041
    DAP 0.755 0.011
    DARC 0.763 0.029
    DDR2 0.813 0.041
    DES 0.743 0.020
    DHRS9 0.606 0.001
    DHX9 0.916 0.021
    DIAPH1 0.749 0.036 0.688 0.003
    DLGAP1 0.758 0.042 0.676 0.002
    DLL4 0.779 0.010
    DNM3 0.732 0.007
    DPP4 0.732 0.004 0.750 0.014
    DPT 0.704 0.014
    DUSP6 0.662 <.001 0.665 0.001
    EBNA1BP2 0.828 0.019
    EDNRA 0.782 0.048
    EGF 0.712 0.023
    EGR1 0.678 0.004 0.725 0.028
    EGR3 0.680 0.006 0.738 0.027
    EIF2C2 0.789 0.032
    EIF2S3 0.759 0.012
    ELK4 0.745 0.024
    EPHA2 0.661 0.007
    EPHA3 0.781 0.026 0.828 0.037
    ERBB2 0.791 0.022 0.760 0.014 0.789 0.006
    ERBB3 0.757 0.009
    ERCC1 0.760 0.008
    ESR1 0.742 0.014
    ESR2 0.711 0.038
    ETV4 0.714 0.035
    FAM107A 0.619 <.001 0.710 0.011 0.781 0.019
    FAM13C 0.664 <.001 0.686 <.001 0.813 0.014
    FAM49B 0.670 <.001 0.793 0.014 0.815 0.044 0.843 0.047
    FASLG 0.616 0.004 0.813 0.038
    FGF10 0.751 0.028 0.766 0.019
    FGF17 0.718 0.031 0.765 0.019
    FGFR2 0.740 0.009 0.738 0.002
    FKBP5 0.749 0.031
    FLNC 0.826 0.029
    FLT1 0.779 0.045 0.729 0.006
    FLT4 0.815 0.024
    FOS 0.657 0.003 0.656 0.004
    FSD1 0.763 0.017
    FYN 0.716 0.004 0.792 0.024
    GADD45B 0.692 0.009 0.697 0.010
    GDF15 0.767 0.016
    GHR 0.701 0.002 0.704 0.002 0.640 <.001
    GNRH1 0.778 0.039
    GPM6B 0.749 0.010 0.750 0.010 0.827 0.037
    GRB7 0.696 0.005
    GSK3B 0.726 0.005
    GSN 0.660 <.001 0.752 0.019
    GSTM1 0.710 0.004 0.676 <.001
    GSTM2 0.643 <.001 0.767 0.015
    HK1 0.798 0.035
    HLA-G 0.660 0.013
    HLF 0.644 <.001 0.727 0.011
    HNF1B 0.755 0.013
    HPS1 0.756 0.006 0.791 0.043
    HSD17B10 0.737 0.006
    HSD3B2 0.674 0.003
    HSP90AB1 0.763 0.015
    HSPB1 0.787 0.020 0.778 0.015
    HSPE1 0.794 0.039
    ICAM1 0.664 0.003
    IER3 0.699 0.003 0.693 0.010
    IFIT1 0.621 <.001 0.733 0.027
    IGF1 0.751 0.017 0.655 <.001
    IGFBP2 0.599 <.001 0.605 <.001
    IGFBP5 0.745 0.007 0.775 0.035
    IGFBP6 0.671 0.005
    IL1B 0.732 0.016 0.717 0.005
    IL6 0.763 0.040
    IL6R 0.764 0.022
    IL6ST 0.647 <.001 0.739 0.012
    IL8 0.711 0.015 0.694 0.006
    ING5 0.729 0.007 0.727 0.003
    ITGA4 0.755 0.009
    ITGA5 0.743 0.018 0.770 0.034
    ITGA6 0.816 0.044 0.772 0.006
    ITGA7 0.680 0.004
    ITGAD 0.590 0.009
    ITGB4 0.663 <.001 0.658 <.001 0.759 0.004
    JUN 0.656 0.004 0.639 0.003
    KIAA0196 0.737 0.011
    KIT 0.730 0.021 0.724 0.008
    KLC1 0.755 0.035
    KLK1 0.706 0.008
    KLK2 0.740 0.016 0.723 0.001
    KLK3 0.765 0.006 0.740 0.002
    KRT1 0.774 0.042
    KRT15 0.658 <.001 0.632 <.001 0.764 0.008
    KRT18 0.703 0.004 0.672 <.001 0.779 0.015 0.811 0.032
    KRT5 0.686 <.001 0.629 <.001 0.802 0.023
    KRT8 0.763 0.034 0.771 0.022
    L1CAM 0.748 0.041
    LAG3 0.693 0.008 0.724 0.020
    LAMA4 0.689 0.039
    LAMB3 0.667 <.001 0.645 <.001 0.773 0.006
    LGALS3 0.666 <.001 0.822 0.047
    LIG3 0.723 0.008
    LRP1 0.777 0.041 0.769 0.007
    MDM2 0.688 <.001
    MET 0.709 0.010 0.736 0.028 0.715 0.003
    MGMT 0.751 0.031
    MICA 0.705 0.002
    MPPED2 0.690 0.001 0.657 <.001 0.708 <.001
    MRC1 0.812 0.049
    MSH6 0.860 0.049
    MTSS1 0.686 0.001
    MVP 0.798 0.034 0.761 0.033
    MYBPC1 0.754 0.009 0.615 <.001
    NCAPD3 0.739 0.021 0.664 0.005
    NEXN 0.798 0.037
    NFAT5 0.596 <.001 0.732 0.005
    NFATC2 0.743 0.016 0.792 0.047
    NOS3 0.730 0.012 0.757 0.032
    OAZ1 0.732 0.020 0.705 0.002
    OCLN 0.746 0.043 0.784 0.025
    OLFML3 0.711 0.002 0.709 <.001 0.720 0.001
    OMD 0.729 0.011 0.762 0.033
    OSM 0.813 0.028
    PAGE4 0.668 0.003 0.725 0.004 0.688 <.001 0.766 0.005
    PCA3 0.736 0.001 0.691 <.001
    PCDHGB7 0.769 0.019 0.789 0.022
    PIK3CA 0.768 0.010
    PIK3CG 0.792 0.019 0.758 0.009
    PLG 0.682 0.009
    PPAP2B 0.688 0.005 0.815 0.046
    PPP1R12A 0.731 0.026 0.775 0.042
    PRIMA1 0.697 0.004 0.757 0.032
    PRKCA 0.743 0.019
    PRKCB 0.756 0.036 0.767 0.029
    PROM1 0.640 0.027 0.699 0.034 0.503 0.013
    PTCH1 0.730 0.018
    PTEN 0.779 0.015 0.789 0.007
    PTGS2 0.644 <.001 0.703 0.007
    PTHLH 0.655 0.012 0.706 0.038 0.634 0.001 0.665 0.003
    PTK2B 0.779 0.023 0.702 0.002 0.806 0.015 0.806 0.024
    PYCARD 0.659 0.001
    RAB30 0.779 0.033 0.754 0.014
    RARB 0.787 0.043 0.742 0.009
    RASSF1 0.754 0.005
    RHOA 0.796 0.041 0.819 0.048
    RND3 0.721 0.011 0.743 0.028
    SDC1 0.707 0.011
    SDC2 0.745 0.002
    SDHC 0.750 0.013
    SERPINA3 0.730 0.016
    SERPINB5 0.715 0.041
    SH3RF2 0.698 0.025
    SIPA1L1 0.796 0.014 0.820 0.004
    SLC22A3 0.724 0.014 0.700 0.008
    SMAD4 0.668 0.002 0.771 0.016
    SMARCD1 0.726 <.001 0.700 0.001 0.812 0.028
    SMO 0.785 0.027
    SOD1 0.735 0.012
    SORBS1 0.785 0.039
    SPDEF 0.818 0.002
    SPINT1 0.761 0.024 0.773 0.006
    SRC 0.709 <.001 0.690 <.001
    SRD5A1 0.746 0.010 0.767 0.024 0.745 0.003
    SRD5A2 0.575 <.001 0.669 0.001 0.674 <.001 0.781 0.018
    ST5 0.774 0.027
    STAT1 0.694 0.004
    STAT5A 0.719 0.004 0.765 0.006 0.834 0.049
    STAT5B 0.704 0.001 0.744 0.012
    SUMO1 0.777 0.014
    SVIL 0.771 0.026
    TBP 0.774 0.031
    TFF3 0.742 0.015 0.719 0.024
    TGFB1I1 0.763 0.048
    TGFB2 0.729 0.011 0.758 0.002
    TMPRSS2 0.810 0.034 0.692 <.001
    TNF 0.727 0.022
    TNFRSF10A 0.805 0.025
    TNFRSF10B 0.581 <.001 0.738 0.014 0.809 0.034
    TNFSF10 0.751 0.015 0.700 <.001
    TP63 0.723 0.018 0.736 0.003
    TPM2 0.708 0.010 0.734 0.014
    TRAF3IP2 0.718 0.004
    TRO 0.742 0.012
    TSTA3 0.774 0.028
    TUBB2A 0.659 <.001 0.650 <.001
    TYMP 0.695 0.002
    VCL 0.683 0.008
    VIM 0.778 0.040
    WDR19 0.775 0.014
    XRCC5 0.793 0.042
    YY1 0.751 0.025 0.810 0.008
    ZFHX3 0.760 0.005 0.726 0.001
    ZFP36 0.707 0.008 0.672 0.003
    ZNF827 0.667 0.002 0.792 0.039
  • Tables 7A and 7B provide genes significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in negative TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 7A is negatively associated with good prognosis, while increased expression of genes in Table 7B is positively associated with good prognosis.
  • TABLE 7A
    Table 7A. Genes significantly (p < 0.05) associated with
    cRFI for TMPRSS2-ERG fusion negative in the primary Gleason
    pattern or highest Gleason pattern with hazard ratio (HR) > 1.0
    (increased expression is negatively associated with good prognosis)
    Primary Highest
    Pattern Pattern
    Official Symbol HR p-value HR p-value
    ANLN 1.42 0.012 1.36 0.004
    AQP2 1.25 0.033
    ASPN 2.48 <.001 1.65 <.001
    BGN 2.04 <.001 1.45 0.007
    BIRC5 1.59 <.001 1.37 0.005
    BMP6 1.95 <.001 1.43 0.012
    BMPR1B 1.93 0.002
    BUB1 1.51 <.001 1.35 <.001
    CCNE2 1.48 0.007
    CD276 1.93 <.001 1.79 <.001
    CDC20 1.49 0.004 1.47 <.001
    CDC6 1.52 0.009 1.34 0.022
    CDKN2B 1.54 0.008 1.55 0.003
    CDKN2C 1.55 0.003 1.57 <.001
    CDKN3 1.34 0.026
    CENPF 1.63 0.002 1.33 0.018
    CKS2 1.50 0.026 1.43 0.009
    CLTC 1.46 0.014
    COL1A1 1.98 <.001 1.50 0.002
    COL3A1 2.03 <.001 1.42 0.007
    COL4A1 1.81 0.002
    COL8A1 1.63 0.004 1.60 0.001
    CRISP3 1.31 0.016
    CTHRC1 1.67 0.006 1.48 0.005
    DDIT4 1.49 0.037
    ENY2 1.29 0.039
    EZH2 1.35 0.016
    F2R 1.46 0.034 1.46 0.007
    FAP 1.66 0.006 1.38 0.012
    FGF5 1.46 0.001
    GNPTAB 1.49 0.013
    HSD17B4 1.34 0.039 1.44 0.002
    INHBA 2.92 <.001 2.19 <.001
    JAG1 1.38 0.042
    KCNN2 1.71 0.002 1.73 <.001
    KHDRBS3 1.46 0.015
    KLK14 1.28 0.034
    KPNA2 1.63 0.016
    LAMC1 1.41 0.044
    LOX 1.29 0.036
    LTBP2 1.57 0.017
    MELK 1.38 0.029
    MMP11 1.69 0.002 1.42 0.004
    MYBL2 1.78 <.001 1.49 <.001
    NETO2 2.01 <.001 1.43 0.007
    NME1 1.38 0.017
    PATE1 1.43 <.001 1.24 0.005
    PEX10 1.46 0.030
    PGD 1.77 0.002
    POSTN 1.49 0.037 1.34 0.026
    PPFIA3 1.51 0.012
    PPP3CA 1.46 0.033 1.34 0.020
    PTK6 1.69 <.001 1.56 <.001
    PTTG1 1.35 0.028
    RAD51 1.32 0.048
    RALBP1 1.29 0.042
    RGS7 1.18 0.012 1.32 0.009
    RRM1 1.57 0.016 1.32 0.041
    RRM2 1.30 0.039
    SAT1 1.61 0.007
    SESN3 1.76 <.001 1.36 0.020
    SFRP4 1.55 0.016 1.48 0.002
    SHMT2 2.23 <.001 1.59 <.001
    SPARC 1.54 0.014
    SQLE 1.86 0.003
    STMN1 2.14 <.001
    THBS2 1.79 <.001 1.43 0.009
    TK1 1.30 0.026
    TOP2A 2.03 <.001 1.47 0.003
    TPD52 1.63 0.003
    TPX2 2.11 <.001 1.63 <.001
    TRAP1 1.46 0.023
    UBE2C 1.57 <.001 1.58 <.001
    UBE2G1 1.56 0.008
    UBE2T 1.75 <.001
    UGT2B15 1.31 0.036 1.33 0.004
    UHRF1 1.46 0.007
    UTP23 1.52 0.017
  • TABLE 7B
    Table 7B. Genes significantly (p < 0.05) associated with cRFI
    for TMPRSS2-ERG fusion negative in the primary Gleason pattern
    or highest Gleason pattern with hazard ratio (HR) < 1.0
    (increased expression is positively associated with good prognosis)
    Primary Highest
    Pattern Pattern
    Official Symbol HR p-value HR p-value
    AAMP 0.56 <.001 0.65 0.001
    ABCA5 0.64 <.001 0.71 <.001
    ABCB1 0.62 0.004
    ABCC3 0.74 0.031
    ABCG2 0.78 0.050
    ABHD2 0.71 0.035
    ACOX2 0.54 <.001 0.71 0.007
    ADH5 0.49 <.001 0.61 <.001
    AKAP1 0.77 0.031 0.76 0.013
    AKR1C1 0.65 0.006 0.78 0.044
    AKT1 0.72 0.020
    AKT3 0.75 <.001
    ALDH1A2 0.53 <.001 0.60 <.001
    AMPD3 0.62 <.001 0.78 0.028
    ANPEP 0.54 <.001 0.61 <.001
    ANXA2 0.63 0.008 0.74 0.016
    ARHGAP29 0.67 0.005 0.77 0.016
    ARHGDIB 0.64 0.013
    ATP5J 0.57 0.050
    ATXN1 0.61 0.004 0.77 0.043
    AXIN2 0.51 <.001 0.62 <.001
    AZGP1 0.61 <.001 0.64 <.001
    BCL2 0.64 0.004 0.75 0.029
    BIN1 0.52 <.001 0.74 0.010
    BTG3 0.75 0.032 0.75 0.010
    BTRC 0.69 0.011
    C7 0.51 <.001 0.67 <.001
    CADM1 0.49 <.001 0.76 0.034
    CASP1 0.71 0.010 0.74 0.007
    CAV1 0.73 0.015
    CCL5 0.67 0.018 0.67 0.003
    CCNH 0.63 <.001 0.75 0.004
    CCR1 0.77 0.032
    CD164 0.52 <.001 0.63 <.001
    CD44 0.53 <.001 0.74 0.014
    CDH10 0.69 0.040
    CDH18 0.40 0.011
    CDK14 0.75 0.013
    CDK2 0.81 0.031
    CDK3 0.73 0.022
    CDKN1A 0.68 0.038
    CDKN1C 0.62 0.003 0.72 0.005
    COL6A1 0.54 <.001 0.70 0.004
    COL6A3 0.64 0.004
    CSF1 0.56 <.001 0.78 0.047
    CSRP1 0.40 <.001 0.66 0.002
    CTGF 0.66 0.015 0.74 0.027
    CTNNB1 0.69 0.043
    CTSB 0.60 0.002 0.71 0.011
    CTSS 0.67 0.013
    CXCL12 0.56 <.001 0.77 0.026
    CYP3A5 0.43 <.001 0.63 <.001
    CYR61 0.43 <.001 0.58 <.001
    DAG1 0.72 0.012
    DARC 0.66 0.016
    DDR2 0.65 0.007
    DES 0.52 <.001 0.74 0.018
    DHRS9 0.54 0.007
    DICER1 0.70 0.044
    DLC1 0.75 0.021
    DLGAP1 0.55 <.001 0.72 0.005
    DNM3 0.61 0.001
    DPP4 0.55 <.001 0.77 0.024
    DPT 0.48 <.001 0.61 <.001
    DUSP1 0.47 <.001 0.59 <.001
    DUSP6 0.65 0.009 0.65 0.002
    DYNLL1 0.74 0.045
    EDNRA 0.61 0.002 0.75 0.038
    EFNB2 0.71 0.043
    EGR1 0.43 <.001 0.58 <.001
    EGR3 0.47 <.001 0.66 <.001
    EIF5 0.77 0.028
    ELK4 0.49 <.001 0.72 0.012
    EPHA2 0.70 0.007
    EPHA3 0.62 <.001 0.72 0.009
    EPHB2 0.68 0.009
    ERBB2 0.64 <.001 0.63 <.001
    ERBB3 0.69 0.018
    ERCC1 0.69 0.019 0.77 0.021
    ESR2 0.61 0.020
    FAAH 0.57 <.001 0.77 0.035
    FABP5 0.67 0.035
    FAM107A 0.42 <.001 0.59 <.001
    FAM13C 0.53 <.001 0.59 <.001
    FAS 0.71 0.035
    FASLG 0.56 0.017 0.67 0.014
    FGF10 0.57 0.002
    FGF17 0.70 0.039 0.70 0.010
    FGF7 0.63 0.005 0.70 0.004
    FGFR2 0.63 0.003 0.71 0.003
    FKBP5 0.72 0.020
    FLNA 0.48 <.001 0.74 0.022
    FOS 0.45 <.001 0.56 <.001
    FOXO1 0.59 <.001
    FOXQ1 0.57 <.001 0.69 0.008
    FYN 0.62 0.001 0.74 0.013
    G6PD 0.77 0.014
    GADD45A 0.73 0.045
    GADD45B 0.45 <.001 0.64 0.001
    GDF15 0.58 <.001
    GHR 0.62 0.008 0.68 0.002
    GPM6B 0.60 <.001 0.70 0.003
    GSK3B 0.71 0.016 0.71 0.006
    GSN 0.46 <.001 0.66 <.001
    GSTM1 0.56 <.001 0.62 <.001
    GSTM2 0.47 <.001 0.67 <.001
    HGD 0.72 0.002
    HIRIP3 0.69 0.021 0.69 0.002
    HK1 0.68 0.005 0.73 0.005
    HLA-G 0.54 0.024 0.65 0.013
    HLF 0.41 <.001 0.68 0.001
    HNF1B 0.55 <.001 0.59 <.001
    HPS1 0.74 0.015 0.76 0.025
    HSD17B3 0.65 0.031
    HSPB2 0.62 0.004 0.76 0.027
    ICAM1 0.61 0.010
    IER3 0.55 <.001 0.67 0.003
    IFIT1 0.57 <.001 0.70 0.008
    IFNG 0.69 0.040
    IGF1 0.63 <.001 0.59 <.001
    IGF2 0.67 0.019 0.70 0.005
    IGFBP2 0.53 <.001 0.63 <.001
    IGFBP5 0.57 <.001 0.71 0.006
    IGFBP6 0.41 <.001 0.71 0.012
    IL10 0.59 0.020
    IL1B 0.53 <.001 0.70 0.005
    IL6 0.55 0.001
    IL6ST 0.45 <.001 0.68 <.001
    IL8 0.60 0.005 0.70 0.008
    ILK 0.68 0.029 0.76 0.036
    ING5 0.54 <.001 0.82 0.033
    ITGA1 0.66 0.017
    ITGA3 0.70 0.020
    ITGA5 0.64 0.011
    ITGA6 0.66 0.003 0.74 0.006
    ITGA7 0.50 <.001 0.71 0.010
    ITGB4 0.63 0.014 0.73 0.010
    ITPR1 0.55 <.001
    ITPR3 0.76 0.007
    JUN 0.37 <.001 0.54 <.001
    JUNB 0.58 0.002 0.71 0.016
    KCTD12 0.68 0.017
    KIT 0.49 0.002 0.76 0.043
    KLC1 0.61 0.005 0.77 0.045
    KLF6 0.65 0.009
    KLK1 0.68 0.036
    KLK10 0.76 0.037
    KLK2 0.64 <.001 0.73 0.006
    KLK3 0.65 <.001 0.76 0.021
    KLRK1 0.63 0.005
    KRT15 0.52 <.001 0.58 <.001
    KRT18 0.46 <.001
    KRT5 0.51 <.001 0.58 <.001
    KRT8 0.53 <.001
    L1CAM 0.65 0.031
    LAG3 0.58 0.002 0.76 0.033
    LAMA4 0.52 0.018
    LAMB3 0.60 0.002 0.65 0.003
    LGALS3 0.52 <.001 0.71 0.002
    LIG3 0.65 0.011
    LRP1 0.61 0.001 0.75 0.040
    MGMT 0.66 0.003
    MICA 0.59 0.001 0.68 0.001
    MLXIP 0.70 0.020
    MMP2 0.68 0.022
    MMP9 0.67 0.036
    MPPED2 0.57 <.001 0.66 <.001
    MRC1 0.69 0.028
    MTSS1 0.63 0.005 0.79 0.037
    MVP 0.62 <.001
    MYBPC1 0.53 <.001 0.70 0.011
    NCAM1 0.70 0.039 0.77 0.042
    NCAPD3 0.52 <.001 0.59 <.001
    NDRG1 0.69 0.008
    NEXN 0.62 0.002
    NFAT5 0.45 <.001 0.59 <.001
    NFATC2 0.68 0.035 0.75 0.036
    NFKBIA 0.70 0.030
    NRG1 0.59 0.022 0.71 0.018
    OAZ1 0.69 0.018 0.62 <.001
    OLFML3 0.59 <.001 0.72 0.003
    OR51E2 0.73 0.013
    PAGE4 0.42 <.001 0.62 <.001
    PCA3 0.53 <.001
    PCDHGB7 0.70 0.032
    PGF 0.68 0.027 0.71 0.013
    PGR 0.76 0.041
    PIK3C2A 0.80 <.001
    PIK3CA 0.61 <.001 0.80 0.036
    PIK3CG 0.67 0.001 0.76 0.018
    PLP2 0.65 0.015 0.72 0.010
    PPAP2B 0.45 <.001 0.69 0.003
    PPP1R12A 0.61 0.007 0.73 0.017
    PRIMA1 0.51 <.001 0.68 0.004
    PRKCA 0.55 <.001 0.74 0.009
    PRKCB 0.55 <.001
    PROM1 0.67 0.042
    PROS1 0.73 0.036
    PTCH1 0.69 0.024 0.72 0.010
    PTEN 0.54 <.001 0.64 <.001
    PTGS2 0.48 <.001 0.55 <.001
    PTH1R 0.57 0.003 0.77 0.050
    PTHLH 0.55 0.010
    PTK2B 0.56 <.001 0.70 0.001
    PYCARD 0.73 0.009
    RAB27A 0.65 0.009 0.71 0.014
    RAB30 0.59 0.003 0.72 0.010
    RAGE 0.76 0.011
    RARB 0.59 <.001 0.63 <.001
    RASSF1 0.67 0.003
    RB1 0.67 0.006
    RFX1 0.71 0.040 0.70 0.003
    RHOA 0.71 0.038 0.65 <.001
    RHOB 0.58 0.001 0.71 0.006
    RND3 0.54 <.001 0.69 0.003
    RNF114 0.59 0.004 0.68 0.003
    SCUBE2 0.77 0.046
    SDHC 0.72 0.028 0.76 0.025
    SEC23A 0.75 0.029
    SEMA3A 0.61 0.004 0.72 0.011
    SEPT9 0.66 0.013 0.76 0.036
    SERPINB5 0.75 0.039
    SH3RF2 0.44 <.001 0.48 <.001
    SHH 0.74 0.049
    SLC22A3 0.42 <.001 0.61 <.001
    SMAD4 0.45 <.001 0.66 <.001
    SMARCD1 0.69 0.016
    SOD1 0.68 0.042
    SORBS1 0.51 <.001 0.73 0.012
    SPARCL1 0.58 <.001 0.77 0.040
    SPDEF 0.77 <.001
    SPINT1 0.65 0.004 0.79 0.038
    SRC 0.61 <.001 0.69 0.001
    SRD5A2 0.39 <.001 0.55 <.001
    ST5 0.61 <.001 0.73 0.012
    STAT1 0.64 0.006
    STAT3 0.63 0.010
    STAT5A 0.62 0.001 0.70 0.003
    STAT5B 0.58 <.001 0.73 0.009
    SUMO1 0.66 <.001
    SVIL 0.57 0.001 0.74 0.022
    TBP 0.65 0.002
    TFF1 0.65 0.021
    TFF3 0.58 <.001
    TGFB1I1 0.51 <.001 0.75 0.026
    TGFB2 0.48 <.001 0.62 <.001
    TGFBR2 0.61 0.003
    TIAM1 0.68 0.019
    TIMP2 0.69 0.020
    TIMP3 0.58 0.002
    TNFRSF10A 0.73 0.047
    TNFRSF10B 0.47 <.001 0.70 0.003
    TNFSF10 0.56 0.001
    TP63 0.67 0.001
    TPM1 0.58 0.004 0.73 0.017
    TPM2 0.46 <.001 0.70 0.005
    TRA2A 0.68 0.013
    TRAF3IP2 0.73 0.041 0.71 0.004
    TRO 0.72 0.016 0.71 0.004
    TUBB2A 0.53 <.001 0.73 0.021
    TYMP 0.70 0.011
    VCAM1 0.69 0.041
    VCL 0.46 <.001
    VEGFA 0.77 0.039
    VEGFB 0.71 0.035
    VIM 0.60 0.001
    XRCC5 0.75 0.026
    YY1 0.62 0.008 0.77 0.039
    ZFHX3 0.53 <.001 0.58 <.001
    ZFP36 0.43 <.001 0.54 <.001
    ZNF827 0.55 0.001
  • Tables 8A and 8B provide genes that were significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in positive TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 8A is negatively associated with good prognosis, while increased expression of genes in Table 8B is positively associated with good prognosis.
  • TABLE 8A
    Table 8A. Genes significantly (p < 0.05) associated with cRFI
    for TMPRSS2-ERG fusion positive in the primary Gleason pattern
    or highest Gleason pattern with hazard ratio (HR) > 1.0
    (increased expression is negatively associated with good prognosis)
    Primary Highest
    Pattern Pattern
    Official Symbol HR p-value HR p-value
    ACTR2 1.78 0.017
    AKR1C3 1.44 0.013
    ALCAM 1.44 0.022
    ANLN 1.37 0.046 1.81 <.001
    APOE 1.49 0.023 1.66 0.005
    AQP2 1.30 0.013
    ARHGDIB 1.55 0.021
    ASPN 2.13 <.001 2.43 <.001
    ATP5E 1.69 0.013 1.58 0.014
    BGN 1.92 <.001 2.55 <.001
    BIRC5 1.48 0.006 1.89 <.001
    BMP6 1.51 0.010 1.96 <.001
    BRCA2 1.41 0.007
    BUB1 1.36 0.007 1.52 <.001
    CCNE2 1.55 0.004 1.59 <.001
    CD276 1.65 <.001
    CDC20 1.68 <.001 1.74 <.001
    CDH11 1.50 0.017
    CDH18 1.36 <.001
    CDH7 1.54 0.009 1.46 0.026
    CDKN2B 1.68 0.008 1.93 0.001
    CDKN2C 2.01 <.001 1.77 <.001
    CDKN3 1.51 0.002 1.33 0.049
    CENPF 1.51 0.007 2.04 <.001
    CKS2 1.43 0.034 1.56 0.007
    COL1A1 2.23 <.001 3.04 <.001
    COL1A2 1.79 0.001 2.22 <.001
    COL3A1 1.96 <.001 2.81 <.001
    COL4A1 1.52 0.020
    COL5A1 1.50 0.020
    COL5A2 1.64 0.017 1.55 0.010
    COL8A1 1.96 <.001 2.38 <.001
    CRISP3 1.68 0.002 1.67 0.002
    CTHRC1 2.06 <.001
    CTNND2 1.42 0.046 1.50 0.025
    CTSK 1.43 0.049
    CXCR4 1.82 0.001 1.64 0.007
    DDIT4 1.54 0.016 1.58 0.009
    DLL4 1.51 0.007
    DYNLL1 1.50 0.021 1.22 0.002
    F2R 2.27 <.001 2.02 <.001
    FAP 2.12 <.001
    FCGR3A 1.94 0.002
    FGF5 1.23 0.047
    FOXP3 1.52 0.006 1.48 0.018
    GNPTAB 1.44 0.042
    GPR68 1.51 0.011
    GREM1 1.91 <.001 2.38 <.001
    HDAC1 1.43 0.048
    HDAC9 1.65 <.001 1.67 0.004
    HRAS 1.65 0.005 1.58 0.021
    IGFBP3 1.94 <.001 1.85 <.001
    INHBA 2.03 <.001 2.64 <.001
    JAG1 1.41 0.027 1.50 0.008
    KCTD12 1.51 0.017
    KHDRBS3 1.48 0.029 1.54 0.014
    KPNA2 1.46 0.050
    LAMA3 1.35 0.040
    LAMC1 1.77 0.012
    LTBP2 1.82 <.001
    LUM 1.51 0.021 1.53 0.009
    MELK 1.38 0.020 1.49 0.001
    MKI67 1.37 0.014
    MMP11 1.73 <.001 1.69 <.001
    MRPL13 1.30 0.046
    MYBL2 1.56 <.001 1.72 <.001
    MYLK3 1.17 0.007
    NOX4 1.58 0.005 1.96 <.001
    NRIP3 1.30 0.040
    NRP1 1.53 0.021
    OLFML2B 1.54 0.024
    OSM 1.43 0.018
    PATE1 1.20 <.001 1.33 <.001
    PCNA 1.64 0.003
    PEX10 1.41 0.041 1.64 0.003
    PIK3CA 1.38 0.037
    PLK1 1.52 0.009 1.67 0.002
    PLOD2 1.65 0.002
    POSTN 1.79 <.001 2.06 <.001
    PTK6 1.67 0.002 2.38 <.001
    PTTG1 1.56 0.002 1.54 0.003
    RAD21 1.61 0.036 1.53 0.005
    RAD51 1.33 0.009
    RALA 1.95 0.004 1.60 0.007
    REG4 1.43 0.042
    ROBO2 1.46 0.024
    RRM1 1.44 0.033
    RRM2 1.50 0.003 1.48 <.001
    SAT1 1.42 0.009 1.43 0.012
    SEC14L1 1.64 0.002
    SFRP4 2.07 <.001 2.40 <.001
    SHMT2 1.52 0.030 1.60 0.001
    SLC44A1 1.42 0.039
    SPARC 1.93 <.001 2.21 <.001
    SULF1 1.63 0.006 2.04 <.001
    THBS2 1.95 <.001 2.26 <.001
    THY1 1.69 0.016 1.95 0.002
    TK1 1.43 0.003
    TOP2A 1.57 0.002 2.11 <.001
    TPX2 1.84 <.001 2.27 <.001
    UBE2C 1.41 0.011 1.44 0.006
    UBE2T 1.63 0.001
    UHRF1 1.51 0.007 1.69 <.001
    WISP1 1.47 0.045
    WNT5A 1.35 0.027 1.63 0.001
    ZWINT 1.36 0.045
  • TABLE 8B
    Table 8B. Genes significantly (p < 0.05) associated with cRFI
    for TMPRSS2-ERG fusion positive in the primary Gleason pattern
    or highest Gleason pattern with hazard ratio (HR) < 1.0
    (increased expression is positively associated with good prognosis)
    Primary Highest
    Pattern Pattern
    Official Symbol HR p-value HR p-value
    AAMP 0.57 0.007 0.58 <.001
    ABCA5 0.80 0.044
    ACE 0.65 0.023 0.55 <.001
    ACOX2 0.55 <.001
    ADH5 0.68 0.022
    AKAP1 0.81 0.043
    ALDH1A2 0.72 0.036 0.43 <.001
    ANPEP 0.66 0.022 0.46 <.001
    APRT 0.73 0.040
    AXIN2 0.60 <.001
    AZGP1 0.57 <.001 0.65 <.001
    BCL2 0.69 0.035
    BIK 0.71 0.045
    BIN1 0.71 0.004 0.71 0.009
    BTRC 0.66 0.003 0.58 <.001
    C7 0.64 0.006
    CADM1 0.61 <.001 0.47 <.001
    CCL2 0.73 0.042
    CCNH 0.69 0.022
    CD44 0.56 <.001 0.58 <.001
    CD82 0.72 0.033
    CDC25B 0.74 0.028
    CDH1 0.75 0.030 0.72 0.010
    CDH19 0.56 0.015
    CDK3 0.78 0.045
    CDKN1C 0.74 0.045 0.70 0.014
    CSF1 0.72 0.037
    CTSB 0.69 0.048
    CTSL2 0.58 0.005
    CYP3A5 0.51 <.001 0.30 <.001
    DHX9 0.89 0.006 0.87 0.012
    DLC1 0.64 0.023
    DLGAP1 0.69 0.010 0.49 <.001
    DPP4 0.64 <.001 0.56 <.001
    DPT 0.63 0.003
    EGR1 0.69 0.035
    EGR3 0.68 0.025
    EIF2S3 0.70 0.021
    EIF5 0.71 0.030
    ELK4 0.71 0.041 0.60 0.003
    EPHA2 0.72 0.036 0.66 0.011
    EPHB4 0.65 0.007
    ERCC1 0.68 0.023
    ESR2 0.64 0.027
    FAM107A 0.64 0.003 0.61 0.003
    FAM13C 0.68 0.006 0.55 <.001
    FGFR2 0.73 0.033 0.59 <.001
    FKBP5 0.60 0.006
    FLNC 0.68 0.024 0.65 0.012
    FLT1 0.71 0.027
    FOS 0.62 0.006
    FOXO1 0.75 0.010
    GADD45B 0.68 0.020
    GHR 0.62 0.006
    GPM6B 0.57 <.001
    GSTM1 0.68 0.015 0.58 <.001
    GSTM2 0.65 0.005 0.47 <.001
    HGD 0.63 0.001 0.71 0.020
    HK1 0.67 0.003 0.62 0.002
    HLF 0.59 <.001
    HNF1B 0.66 0.004 0.61 0.001
    IER3 0.70 0.026
    IGF1 0.63 0.005 0.55 <.001
    IGF1R 0.76 0.049
    IGFBP2 0.59 0.007 0.64 0.003
    IL6ST 0.65 0.005
    IL8 0.61 0.005 0.66 0.019
    ILK 0.64 0.015
    ING5 0.73 0.033 0.70 0.009
    ITGA7 0.72 0.045 0.69 0.019
    ITGB4 0.63 0.002
    KLC1 0.74 0.045
    KLK1 0.56 0.002 0.49 <.001
    KLK10 0.68 0.013
    KLK11 0.66 0.003
    KLK2 0.66 0.045 0.65 0.011
    KLK3 0.75 0.048 0.77 0.014
    KRT15 0.71 0.017 0.50 <.001
    KRT5 0.73 0.031 0.54 <.001
    LAMA5 0.70 0.044
    LAMB3 0.70 0.005 0.58 <.001
    LGALS3 0.69 0.025
    LIG3 0.68 0.022
    MDK 0.69 0.035
    MGMT 0.59 0.017 0.60 <.001
    MGST1 0.73 0.042
    MICA 0.70 0.009
    MPPED2 0.72 0.031 0.54 <.001
    MTSS1 0.62 0.003
    MYBPC1 0.50 <.001
    NCAPD3 0.62 0.007 0.38 <.001
    NCOR1 0.82 0.048
    NFAT5 0.60 0.001 0.62 <.001
    NRG1 0.66 0.040 0.61 0.029
    NUP62 0.75 0.037
    OMD 0.54 <.001
    PAGE4 0.64 0.005
    PCA3 0.66 0.012
    PCDHGB7 0.68 0.018
    PGR 0.60 0.012
    PPAP2B 0.62 0.010
    PPP1R12A 0.73 0.031 0.58 0.003
    PRIMA1 0.65 0.013
    PROM1 0.41 0.013
    PTCH1 0.64 0.006
    PTEN 0.75 0.047
    PTGS2 0.67 0.011
    PTK2B 0.66 0.005
    PTPN1 0.71 0.026
    RAGE 0.70 0.012
    RARB 0.68 0.016
    RGS10 0.84 0.034
    RHOB 0.66 0.016
    RND3 0.63 0.004
    SDHC 0.73 0.044 0.69 0.016
    SERPINA3 0.67 0.011 0.51 <.001
    SERPINB5 0.42 <.001
    SH3RF2 0.66 0.012 0.51 <.001
    SLC22A3 0.59 0.003 0.48 <.001
    SMAD4 0.64 0.004 0.49 <.001
    SMARCC2 0.73 0.042
    SMARCD1 0.73 <.001 0.76 0.035
    SMO 0.64 0.006
    SNAI1 0.53 0.008
    SOD1 0.60 0.003
    SRC 0.64 <.001 0.61 <.001
    SRD5A2 0.63 0.004 0.59 <.001
    STAT3 0.64 0.014
    STAT5A 0.70 0.032
    STAT5B 0.74 0.034 0.63 0.003
    SVIL 0.71 0.028
    TGFB1I1 0.68 0.036
    TMPRSS2 0.72 0.015 0.67 <.001
    TNFRSF10A 0.69 0.010
    TNFRSF10B 0.67 0.007 0.64 0.001
    TNFRSF18 0.38 0.003
    TNFSF10 0.71 0.025
    TP53 0.68 0.004 0.57 <.001
    TP63 0.75 0.049 0.52 <.001
    TPM2 0.62 0.007
    TRAF3IP2 0.71 0.017 0.68 0.005
    TRO 0.72 0.033
    TUBB2A 0.69 0.038
    VCL 0.62 <.001
    VEGFA 0.71 0.037
    WWOX 0.65 0.004
    ZFHX3 0.77 0.011 0.73 0.012
    ZFP36 0.69 0.018
    ZNF827 0.68 0.013 0.49 <.001
  • Tables 9A and 9B provide genes significantly associated (p<0.05), positively or negatively, with TMPRSS fusion status in the primary Gleason pattern. Increased expression of genes in Table 9A are positively associated with TMPRSS fusion positivity, while increased expression of genes in Table 10A are negatively associated with TMPRSS fusion positivity.
  • TABLE 9A
    Table 9A. Genes significantly (p < 0.05) associated with
    TMPRSS fusion status in the primary Gleason pattern with odds
    ratio (OR) > 1.0 (increased expression is positively associated
    with TMPRSS fusion positivity
    Official Symbol p-value Odds Ratio
    ABCC8 <.001 1.86
    ALDH18A1 0.005 1.49
    ALKBH3 0.043 1.30
    ALOX5 <.001 1.66
    AMPD3 <.001 3.92
    APEX1 <.001 2.00
    ARHGDIB <.001 1.87
    ASAP2 0.019 1.48
    ATXN1 0.013 1.41
    BMPR1B <.001 2.37
    CACNA1D <.001 9.01
    CADPS 0.015 1.39
    CD276 0.003 2.25
    CDH1 0.016 1.37
    CDH7 <.001 2.22
    CDK7 0.025 1.43
    COL9A2 <.001 2.58
    CRISP3 <.001 2.60
    CTNND1 0.033 1.48
    ECE1 <.001 2.22
    EIF5 0.023 1.34
    EPHB4 0.005 1.51
    ERG <.001 14.5
    FAM171B 0.047 1.32
    FAM73A 0.008 1.45
    FASN 0.004 1.50
    GNPTAB <.001 1.60
    GPS1 0.006 1.45
    GRB7 0.023 1.38
    HDAC1 <.001 4.95
    HGD <.001 1.64
    HIP1 <.001 1.90
    HNF1B <.001 3.55
    HSPA8 0.041 1.32
    IGF1R 0.001 1.73
    ILF3 <.001 1.91
    IMMT 0.025 1.36
    ITPR1 <.001 2.72
    ITPR3 <.001 5.91
    JAG1 0.007 1.42
    KCNN2 <.001 2.80
    KHDRBS3 <.001 2.63
    KIAA0247 0.019 1.38
    KLK11 <.001 1.98
    LAMC1 0.008 1.56
    LAMC2 <.001 3.30
    LOX 0.009 1.41
    LRP1 0.044 1.30
    MAP3K5 <.001 2.06
    MAP7 <.001 2.74
    MSH2 0.005 1.59
    MSH3 0.006 1.45
    MUC1 0.012 1.42
    MYO6 <.001 3.79
    NCOR2 0.001 1.62
    NDRG1 <.001 6.77
    NETO2 <.001 2.63
    ODC1 <.001 1.98
    OR51E1 <.001 2.24
    PDE9A <.001 2.21
    PEX10 <.001 3.41
    PGK1 0.022 1.33
    PLA2G7 <.001 5.51
    PPP3CA 0.047 1.38
    PSCA 0.013 1.43
    PSMD13 0.004 1.51
    PTCH1 0.022 1.38
    PTK2 0.014 1.38
    PTK6 <.001 2.29
    PTK7 <.001 2.45
    PTPRK <.001 1.80
    RAB30 0.001 1.60
    REG4 0.018 1.58
    RELA 0.001 1.62
    RFX1 0.020 1.43
    RGS10 <.001 1.71
    SCUBE2 0.009 1.48
    SEPT9 <.001 3.91
    SH3RF2 0.004 1.48
    SH3YL1 <.001 1.87
    SHH <.001 2.45
    SIM2 <.001 1.74
    SIPA1L1 0.021 1.35
    SLC22A3 <.001 1.63
    SLC44A1 <.001 1.65
    SPINT1 0.017 1.39
    TFDP1 0.005 1.75
    TMPRSS2ERGA 0.002 14E5
    TMPRSS2ERGB <.001 1.97
    TRIM14 <.001 1.65
    TSTA3 0.018 1.38
    UAP1 0.046 1.39
    UBE2G1 0.001 1.66
    UGDH <.001 2.22
    XRCC5 <.001 1.66
    ZMYND8 <.001 2.19
  • TABLE 9B
    Table 9B. Genes significantly (p < 0.05) associated with TMPRSS
    fusion status in the primary Gleason pattern with odds ratio (OR) < 1.0
    (increased expression is negatively associated with TMPRSS fusion
    positivity)
    Official Symbol p-value Odds Ratio
    ABCC4 0.045 0.77
    ABHD2 <.001 0.38
    ACTR2 0.027 0.73
    ADAMTS1 0.024 0.58
    ADH5 <.001 0.58
    AGTR2 0.016 0.64
    AKAP1 0.013 0.70
    AKT2 0.015 0.71
    ALCAM <.001 0.45
    ALDH1A2 0.004 0.70
    ANPEP <.001 0.43
    ANXA2 0.010 0.71
    APC 0.036 0.73
    APOC1 0.002 0.56
    APOE <.001 0.44
    ARF1 0.041 0.77
    ATM 0.036 0.74
    AURKB <.001 0.62
    AZGP1 <.001 0.54
    BBC3 0.030 0.74
    BCL2 0.012 0.70
    BIN1 0.021 0.74
    BTG1 0.004 0.67
    BTG3 0.003 0.63
    C7 0.023 0.74
    CADM1 0.007 0.69
    CASP1 0.011 0.70
    CAV1 0.011 0.71
    CCND1 0.019 0.72
    CCR1 0.022 0.73
    CD44 <.001 0.57
    CD68 <.001 0.54
    CD82 0.002 0.66
    CDH5 0.007 0.66
    CDKN1A <.001 0.60
    CDKN2B <.001 0.54
    CDKN2C 0.012 0.72
    CDKN3 0.037 0.77
    CHN1 0.038 0.75
    CKS2 <.001 0.48
    COL11A1 0.017 0.72
    COL1A1 <.001 0.59
    COL1A2 0.001 0.62
    COL3A1 0.027 0.73
    COL4A1 0.043 0.76
    COL5A1 0.039 0.74
    COL5A2 0.026 0.73
    COL6A1 0.008 0.66
    COL6A3 <.001 0.59
    COL8A1 0.022 0.74
    CSF1 0.011 0.70
    CTNNB1 0.021 0.69
    CTSB <.001 0.62
    CTSD 0.036 0.68
    CTSK 0.007 0.70
    CTSS 0.002 0.64
    CXCL12 <.001 0.48
    CXCR4 0.005 0.68
    CXCR7 0.046 0.76
    CYR61 0.004 0.65
    DAP 0.002 0.64
    DARC 0.021 0.73
    DDR2 0.021 0.73
    DHRS9 <.001 0.52
    DIAPH1 <.001 0.56
    DICER1 0.029 0.75
    DLC1 0.013 0.72
    DLGAP1 <.001 0.60
    DLL4 <.001 0.57
    DPT 0.006 0.68
    DUSP1 0.012 0.68
    DUSP6 0.001 0.62
    DVL1 0.037 0.75
    EFNB2 <.001 0.32
    EGR1 0.003 0.65
    ELK4 <.001 0.60
    ERBB2 <.001 0.61
    ERBB3 0.045 0.76
    ESR2 0.010 0.70
    ETV1 0.042 0.74
    FABP5 <.001 0.21
    FAM13C 0.006 0.67
    FCGR3A 0.018 0.72
    FGF17 0.009 0.71
    FGF6 0.011 0.70
    FGF7 0.003 0.63
    FN1 0.006 0.69
    FOS 0.035 0.74
    FOXP3 0.010 0.71
    GABRG2 0.029 0.74
    GADD45B 0.003 0.63
    GDF15 <.001 0.54
    GPM6B 0.004 0.67
    GPNMB 0.001 0.62
    GSN 0.009 0.69
    HLA-G 0.050 0.74
    HLF 0.018 0.74
    HPS1 <.001 0.48
    HSD17B3 0.003 0.60
    HSD17B4 <.001 0.56
    HSPB1 <.001 0.38
    HSPB2 0.002 0.62
    IFI30 0.049 0.75
    IFNG 0.006 0.64
    IGF1 0.016 0.73
    IGF2 0.001 0.57
    IGFBP2 <.001 0.51
    IGFBP3 <.001 0.59
    IGFBP6 <.001 0.57
    IL10 <.001 0.62
    IL17A 0.012 0.63
    IL1A 0.011 0.59
    IL2 0.001 0.63
    IL6ST <.001 0.52
    INSL4 0.014 0.71
    ITGA1 0.009 0.69
    ITGA4 0.007 0.68
    JUN <.001 0.59
    KIT <.001 0.64
    KRT76 0.016 0.70
    LAG3 0.002 0.63
    LAPTM5 <.001 0.58
    LGALS3 <.001 0.53
    LTBP2 0.011 0.71
    LUM 0.012 0.70
    MAOA 0.020 0.73
    MAP4K4 0.007 0.68
    MGST1 <.001 0.54
    MMP2 <.001 0.61
    MPPED2 <.001 0.45
    MRC1 0.005 0.67
    MTPN 0.002 0.56
    MTSS1 <.001 0.53
    MVP 0.009 0.72
    MYBPC1 <.001 0.51
    MYLK3 0.001 0.58
    NCAM1 <.001 0.59
    NCAPD3 <.001 0.40
    NCOR1 0.004 0.69
    NFKBIA <.001 0.63
    NNMT 0.006 0.66
    NPBWR1 0.027 0.67
    OAZ1 0.049 0.64
    OLFML3 <.001 0.56
    OSM <.001 0.64
    PAGE1 0.012 0.52
    PDGFRB 0.016 0.73
    PECAM1 <.001 0.55
    PGR 0.048 0.77
    PIK3CA <.001 0.55
    PIK3CG 0.008 0.71
    PLAU 0.044 0.76
    PLK1 0.006 0.68
    PLOD2 0.013 0.71
    PLP2 0.024 0.73
    PNLIPRP2 0.009 0.70
    PPAP2B <.001 0.62
    PRKAR2B <.001 0.61
    PRKCB 0.044 0.76
    PROS1 0.005 0.67
    PTEN <.001 0.47
    PTGER3 0.007 0.69
    PTH1R 0.011 0.70
    PTK2B <.001 0.61
    PTPN1 0.028 0.73
    RAB27A <.001 0.21
    RAD51 <.001 0.51
    RAD9A 0.030 0.75
    RARB <.001 0.62
    RASSF1 0.038 0.76
    RECK 0.009 0.62
    RHOB 0.004 0.64
    RHOC <.001 0.56
    RLN1 <.001 0.30
    RND3 0.014 0.72
    S100P 0.002 0.66
    SDC2 <.001 0.61
    SEMA3A 0.001 0.64
    SMAD4 <.001 0.64
    SPARC <.001 0.59
    SPARCL1 <.001 0.56
    SPINK1 <.001 0.26
    SRD5A1 0.039 0.76
    STAT1 0.026 0.74
    STS 0.006 0.64
    SULF1 <.001 0.53
    TFF3 <.001 0.19
    TGFA 0.002 0.65
    TGFB1I1 0.040 0.77
    TGFB2 0.003 0.66
    TGFB3 <.001 0.54
    TGFBR2 <.001 0.61
    THY1 <.001 0.63
    TIMP2 0.004 0.66
    TIMP3 <.001 0.60
    TMPRSS2 <.001 0.40
    TNFSF11 0.026 0.63
    TPD52 0.002 0.64
    TRAM1 <.001 0.45
    TRPC6 0.002 0.64
    TUBB2A <.001 0.49
    VCL <.001 0.57
    VEGFB 0.033 0.73
    VEGFC <.001 0.61
    VIM 0.012 0.69
    WISP1 0.030 0.75
    WNT5A <.001 0.50
  • A molecular field effect was investigated, and determined that the expression levels of histologically normal-appearing cells adjacent to the tumor exhibited a molecular signature of prostate cancer. Tables 10A and 10B provide genes significantly associated (p<0.05), positively or negatively, with cRFI or bRFI in non-tumor samples. Table 10A is negatively associated with good prognosis, while increased expression of genes in Table 10B is positively associated with good prognosis.
  • TABLE 10A
    Table 10A Genes significantly (p < 0.05) associated with
    cRFI or bRFI in Non-Tumor Samples with hazard ratio (HR) >
    1.0 (increased expression is negatively associated with good prognosis)
    cRFI bRFI
    Official Symbol HR p-value HR p-value
    ALCAM 1.278 0.036
    ASPN 1.309 0.032
    BAG5 1.458 0.004
    BRCA2 1.385 <.001
    CACNA1D 1.329 0.035
    CD164 1.339 0.020
    CDKN2B 1.398 0.014
    COL3A1 1.300 0.035
    COL4A1 1.358 0.019
    CTNND2 1.370 0.001
    DARC 1.451 0.003
    DICER1 1.345 <.001
    DPP4 1.358 0.008
    EFNB2 1.323 0.007
    FASN 1.327 0.035
    GHR 1.332 0.048
    HSPA5 1.260 0.048
    INHBA 1.558 <.001
    KCNN2 1.264 0.045
    KRT76 1.115 <.001
    LAMC1 1.390 0.014
    LAMC2 1.216 0.042
    LIG3 1.313 0.030
    MAOA 1.405 0.013
    MCM6 1.307 0.036
    MKI67 1.271 0.008
    NEK2 1.312 0.016
    NPBWR1 1.278 0.035
    ODC1 1.320 0.010
    PEX10 1.361 0.014
    PGK1 1.488 0.004
    PLA2G7 1.337 0.025
    POSTN 1.306 0.043
    PTK6 1.344 0.005
    REG4 1.348 0.009
    RGS7 1.144 0.047
    SFRP4 1.394 0.009
    TARP 1.412 0.011
    TFF1 1.346 0.010
    TGFBR2 1.310 0.035
    THY1 1.300 0.038
    TMPRSS2ERGA 1.333 <.001
    TPD52 1.374 0.015
    TRPC6 1.272 0.046
    UBE2C 1.323 0.007
    UHRF1 1.325 0.021
  • TABLE 10B
    Table 10B Genes significantly (p < 0.05) associated with
    cRFI or bRFI in Non-Tumor Samples with hazard ratio (HR) <
    1.0 (increased expression is positively associated with good prognosis)
    cRFI bRFI
    Official Symbol HR p-value HR p-value
    ABCA5 0.807 0.028
    ABCC3 0.760 0.019 0.750 0.003
    ABHD2 0.781 0.028
    ADAM15 0.718 0.005
    AKAP1 0.740 0.009
    AMPD3 0.793 0.013
    ANGPT2 0.752 0.027
    ANXA2 0.776 0.035
    APC 0.755 0.014
    APRT 0.762 0.025
    AR 0.752 0.015
    ARHGDIB 0.753 <.001
    BIN1 0.738 0.016
    CADM1 0.711 0.004
    CCNH 0.820 0.041
    CCR1 0.749 0.007
    CDK14 0.772 0.014
    CDK3 0.819 0.044
    CDKN1C 0.808 0.038
    CHAF1A 0.634 0.002 0.779 0.045
    CHN1 0.803 0.034
    CHRAC1 0.751 0.014 0.779 0.021
    COL5A1 0.736 0.012
    COL5A2 0.762 0.013
    COL6A1 0.757 0.032
    COL6A3 0.757 0.019
    CSK 0.663 <.001 0.698 <.001
    CTSK 0.782 0.029
    CXCL12 0.771 0.037
    CXCR7 0.753 0.008
    CYP3A5 0.790 0.035
    DDIT4 0.725 0.017
    DIAPH1 0.771 0.015
    DLC1 0.744 0.004 0.807 0.015
    DLGAP1 0.708 0.004
    DUSP1 0.740 0.034
    EDN1 0.742 0.010
    EGR1 0.731 0.028
    EIF3H 0.761 0.024
    EIF4E 0.786 0.041
    ERBB2 0.664 0.001
    ERBB4 0.764 0.036
    ERCC1 0.804 0.041
    ESR2 0.757 0.025
    EZH2 0.798 0.048
    FAAH 0.798 0.042
    FAM13C 0.764 0.012
    FAM171B 0.755 0.005
    FAM49B 0.811 0.043
    FAM73A 0.778 0.015
    FASLG 0.757 0.041
    FGFR2 0.735 0.016
    FOS 0.690 0.008
    FYN 0.788 0.035 0.777 0.011
    GPNMB 0.762 0.011
    GSK3B 0.792 0.038
    HGD 0.774 0.017
    HIRIP3 0.802 0.033
    HSP90AB1 0.753 0.013
    HSPB1 0.764 0.021
    HSPE1 0.668 0.001
    IFI30 0.732 0.002
    IGF2 0.747 0.006
    IGFBP5 0.691 0.006
    IL6ST 0.748 0.010
    IL8 0.785 0.028
    IMMT 0.708 <.001
    ITGA6 0.747 0.008
    ITGAV 0.792 0.016
    ITGB3 0.814 0.034
    ITPR3 0.769 0.009
    JUN 0.655 0.005
    KHDRBS3 0.764 0.012
    KLF6 0.714 <.001
    KLK2 0.813 0.048
    LAMA4 0.702 0.009
    LAMA5 0.744 0.011
    LAPTM5 0.740 0.009
    LGALS3 0.773 0.036 0.788 0.024
    LIMS1 0.807 0.012
    MAP3K5 0.815 0.034
    MAP3K7 0.809 0.032
    MAP4K4 0.735 0.018 0.761 0.010
    MAPKAPK3 0.754 0.014
    MICA 0.785 0.019
    MTA1 0.808 0.043
    MVP 0.691 0.001
    MYLK3 0.730 0.039
    MYO6 0.780 0.037
    NCOA1 0.787 0.040
    NCOR1 0.876 0.020
    NDRG1 0.761 <.001
    NFAT5 0.770 0.032
    NFKBIA 0.799 0.018
    NME2 0.753 0.005
    NUP62 0.842 0.032
    OAZ1 0.803 0.043
    OLFML2B 0.745 0.023
    OLFML3 0.743 0.009
    OSM 0.726 0.018
    PCA3 0.714 0.019
    PECAM1 0.774 0.023
    PIK3C2A 0.768 0.001
    PIM1 0.725 0.011
    PLOD2 0.713 0.008
    PPP3CA 0.768 0.040
    PROM1 0.482 <.001
    PTEN 0.807 0.012
    PTGS2 0.726 0.011
    PTTG1 0.729 0.006
    PYCARD 0.783 0.012
    RAB30 0.730 0.002
    RAGE 0.792 0.012
    RFX1 0.789 0.016 0.792 0.010
    RGS10 0.781 0.017
    RUNX1 0.747 0.007
    SDHC 0.827 0.036
    SEC23A 0.752 0.010
    SEPT9 0.889 0.006
    SERPINA3 0.738 0.013
    SLC25A21 0.788 0.045
    SMARCD1 0.788 0.010 0.733 0.007
    SMO 0.813 0.035
    SRC 0.758 0.026
    SRD5A2 0.738 0.005
    ST5 0.767 0.022
    STAT5A 0.784 0.039
    TGFB2 0.771 0.027
    TGFB3 0.752 0.036
    THBS2 0.751 0.015
    TNFRSF10B 0.739 0.010
    TPX2 0.754 0.023
    TRAF3IP2 0.774 0.015
    TRAM1 0.868 <.001 0.880 <.001
    TRIM14 0.785 0.047
    TUBB2A 0.705 0.010
    TYMP 0.778 0.024
    UAP1 0.721 0.013
    UTP23 0.763 0.007 0.826 0.018
    VCL 0.837 0.040
    VEGFA 0.755 0.009
    WDR19 0.724 0.005
    YBX1 0.786 0.027
    ZFP36 0.744 0.032
    ZNF827 0.770 0.043
  • Table 11 provides genes that are significantly associated (p<0.05) with cRFI or bRFI after adjustment for Gleason pattern or highest Gleason pattern.
  • TABLE 11
    Table 11
    Genes significantly (p < 0.05) associated with cRFI or bRFI after
    adjustment for Gleason pattern in the primary Gleason pattern
    or highest Gleason pattern Some HR <= 1.0 and some HR > 1.0
    cRFI bRFI bRFI
    Highest Pattern Primary Pattern Highest Pattern
    Official Symbol HR p-value HR p-value HR p-value
    HSPA5 0.710 0.009 1.288 0.030
    ODC1 0.741 0.026 1.343 0.004 1.261 0.046
  • Tables 12A and 12B provide genes that are significantly associated (p<0.05) with prostate cancer specific survival (PCSS) in the primary Gleason pattern. Increased expression of genes in Table 12A is negatively associated with good prognosis, while increased expression of genes in Table 12B is positively associated with good prognosis.
  • TABLE 12A
    Table 12A Genes significantly (p < 0.05) associated
    with prostate cancer specific survival (PCSS) in the
    Primary Gleason Pattern HR > 1.0 (Increased expression
    is negatively associated with good prognosis)
    Official Symbol HR p-value
    AKR1C3 1.476 0.016
    ANLN 1.517 0.006
    APOC1 1.285 0.016
    APOE 1.490 0.024
    ASPN 3.055 <.001
    ATP5E 1.788 0.012
    AURKB 1.439 0.008
    BGN 2.640 <.001
    BIRC5 1.611 <.001
    BMP6 1.490 0.021
    BRCA1 1.418 0.036
    CCNB1 1.497 0.021
    CD276 1.668 0.005
    CDC20 1.730 <.001
    CDH11 1.565 0.017
    CDH7 1.553 0.007
    CDKN2B 1.751 0.003
    CDKN2C 1.993 0.013
    CDKN3 1.404 0.008
    CENPF 2.031 <.001
    CHAF1A 1.376 0.011
    CKS2 1.499 0.031
    COL1A1 2.574 <.001
    COL1A2 1.607 0.011
    COL3A1 2.382 <.001
    COL4A1 1.970 <.001
    COL5A2 1.938 0.002
    COL8A1 2.245 <.001
    CTHRC1 2.085 <.001
    CXCR4 1.783 0.007
    DDIT4 1.535 0.030
    DYNLL1 1.719 0.001
    F2R 2.169 <.001
    FAM171B 1.430 0.044
    FAP 1.993 0.002
    FCGR3A 2.099 <.001
    FN1 1.537 0.024
    GPR68 1.520 0.018
    GREM1 1.942 <.001
    IFI30 1.482 0.048
    IGFBP3 1.513 0.027
    INHBA 3.060 <.001
    KIF4A 1.355 0.001
    KLK14 1.187 0.004
    LAPTM5 1.613 0.006
    LTBP2 2.018 <.001
    MMP11 1.869 <.001
    MYBL2 1.737 0.013
    NEK2 1.445 0.028
    NOX4 2.049 <.001
    OLFML2B 1.497 0.023
    PLK1 1.603 0.006
    POSTN 2.585 <.001
    PPFIA3 1.502 0.012
    PTK6 1.527 0.009
    PTTG1 1.382 0.029
    RAD51 1.304 0.031
    RGS7 1.251 <.001
    RRM2 1.515 <.001
    SAT1 1.607 0.004
    SDC1 1.710 0.007
    SESN3 1.399 0.045
    SFRP4 2.384 <.001
    SHMT2 1.949 0.003
    SPARC 2.249 <.001
    STMN1 1.748 0.021
    SULF1 1.803 0.004
    THBS2 2.576 <.001
    THY1 1.908 0.001
    TK1 1.394 0.004
    TOP2A 2.119 <.001
    TPX2 2.074 0.042
    UBE2C 1.598 <.001
    UGT2B15 1.363 0.016
    UHRF1 1.642 0.001
    ZWINT 1.570 0.010
  • TABLE 12B
    Table 12B Genes significantly (p < 0.05) associated
    with prostate cancer specific survival (PCSS) in the
    Primary Gleason Pattern HR < 1.0 (Increased expression
    is positively associated with good prognosis)
    Official Symbol HR p-value
    AAMP 0.649 0.040
    ABCA5 0.777 0.015
    ABCG2 0.715 0.037
    ACOX2 0.673 0.016
    ADH5 0.522 <.001
    ALDH1A2 0.561 <.001
    AMACR 0.693 0.029
    AMPD3 0.750 0.049
    ANPEP 0.531 <.001
    ATXN1 0.640 0.011
    AXIN2 0.657 0.002
    AZGP1 0.617 <.001
    BDKRB1 0.553 0.032
    BIN1 0.658 <.001
    BTRC 0.716 0.011
    C7 0.531 <.001
    CADM1 0.646 0.015
    CASP7 0.538 0.029
    CCNH 0.674 0.001
    CD164 0.606 <.001
    CD44 0.687 0.016
    CDK3 0.733 0.039
    CHN1 0.653 0.014
    COL6A1 0.681 0.015
    CSF1 0.675 0.019
    CSRP1 0.711 0.007
    CXCL12 0.650 0.015
    CYP3A5 0.507 <.001
    CYR61 0.569 0.007
    DLGAP1 0.654 0.004
    DNM3 0.692 0.010
    DPP4 0.544 <.001
    DPT 0.543 <.001
    DUSP1 0.660 0.050
    DUSP6 0.699 0.033
    EGR1 0.490 <.001
    EGR3 0.561 <.001
    EIF5 0.720 0.035
    ERBB3 0.739 0.042
    FAAH 0.636 0.010
    FAM107A 0.541 <.001
    FAM13C 0.526 <.001
    FAS 0.689 0.030
    FGF10 0.657 0.024
    FKBP5 0.699 0.040
    FLNC 0.742 0.036
    FOS 0.556 0.005
    FOXQ1 0.666 0.007
    GADD45B 0.554 0.002
    GDF15 0.659 0.009
    GHR 0.683 0.027
    GPM6B 0.666 0.005
    GSN 0.646 0.006
    GSTM1 0.672 0.006
    GSTM2 0.514 <.001
    HGD 0.771 0.039
    HIRIP3 0.730 0.013
    HK1 0.778 0.048
    HLF 0.581 <.001
    HNF1B 0.643 0.013
    HSD17B10 0.742 0.029
    IER3 0.717 0.049
    IGF1 0.612 <.001
    IGFBP6 0.578 0.003
    IL2 0.528 0.010
    IL6ST 0.574 <.001
    IL8 0.540 0.001
    ING5 0.688 0.015
    ITGA6 0.710 0.005
    ITGA7 0.676 0.033
    JUN 0.506 0.001
    KIT 0.628 0.047
    KLK1 0.523 0.002
    KLK2 0.581 <.001
    KLK3 0.676 <.001
    KRT15 0.684 0.005
    KRT18 0.536 <.001
    KRT5 0.673 0.004
    KRT8 0.613 0.006
    LAMB3 0.740 0.027
    LGALS3 0.678 0.007
    MGST1 0.640 0.002
    MPPED2 0.629 <.001
    MTSS1 0.705 0.041
    MYBPC1 0.534 <.001
    NCAPD3 0.519 <.001
    NFAT5 0.536 <.001
    NRG1 0.467 0.007
    OLFML3 0.646 0.001
    OMD 0.630 0.006
    OR51E2 0.762 0.017
    PAGE4 0.518 <.001
    PCA3 0.581 <.001
    PGF 0.705 0.038
    PPAP2B 0.568 <.001
    PPP1R12A 0.694 0.017
    PRIMA1 0.678 0.014
    PRKCA 0.632 0.001
    PRKCB 0.692 0.028
    PROM1 0.393 0.017
    PTEN 0.689 0.002
    PTGS2 0.611 0.004
    PTH1R 0.629 0.031
    RAB27A 0.721 0.046
    RND3 0.678 0.029
    RNF114 0.714 0.035
    SDHC 0.590 <.001
    SERPINA3 0.710 0.050
    SH3RF2 0.570 0.005
    SLC22A3 0.517 <.001
    SMAD4 0.528 <.001
    SMO 0.751 0.026
    SRC 0.667 0.004
    SRD5A2 0.488 <.001
    STAT5B 0.700 0.040
    SVIL 0.694 0.024
    TFF3 0.701 0.045
    TGFB1I1 0.670 0.029
    TGFB2 0.646 0.010
    TNFRSF10B 0.685 0.014
    TNFSF10 0.532 <.001
    TPM2 0.623 0.005
    TRO 0.767 0.049
    TUBB2A 0.613 0.003
    VEGFB 0.780 0.034
    ZFP36 0.576 0.001
    ZNF827 0.644 0.014
  • Analysis of gene expression and upgrading/upstaging was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); and (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2). 200 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the primary Gleason pattern sample (PGP) and 203 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the highest Gleason pattern sample (HGP).
  • Tables 13A and 13B provide genes significantly associated (p<0.05), positively or negatively, with upgrading/upstaging in the primary and/or highest Gleason pattern. Increased expression of genes in Table 13A is positively associated with higher risk of upgrading/upstaging (poor prognosis), while increased expression of genes in Table 13B is negatively associated with risk of upgrading/upstaging (good prognosis).
  • TABLE 13A
    Table 13A Genes significantly (p < 0.05) associated
    with upgrading/upstaging in the Primary Gleason Pattern
    (PGP) and Highest Gleason Pattern (HGP) OR > 1.0
    (Increased expression is positively associated with higher
    risk of upgrading/upstaging (poor prognosis))
    PGP HGP
    Gene OR p-value OR p-value
    ALCAM 1.52 0.0179 1.50 0.0184
    ANLN 1.36 0.0451 . .
    APOE 1.42 0.0278 1.50 0.0140
    ASPN 1.60 0.0027 2.06 0.0001
    AURKA 1.47 0.0108 . .
    AURKB . . 1.52 0.0070
    BAX . . 1.48 0.0095
    BGN 1.58 0.0095 1.73 0.0034
    BIRC5 1.38 0.0415 . .
    BMP6 1.51 0.0091 1.59 0.0071
    BUB1 1.38 0.0471 1.59 0.0068
    CACNA1D 1.36 0.0474 1.52 0.0078
    CASP7 . . 1.32 0.0450
    CCNE2 1.54 0.0042 . .
    CD276 . . 1.44 0.0265
    CDC20 1.35 0.0445 1.39 0.0225
    CDKN2B . . 1.36 0.0415
    CENPF 1.43 0.0172 1.48 0.0102
    CLTC 1.59 0.0031 1.57 0.0038
    COL1A1 1.58 0.0045 1.75 0.0008
    COL3A1 1.45 0.0143 1.47 0.0131
    COL8A1 1.40 0.0292 1.43 0.0258
    CRISP3 . . 1.40 0.0256
    CTHRC1 . . 1.56 0.0092
    DBN1 1.43 0.0323 1.45 0.0163
    DIAPH1 1.51 0.0088 1.58 0.0025
    DICER1 . . 1.40 0.0293
    DIO2 . . 1.49 0.0097
    DVL1 . . 1.53 0.0160
    F2R 1.46 0.0346 1.63 0.0024
    FAP 1.47 0.0136 1.74 0.0005
    FCGR3A . . 1.42 0.0221
    HPN . . 1.36 0.0468
    HSD17B4 . . 1.47 0.0151
    HSPA8 1.65 0.0060 1.58 0.0074
    IL11 1.50 0.0100 1.48 0.0113
    IL1B 1.41 0.0359 . .
    INHBA 1.56 0.0064 1.71 0.0042
    KHDRBS3 1.43 0.0219 1.59 0.0045
    KIF4A . . 1.50 0.0209
    KPNA2 1.40 0.0366 . .
    KRT2 . . 1.37 0.0456
    KRT75 . . 1.44 0.0389
    MANF . . 1.39 0.0429
    MELK 1.74 0.0016 . .
    MKI67 1.35 0.0408 . .
    MMP11 . . 1.56 0.0057
    NOX4 1.49 0.0105 1.49 0.0138
    PLAUR 1.44 0.0185 . .
    PLK1 . . 1.41 0.0246
    PTK6 . . 1.36 0.0391
    RAD51 . . 1.39 0.0300
    RAF1 . . 1.58 0.0036
    RRM2 1.57 0.0080 . .
    SESN3 1.33 0.0465 . .
    SFRP4 2.33 <0.0001   2.51 0.0015
    SKIL 1.44 0.0288 1.40 0.0368
    SOX4 1.50 0.0087 1.59 0.0022
    SPINK1 1.52 0.0058 . .
    SPP1 . . 1.42 0.0224
    THBS2 . . 1.36 0.0461
    TK1 . . 1.38 0.0283
    TOP2A 1.85 0.0001 1.66 0.0011
    TPD52 1.78 0.0003 1.64 0.0041
    TPX2 1.70 0.0010 . .
    UBE2G1 1.38 0.0491 . .
    UBE2T 1.37 0.0425 1.46 0.0162
    UHRF1 . . 1.43 0.0164
    VCPIP1 . . 1.37 0.0458
  • TABLE 13B
    Table 13B Genes significantly (p < 0.05) associated
    with upgrading/upstaging in the Primary Gleason Pattern
    (PGP) and Highest Gleason Pattern (HGP) OR < 1.0
    (Increased expression is negatively associated with higher
    risk of upgrading/upstaging (good prognosis))
    PGP HGP
    Gene OR p-value OR p-value
    ABCC3 . . 0.70 0.0216
    ABCC8 0.66 0.0121 . .
    ABCG2 0.67 0.0208 0.61 0.0071
    ACE . . 0.73 0.0442
    ACOX2 0.46 0.0000 0.49 0.0001
    ADH5 0.69 0.0284 0.59 0.0047
    AIG1 . . 0.60 0.0045
    AKR1C1 . . 0.66 0.0095
    ALDH1A2 0.36 <0.0001   0.36 <0.0001  
    ALKBH3 0.70 0.0281 0.61 0.0056
    ANPEP . . 0.68 0.0109
    ANXA2 0.73 0.0411 0.66 0.0080
    APC . . 0.68 0.0223
    ATXN1 . . 0.70 0.0188
    AXIN2 0.60 0.0072 0.68 0.0204
    AZGP1 0.66 0.0089 0.57 0.0028
    BCL2 . . 0.71 0.0182
    BIN1 0.55 0.0005 . .
    BTRC 0.69 0.0397 0.70 0.0251
    C7 0.53 0.0002 0.51 <0.0001  
    CADM1 0.57 0.0012 0.60 0.0032
    CASP1 0.64 0.0035 0.72 0.0210
    CAV1 0.64 0.0097 0.59 0.0032
    CAV2 . . 0.58 0.0107
    CD164 . . 0.69 0.0260
    CD82 0.67 0.0157 0.69 0.0167
    CDH1 0.61 0.0012 0.70 0.0210
    CDK14 0.70 0.0354 . .
    CDK3 . . 0.72 0.0267
    CDKN1C 0.61 0.0036 0.56 0.0003
    CHN1 0.71 0.0214 . .
    COL6A1 0.62 0.0125 0.60 0.0050
    COL6A3 0.65 0.0080 0.68 0.0181
    CSRP1 0.43 0.0001 0.40 0.0002
    CTSB 0.66 0.0042 0.67 0.0051
    CTSD 0.64 0.0355 . .
    CTSK 0.69 0.0171 . .
    CTSL1 0.72 0.0402 . .
    CUL1 0.61 0.0024 0.70 0.0120
    CXCL12 0.69 0.0287 0.63 0.0053
    CYP3A5 0.68 0.0099 0.62 0.0026
    DDR2 0.68 0.0324 0.62 0.0050
    DES 0.54 0.0013 0.46 0.0002
    DHX9 0.67 0.0164 . .
    DLGAP1 . . 0.66 0.0086
    DPP4 0.69 0.0438 0.69 0.0132
    DPT 0.59 0.0034 0.51 0.0005
    DUSP1 . . 0.67 0.0214
    EDN1 . . 0.66 0.0073
    EDNRA 0.66 0.0148 0.54 0.0005
    EIF2C2 . . 0.65 0.0087
    ELK4 0.55 0.0003 0.58 0.0013
    ENPP2 0.65 0.0128 0.59 0.0007
    EPHA3 0.71 0.0397 0.73 0.0455
    EPHB2 0.60 0.0014 . .
    EPHB4 0.73 0.0418 . .
    EPHX3 . . 0.71 0.0419
    ERCC1 0.71 0.0325 . .
    FAM107A 0.56 0.0008 0.55 0.0011
    FAM13C 0.68 0.0276 0.55 0.0001
    FAS 0.72 0.0404 . .
    FBN1 0.72 0.0395 . .
    FBXW7 0.69 0.0417 . .
    FGF10 0.59 0.0024 0.51 0.0001
    FGF7 0.51 0.0002 0.56 0.0007
    FGFR2 0.54 0.0004 0.47 <0.0001  
    FLNA 0.58 0.0036 0.50 0.0002
    FLNC 0.45 0.0001 0.40 <0.0001  
    FLT4 0.61 0.0045 . .
    FOXO1 0.55 0.0005 0.53 0.0005
    FOXP3 0.71 0.0275 0.72 0.0354
    GHR 0.59 0.0074 0.53 0.0001
    GNRH1 0.72 0.0386 . .
    GPM6B 0.59 0.0024 0.52 0.0002
    GSN 0.65 0.0107 0.65 0.0098
    GSTM1 0.44 <0.0001   0.43 <0.0001  
    GSTM2 0.42 <0.0001   0.39 <0.0001  
    HLF 0.46 <0.0001   0.47 0.0001
    HPS1 0.64 0.0069 0.69 0.0134
    HSPA5 0.68 0.0113 . .
    HSPB2 0.61 0.0061 0.55 0.0004
    HSPG2 0.70 0.0359 . .
    ID3 . . 0.70 0.0245
    IGF1 0.45 <0.0001   0.50 0.0005
    IGF2 0.67 0.0200 0.68 0.0152
    IGFBP2 0.59 0.0017 0.69 0.0250
    IGFBP6 0.49 <0.0001   0.64 0.0092
    IL6ST 0.56 0.0009 0.60 0.0012
    ILK 0.51 0.0010 0.49 0.0004
    ITGA1 0.58 0.0020 0.58 0.0016
    ITGA3 0.71 0.0286 0.70 0.0221
    ITGA5 . . 0.69 0.0183
    ITGA7 0.56 0.0035 0.42 <0.0001  
    ITGB1 0.63 0.0095 0.68 0.0267
    ITGB3 0.62 0.0043 0.62 0.0040
    ITPR1 0.62 0.0032 . .
    JUN 0.73 0.0490 0.68 0.0152
    KIT 0.55 0.0003 0.57 0.0005
    KLC1 . . 0.70 0.0248
    KLK1 . . 0.60 0.0059
    KRT15 0.58 0.0009 0.45 <0.0001  
    KRT5 0.70 0.0262 0.59 0.0008
    LAMA4 0.56 0.0359 0.68 0.0498
    LAMB3 . . 0.60 0.0017
    LGALS3 0.58 0.0007 0.56 0.0012
    LRP1 0.69 0.0176 . .
    MAP3K7 0.70 0.0233 0.73 0.0392
    MCM3 0.72 0.0320 . .
    MMP2 0.66 0.0045 0.60 0.0009
    MMP7 0.61 0.0015 0.65 0.0032
    MMP9 0.64 0.0057 0.72 0.0399
    MPPED2 0.72 0.0392 0.63 0.0042
    MTA1 . . 0.68 0.0095
    MTSS1 0.58 0.0007 0.71 0.0442
    MVP 0.57 0.0003 0.70 0.0152
    MYBPC1 . . 0.70 0.0359
    NCAM1 0.63 0.0104 0.64 0.0080
    NCAPD3 0.67 0.0145 0.64 0.0128
    NEXN 0.54 0.0004 0.55 0.0003
    NFAT5 0.72 0.0320 0.70 0.0177
    NUDT6 0.66 0.0102 . .
    OLFML3 0.56 0.0035 0.51 0.0011
    OMD 0.61 0.0011 0.73 0.0357
    PAGE4 0.42 <0.0001   0.36 <0.0001  
    PAK6 0.72 0.0335 . .
    PCDHGB7 0.70 0.0262 0.55 0.0004
    PGF 0.72 0.0358 0.71 0.0270
    PLP2 0.66 0.0088 0.63 0.0041
    PPAP2B 0.44 <0.0001   0.50 0.0001
    PPP1R12A 0.45 0.0001 0.40 <0.0001  
    PRIMA1 . . 0.63 0.0102
    PRKAR2B 0.71 0.0226 . .
    PRKCA 0.34 <0.0001   0.42 <0.0001  
    PRKCB 0.66 0.0120 0.49 <0.0001  
    PROM1 0.61 0.0030 . .
    PTEN 0.59 0.0008 0.55 0.0001
    PTGER3 0.67 0.0293 . .
    PTH1R 0.69 0.0259 0.71 0.0327
    PTK2 0.75 0.0461 . .
    PTK2B 0.70 0.0244 0.74 0.0388
    PYCARD 0.73 0.0339 0.67 0.0100
    RAD9A 0.64 0.0124 . .
    RARB 0.67 0.0088 0.65 0.0116
    RGS10 0.70 0.0219 . .
    RHOB . . 0.72 0.0475
    RND3 . . 0.67 0.0231
    SDHC 0.72 0.0443 . .
    SEC23A 0.66 0.0101 0.53 0.0003
    SEMA3A 0.51 0.0001 0.69 0.0222
    SH3RF2 0.55 0.0002 0.54 0.0002
    SLC22A3 0.48 0.0001 0.50 0.0058
    SMAD4 0.49 0.0001 0.50 0.0003
    SMARCC2 0.59 0.0028 0.65 0.0052
    SMO 0.60 0.0048 0.52 <0.0001  
    SORBS1 0.56 0.0024 0.48 0.0002
    SPARCL1 0.43 0.0001 0.50 0.0001
    SRD5A2 0.26 <0.0001   0.31 <0.0001  
    ST5 0.63 0.0103 0.52 0.0006
    STAT5A 0.60 0.0015 0.61 0.0037
    STAT5B 0.54 0.0005 0.57 0.0008
    SUMO1 0.65 0.0066 0.66 0.0320
    SVIL 0.52 0.0067 0.46 0.0003
    TGFB1I1 0.44 0.0001 0.43 0.0000
    TGFB2 0.55 0.0007 0.58 0.0016
    TGFB3 0.57 0.0010 0.53 0.0005
    TIMP1 0.72 0.0224 . .
    TIMP2 0.68 0.0198 0.69 0.0206
    TIMP3 0.67 0.0105 0.64 0.0065
    TMPRSS2 . . 0.72 0.0366
    TNFRSF10A 0.71 0.0181 . .
    TNFSF10 0.71 0.0284 . .
    TOP2B 0.73 0.0432 . .
    TP63 0.62 0.0014 0.50 <0.0001  
    TPM1 0.54 0.0007 0.52 0.0002
    TPM2 0.41 <0.0001   0.40 <0.0001  
    TPP2 0.65 0.0122 . .
    TRA2A 0.72 0.0318 . .
    TRAF3IP2 0.62 0.0064 0.59 0.0053
    TRO 0.57 0.0003 0.51 0.0001
    VCL 0.52 0.0005 0.52 0.0004
    VIM 0.65 0.0072 0.65 0.0045
    WDR19 0.66 0.0097 . .
    WFDC1 0.58 0.0023 0.60 0.0026
    ZFHX3 0.69 0.0144 0.62 0.0046
    ZNF827 0.62 0.0030 0.53 0.0001
  • Example 3 Identification of MicroRNAs Associated with Clinical Recurrence and Death Due to Prostate Cancer
  • MicroRNAs function by binding to portions of messenger RNA (mRNA) and changing how frequently the mRNA is translated into protein. They can also influence the turnover of mRNA and thus how long the mRNA remains intact in the cell. Since microRNAs function primarily as an adjunct to mRNA, this study evaluated the joint prognostic value of microRNA expression and gene (mRNA) expression. Since the expression of certain microRNAs may be a surrogate for expression of genes that are not in the assessed panel, we also evaluated the prognostic value of microRNA expression by itself.
  • Patients and Samples
  • Samples from the 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy described in Example 2 were used in this study. The final analysis set comprised 416 samples from patients in which both gene expression and microRNA expression were successfully assayed. Of these, 106 patients exhibited clinical recurrence and 310 did not have clinical recurrence. Tissue samples were taken from each prostate sample representing (1) the primary Gleason pattern in the sample, and (2) the highest Gleason pattern in the sample. In addition, a sample of histologically normal-appearing tissue adjacent to the tumor (NAT) was taken. The number of patients in the analysis set for each tissue type and the number of them who experienced clinical recurrence or death due to prostate cancer are shown in Table 14.
  • TABLE 14
    Number of Patients and Events in Analysis Set
    Deaths Due to
    Patients Clinical Recurrences Prostate Cancer
    Primary Gleason 416 106 36
    Pattern Tumor Tissue
    Highest Gleason 405 102 36
    Pattern Tumor Tissue
    Normal Adjacent 364 81 29
    Tissue
  • Assay Method
  • Expression of 76 test microRNAs and 5 reference microRNAs were determined from RNA extracted from fixed paraffin-embedded (FPE) tissue. MicroRNA expression in all three tissue type was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) using the crossing point (Cp) obtained from the Taqman® MicroRNA Assay kit (Applied Biosystems, Inc., Carlsbad, Calif.).
  • Statistical Analysis
  • Using univariate proportional hazards regression (Cox D R, Journal of the Royal Statistical Society, Series B 34:187-220, 1972), applying the sampling weights from the cohort sampling design, and using variance estimation based on the Lin and Wei method (Lin and Wei, Journal of the American Statistical Association 84:1074-1078, 1989), microRNA expression, normalized by the average expression for the 5 reference microRNAs hsa-miR-106a, hsa-miR-146b-5p, hsa-miR-191, hsa-miR-19b, and hsa-miR-92a, and reference-normalized gene expression of the 733 genes (including the reference genes) discussed above, were assessed for association with clinical recurrence and death due to prostate cancer. Standardized hazard ratios (the proportional change in the hazard associated with a change of one standard deviation in the covariate value) were calculated.
  • This analysis included the following classes of predictors:
  • 1. MicroRNAs alone
  • 2. MicroRNA-gene pairs Tier 1
  • 3. MicroRNA-gene pairs Tier 2
  • 4. MicroRNA-gene pairs Tier 3
  • 5. All other microRNA-gene pairs Tier 4
  • The four tiers were pre-determined based on the likelihood (Tier 1 representing the highest likelihood) that the gene-microRNA pair functionally interacted or that the microRNA was related to prostate cancer based on a review of the literature and existing microarray data sets.
  • False discovery rates (FDR) (Benjamini and Hochberg, Journal of the Royal Statistical Society, Series B 57:289-300, 1995) were assessed using Efron's separate class methodology (Efron, Annals of Applied Statistics 2:197-223., 2008). The false discovery rate is the expected proportion of the rejected null hypotheses that are rejected incorrectly (and thus are false discoveries). Efron's methodology allows separate FDR assessment (q-values) (Storey, Journal of the Royal Statistical Society, Series B 64:479-498, 2002) within each class while utilizing the data from all the classes to improve the accuracy of the calculation. In this analysis, the q-value for a microRNA or microRNA-gene pair can be interpreted as the empirical Bayes probability that the microRNA or microRNA-gene pair identified as being associated with clinical outcome is in fact a false discovery given the data. The separate class approach was applied to a true discovery rate degree of association (TDRDA) analysis (Crager, Statistics in Medicine 29:33-45, 2010) to determine sets of microRNAs or microRNA-gene pairs that have standardized hazard ratio for clinical recurrence or prostate cancer-specific death of at least a specified amount while controlling the FDR at 10%. For each microRNA or microRNA-gene pair, a maximum lower bound (MLB) standardized hazard ratio was computed, showing the highest lower bound for which the microRNA or microRNA-gene pair was included in a TDRDA set with 10% FDR. Also calculated was an estimate of the true standardized hazard ratio corrected for regression to the mean (RM) that occurs in subsequent studies when the best predictors are selected from a long list (Crager, 2010 above). The RM-corrected estimate of the standardized hazard ratio is a reasonable estimate of what could be expected if the selected microRNA or microRNA-gene pair were studied in a separate, subsequent study.
  • These analyses were repeated adjusting for clinical and pathology covariates available at the time of patient biopsy: biopsy Gleason score, baseline PSA level, and clinical T-stage (T1-T2A vs. T2B or T2C) to assess whether the microRNAs or microRNA-gene pairs have predictive value independent of these clinical and pathology covariates.
  • Results
  • The analysis identified 21 microRNAs assayed from primary Gleason pattern tumor tissue that were associated with clinical recurrence of prostate cancer after radical prostatectomy, allowing a false discovery rate of 10% (Table 15). Results were similar for microRNAs assessed from highest Gleason pattern tumor tissue (Table 16), suggesting that the association of microRNA expression with clinical recurrence does not change markedly depending on the location within a tumor tissue sample. No microRNA assayed from normal adjacent tissue was associated with the risk of clinical recurrence at a false discovery rate of 10%. The sequences of the microRNAs listed in Tables 15-21 are shown in Table B.
  • TABLE 15
    MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
    Primary Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    95% Max. Lower RM-
    q-valuea Direction Uncorrected Confidence Bound Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval @10% FDR Estimatec
    hsa-miR-93 <0.0001 0.0% (+) 1.79 (1.38, 2.32) 1.19 1.51
    hsa-miR-106b <0.0001 0.1% (+) 1.80 (1.38, 2.34) 1.19 1.51
    hsa-miR-30e-5p <0.0001 0.1% (−) 1.63 (1.30, 2.04) 1.18 1.46
    hsa-miR-21 <0.0001 0.1% (+) 1.66 (1.31, 2.09) 1.18 1.46
    hsa-miR-133a <0.0001 0.1% (−) 1.72 (1.33, 2.21) 1.18 1.48
    hsa-miR-449a <0.0001 0.1% (+) 1.56 (1.26, 1.92) 1.17 1.42
    hsa-miR-30a 0.0001 0.1% (−) 1.56 (1.25, 1.94) 1.16 1.41
    hsa-miR-182 0.0001 0.2% (+) 1.74 (1.31, 2.31) 1.17 1.45
    hsa-miR-27a 0.0002 0.2% (+) 1.65 (1.27, 2.14) 1.16 1.43
    hsa-miR-222 0.0006 0.5% (−) 1.47 (1.18, 1.84) 1.12 1.35
    hsa-miR-103 0.0036 2.1% (+) 1.77 (1.21, 2.61) 1.12 1.36
    hsa-miR-1 0.0037 2.2% (−) 1.32 (1.10, 1.60) 1.07 1.26
    hsa-miR-145 0.0053 2.9% (−) 1.34 (1.09, 1.65) 1.07 1.27
    hsa-miR-141 0.0060 3.2% (+) 1.43 (1.11, 1.84) 1.07 1.29
    hsa-miR-92a 0.0104 4.8% (+) 1.32 (1.07, 1.64) 1.05 1.25
    hsa-miR-22 0.0204 7.7% (+) 1.31 (1.03, 1.64) 1.03 1.23
    hsa-miR-29b 0.0212 7.9% (+) 1.36 (1.03, 1.76) 1.03 1.24
    hsa-miR-210 0.0223 8.2% (+) 1.33 (1.03, 1.70) 1.00 1.23
    hsa-miR-486-5p 0.0267 9.4% (−) 1.25 (1.00, 1.53) 1.00 1.20
    hsa-miR-19b 0.0280 9.7% (−) 1.24 (1.00, 1.50) 1.00 1.19
    hsa-miR-205 0.0289 10.0% (−) 1.25 (1.00, 1.53) 1.00 1.20
    aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
    cRM: regression to the mean.
  • TABLE 16
    MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
    Highest Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    95% Max. Lower RM-
    q-valuea Direction Uncorrected Confidence Bound Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval @10% FDR Estimatec
    hsa-miR-93 <0.0001 0.0% (+) 1.91 (1.48, 2.47) 1.24 1.59
    hsa-miR-449a <0.0001 0.0% (+) 1.75 (1.40, 2.18) 1.23 1.54
    hsa-miR-205 <0.0001 0.0% (−) 1.53 (1.29, 1.81) 1.20 1.43
    hsa-miR-19b <0.0001 0.0% (−) 1.37 (1.19, 1.57) 1.15 1.32
    hsa-miR-106b <0.0001 0.0% (+) 1.84 (1.39, 2.42) 1.22 1.51
    hsa-miR-21 <0.0001 0.0% (+) 1.68 (1.32, 2.15) 1.19 1.46
    hsa-miR-30a 0.0005 0.4% (−) 1.44 (1.17, 1.76) 1.13 1.33
    hsa-miR-30e-5p 0.0010 0.6% (−) 1.37 (1.14, 1.66) 1.11 1.30
    hsa-miR-133a 0.0015 0.8% (−) 1.57 (1.19, 2.07) 1.13 1.36
    hsa-miR-1 0.0016 0.8% (−) 1.42 (1.14, 1.77) 1.11 1.31
    hsa-miR-103 0.0021 1.1% (+) 1.69 (1.21, 2.37) 1.13 1.37
    hsa-miR-210 0.0024 1.2% (+) 1.43 (1.13, 1.79) 1.11 1.31
    hsa-miR-182 0.0040 1.7% (+) 1.48 (1.13, 1.93) 1.11 1.31
    hsa-miR-27a 0.0055 2.1% (+) 1.46 (1.12, 1.91) 1.09 1.30
    hsa-miR-222 0.0093 3.2% (−) 1.38 (1.08, 1.77) 1.08 1.27
    hsa-miR-331 0.0126 3.9% (+) 1.38 (1.07, 1.77) 1.07 1.26
    hsa-miR-191* 0.0143 4.3% (+) 1.38 (1.06, 1.78) 1.07 1.26
    hsa-miR-425 0.0151 4.5% (+) 1.40 (1.06, 1.83) 1.07 1.26
    hsa-miR-31 0.0176 5.1% (−) 1.29 (1.04, 1.60) 1.05 1.22
    hsa-miR-92a 0.0202 5.6% (+) 1.31 (1.03, 1.65) 1.05 1.23
    hsa-miR-155 0.0302 7.6% (−) 1.32 (1.00, 1.69) 1.03 1.22
    hsa-miR-22 0.0437 9.9% (+) 1.30 (1.00, 1.67) 1.00 1.21
    aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
    cRM: regression to the mean.
  • Table 17 shows microRNAs assayed from primary Gleason pattern tissue that were identified as being associated with the risk of prostate-cancer-specific death, with a false discovery rate of 10%. Table 18 shows the corresponding analysis for microRNAs assayed from highest Gleason pattern tissue. No microRNA assayed from normal adjacent tissue was associated with the risk of prostate-cancer-specific death at a false discovery rate of 10%.
  • TABLE 17
    MicroRNAs Associated with Death Due to Prostate Cancer
    Primary Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    Max.
    Lower
    95% Bound RM-
    q-valuea Direction Uncorrected Confidence @10% Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval FDR Estimatec
    hsa-miR-30e-5p 0.0001 0.6% (−) 1.88 (1.37, 2.58) 1.15 1.46
    hsa-miR-30a 0.0001 0.7% (−) 1.78 (1.33, 2.40) 1.14 1.44
    hsa-miR-133a 0.0005 1.2% (−) 1.85 (1.31, 2.62) 1.13 1.41
    hsa-miR-222 0.0006 1.4% (−) 1.65 (1.24, 2.20) 1.12 1.38
    hsa-miR-106b 0.0024 2.7% (+) 1.85 (1.24, 2.75) 1.11 1.35
    hsa-miR-1 0.0028 3.0% (−) 1.43 (1.13, 1.81) 1.08 1.30
    hsa-miR-21 0.0034 3.3% (+) 1.63 (1.17, 2.25) 1.09 1.33
    hsa-miR-93 0.0044 3.9% (+) 1.87 (1.21, 2.87) 1.09 1.32
    hsa-miR-26a 0.0072 5.3% (−) 1.47 (1.11, 1.94) 1.07 1.29
    hsa-miR-152 0.0090 6.0% (−) 1.46 (1.10, 1.95) 1.06 1.28
    hsa-miR-331 0.0105 6.5% (+) 1.46 (1.09, 1.96) 1.05 1.27
    hsa-miR-150 0.0159 8.3% (+) 1.51 (1.07, 2.10) 1.03 1.27
    hsa-miR-27b 0.0160 8.3% (+) 1.97 (1.12, 3.42) 1.05 1.25
    aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer endpoint is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.
    cRM: regression to the mean.
  • TABLE 18
    MicroRNAs Associated with Death Due to Prostate Cancer
    Highest Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    Max.
    Lower
    Bound
    q-valuea Direction Uncorrected 95% Confidence @10% RM-Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval FDR Estimatec
    hsa-miR-27b 0.0016 6.1% (+) 2.66 (1.45, 4.88) 1.07 1.32
    hsa-miR-21 0.0020 6.4% (+) 1.66 (1.21, 2.30) 1.05 1.34
    hsa-miR-10a 0.0024 6.7% (+) 1.78 (1.23, 2.59) 1.05 1.34
    hsa-miR-93 0.0024 6.7% (+) 1.83 (1.24, 2.71) 1.05 1.34
    hsa-miR-106b 0.0028 6.8% (+) 1.79 (1.22, 2.63) 1.05 1.33
    hsa-miR-150 0.0035 7.1% (+) 1.61 (1.17, 2.22) 1.05 1.32
    hsa-miR-1 0.0104 9.0% (−) 1.52 (1.10, 2.09) 1.00 1.28
    aThe q-value is the empirical Bayes probability that the microRNA's association with clinical endpoint is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.
    cRM: regression to the mean.
  • Table 19 and Table 20 shows the microRNAs that can be identified as being associated with the risk of clinical recurrence while adjusting for the clinical and pathology covariates of biopsy Gleason score, baseline PSA level, and clinical T-stage. The distributions of these covariates are shown in FIG. 1. Fifteen (15) of the microRNAs identified in Table 15 are also present in Table 19, indicating that these microRNAs have predictive value for clinical recurrence that is independent of the Gleason score, baseline PSA, and clinical T-stage.
  • Two microRNAs assayed from primary Gleason pattern tumor tissue were found that had predictive value for death due to prostate cancer independent of Gleason score, baseline PSA, and clinical T-stage (Table 21).
  • TABLE 19
    MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
    Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical
    T-Stage Primary Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    Max.
    Lower
    95% Bound RM-
    q-valuea Direction Uncorrected Confidence @10% Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval FDR Estimatec
    hsa-miR-30e-5p <0.0001 0.0% (−) 1.80 (1.42, 2.27) 1.23 1.53
    hsa-miR-30a <0.0001 0.0% (−) 1.75 (1.40, 2.19) 1.22 1.51
    hsa-miR-93 <0.0001 0.1% (+) 1.70 (1.32, 2.20) 1.19 1.44
    hsa-miR-449a 0.0001 0.1% (+) 1.54 (1.25, 1.91) 1.17 1.39
    hsa-miR-133a 0.0001 0.1% (−) 1.58 (1.25, 2.00) 1.17 1.39
    hsa-miR-27a 0.0002 0.1% (+) 1.66 (1.28, 2.16) 1.17 1.41
    hsa-miR-21 0.0003 0.2% (+) 1.58 (1.23, 2.02) 1.16 1.38
    hsa-miR-182 0.0005 0.3% (+) 1.56 (1.22, 1.99) 1.15 1.37
    hsa-miR-106b 0.0008 0.5% (+) 1.57 (1.21, 2.05) 1.15 1.36
    hsa-miR-222 0.0028 1.1% (−) 1.39 (1.12, 1.73) 1.11 1.28
    hsa-miR-103 0.0048 1.7% (+) 1.69 (1.17, 2.43) 1.13 1.32
    hsa-miR-486-5p 0.0059 2.0% (−) 1.34 (1.09, 1.65) 1.09 1.25
    hsa-miR-1 0.0083 2.7% (−) 1.29 (1.07, 1.57) 1.07 1.23
    hsa-miR-141 0.0088 2.8% (+) 1.43 (1.09, 1.87) 1.09 1.27
    hsa-miR-200c 0.0116 3.4% (+) 1.39 (1.07, 1.79) 1.07 1.25
    hsa-miR-145 0.0201 5.1% (−) 1.27 (1.03, 1.55) 1.05 1.20
    hsa-miR-206 0.0329 7.2% (−) 1.40 (1.00, 1.91) 1.05 1.23
    hsa-miR-29b 0.0476 9.4% (+) 1.30 (1.00, 1.69) 1.00 1.20
    aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
    cRM: regression to the mean.
  • TABLE 20
    MicroRNAs Associated with Clinical Recurrence of Prostate Cancer
    Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical
    T-Stage Highest Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    Max.
    Lower
    95% Bound RM-
    q-valuea Direction Uncorrected Confidence @10% Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval FDR Estimatec
    hsa-miR-30a <0.0001 0.0% (−) 1.62 (1.32, 1.99) 1.20 1.43
    hsa-miR-30e-5p <0.0001 0.0% (−) 1.53 (1.27, 1.85) 1.19 1.39
    hsa-miR-93 <0.0001 0.0% (+) 1.76 (1.37, 2.26) 1.20 1.45
    hsa-miR-205 <0.0001 0.0% (−) 1.47 (1.23, 1.74) 1.18 1.36
    hsa-miR-449a 0.0001 0.1% (+) 1.62 (1.27, 2.07) 1.18 1.38
    hsa-miR-106b 0.0003 0.2% (+) 1.65 (1.26, 2.16) 1.17 1.36
    hsa-miR-133a 0.0005 0.2% (−) 1.51 (1.20, 1.90) 1.16 1.33
    hsa-miR-1 0.0007 0.3% (−) 1.38 (1.15, 1.67) 1.13 1.28
    hsa-miR-210 0.0045 1.2% (+) 1.35 (1.10, 1.67) 1.11 1.25
    hsa-miR-182 0.0052 1.3% (+) 1.40 (1.10, 1.77) 1.11 1.26
    hsa-miR-425 0.0066 1.6% (+) 1.48 (1.12, 1.96) 1.12 1.26
    hsa-miR-155 0.0073 1.8% (−) 1.36 (1.09, 1.70) 1.10 1.24
    hsa-miR-21 0.0091 2.1% (+) 1.42 (1.09, 1.84) 1.10 1.25
    hsa-miR-222 0.0125 2.7% (−) 1.34 (1.06, 1.69) 1.09 1.23
    hsa-miR-27a 0.0132 2.8% (+) 1.40 (1.07, 1.84) 1.09 1.23
    hsa-miR-191* 0.0150 3.0% (+) 1.37 (1.06, 1.76) 1.09 1.23
    hsa-miR-103 0.0180 3.4% (+) 1.45 (1.06, 1.98) 1.09 1.23
    hsa-miR-31 0.0252 4.3% (−) 1.27 (1.00, 1.57) 1.07 1.19
    hsa-miR-19b 0.0266 4.5% (−) 1.29 (1.00, 1.63) 1.07 1.20
    hsa-miR-99a 0.0310 5.0% (−) 1.26 (1.00, 1.56) 1.06 1.18
    hsa-miR-92a 0.0348 5.4% (+) 1.31 (1.00, 1.69) 1.06 1.19
    hsa-miR-146b-5p 0.0386 5.8% (−) 1.29 (1.00, 1.65) 1.06 1.19
    hsa-miR-145 0.0787 9.7% (−) 1.23 (1.00, 1.55) 1.00 1.15
    aThe q-value is the empirical Bayes probability that the microRNA's association with clinical clinical recurrence is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
    c RM: regression to the mean.
  • TABLE 21
    MicroRNAs Associated with Death Due to Prostate Cancer Adjusting
    for Biopsy Gleason Score, Baseline PSA Level, and Clinical T-Stage
    Primary Gleason Pattern Tumor Tissue
    Absolute Standardized Hazard Ratio
    Max.
    Lower
    95% Bound RM-
    q-valuea Direction Uncorrected Confidence @10% Corrected
    MicroRNA p-value (FDR) of Associationb Estimate Interval FDR Estimatec
    hsa-miR-30e-5p 0.0001 2.9% (−) 1.97 (1.40, 2.78) 1.09 1.39
    hsa-miR-30a 0.0002 3.3% (−) 1.90 (1.36, 2.65) 1.08 1.38
    aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.
    bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.
    cRM: regression to the mean.
  • Accordingly, the normalized expression levels of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c are positively associated with an increased risk of recurrence; and hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p are negatively associated with an increased risk of recurrence.
  • Furthermore, the normalized expression levels of hsa-miR-106b; hsa-miR-21; hsa-miR-93; hsa-miR-331; hsa-miR-150; hsa-miR-27b; and hsa-miR-10a are positively associated with an increased risk of prostate cancer specific death; and the normalized expression levels of hsa-miR-30e-5p; hsa-miR-30a; hsa-miR-133a; hsa-miR-222; hsa-miR-1; hsa-miR-26a; and hsa-miR-152 are negatively associated with an increased risk of prostate cancer specific death.
  • Table 22 shows the number of microRNA-gene pairs that were grouped in each tier (Tiers 1-4) and the number and percentage of those that were predictive of clinical recurrence at a false discovery rate of 10%.
  • TABLE 22
    Number of Pairs Predictive of
    Total Number of Clinical Recurrence at False
    Tier MicroRNA-Gene Pairs Discovery Rate 10% (%)
    Tier 1 80 46 (57.5%)
    Tier 2 719 591 (82.2%)
    Tier 3 3,850 2,792 (72.5%)
    Tier 4 54,724 38,264 (69.9%)
  • TABLE A
    SEQ SEQ SEQ SEQ
    Official Accession ID Forward ID Reverse ID ID
    Symbol: Number: NO Primer Sequence: NO Primer Sequence: NO Probe Sequence: NO Amplicon Sequence:
    AAMP NM_001087 1 GTGTGGCAGGTGGAC 2 CTCCATCCACTCCAGG 3 CGCTTCAAAGGACC 4 GTGTGGCAGGTGGACACTAAGGAGGAGGTCTGGTCCTTT
    ACTAA TCTC AGACCTCCTC GAAGCGGGAGACCTGGAGTGGATGGAG
    ABCA5 NM_172232 5 GGTATGGATCCCAAA 6 CAGCCCGCTTTCTGTT 7 CACATGTGGCAGAG 8 GGTATGGATCCCAAAGCCAAACAGCACATGTGGCGAGCA
    GCCA TTTA CAATTCGAACT ATTCGAACTGCATTTAAAAACAGAAAGCGGGCT
    ABCD1 NM_000927 9 AAACACCACTGGAGC 10 CAAGCCTGGAACCTAT 11 CAAGCCTGGAACCT 12 AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATGA
    ATTGA AGCC ATAGCC TGCTGCTCAAGTTAAAGGGGCTATAGGTTCCAG
    ABCC1 NM_004996 13 TCATGGTGCCCGTCA 14 CGATTGTCTTTGCTCT 15 ACCTGATACGTCTT 16 TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACCA
    ATG TCATGTG GGTCTTCATCGCCA AGACGTATCAGGTGGCCCACATGAAGAGCAAAG
    T
    ABCC3 NM_003786 17 TCATCCTGGCGATCT 18 CCGTTGAGTGGAATCA 19 TCTGTCCTGGCTGG 20 TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGTC
    ACTTCCT GCAA AGTCGCTTTCAT CCTCTGTCCTGGCTGGAGTCGCTTTCATGGTCTTGCTGA
    TTCCACTCAACGG
    ABCC4 NM_005845 21 AGCGCCTGGAATCTA 22 AGAGCCCCTGGAGAGA 23 CGGAGTCCAGTGTT 24 AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCC
    CAACT AGAT TTCCCACTTA ACTTATCATCTTCTCTCCAGGGGCTCT
    ABCC8 NM_000351 25 CGTCTGTCACTGTGG 26 TGATCCGGTTTAGCAG 27 AGTCTCTTGGCCAC 28 CGTCTGTCACTGTGGAGTGGACAGGGCTGAAGGTGGCCA
    AGTGG GC CTTCAGCCCT AGAGACTGCACCGCAGCCTGCTAAACCGGATCA
    ABCG2 NM_004827 29 GGTCTCAACGGCATC 30 CTTGGATCTTTCCTTG 31 ACGAAGATTTGCCT 32 GGTCTCAACGCCATCCTGGGACCCACAGGTGGAGGCAAA
    CTG CAGC CCACCTGTGG TCTTCGTTATTAGATGTCTTAGCTGCAAGGAAAG
    ABHD2 NM_007011 33 GTAGTGGGTCTGCAT 34 TGAGGGTTGGCACTCA 35 CAGGTGGCTCCTTT 36 GTAGTGGGTCTGCATGGATGTTTCAGGGATCAAAGGAGC
    GGATGT GG GATCCCTGA CACCTGGGCGCCTGAGTGCCAACCCTCA
    ACE NM_000789 37 CCGCTGTACGAGGAT 38 CCGTGTCTGTGAAGCC 39 TGCCCTCAGCAATG 40 CCGCTGTACGAGGATTTCACTGCCCTCAGCAATGAAGCC
    TTCA GT AAGCCTACAA TACAAGCAGGACGGCTTCACAGACACGG
    ACOX2 NM_003500 41 ATGGAGGTGCCCAGA 42 ACTCCGGGTAACTGTG 43 TGCTCTCAACTTTC 44 ATGGAGGTGCCCAGAACACTGCACTCCGCAGGAAAGTTG
    ACAC GATG CTGCGGAGTG AGAGCATCATCCACAGTTACCCGGAGT
    ACTR2 NM_005722 45 ATCCGCATTGAAGAC 46 ATCCGCTAGAACTGCA 47 CCCGCAGAAAGCAC 48 ATCCGCATTGAAGACCCACCCCGCAGAAAGCACATGGTA
    CCA CCAC ATGGTATTCC TTCCTGGGTGGTGCAGTTCTAGCGGAT
    ADAM15 NM_003815 49 GGCGGGATGTGGT 50 ATTTCTGGGCCTCCG 51 TCAGCCACAATCAC 52 GGCGGGATGTGGTAACAGAGACCAAGACTGTGGAGT
    CAACTC
    ADAMTS1 NM_006988 53 GGACAGGTGCAAGCT 54 ATCTACAACCTTGGGC 55 CAAGCCAAAGGCAT 56 GGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATTGG
    CATCTG TGCAA TGGCTACTTCTTCG CTACTTCTTCGTTTTGCAGCCCAAGGTTGTAGAT
    ADH5 NM_000671 57 ATGCTGTCATCATT 58 CTGCTTCCTTTCCCTT 59 TGTCTGCCCATTAT 60 ATGCTGTCATCATTGTCACGGTTTGTCTGCCCATTAT
    CTTCAT
    AFAP1 NM_198595 61 GATGTCCATCCTT 62 CAACCCTGATGCCTG 63 CCTCCAGTGCTGTG 64 GATGTCCATCCTTGAAACAGCCTCTTCTGGGAACACA
    TTCCCA
    AGTR1 NM_000685 65 AGCATTGATCGAT 66 CTACAAGCATTGTGC 67 ATTGTTCACCCAAT 68 AGCATTGATCGATACCTGGCTATTGTTCACCCAATGA
    GAAGTC
    AGTR2 NM_000686 69 ACTGGCATAGGAA 70 ATTGACTGGGTCTCTT 71 CCACCCAGACCCCA 72 ACTGGCATAGGAAATGGTATCCAGAATGGAATTTTG
    TGTAGC
    AIG1 NM_016108 73 CGACGGTTCTGCC 74 TGCTCCTGCTGGGAT 75 AATCGAGATGAGGA 76 CGACGGTTCTGCCCTTTATATTAATCGAGATGAGGAC
    CATCGC
    AKAP1 NM_003488 77 TGTGGTTGGAGAT 78 GTCTACCCACTGGGC 79 CTCCACCAGGGACC 80 TGTGGTTGGAGATGAAGTGGTGTTGATAAACCGGTC
    GGTTTA
    AKR1C1 BC040210 81 GTGTGTGAAGCTG 82 CTCTGCAGGCGCATA 83 CCAAATCCCAGGAC 84 GTGTGTGAAGCTGAATGATGGTCACTTCATGCCTGTG
    AGGCAT
    AKR1C3 NM_003739 85 GCTTTGCCTGATGTC 86 GTCCAGTCACCGGCAT 87 TGCGTCACCATCCA 88 GCTTTGCCTGATGTCTACCAGAAGCCCTGTGTGTGGATG
    TACCAGAA AGAGA CACACAGGG GTGACGCAGAGGACGTCTCTATGCCGGTGACTGG
    AKT1 NM_005163 89 CGCTTCTATGGCG 90 TCCCGGTACACCACG 91 CAGCCCTGGACTAC 92 CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACT
    CTGCAC
    AKT2 NM_001626 93 TCCTGCCACCCTTC 94 GGCGGTAAATTCATC 95 CAGGTCACGTCCGA 96 TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGT
    GGTCGA
    AKT3 NM_005465 97 TTGTCTCTGCCTTGG 98 CCAGCATTAGATTCTC 99 TCACGGTACACAAT 100 TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATTG
    ACTATCTACA CAACTTGA CTTTCCGGA TGTACCGTGATCTCAAGTTGGAGAATCTAATGCTG
    ALCAM NM_001627 101 GAGGAATATGGAA 102 GTGGCGGAGATCAAG 103 CCAGTTCCTGCCGT 104 GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCG
    CTGCTC
    ALDH18A1 NM_002860 105 GATGCAGCTGGAACC 106 CTCCAGCTCAGTGGGG 107 CCTGAAACTTGCAT 108 GATGCAGCTGGAACCCAAGCTGCAGCAGGAGATGCAAGT
    CAA AA CTCCTGCTGC TTCAGGATGTTCCCCACTGAGCTGGAG
    ALDH1A NM_170696 109 CACGTCTGTCCCT 110 GACCGTGGCTCAACT 111 TCTCTGTAGGGCCC 112 CACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAG
    AGCTCT
    ALKBH3 NM_139178 113 TCGCTTAGTCTGC 114 TCTGAGCCCCAGTTTT 115 TAAACAGGGCAGTC 116 TCGCTTAGTCTGCACCTCAACCGTGCGGAAAGTGACT
    ACTTTC
    ALOX12 NM_000697 117 AGTTCCTCAATGG 118 AGCACTAGCCTGGAG 119 CATGCTGTTGAGAC 120 AGTTCCTCAATGGTGCCAACCCCATGCTGTTGAGACG
    GCTCGA
    ALOX5 NM_000698 121 GAGCTGCAGGACT 122 GAAGCCTGAGGACTT 123 CCGCATGCCGTACA 124 GAGCTGCAGGACTTCGTGAACGATGTCTACGTGTAC
    CGTAGA
    AMACR NM_203382 125 GTCTCTGGGCTGTCA 126 TGGGTATAAGATCCAG 127 TCCATGTGTTTGAT 128 GTCTCTGGGCTGTCAGCTTTCCTTTCTCCATGTGTTTGA
    GCTTT AACTTGC TTCTCCTCAGGC TTTCTCCTCAGGCTGGTAGCAAGTTCTGGATCTTA
    AMPD3 NM_000480 129 TGGTTCATCCAGCAC 130 CATAAATCCGGGGCAC 131 TACTCTCCCAACAT 132 TGGTTCATCCAGCACAAGGTCTACTCTCCCAACATGCGC
    AAGG CT GCGCTGGATC TGGATCATCCAGGTGCCCCGGATTTATG
    ANGPT2 NM_001147 133 CCGTGAAAGCTGC 134 TTGCAGTGGGAAGAA 135 AAGCTGACACAGCC 136 CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCT
    CTCCCA
    ANLN NM_018685 137 TGAAAGTCCAAAA 138 CAGAACCAAGGCTAT 139 CCAAAGAACTCGTG 140 TGAAAGTCCAAAACCAGGAAAATTCCAAAGAACTCG
    TCCCTC
    ANPEP NM_001150 141 CCACCTTGGACCAAA 142 TCTCAGCGTCACCTGG 143 CTCCCCAACACGCT 144 CCACCTTGGACCAAAGTAAAGCGTGGAATCTTACCGCCT
    GTAAAGC TAGGA GAAACCCG CCCCAACACGCTGAAACCCGATTCCTACCGGG
    ANXA2 NM_004039 145 CAAGACACTAAGGGC 146 CGTGTCGGGCTTCAGT 147 CCACCACACAGGTA 148 CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTAC
    GACTACCA CAT CAGCAGCGCT CTGTGTGGTGGAGATGACTGAAGCCCGACACG
    APC NM_000038 149 GGACAGCAGGAAT 150 ACCCACTCGATTTGTT 151 CATTGGCTCCCCGT 152 GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGG
    GACCTG
    APEX1 NM_001641 153 GATGAAGCCTTTC 154 AGGTCTCCACACAGC 155 CTTTCGGGAAGCCA 156 GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTT
    GGCCCT
    APOC1 NM_001645 157 CCAGCCTGATAAA 158 CACTCTGAATCCTTGC 159 AGGACAGGACCTCC 160 CCAGCCTGATAAAGGTCCTGCGGGCAGGACAGGACC
    CAACCA
    APOE NM_000041 161 GCCTCAAGAGCTGGT 162 CCTGCACCTTCTCCAC 163 ACTGGCGCTGCATG 164 GCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGC
    TCG CA TCTTCCAC AGCGCCAGTGGGCCGGGCTGGTGGAGAAGGTGC
    APRT NM_000485 165 GAGGTCCTGGAGT 166 AGGTGCCAGCTTCTC 167 CCTTAAGCGAGGTC 168 GAGGTCCTGGAGTGCGTGAGCCTGGTGGAGCTGACC
    AGCTCC
    AQP2 NM_000486 169 GTGTGGGTGCCAG 170 CCCTTCAGCCCTCTCA 171 CTCCTTCCCTTCCC 172 GTGTGGGTGCCAGTCCTCCTCAGGAGAAGGGGAAGG
    CTTCTCC
    AR NM_000044 173 CGACTTCACCGCA 174 TGACACAAGTGGGAC 175 ACCATGCCGCCAGG 176 CAGCTTCACCGCACCTGATGTGTGGTACCCTGGCGG
    GTACCA
    ARF1 NM_001658 177 CAGTAGAGATCCC 178 ACAAGCACATGGCTA 179 CTTGTCCTTGGGTC 180 CAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCA
    ACCCTG
    ARHGAP29 NM_004815 181 CACGGTCTCGTGGTG 182 CAGTTGCTTGCCCAGG 183 ATGCCAGACCCAGA 184 CACGGTCTCGTGGTGAAGTCAATGCCAGACCCAGACAAA
    AAGT AC CAAAGCATCA GCATCAGCTTGTCCTGGGCAAGCAACTG
    ARHGD1 NM_001175 185 TGGTCCCTAGAAC 186 TGATGGAGGATCAGA 187 TAAAACCGGGCTTT 188 TGGTCCCTAGAACAAGAGGCTTAAAACCGGGCTTTC
    CACCCA
    ASAP2 NM_003887 189 CGGCCCATCAGCT 190 CTCTGGCCAAAGATA 191 CTGGGCTCCAACCA 192 CGGCCCATCAGCTTCTACCAGCTGGGCTCCAACCAG
    GCTTCA
    ASPN NM_017680 193 TGGACTAATCTGT 194 AAACACCCTTCAACA 195 AGTATCACCCAGGG 196 TGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCAC
    TGCAGC
    ATM NM_000051 197 TGCTTTCTACACAT 198 GTTGTGGATCGGCTC 199 CCAGCTGTCTTCGA 200 TGCTTTCTACACATGTTCAGGGATTTTTCACCAGCTG
    CACTTC
    ATP5E NM_006886 201 CCGCTTTCGCTAC 202 TGGGAGTATCGGATG 203 TCCAGCCTGTCTCC 204 CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACA
    AGTAGG
    ATP5J NM_0010037 205 GTCGACCGACTGAAA 206 CTCTACTTCCGGCCC 207 CTACCCGCCATCGC 208 GTCGACCGACTGAAACGGCGGCCCATAATGCATTGCGAT
    03 CGG TGG AATGCATTAT GGCGGGTAGGCGTGTGGGGGCGGAGCCAGGGCC
    ATXN1 NM_000332 209 GATCGACTCCAGC 210 GAACTGTATCACGGC 211 CGGGCTATGGCTGT 212 GATCGACTCCAGCACCGTAGAGGATTGAAGACAG
    CTTCAA
    AURKA NM_003600 213 CATCTTCCAGGAG 214 TCCGACCTTCAATCAT 215 CTCTGTGGCACCCT 216 CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGA
    GGACTA
    AURKB NM_004217 217 AGCTGCAGAAGAG 218 GCATCTGCCAACTCC 219 TGACGAGCAGCGAA 220 AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAA
    CAGCC
    AXIN2 NM_004655 221 GGCTATGTCTTTG 222 ATCCGTCAGCGCATC 223 ACCAGCGCCAACGA 224 GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGAC
    CAGTG
    AZGP1 NM_001185 225 GAGGCCAGCTAGG 226 CAGGAAGGGCAGCTA 227 TCTGAGATCCCACA 228 GAGGCCAGCTAGGAAGCAAGGGTTGGAGGCAATGTG
    TTGCCT
    BAD NM_032989 229 GGGTCAGGGGCCT 230 CTGCTCACTCGGCTC 231 TGGGCCCAGAGCAT 232 GGGTCAGGGGCCTCGAGATCGGGCTTGGGCCCAGAG
    GTTCCA
    BAG5 NM_001015049 233 ACTCCTGCAATGAAC 234 ACAAACAGCTCCCCAC 235 ACACCGGATTTAGC 236 ACTCCTGCAATGAACCCTGTTGACACCGGATTTAGCTCT
    CCTGT GA TCTTGTCGGC TGTCGGCCTTCGTGGGGAGCTGTTTGT
    BAK1 NM_001188 237 CCATTCCCACCATT 238 GGGAACATAGACCCA 239 ACACCCCAGACGTC 240 CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGG
    CTGGCC
    BAX NM_004324 241 CCGCCGTGGACAC 242 TTGCCGTCAGAAAAC 243 TGCCACTCGGAAAA 244 CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTT
    AGACCT
    BBC3 NM_014417 245 CCTGGAGGGTCCTGT 246 CTAATTGGGCTCCATC 247 CATCATGGGACTCC 248 CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGC
    ACAAT TCG TGCCCTTACC CCTTACCCAGGGGCCACAGAGCCCCCGAGATGGA
    BCL2 NM_000633 249 CAGATGGACCTAGTA 250 CCTATGATTTAAGGGC 251 TTCCACGCCGAAGG 252 CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAG
    CCCACTGAGA ATTTTTCC ACAGCGAT GACAGCGATGGGAAAAATGCCCTTAAATCATAG
    BDKRB1 NM_000710 253 GTGGCAGAAATCT 254 GAAGGGCAAGCCCAA 255 ACCTGGCAGCCTCT 256 GTGGCAGAAATCTACCTGGCCAACCTGGCAGCCTCT
    GATCTG
    BGN NM_001711 257 GAGCTCCGCAAGG 258 CTTGTTGTTCACCAGG 259 CAAGGGTCTCCAGC 260 GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCAC
    ACCTCT
    BIK NM_001197 261 ATTCCTATGGCTCTG 262 GGCAGGAGTGAATGGC 263 CCGGTTAACTGTGG 264 ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGC
    CAATTGTC TCTTC CCTGTGCCC CTGTGCCCAGGAAGAGCCATTCACTCCTGCC
    BIN1 NM_004305 265 CCTGCAAAAGGGAAC 266 CGTGGTTGACTCTGAT 267 CTTCGCCTCCAGAT 268 CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGGC
    AAGAG CTCG GGCTCCC TCCCCTGCCGCCACCCCCGAGATCAGAGTCAAC
    BIRC5 NM_001012271 269 TTCAGGTGGATGAGG 270 CACACAGCAGTGGCAA 271 TCTGCCAGACGCTT 272 TTCAGGTGGATGAGGAGACAGAATAGAGTGATAGGAAGC
    AGACA AAG CCTATCACTCTATT GTCTGGCAGATACTCCTTTTGCCACTGCTGTGTG
    C
    BMP6 NM_001718 273 GTGCAGACCTTGG 274 CTTAGTTGGCGCACA 275 TGAACCCCGAGTAT 276 GTGCAGACCTTGGTTCACCTTATGAACCCCGAGTATG
    GTCCCC
    BMPR1B NM_001203 277 ACCACTTTGGCCA 278 GCGGTGTTTGTACCC 279 ATTCACATTACCAT 280 ACCACTTTGGCCATCCCTGCATTTGGGGCCGTCTATGG
    AGCGGC
    BRCA1 NM_007294 281 TCAGGGGGCTAGA 282 CCATTCCAGTTGATCT 283 CTATGGGCCCTTCA 284 TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCAC
    CCAACA
    BRCA2 NM_000059 285 AGTTCGTGCTTTG 286 AAGGTAAGCTGGGTC 287 CATTCTTCACTGCT 288 AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAA
    TCATAA
    BTG1 NM_001731 289 GAGGTCCGAGCGA 290 AGTTATTTTCGAGAC 291 CGCTCGTCTCTTCC 292 GAGGTCCGAGCGATGTGACCAGGCCGCCATCGCTCG
    TCTCTC
    BTG3 NM_006806 293 CCATATCGCCCAA 294 CCAGTGATTCCGGTC 295 CATGGGTACCTCCT 296 CCATATCGCCCAATTCCAGTGACATGGGTACCTCCTC
    CCTGGA
    BTRC NM_033637 297 GTTGGGACACAGT 298 TGAAGCAGTCAGTTG 299 CAGTCGGCCCAGGA 300 GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACG
    CGGTCT
    BUB1 NM_004336 301 CCGAGGTTAATCC 302 AAGACATGGCGCTCT 303 TGCTGGGAGCCTAC 304 CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAG
    ACTTGG
    C7 NM_000587 305 ATGTCTGAGTGTG 306 AGGCCTTATGCTGGT 307 ATGCTCTGCCCTCT 308 ATGTCTGAGTGTGAGGCGGGCGCTCTGAGATGCAGA
    GCATCT
    CACNA1D NM_000720 309 AGGACCCAGCTCCAT 310 CCTACATTCCGTGCC 311 CAGTACACTGGCGT 312 AGGACCCAGCTCCATGTGCGTTCTCAGGGAATGGACGCC
    GTG ATTG CCATTCCCTG AGTGTACTGCCAATGGCACGGAATGTAGG
    CADM1 NM_014333 313 CCACCACCATCCT 314 GATCCACTGCCCTGA 315 TCTTCACCTGCTCG 316 CCACCACCATCCTTACCATCATCACAGATTCCCGAGC
    GGAATC
    CADPS NM_003716 317 CAGCAAGGAGACT 318 GGTCCTCTTCTCCACG 319 CTCCTGGATGGCCA 320 CAGCAAGGAGACTGTGCTGAGCTCCTGGATGGCCAA
    AATTTG
    CASP1 NM_001223 321 AACTGGAGCTGAG 322 CATCTACGCTGTACC 323 TCACAGGCATGACA 324 AACTGGAGCTGAGGTTGACATCACAGGCATGACAAT
    ATGCTG
    CASP3 NM_032991 325 TGAGCCTGAGCAG 326 CCTTCCTGCGTGGTCC 327 TCAGCCTGTTCCAT 328 TGAGCCTGAGCAGAGACATGACTCAGCCTGTTCCAT
    GAAGGC
    CASP7 NM_033338 329 GCAGCGCCGAGAC 330 AGTCTCTCTCCGTCGC 331 CTTTCGCTAAAGGG 332 GCAGCGCCGAGACTTTAGTTTCGCTTTCGCTAAAGG
    GCCCCA
    CAV1 NM_001753 333 GTGGCTCAACATT 334 CAATGGCCTCCATTTT 335 ATTTCAGCTGATCA 336 GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGT
    GTGGGC
    CAV2 NM_198212 337 CTTCCCTGGGACG 338 CTCCTGGTCACCCTTC 339 CCCGTACTGTCATG 340 CTTCCCTGGGACGACTTGCCAGCTCTGAGGCATGAC
    CCTCAG
    CCL2 NM_002982 341 CGCTCAGCCAGATGC 342 GCACTGAGATCTTCCT 343 TGCCCCAGTCACCT 344 CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTG
    AATC ATTGGTGAA GCTGTTA TTATAACTTCACCAATAGGAAGATCTCAGTGC
    CCL5 NM_002985 345 AGGTTCTGAGCTC 346 ATGCTGACTTCCTTCC 347 ACAGAGCCCTGGCA 348 AGGTTCTGAGCTCTGGCTTTGCCTTGGCTTTGCCAGG
    AAGCC
    CCNB1 NM_031996 349 TTCAGGTTGTTGCAG 350 CATCTTCTTGGGCACA 351 TGTCTCCATTATGA 352 TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTCC
    GAGAC CAAT TCGGTTCATGCA ATTATTGATCGGTTCATGCAGAATAATTGTGTGCC
    CCND1 NM_001758 353 GCATGTTCGTGGC 354 CGGTGTAGATGCACA 355 AAGGAGACCATCCC 356 GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCC
    CCTGAC
    CCNE2 NM_057749 357 ATGCTGTGGCTCCTT 358 ACCCAAATTGTGATAT 359 TACCAAGCAACCTA 360 ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACATGT
    CCTAACT ACAAAAAGGTT CATGTCAAGAAAGC AGGTTGCTTGGTAATAACCTTTTTGTATATCACA
    CC
    CCNH NM_001239 361 GAGATCTTCGGTG 362 CTGCAGACGAGAACC 363 CATCAGCGTCCTGG 364 GAGATCTTCGGTGGGGGTACGGGTGTTTTACGCCAG
    CGTAAA
    CCR1 NM_001295 365 TCCAAGACCCAAT 366 TCGTAGGCTTTCGTG 367 ACTCACCACACCTG 368 TCCAAGACCCAATGGGAATTCACTCACCACACCTGC
    CAGCCT
    CD164 NM_006016 369 CAACCTGTGCGAA 370 ACACCCAAGACCAGGC 371 CCTCCAATGAAACT 372 CAACCTGTGCGAAAGTCTACCTTTGATGCAGCCAGTT
    GGCTGC
    CD1A NM_001763 373 GGAGTGGAAGGAACT 374 TCATGGGCGTATCTAG 375 CGCACCATTCGGTC 376 GGAGTGGAAGGAACTGGAAACATTATTCCGTATACGCAC
    GGAAA AAT ATTTGAGG CATTCGGTCATTTGAGGGAATTCGTAGATACGCC
    CD276 NM_001024736 377 CCAAAGGATGCGATA 378 GGATGACTTGGGAATC 379 CCACTGTGCAGCCT 380 CCAAAGGATGCGATACACAGACCACTGTGCAGCCTTATT
    CACAG ATGTC TATTTCTCCAATG TCTCCAATGGACATGATTCCCAAGTCATCC
    CD44 NM_000610 381 GGCACCACTGCTT 382 GATGCTCATGGTGAA 383 ACTGGAACCCAGAA 384 GGCACCACTGCTTATGAAGGAAACTGGAACCCAGAA
    GCACA
    CD68 NM_001251 385 TGGTTCCCAGCCC 386 CTCCTCCACCCTGGGT 387 CTCCAAGCCCAGAT 388 TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATT
    TCAGAT
    CD82 NM_002231 389 GTGCAGGCTCAGGTG 390 GACCTCAGGGCGATTC 391 TCAGCTTCTACAAC 392 GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTC
    AAGTG ATGA TGGACAGACAACGC TACAACTGGACAGACAACGCTGAGCTCATGAAT
    TG
    CDC20 NM_001255 393 TGGATTGGAGTTC 394 GCTTGCACTCCACAG 395 ACTGGCCGTGGCAC 396 TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCAC
    TGGACA
    CDC25B NM_021873 397 GCTGCAGGACCAG 398 TAGGGCAGCTGGCTT 399 CTGCTACCTCCCTT 400 GCTGCAGGACCAGTGAGGGGCCTGCGCCAGTCCTGC
    GCCTTT
    CDC6 NM_001254 401 GCAACACTCCCCA 402 TGAGGGGACCATTC 403 TTGTTCTCCACCAA 404 GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAA
    AGCAAG
    CDH1 NM_004360 405 TGAGTGTCCCCCGGT 406 CAGCCGCTTTCAGAT 407 TGCCAATCCCGATG 408 TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCCG
    ATCTTC TTTCAT AAATTGGAAATTT ATGAAATTGGAAATTTTATTGATGAAAATCTGAAA
    CDH10 NM_006727 409 TGTGGTGCAAGTC 410 TGTAAATGACTCTGG 411 ATGCCGATGACCCT 412 TGTGGTGCAAGTCACAGCTACAGATGCCGATGACCC
    TCATAT
    CDH11 NM_001797 413 GTCGGCAGAAGCA 414 CTACTCATGGGCGGG 415 CCTTCTGCCCATAG 416 GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAG
    TGATCA
    CDH19 NM_021153 417 AGTACCATAATGC 418 AGACTGCCTGTATAG 419 ACTCGGAAAACCAC 420 AGTACCATAATGCGGGAACGCAAGACTCGGAAAACC
    AAGCG
    CDH5 NM_001795 421 ACAGGAGACGTGT 422 CAGCAGTGAGGTGGT 423 TATTCTCCCGGTCC 424 ACAGGAGACGTGTTCGCCATTGAGAGGCTGGACCGG
    AGCCTC
    CDH7 NM_033646 425 GTTTGACATGGCT 426 AGTCACATCCCTCCG 427 ACCTCAACGTCATC 428 GTTTGACATGGCTGCACTGAGAAACCTCAACGTCATC
    CGAGAC
    CDK14 NM_012395 429 GCAAGGTAAATGG 430 GATAGCTGTGAAAGG 431 CTTCCTGCAGCCTG 432 GCAAGGTAAATGGGAAGTTGGTAGCTCTGAAGGTGA
    ATCACC
    CDK2 NM_001798 433 AATGCTGCACTACGA 434 TTGGTCACATCCTGG 435 CCTTGGCCGAAATC 436 AATGCTGCACTACGACCCTAACAAGCGGATTTCGGCCAA
    CCCTA AAGAA CGCTTGT GGCAGCCCTGGCTCACCTTTCTTCCAGGATGTG
    CDK3 NM_001258 437 CCAGGAAGGGACT 438 GTTGCATGAGCAGGT 439 CTCTGGCTCCAGAT 440 CCAGGAAGGGACTGGAAGAGATTGTGCCCAATCTGG
    TGGGCA
    CDK7 NM_001799 441 GTCTCGGGCAAAG 442 CTCTGGCCTTGTAAA 443 CCTCCCCAAGGAAG 444 GTCTCGGGCAAAGCGTTATGAGAAGCTGGACTTCCT
    TCCAGC
    CDKN1A NM_000389 445 TGGAGACTCTCAG 446 GGCGTTTGGAGTGGT 447 CGGCGGCAGACCAG 448 TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAG
    CATGA
    CDKN1C NM_000076 449 CGGCGATCAAGAA 450 CAGGCGCTGATCTCT 451 CGGGCCTCTGATCT 452 CGGCGATCAAGAAGCTGTCCGGGCCTCTGATCTCCG
    CCGATT
    CDKN2B NM_004936 453 GACGCTGCAGAGC 454 GCGGGAATCTCTCCT 455 CACAGGATGCTGGC 456 GACGCTGCAGAGCACCTTTGCACAGGATGCTGGCCT
    CTTTGC
    CDKN2C NM_001262 457 GAGCACTGGGCAA 458 CAAAGGCGAACGGGA 459 CCTGTAACTTGAGG 460 GAGCACTGGGCAATCGTTACGACCTGTAACTTGAGG
    GCCACC
    CDKN3 NM_005192 461 TGGATCTCTACC 462 ATGTCAGGAGTCCCT 463 ATCACCCATCATCA 464 TGGATCTCTACCAGCAATGTGGAATTATCACCCATCA
    TCCAAT
    CDS2 NM_003818 465 GGGCTTCTTTGCT 466 ACAGGGCAGACAAAG 467 CCCGGACATCACAT 468 GGGCTTCTTTGCTACTGTGGTGTTTGGCCTTCTGCTG
    AGGACA
    CENPF NM_016343 469 CTCCCGTCAACAG 470 GGGTGAGTCTGGCCT 471 ACACTGGACCAGGA 472 CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAG
    GTGCAT
    CHAF1A NM_005483 473 GAACTCAGTGTAT 474 GCTCTGTAGCACCTG 475 TGCACGTACCAGCA 476 GAACTCAGTGTATGAGAAGCGGCCTGACTTCAGGAT
    CATCCT
    CHN1 NM_001822 477 TTACGACGCTCGT 478 TCTCCCTGATGCACAT 479 CCACCATTGGCCGC 480 TTACGACGCTCGTGAAAGCACATACCACTAAGCGGC
    TTAGTG
    CHRAC1 NM_017444 481 TCTCGCTGCCTCTA 482 CCTGGTTGATGCTGG 483 ATCCGGGTCATCAT 484 TCTCGCTGCCTCTATCCCGCATCCGGGTCATCATGAA
    GAAGAG
    CKS2 NM_001827 485 GGCTGGACGTGGT 486 CGCTGCAGAAAATGA 487 CTGCGCCCGCTCTT 488 GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCG
    CGCG
    CLDN3 NM_001306 489 ACCAACTGCGTGC 490 GGCGAGAAGGAACAG 491 CAAGGCCAAGATCA 492 ACCAACTGCGTGCAGGACGACACGGCCAAGGCCAAG
    CCATCG
    CLTC NM_004859 493 ACCGTATGGACAG 494 TGACTACAGGATCAG 495 TCTCACATGCTGTA 496 ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAG
    CCCAAA
    COL11A NM_001854 497 GCCCAAGAGGGGA 498 GGACCTGGGTCTCCA 499 CTGCTCGACCTTTG 500 GCCCAAGAGGGGAAGATGGCCCTGAAGGACCCAAAG
    GGTCCT
    COL1A1 NM_000088 501 GTGGCCATCCAGC 502 CAGTGGTAGGTGATG 503 TCCTGCGCCTGATG 504 GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCA
    TCCACC
    COL1A2 NM_000089 505 CAGCCAAGAACTGGT 506 AAACTGGCTGCCAGCA 507 TCTCCTAGCCAGAC 508 CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAAC
    ATAGGAGCT TTG GTGTTTCTTGTCCT ACGTCTGGCTAGGAGAAACTATCAATGCTGGCA
    TG
    COL3A1 NM_000090 509 GGAGGTTCTGGAC 510 ACCAGGACTGCCACG 511 CTCCTGGTCCCCAA 512 GGAGGTTCTGGACCTGCTGGTCCTCCTGGTCCCCAAG
    GGTGTC
    COL4A1 NM_001845 513 ACAAAGGCCTCCC 514 GAGTCCCAGGAAGAC 515 CTCCTTTGACACCA 516 ACAAAGGCCTCCCAGGATTGGATGGCATCCCTGGTG
    GGGATG
    COL5A1 NM_000093 517 CTCCCTGGGAAAG 518 CTGGACCAGGAAGCC 519 CCAGGGAAACCACG 520 CTCCCTGGGAAAGATGGCCCTCCAGGATTACGTGGT
    TAATCC
    COL5A2 NM_000393 521 GGTCGAGGAACCC 522 GCCTGGAGGTCCAAC 523 CCAGGAAATCCTGT 524 GGTCGAGGAACCCAAGGTCCGCCTGGTGCTACAGGA
    AGCACC
    COL6A1 NM_001848 525 GGAGACCCTGGTG 526 TCTCCAGGGACACCA 527 CTTCTCTTCCCTGA 528 GGAGACCCTGGTGAAGCTGGCCCGCAGGGTGATCAG
    TCACCC
    COL6A3 NM_004369 529 GAGAGCAAGCGAG 530 AACAGGGAACTGGCC 531 CCTCTTTGACGGCT 532 GAGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGCT
    CAGCCA
    COL8A1 NM_001850 533 TGGTGTTCCAGGG 534 CCCTGTAAACCCTGA 535 CCTAAGGGAGAGCC 536 TGGTGTTCCAGGGCTTCTCGGACCTAAGGGAGAGCC
    AGGAA
    COL9A2 NM_001852 537 GGGAACCATCCAG 538 ATTCCGGGTGGACAG 539 ACACAGGAAATCCG 540 GGGAACCATCCAGGGTCTGGAAGGCAGTGCGGATTT
    CACTGC
    CRISP3 NM_006061 541 TCCCTTATGAACA 542 AACCATTGGTGCATA 543 TGCCAGTTGCCCAG 544 TCCCTTATGAACAAGGAGCACCTTGTGCCAGTTGCCC
    ATAACT
    CSF1 NM_000757 545 TGCAGCGGCTGATTG 546 CAACTGTTCCTGGTC 547 TCAGATGGAGACCT 548 TGCAGCGGCTGATTGACAGTCGATGGAGACCTCGTGCCA
    ACA TACAAACTCA CGTGCCAAATTACA AATTACATTTGAGTTTGTAGACCAGGAACAGTT
    CSK NM_004383 549 CCTGAACATGAAG 550 CATCACGTCTCCGAA 551 TCCCGATGGTCTGC 552 CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCAT
    AGCAGC
    CSRP1 NM_004078 553 ACCCAAGACCCTG 554 GCAGGGGTGGAGTGA 555 CCACCCTTCTCCAG 556 ACCCAAGACCCTGCCTCTTCCACTCCACCCTTCTCCA
    GGACCC
    CTGF NM_001901 557 GAGTTCAAGTGCCCT 558 AGTTGTAATGGCAGGC 559 AACATCATGTTCTT 560 GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAAC
    GACG ACAG CTTCATGACCTCGC ATGATGTTCATCAAGACCTGTGCCTGCCATTACA
    CTHRC1 NM_138455 561 TGGCTCACTTCGG 562 TCAGCTCCATTGAAT 563 CAACGCTGACAGCA 564 TGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGT
    TGCATT
    CTNNA1 NM_001903 565 CGTTCCGATCCTCTA 566 AGGTCCCTGTTGGCCT 567 ATGCCTACAGCACC 568 CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACA
    TACTGCAT TATAGG CTGATGTCGCA GCACCCTGATGTCGCAGCCTATAAGGCCAACAGG
    CTNNB1 NM_001904 569 GGCTCTTGTGCGTAC 570 TCAGATGACGAAGAGC 571 AGGCTCAGTGATGT 572 GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGA
    TGTCCTT ACAGATG CTTCCCTGTCACCA AGACATCACTGAGCCTGCCATCTGTGCTCTTCGTC
    G
    CTNND1 NM_001331 573 CGGAAACTTCGGG 574 CTGAATCCTTCTGCCC 575 TTGATGCCCTCATT 576 CGGAAACTTCGGGAATGTGATGGTTTAGTTGATGCC
    TTCATT
    CTNND2 NM_001332 577 GCCCGTCCCTACA 578 CTCACACCCAGGAGT 579 CTATGAAACGAGCC 580 GCCCGTCCCTACAGTGAACTGAACTATGAAACGAGC
    ACTACC
    CTSB NM_001908 581 GGCCGAGATCTAC 582 GCAGGAAGTCCGAAT 583 CCCCGTGGAGGGAG 584 GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGC
    CTTTCT
    CTSD BN_001909 585 GTACATGATCCCCTG 586 GGGACAGCTTGTAGCC 587 ACCCTGCCCGCGAT 588 GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCGC
    TGAGAAGGT TTTGC CACACTGA GATCACACTGAAGCTGGGAGGCAAAGGCTACAAG
    CTSK NM_000396 589 AGGCTTCTCTTGG 590 CCACCTCTTCACTGGT 591 CCCCAGGTGGTTCA 592 AGGCTTCTCTTGGTGTCCATACATATGAACTGGCTAT
    TAGCCA
    CTSL2 NM_001333 593 TGTCTCACTGAGC 594 ACCATTGCAGCCCTG 595 CTTGAGGACGCGAA 596 TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTC
    CAGTCC
    CTSS NM_004079 597 TGACAACGGCTTT 598 TCCATGGCTTTGTAG 599 TGATAACAAGGGCA 600 TGACAACGGCTTTCCAGTACATCATTGATAACAAGG
    TCGACT
    CUL1 NM_003592 601 ATGCCCTGGTAAT 602 GCGACCACAAGCCTT 603 CAGCCACAAAGCCA 604 ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGG
    GCGTCA
    CXCL12 NM_000609 605 GAGCTACAGATGC 606 TTTGAGATGCTTGAC 607 TTCTTCGAAAGCCA 608 GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCA
    TGTTGC
    CXCR4 NM_003467 609 TGACCGCTTCTAC 610 AGGATAAGGCCAACC 611 CTGAAACTGGAACA 612 TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTG
    CAACCA
    CXCR7 NM_020311 613 CGCCTCAGAACGATG 614 GTTGCATGGCCAGCTG 615 CTCAGAGCCAGGGA 616 CGCCTCAGAACGATGGATCTGCATCTTCGACTACTCAGA
    GAT AT ACTTCTCGGA GCCAGGGAACTTCTCGGACATCAGCTGGCCAT
    CYP3A5 NM_000777 617 TCATTGCCCAGTA 618 GACAGGCTTGCCTTT 619 TCCCGCCTCAAGTT 620 TCATTGCCCAGTATGGAGATGTATTGGTGAGAAACTT
    TCTCAC
    CYR61 NM_001554 621 TGCTCATTCTTGAG 622 GTGGCTGCATTAGTG 623 CAGCACCCTTGGCA 624 TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACT
    GTTTCG
    DAG1 NM_004393 625 GTGACTGGGCTCA 626 ATCCCACTTGTGCTCC 627 CAAGTCAGAGTTTC 628 GTGACTGGGCTCATGCCTCCAAGTCAGAGTTTCCCTG
    CCTGGT
    DAP NM_004394 629 CCAGCCTTTCTGG 630 GACCAGGTCTGCCTC 631 CTCACCAGCTGGCA 632 CCAGCCTTTCTGGTGCTGTTCTCCAGTTCACGTCTGC
    GACGTG
    DAPK1 NM_004938 633 CGCTGACATCATG 634 TCTCTTTCAGCAACGA 635 TCATATCCAAACTC 636 CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGG
    GCCTCC
    DARC NM_002036 637 GCCCTCATTAGTC 638 CAGACAGAAGGGCTG 639 TCAGCGCCTGTGCT 640 GCCCTCATTAGTCCTTGGCTCTTATCTTGGAAGCACA
    TCCAAG
    DDIT4 NM_019058 641 CCTGGCGTCTGTC 642 CGAAGAGGAGGTGGA 643 CTAGCCTTTGGGAC 644 CCTGGCGTCTGTCCTCACCATGCCTAGCCTTTGGGAC
    CGCTTC
    DDR2 NM_001014796 645 CTATTACCGGATCCA 646 CCCAGCAAGATACTCT 647 AGTGCTCCCTATCC 648 CTATTACCGGATCCAGGGCCGGGCAGTGCTCCCTATCCG
    GGGC CCCA GCTGGATGTC CTGGATGTCTTGGGAGAGTATCTTGCTGGG
    DES NM_001927 649 ACTTCTCACTGGC 650 GCTCCACCTTCTCGTT 651 TGAACCAGGAGTTT 652 ACTTCTCACTGGCCGACGCGGTGAACCAGGAGTTTCT
    CTGACC
    DHRS9 NM_005771 653 GGAGAAAGGTCTC 654 CAGTCAGTGGGAGCC 655 ATCAATAATGCTGG 656 GGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGG
    TGTTCC
    DHX9 NM_001357 657 GTTCGAACCATCT 658 TCCAGTTGGATTGTG 659 CCAAGGAACCACAC 660 GTTCGAACCATCTCAGCGACAAAACCAAGTGGGTGT
    CCACTT
    DIAPH1 NM_005219 661 CAAGCAGTCAAGG 662 AGTTTTGCTCGCCTCA 663 TTCTTCTGTCTCCC 664 CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGAC
    GCCGCT
    DICER1 NM_177438 665 TCCAATTCCAGCA 666 GGCAGTGAAGGCGAT 667 AGAAAAGCTGTTTG 668 TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGT
    TCTCCC
    DIO2 NM_013989 669 CTCCTTTCACGAG 670 AGGAAGTCAGCCACT 671 ACTCTTCCACCAGT 672 CTCCTTTCACGAGCCAGCTGCCAGCCTTCCGCAAACT
    TTGCGG
    DLC1 NM_006094 673 GATTCAGACGAGG 674 CACCTCTTGCTGTCCC 675 AAAGTCCATTTGCC 676 GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGC
    ACTGAT
    DLGAP1 NM_004746 677 CTGCTGAGCCCAG 678 AGCCTGGAAGGAGTT 679 CGCAGACCACCCAT 680 CTGCTGAGCCCAGTGGAGCACCACCCCGCAGACCAC
    ACTACA
    DLL4 NM_019074 681 CACGGAGGTATAA 682 AGAAGGAAGGTCCAG 683 CTACCTGGACATCC 684 CACGGAGGTATAAGGCAGGAGCCTACCTGGACATCC
    CTGCTC
    DNM3 NM_015569 685 CTTTCCCACCCGG 686 AAGGACCTTCTGCAG 687 CATATCGCTGACCG 688 CTTTCCCACCCGGCTTACAGACATATCGCTGACCGAA
    AATGGG
    DPP4 NM_001935 689 GTCCTGGGATCGG 690 GTACTCCCACCGGGA 691 CGGCTATTCCACAC 692 GTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGA
    TTGAAC
    DPT NM_001937 693 CACCTAGAAGCCT 694 CAGTAGCTCCCCAGG 695 TTCCTAGGAAGGCT 696 CACCTAGAAGCCTGCCCACGATTCCTAGGAAGGCTG
    GGCAGA
    DUSP1 NM_004417 697 AGACATCAGCTCC 698 GACAAACACCCTTCC 699 CGAGGCCATTGACT 700 AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTC
    TCATAG
    DUSP6 NM_001946 701 CATGCAGGGACTG 702 TGCTCCTACCCTATCA 703 TCTACCCTATGCGC 704 CATGCAGGGACTGGGATTCGAGGACTTCCAGGCGCA
    CTGGAA
    DVL1 NM_004421 705 TCTGTCCCACCTG 706 TCAGACTGTTGCCGG 707 CTTGGAGCAGCCTG 708 TCTGTCCCACCTGCTGCTGCCCCTTGGAGCAGCCTGC
    CACCTT
    DYNLL1 NM_001037494 709 GCCGCCTACCTCACA 710 GCCTGACTCCAGCTCT 711 ACCCACGTCAGTGA 712 GCCGCCTACCTCACAGACTTGTGAGCACTCACTGACGTG
    GAC CCT GTGCTCACAA GGTAGCGCCCAGGGCCTGCGGGGCGCAGGAGAG
    EBNA1BP2 NM_006824 713 TGCGGCGAGATGGAC 714 GTGACAAGGGATTCAT 715 CCCGCTCTCGGATT 716 TGCGGCGAGATGGACACTCCCCCGCTCTCGGATTCGGAG
    ACT CGGATT CGGAGTCG TCGGAATCCGATGAATCCCTTGTCAC
    ECE1 NM_001397 717 ACCTTGGGATCTG 718 GGACCAGGACCTCCA 719 TCCACTCTCGATAC 720 ACCTTGGGATCTGCCTCCAAGCTGGTGCAGGGTATC
    CCTGCA
    EDN1 NM_001955 721 TGCCACCTGGACA 722 TGGACCTAGGGCTTC 723 CACTCCCGAGCACG 724 TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGC
    TTGTTC
    EDNRA NM_001957 725 TTTCCTCAAATTTG 726 TTACACATCCAACCA 727 CCTTTGCCTCAGGG 728 TTTCCTCAAATTTGCCTCAAGATGGAAACCCTTTGCC
    CATCCT
    EFNB2 NM_004093 729 TGACATTATCATCCC 730 GTAGTCCCCGCTGACC 731 CGGACAGCGTCTTC 732 TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCTT
    GCTAAGGA TTCTC TGCCCTCACT CTGCCCTCACTACGAGAAGGTCAGCGGGGACTA
    EGF NM_001963 733 CTTTGCCTTGCTCTG 734 AAATACCTGACACCCT 735 AGAGTTTAACAGCC 736 CTTTGCCTTGCTCTGTCACAGTGAAGTCAGCCAGAGCAG
    TCACAGT TATGACAAATT CTGCTCTGGCTGAC GGCTGTTAAACTCTGTGAAATTTGTCATAAGGGTG
    TT
    EGR1 NM_001964 737 GTCCCCGCTGCAGAT 738 CTCCAGCTTAGGGTAG 739 CGGATCCTTTCCTC 740 GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCC
    CTCT TTGTCCAT ACTCGCCCA TACTCGCCCACCATGGACAACTACCCTAAGCTGG
    EGR3 NM_004430 741 CCATGTGGATGAATG 742 TGCCTGAGAAGAGGTG 743 ACCCAGTCTCACCT 744 CCATGTGGATGAATGAGGTGTCTCCTTTCCATACCCAGT
    AGGTG AGGT TCTCCCCACC CTCACCTTCTCCCCACCCTACCTCACCTCTTCTCA
    EIF2C2 NM_012154 745 GCACTGTGGGCAG 746 ATGTTTGGTGACTGG 747 CGGGTCACATTGCA 748 GCACTGTGGGCAGATGAAGAGGAAGTACCGCGTCTG
    GACACG
    EIF2S3 NM_001415 749 CTGCCTCCCTGATT 750 GGTGGCAAGTGCCTG 751 TCTCGTGCTTCAGC 752 CTGCCTCCCTGATTCAAGTGATTCTCGTGCTTCAGCC
    CTCCCA
    EIF3H NM_003756 753 CTCATTGCAGGCCAG 754 GCCATGAAGAGCTTGC 755 CAGAACATCAAGGA 756 CTCATTGCAGGCCAGATAAACACTTACTGCCAGAACATC
    ATAAA CTA GTTCACTGCCCA AAGGAGTTCACTGCCCAAAACTTAGGCAAGCTC
    EIF4E NM_001968 757 GATCTAAGATGGCGA 758 TTAGATTCCGTTTTCT 759 ACCACCCCTACTCC 760 GATCTAAGATGGCGACTGTCGAACCGGAAACCACCCCTA
    CTGTCGAA CCTCTTCTG TAATCCCCCGACT CTCCTAATCCCCCGACTACAGAAGAGGAGAAAA
    EIF5 NM_001969 761 GAATTGGTCTCCA 762 TCCAGGTATATGGCT 763 CCACTTGCACCCGA 764 GAATTGGTCTCCAGCTGCCTTTGATCAAGATTCGGGT
    ATCTTG
    ELK4 NM_001973 765 GATGTGGAGAATG 766 AGTCATTGCGGCTAG 767 ATAAACCACCTCAG 768 GATGTGGAGAATGGAGGGAAAGATAAACCACCTCAG
    CCTGGT
    ENPP2 NM_006209 769 CTCCTGCGCACTA 770 TCCCTGGATAATTGG 771 TAACTTCCTCTGGC 772 CTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAG
    ATGGTT
    ENY2 NM_020189 773 CCTCAAAGAGTTG 774 CCTCTTTACAGTGTGC 775 CTGATCCTTCCAGC 776 CCTCAAAGAGTTGCTGAGAGCTAAATTAATTGAATGT
    CACATT
    EPHA2 NM_004431 777 CGCCTGTTCACCA 778 GTGGCGTGCCTCGAA 779 TGCGCCCGATGAGA 780 CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATG
    TCACCG
    EPHA3 NM_005233 781 CAGTAGCCTCAAG 782 TTCGTCCCATATCCAG 783 TATTCCAAATCCGA 784 CAGTAGCCTCAAGCCTGACACTATATACGTATTCCAA
    GCCCGA
    EPHB2 NM_004442 785 CAACCAGGCAGCT 786 GTAATGCTGTCCACG 787 CACCTGATGCATGA 788 CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCA
    TGGACA
    EPHB4 NM_004444 789 TGAACGGGGTATCCT 790 AGGTACCTCTCGGTCA 791 CGTCCCATTTGAGC 792 TGAACGGGGTATCCTCCTTAGCCAGGGGCCCGTCCCATT
    CCTTA GTGG CTGTCAATGT TGAGCCTGTCAATGTCACCACTGACCGAGAGGT
    ERBB2 NM_004448 793 CGGTGTGAGAAGT 794 CCTCTCGCAAGTGCT 795 CCAGACCATAGCAC 796 CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTG
    ACTCGG
    ERBB3 NM_001982 797 CGGTTATGTCATGCC 798 GAACTGAGACCCACTG 799 CCTCAAAGGTACTC 800 CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTCC
    AGATACAC AAGAAAGG CCTCCTCCCGG CTCCTCCCGGGAAGGCACCCTTTCTTCAGTGGGTC
    ERBB4 NM_005235 801 TGGCTCTTAATCAGT 802 CAAGGCATATCGATCC 803 TGTCCCACGAATAA 804 TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAATT
    TTCGTTACCT TCATAAAGT TGCGTAAATTCTCC TACGCATTATTCGTGGGACAAAACTTTATGAGGAT
    AG
    ERCC1 NM_001983 805 GTCCAGGTGGATG 806 CGGCCAGGATACACA 807 CAGCAGGCCCTCAA 808 GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTC
    GGAGCT
    EREG NM_001432 809 TGCTAGGGTAAAC 810 TGGAGACAAGTCCTG 811 TAAGCCATGGCTGA 812 TGCTAGGGTAAACGAAGGCATAATAAGCCATGGCTG
    CCTCTG
    ERG NM_004449 813 CCAACACTAGGCT 814 CCTCCGCCAGGTCTTT 815 AGCCATATGCCTTC 816 CCAACACTAGGCTCCCCACCAGCCATATGCCTTCTCA
    TCATCT
    ESR1 NM_000125 817 CGTGGTGCCCCTC 818 GGCTAGTGGGCGCAT 819 CTGGAGATGCTGGA 820 CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTG
    CGCCC
    ESR2 NM_001437 821 TGGTCCATCGCCAGT 822 TGTTCTAGCGATCTTG 823 ATCTGTATGCGGAA 824 TGGTCCATCGCCAGTTATCACATCTGTATGCGGAACCTC
    TATCA CTTCACA CCTCAAAAGAGTCC AAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGA
    CT
    ETV1 NM_004956 825 TCAAACAAGAGCC 826 AACTGCCAGAGCTGA 827 ATCGGGAAGGACCC 828 TCAAACAAGAGCCAGGAATGTATCGGGAAGGACCCA
    ACATAC
    ETV4 NM_001986 829 TCCAGTGCCTATG 830 ACTGTCCAAGGGCAC 831 CAGACAAATCGCCA 832 TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCA
    TCAAGT
    EZH2 NM_004456 833 TGGAAACAGCGAAGG 834 CACCGAACACTCCCTA 835 TCCTGACTTCTGTG 836 TGGAAACAGCGAAGGATACAGCCTGTGCACATCCTGACT
    ATACA GTCC AGCTCATTGCG TCTGTGAGCTCATTGCGCGGGACTAGGGAGTGTT
    F2R NM_001992 837 AAGGAGCAAACCA 838 GCAGGGTTTCATTGA 839 CCCGGGCTCAACAT 840 AAGGAGCAAACCATCCAGGTGCCCGGGCTCAACATC
    CACTAC
    FAAH NM_001441 841 GACAGCGTAGTGGTG 842 AGCTGAACATGGACTG 843 TGCCCTTCGTGCAC 844 GACAGCGTGGTGGTGCATGTGCTGAAGCTGCAGGGTGCC
    CATGT TGGA ACCAATG GTGCCCTTCGTGCACACCAATGTTCCACAGTCCA
    FABP5 NM_001444 845 GCTGATGGCGAGAAA 846 CTTTCCTTCCCATCCC 847 CCTGATGCTGAACC 848 GCTGATGGCAGAAAAACTCAGACTGTCTGCAACTTTACA
    AACTCA ACT AATGCACCAT GATGGTGCATTGGTTCAGCATCAGGAGTGGGAT
    FADD NM_003824 849 GTTTTCGCGAGAT 850 CTCCGGTGCCTGATTC 851 AACGCGCTCTTGTC 852 GTTTTCGCGAGATAACGGTCGAAAACGCGCTCTTGTC
    GATTTC
    FAM107 NM_007177 853 AAGTCAGGGAAAA 854 GCTGGCCCTACAGCT 855 AATTGCCACACTGA 856 AAGTCAGGGAAAACCTGCGGAGAATTGCCACACTGA
    CCAGCG
    FAM13C NM_198215 857 ATCTTCAAAGCGG 858 GCTGGATACCACATG 859 TCCTGACTTTCTCC 860 ATCTTCAAAGCGGAGAGCGGGAGGAGCCACGGAGAA
    GTGGCT
    FAM171B NM_177454 861 CCAGGAAGGAAAAGC 862 GTGGTCTGCCCCTTCT 863 TGAAGATTTTGAAG 864 CCAGGAAGGAAAAGCACTGTTGAAGATTTTGAAGCTAAT
    ACTGT TTTA CTAATACATCCCCC ACATCCCCCACTAAAAGAAGGGGCAGACCAC
    AC
    FAM49B NM_016623 865 AGATGCAGAAGGC 866 GCTGGATTGCCTCTC 867 TGGCCAGCTCCTCT 868 AGATGCAGAAGGCATCTTGGAGGACTTGCAGTCATA
    GTATGA
    FAM73A NM_198549 869 TGAGAAGGTGCGCTA 870 GGCCATTAAAAGCTCA 871 AAGACCTCATGCAG 872 TGAGAAGGTGCGCTATTCAAGTACAGAGACTTTAGCTGA
    TTCAA GTGC TTACTCATTCGCC AGACCTCATGCAGTTACTCATTCGCCGCACTGAG
    FAP NM_004460 873 GTTGGCTCACGTG 874 GACAGGACCGAAACA 875 AGCCACTGCAAACA 876 GTTGGCTCACGTGGGTTACTGATGAACGAGTATGTTT
    TACTCG
    FAS NM_000043 877 GGATTGCTCAACAAC 878 GGCATTAACACTTTTG 879 TCTGGACCCTCCTA 880 GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCCT
    CATGCT GACGATAA CCTCTGGTTCTTAC ACCTCTGGTTCTTACGTCTGTTGCTAGATTATCG
    GT
    FASLG NM_000639 881 GCACTTTGGGATTCT 882 GCATGTAAGAAGACCC 883 ACAACATTCTCGGT 884 GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACAG
    TTCCATTAT TCACTGAA GCCTGTAACAAAGA GCACCGAGAATGTTGTATTCAGTGAGGGTCTTCTT
    A
    FASN NM_004104 885 GCCTCTTCCTGTTC 886 GCTTTGCCCGGTAGC 887 TCGCCCACCTACGT 888 GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACT
    ACTGGC
    FCGR3A NM_000569 889 GTCTCCAGTGGAA 890 AGGAATGCAGCTACT 891 CCCATGATCTTCAA 892 GTCTCCAGTGGAAGGGAAAAGCCCATGATCTTCAAG
    GCAGGG
    FGF10 NM_004465 893 TCTTCCGTCCCTGT 894 AGAGTTGGTGGCCTC 895 ACACCATGTCCTGA 896 TCTTCCGTCCCTGTCACCTGCCAAGCCCTTGGTCAGG
    CCAAGG
    FGF17 NM_003867 897 GGTGGCTGTCCTC 898 TCTAGCCAGGAGGAG 899 TTCTCGGATCTCCC 900 GGTGGCTGTCCTCAAAATCTGCTTCTCGGATCTCCCT
    TCAGTC
    FGF5 NM_004464 901 GCATCGGTTTCCA 902 AACATATTGGCTTCGT 903 CCATTGACTTTGCC 904 GCATCGGTTTCCATCTGCAGATCTACCCGGATGGCAA
    ATCCGG
    FGF6 NM_020996 905 GGGCCATTAATTCTG 906 CCCGGGACATAGTGAT 907 CATCCACCTTGCCT 908 GGGCCATTAATTCTGACCACGTGCCTGAGAGGCAAGGTG
    ACCAC GAA CTCAGGCAC GATGGCCCTGGGACAGAAACTGTTCATCATCTAT
    FGF7 NM_002009 909 CCAGAGCAAATGGCT 910 TCCCCTCCTTCCATGT 911 CAGCCCTGAGCGAC 912 CCAGAGCAAATGGCTACAAATGTGAACTGTTCCAGCCCT
    ACAAA AATC ACACAAGAAG GAGCGACACACAAGAAGTTATGATTACATGGAA
    FGFR2 NM_000141 913 GAGGGACTGTTGGCA 914 GAGTGAGAATTCGATC 915 TCCCAGAGACCAAC 916 GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAAC
    TGCA CAAGTCTTC GTTCAAGCAGTTG GTTCAAGCAGTTGGTAGAAGACTTGGATCGAAT
    FGFR4 NM_002011 917 CTGGCTTAAGGATGG 918 ACGAGACTCCAGTGCT 919 CCTTTCATGGGGAG 920 CTGGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCG
    ACAGG GATG AACCGCATT CATTGGAGGCATTCGGCTGCGCCATCAGCACTG
    FKBP5 NM_004117 921 CCCACAGTAGAGG 922 GGTTCTGGCTTTCACG 923 TCTCCCCAGTTCCA 924 CCCACAGTAGAGGGGTCTCATGTCTCCCCAGTTCCAC
    CAGCAG
    FLNA NM_001456 925 GAACCTGCGGTGG 926 GAAGACACCCTGGCC 927 TACCAGGCCCATAG 928 GAACCTGCGGTGGACACTTCCGGTGTCCAGTGCTAT
    CACTGG
    FLNC NM_001458 929 CAGGACAATGGTG 930 TGATGGTGTACTCGC 931 ATGTGCTGTCAGCT 932 CAGGACAATGGTGATGGCTCATGTGCTGTCAGCTAC
    ACCTGC
    FLT1 NM_002019 933 GGCTCCTGAATCT 934 TCCCACAGCAATACT 935 CTACAGCACCAAGA 936 GGCTCCTGAATCTATCTTTGACAAAATCTACAGCACC
    GCGAC
    FLT4 NM_002020 937 ACCAAGAAGCTGA 938 CCTGGAAGCTGTAGC 939 AGCCCGCTGACCAT 940 ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGA
    GGAAGA
    FN1 NM_002026 941 GGAAGTGACAGAC 942 ACACGGTAGCCGGTC 943 ACTCTCAGGCGGTG 944 GGAAGTGACAGACGTGAAGGTCACCATCATGTGGAC
    TCCACA
    FOS NM_005252 945 CGAGCCCTTTGATGA 946 GGAGCGGGCTGTCTCA 947 TCCCAGCATCATCC 948 CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAG
    CTTCCT GA AGGCCCAG GCCCAGTGGCTCTGAGACAGCCCGCTCC
    FOXO1 NM_002015 949 GTAAGCACCATGC 950 GGGGCAGAGGCACTT 951 TATGAACCGCCTGA 952 GTAAGCACCATGCCCCACACCTCGGGTATGAACCGC
    CCCAAG
    FOXP3 NM_014009 953 CTGTTTGCTGTCCG 954 GTGGAGGAACTCTGG 955 TGTTTCCATGGCTA 956 CTGTTTGCTGTCCGGAGGCACCTGTGGGGTAGCCAT
    CCCCAC
    FOXQ1 NM_033260 957 TGTTTTTGTCGCAA 958 TGGAAAGGTTCCCTG 959 TGATTTATGTCCCT 960 TGTTTTTGTCGCAACTTCCATTGATTTATGTCCCTTCC
    TCCCTC
    FSD1 NM_024333 961 AGGCCTCCTGTCC 962 TGTGTGAACCTGGTC 963 CGCACCAAACAAGT 964 AGGCCTCCTGTCCTTCTACAATGCCCGCACCAAACAA
    GCTGCA
    FYN NM_002037 965 GAAGCGCAGATCA 966 CTCCTCAGACACCAC 967 CTGAAGCACGACAA 968 GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAG
    GCTGGT
    G6PD NM_000402 969 AATCTGCCTGTGG 970 CGAGATGTTGCTGGT 971 CCAGCCTCAGTGCC 972 AATCTGCCTGTGGCCTTGCCCGCCAGCCTCAGTGCCA
    ACTTGA
    GABRG2 NM_198904 973 CCACTGTCCTGACAA 974 GAGATCCATCGCTGTG 975 CTCAGCACCATTGC 976 CCACTGTCCTGACAATGACCACCCTCAGCACCATTGCCC
    TGACC ACAT CCGGAAAT GGAAATCGCTCCCCAAGGTCTCCTATGTCAGAGC
    GADD45 NM_001924 977 GTGCTGGTGACGA 978 CCCGGCAAAAACAAA 979 TTCATCTCAATGGA 980 GTGCTGGTGACGAATCCACATTCATCTCAATGGAAG
    AGGATC
    GADD45 NM_015675 981 ACCCTCGACAAGA 982 TGGGAGTTCATGGGT 983 TGGGAGTTCATGGG 984 ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCT
    TACAGA
    GDF15 NM_004864 985 CGCTCCAGACCTA 986 ACAGTGGAAGGACCA 987 TGTTAGCCAAAGAC 988 CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTG
    TGCCAC
    GHR NM_000163 989 CCACCTCCCACAG 990 GGTGCGTGCCTGTAG 991 CGTGCCTCAGCCTC 992 CCACCTCCCACAGGTTCAGGCGATTCCCGTGCCTCAG
    CTGAGT
    GNPTAB NM_024312 993 GGATTCACATCGC 994 GTTCTTGCATAACAAT 995 CCCTGCTCACATGC 996 GGATTCACATCGCGGAAAGTCCCTGCTCACATGCCTC
    CTCACA
    GNRH1 NM_000825 997 AAGGGCTAAATCCAG 998 CTGGATCTCTGTGGCT 999 TCCTGTCCTTCACT 1000 AAGGGCTAAATCCAGGTGTGACGGTATCTAATGATGTCC
    GTGTG GGT GTCCTTGCCA TGTCCTTCACTGTCCTTGCCATCACCAGCCACAG
    GPM6B NM_001001094 1001 ATGTGCTTGGAGTGG 1002 TGTAGAACATAAACAC 1003 CGCTGAGAAACCAA 1004 ATGTGCTTGGAGTGGCCTGGCTGGGTGTGTTTGGTTTCT
    CCT GGGCA ACACACCCAG CAGCGGTGCCCGTGTTTATGTTCTACA
    GPNMB NM_001005340 1005 CAGCCTCGCCTTTAA 1006 TGACAAATATGGCCAA 1007 CAAACAGTGCCCTG 1008 CAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGATCT
    GGAT GCAG ATCTCCGTTG CCGTTGGCTGCTTGGCCATATTTGTCA
    GPR68 NM_003485 1009 CAAGGACCAGATC 1010 GGTAGGGCAGGAAGC 1011 CTCAGCACCGTGGT 1012 CAAGGACCAGATCCAGCGGCTGGTGCTCAGCACCGT
    CATCTT
    GPS1 NM_004127 1013 AGTACAAGCAGGC 1014 GCAGCTCAGGGAAGT 1015 CCTCCTGCTGGCTT 1016 AGTACAAGCAGGCTGCCAAGTGCCTCCTGCTGGCTT
    CCTTTG
    GRB7 NM_005310 1017 CCATCTGCATCCA 1018 GGCCACCAGGGTATT 1019 CTCCCCACCCTTGA 1020 CCATCTGCATCCATCTTGTTTGGGTCCCCACCCTTG
    GAAGTG
    GREM1 NM_013372 1021 GTGTGGGCAAGGA 1022 GACCTGATTTGGCCT 1023 TCCACCCTCCCTTT 1024 GTGTGGGCAAGGACAAGCAGGATAGTGGAGTGAGAA
    CTCACT
    GSK3B NM_002093 1025 GACAAGGACGGCA 1026 TTGTGGCCTGTCTGG 1027 CCAGGAGTTGCCAC 1028 GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCA
    CACTGT
    GSN NM_000177 1029 CTTCTGCTAAGCGGT 1030 GGCTCAAAGCCTTGCT 1031 ACCCAGCCAATCGG 1032 CTTCTGCTAAGCGGTACATCGAGACGGACCCAGCCAATC
    ACATCGA TCAC GATCGGC GGGATCGGCGGACGCCCATACCGTGGTGAAGC
    GSTM1 NM_000561 1033 AAGCTATGAGGAAAA 1034 GGCCCAGCTTGAATTT 1035 TCAGCCACTGGCTT 1036 AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTCC
    GAAGTACACGA TTCA CTGTCATAATCAGG TGATTATGACAGAAGCCAGTGGCTGAATGAAAA
    AG
    GSTM2 NM_000848 1037 CTGCAGGCACTCC 1038 CCAAGAAACCATGGC 1039 CTGAAGCTCTACTC 1040 CTGCAGGCACTCCCTGAAATGCTGAAGCTCTACTCAC
    ACAGTT
    HDAC1 NM_004964 1041 CAAGTACCACAGCGA 1042 GCTTGCTGTACTCCG 1043 TTCTTGCGCTCCAT 1044 CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTC
    TGACTACATTA ACATGTT CCGTCCAGA CATCCGTCCAGATAACATGTCGGAGTACAGCAAG
    HDAC9 NM_178423 1045 AACCAGGCAGTCACC 1046 CTCTGTCTTCCTGCA 1047 CCCCCTGAAGCTCT 1048 AACCAGGCAGTCACCTTGAGGAAGCAGAGGAAGAGCTTC
    TTGAG TCGC TCCTCTGCTT AGGGGGACCAGGCGATGCAGGAAGACAGAG
    HGD NM_000187 1049 CTCAGGTCTGCCC 1050 TTATTGGTGCTCCGT 1051 CTGAGCAGCTCTCA 1052 CTCAGGTCTGCCCCTACAATCTCTATGCTGAGCAGCT
    G GGATCG
    HIP1 NM_005338 1053 CTCAGAGCCCCAC 1054 GGGTTTCCCTGCCAT 1055 CGACTCACTGACCG 1056 CTCAGAGCCCCACCTGAGCCTGCCGACTCACTGACC
    AGGCCT
    HIRIP3 NM_003609 1057 GGATGAGGAAAAG 1058 TCCCTAGCTGACTTTC 1059 CCATTGCTCCTGGT 1060 GGATGAGGAAAAGGGGGATTGGAAACCCAGAACCAG
    TCTGGG
    HK1 NM_000188 1061 TACGCACAGAGGC 1062 GAGAGAAGTGCTGGA 1063 TAAGAGTCCGGGAT 1064 TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCC
    CCCCAG
    HLA-G NM_002127 1065 CCATCCCCATCAT 1066 CCGCAGCTCCAGTGA 1067 CTGCAAGGACAACC 1068 CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTC
    AGGCC
    HLF NM_002126 1069 CACCCTGCAGGTG 1070 GGTACCTAGGAGCAG 1071 TAAGTGATCTGCCC 1072 CACCCTGCAGGTGTCTGAGACTAAGTGATCTGCCCTC
    TCCAGG
    HNF1B NM_000458 1073 TCCCAGCATCTCA 1074 CGTACCAGGTGTACA 1075 CCCCTATGAAGACC 1076 TCCCAGCATCTCAACAAGGGCACCCCTATGAAGACC
    CAGAAG
    HPS1 NM_000195 1077 GCGGAAGCTGTAT 1078 TTCGGATAAGATGAC 1079 CAGTCACCAGCCCA 1080 GCGGAAGCTGTATGTGCTCAAGTACCTGTTTGAAGT
    AAGTGC
    HRAS NM_005343 1081 GGACGAATACGAC 1082 GCACGTCTCCCCATC 1083 ACCACCTGCTTCCG 1084 GGACGAATACGACCCCACTATAGAGGATTCCTACCG
    GTAGGA
    HSD17B10 NM_004493 1085 CCAGCGAGTTCTTGA 1086 ATCTCACCAGCCACCA 1087 TCATGGGCACCTTC 1088 CCACCAGACAAGACCGATTCGCTGGCCTCCATTTCTTCA
    TGTGA GG AATGTGATCC ACCCAGTGCCTGTCATGAAACTTGTGG
    HSD17B2 NM_002153 1089 GCTTTCCAAGTGG 1090 TGCCTGCGATATTTGT 1091 AGTTGCTTCCATCC 1092 GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAA
    AACCTG
    HSD17B3 NM_000197 1093 GGGACGTCCTGGAAC 1094 TGGAGAATCTCACGCA 1095 CTTCATCCTCACAG 1096 GGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTGC
    AGT CTTC GGCTGCTGGT TGGTGTGCCTGGCCTGCCTGGCGAAGTGCGTGAG
    HSD17B4 NM_000414 1097 CGGGAAGCTTCAG 1098 ACCTCAGGCCCAATA 1099 AGGCGGCGTCCTAT 1100 CGGGAAGCTTCAGAGTACCTTTGTATTTGAGGAAAT
    TTCCTC
    HSD3B2 NM_000198 1101 GCCTTCCTTTAACC 1102 GGAGTAAATTGGGCT 1103 ACTTCCAGCAGGAA 1104 GCCTTCCTTTAACCCTGATGTACTGGATTGGCTTCCT
    GCCAAT
    HSP90AB1 NM_007355 1105 GCATTGTGACCAGCA 1106 GAAGTGCCTGGGCTTT 1107 ATCCGCTCCATATT 1108 GCATTGTGACCAGCACCTACGGCTGGACAGCCAATATGG
    CCTAC CAT GGCTGTCCAG AGCGGATCATGAAAGCCCAGGCACTTC
    HSPA5 NM_005347 1109 GGCTAGTAGAACTGG 1110 GGTCTGCCCAAATGCT 1111 TAATTAGACCTAGG 1112 GGCTAGTAGAACTGGATCCCAACACCAAACTCTTAATTA
    ATCCCAACA TTTC CCTCAGCTGCACTG GACCTAGGCCTCAGCTGCACTGCCCGAAAAGCA
    C
    HSPA8 NM_006597 1113 CCTCCCTCTGGTGGT 1114 GCTACATCTACACTTG 1115 CTCAGGGCCCACCA 1116 CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGAA
    GCTT GTTGGCTTAA TTGAAGAGGTTG GAGGTTGATTAAGCCAACCAAGTGTAGATGTAGC
    HSPB1 NM_001540 1117 CCGACTGGAGGAGCA 1118 ATGCTGGCTGACTCTG 1119 CGCACTTTTCTGAG 1120 CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCGC
    TAAA CTC CAGACGTCCA CCCGCACTTTTCTGAGCAGACGTCCAGAGCAGA
    HSPB2 NM_001541 1121 CACCACTCCAGAG 1122 TGGGACCAAACCATA 1123 CACCTTTCCCTTCC 1124 CACCACTCCAGAGGTAGCAGCATCCTTGGGGGAAGG
    CCCAAG
    HSPE1 NM_002157 1125 GCAAGCAACAGTAGT 1126 CCAACTTTCACGCTAA 1127 TCTCCACCCTTTCC 1128 GCAAGCAACAGTAGTCGCTGTTGGATCGGGTTCTAAAGG
    CGCTG CTGGT TTTAGAACCCG AAAGGGTGGAGAGATTCAACCAGTTAGCGTGAA
    HSPG2 NM_005529 1129 GAGTACGTGTGCC 1130 CTCAATGGTGACCAG 1131 CAGCTCCGTGCCTC 1132 GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCT
    TAGAGG
    ICAM1 NM_000201 1133 GCAGACAGTGACCAT 1134 CTTCTGAGACCTCTGG 1135 CCGGCGCCCAACGT 1136 GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGT
    CTACAGCTT CTTCGT GATTCT GATTCTGACGAAGCCAGAGGTCTCAGAAG
    IER3 NM_003897 1137 GTACCTGGTGCGCGA 1138 GCGTCTCCGCTGTAGT 1139 TCAAGTTGCCTCGG 1140 GTACCTGGTGCGCGAGAGCGTATCCCCAACTGGGACTTC
    GAG GTT AAGTCCCAGT CGAGGCAACTTGAACTCAGAACACTACAGCGGA
    IFI30 NM_006332 1141 ATCCCATGAAGCC 1142 GCACCATTCTTAGTG 1143 AAAATTCCACCCCA 1144 ATCCCATGAAGCCCAGATACACAAAATTCCACCCCA
    TGATCA
    IFIT1 NM_001548 1145 TGACAACCAAGCA 1146 CAGTCTGCCCATGTG 1147 AAGTTGCCCCAGGT 1148 TGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTG
    CACCAG
    IFNG NM_000619 1149 GCTAAAACAGGGAAG 1150 CAACCATTACTGGGAT 1151 TCGACCTCGAAACA 1152 GCTAAAACAGGGAAGCGAAAAAGGAGTCAGATGCTGTTT
    CGAAA GCTC GCATCTGACTCC CGAGGTCGAAGAGCATCCCAGTAATGGTTG
    IGF1 NM_000618 1153 TCCGGAGCTGTGA 1154 CGGACAGAGCGAGCT 1155 TGTATTGCGCACCC 1156 TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATT
    CTCAAG
    IGF1R NM_000875 1157 GCATGGTAGCCGAAG 1158 TTTCCGGTAATAGTCT 1159 CGCGTCATACCAAA 1160 GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGATT
    ATTTCA GTCTCATAGATATC ATCTCCGATTTTGA TTGGTATGACGCGAGATATCTATGAGACAGACTA
    IGF2 NM_000612 1161 CCGTGCTTCCGGA 1162 TGGACTGCTTCCAGG 1163 TACCCCGTGGGCAA 1164 CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGG
    GTTCTT
    IGFBP2 NM_000597 1165 GTGGACAGCACCA 1166 CCTTCATACCCGACTT 1167 CTTCCGGCCAGCAC 1168 GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGC
    TGCCTC
    IGFBP3 NM_000598 1169 ACATCCCAACGCA 1170 CCACGCCCTTGTTTCA 1171 ACACCACAGAAGGC 1172 ACATCCCAACGCATGCTCCTGGAGCTCACAGCCTTCT
    TGTGA
    IGFBP5 NM_000599 1173 TGGACAAGTACGG 1174 CGAAGGTGTGGCACT 1175 CCCGTCAACGTACT 1176 TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGT
    CCATGC
    IGFBP6 NM_002178 1177 TGAACCGCAGAGACC 1178 GTCTTGGACACCCGCA 1179 ATCCAGGCACCTCT 1180 TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCTA
    AACAG GAAT ACCACGCCCTC CCACGCCCTCCCAGCCCAATTCTGCGGGTGTCCA
    IL10 NM_000572 1181 CTGACCACGCTTT 1182 CCAAGCCCAGAGACA 1183 TTGAGCTGTTTTCC 1184 CTGACCACGCTTTCTAGCTGTTGAGCTGTTTTCCCTG
    CTGACC
    IL11 NM_000641 1185 TGGAAGGTTCCAC 1186 TCTTGACCTTGCAGCT 1187 CCTGTGATCAACAG 1188 TGGAAGGTTCCACAAGTCACCCTGTGATCAACAGTA
    TACCCG
    IL17A NM_002190 1189 TCAAGCAACACTC 1190 CAGCTCCTTTCTGGGT 1191 TGGCTTCTGTCTGA 1192 TCAAGCAACACTCCTAGGGCCTGGCTTCTGTCTGATC
    TCAAGG
    IL1A NM_000575 1193 GGTCCTTGGTAGA 1194 GGATGGAGCTTCAGG 1195 TCTCCACCCTGGCC 1196 GGTCCTTGGTAGAGGGCTACTTTACTGTAACAGGGC
    CTGTTA
    IL1B NM_000576 1197 AGCTGAGGAAGAT 1198 GGAAAGAAGGTGCTC 1199 TGCCCACAGACCTT 1200 AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCT
    CCAGGA
    IL2 NM_000586 1201 ACCTCAACTCCTGCC 1202 CACTGTTTGTGACAAG 1203 TGCAACTCCTGTCT 1204 ACCTCAACTCCTGCCACAATGTACAGGATGCAACTCCTG
    ACAAT TGCAAG TGCATTGCAC TCTTGCATTGCACTAAGTCTTGCACTTGTCACAAA
    IL6 NM_000600 1205 CCTGAACCTTCCA 1206 ACCAGGCAAGTCTCC 1207 CCAGATTGGAAGCA 1208 CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATG
    TCCATC
    IL6R NM_000565 1209 CCAGCTTATCTCA 1210 CTGGCGTAGAACCTT 1211 CCTTTGGCTTCACG 1212 CCAGCTTATCTCAGGGGTGTGCGGCCTTTGGCTTCAC
    GAAGAG
    IL6ST NM_002184 1213 GGCCTAATGTTCC 1214 AAAATTGTGCCTTGG 1215 CATATTGCCCAGTG 1216 GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGC
    GTCACC
    IL8 NM_000584 1217 AAGGAACCATCTCAC 1218 ATCAGGAAGGCTGCCA 1219 TGACTTCCAAGCTG 1220 AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGC
    TGTGTGTAAAC AGAG GCCGTGGC TGGCCGTGGCTCTCTTGGCAGCCTTCCTGAT
    ILF3 NM_004516 1221 GACACGCCAAGTG 1222 CTCAAGACCCGGATC 1223 ACACAAGACTTCAG 1224 GACACGCCAAGTGGTTCCAGGCCAGAGCCAACGGGC
    CCCGTT
    ILK NM_001014794 1225 CTCAGGATTTTCTCG 1226 AGGAGCAGGTGGAGAC 1227 ATGTGCTCCCAGTG 1228 CTCAGGATTTTCTCGCATCCAAATGTGCTCCCAGTGCTA
    CATCC TGG CTAGGTGCCT GGTGCCTGCCAGTCTCCACCTGCTCCT
    IMMT NM_006839 1229 CTGCCTATGCCAG 1230 GCTTTTCTGGCTTCCT 1231 CAACTGCATGGCTC 1232 CTGCCTATGCCAGACTCAGAGGAATCGAACAGGCTG
    TGAACA
    ING5 NM_032329 1233 CCTACAGCAAGTG 1234 CATCTCGTAGGTCTG 1235 CCAGCTGCACTTTG 1236 CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAG
    TCGTCA
    INHBA NM_002192 1237 GTGCCCGAGCCAT 1238 CGGTAGTGGTTGATG 1239 ACGTCCGGGTCCTC 1240 GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTC
    ACTGTC
    INSL4 NM_002195 1241 CTGTCATATTGCCC 1242 CAGATTCCAGCAGCC 1243 TGAGAAGACATTCA 1244 CTGTCATATTGCCCCATGCCTGAGAAGACATTCACCA
    CCACCA
    ITGA1 NM_181501 1245 GCTTCTTCTGGAG 1246 CCTGTAGATAATGAC 1247 TTGCTGGACAGCCT 1248 GCTTCTTCTGGAGATGTGCTCTATATTGCTGGACAGC
    CGGTAC
    ITGA3 NM_002204 1249 CCATGATCCTCAC 1250 GAAGCTTTGTAGCCG 1251 CACTCCAGACCTCG 1252 CCATGATCCTCACTCTGCTGGTGGACTATACACACTCCA
    CTTAGC
    ITGA4 NM_000885 1253 CAACGCTTCAGTG 1254 GTCTGGCCGGGATTC 1255 CGATCCTGCATCTG 1256 CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAG
    TAAATC
    ITGA5 NM_002205 1257 AGGCCAGCCCTAC 1258 GTCTTCTCCACAGTCC 1259 TCTGAGCCTTGTCC 1260 AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATA
    TCTATC
    ITGA6 NM_000210 1261 CAGTGACAAACAG 1262 GTTTAGCCTCATGGG 1263 TCGCCATCTTTTGT 1264 CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCA
    GGGATT
    ITGA7 NM_002206 1265 GATATGATTGGTCGC 1266 AGAACTTCCATTCCCC 1267 CAGCCAGGACCTGG 1268 GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTG
    TGCTTTG ACCAT CCATCCG GCCATCCGGGATGAGTTGGATGGTGGGGAATGGA
    ITGAD NM_005353 1269 GAGCCTGGTGGAT 1270 ACTGTCAGGATGCCC 1271 CAACTGAAAGGCCT 1272 GAGCCTGGTGGATCCCATCGTCCAACTGAAAGGCCT
    GACGTT
    ITGB3 NM_000212 1273 ACCGGGAGCCCTACA 1274 CCTTAAGCTCTTTCAC 1275 AAATACCTGCAACC 1276 ACCGGGGAGCCCTACATGACGAAAATACCTGCAACCGTT
    TGAC TGACTCAATCT GTTACTGCCGTGAC ACTGCCGTGACGAGATTGAGTCAGTGAAAGAGC
    ITGB4 NM_000213 1277 CAAGGTGCCCTCA 1278 GCGCACACCTTCATC 1279 CACCAACCTGTACC 1280 CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCC
    CGTATT
    ITGB5 NM_002213 1281 TCGTGAAAGATGA 1282 GGTGAACATCATGAC 1283 TGCTATGTTTCTAC 1284 TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTA
    AAAACC
    ITPR1 NM_002222 1285 GAGGAGGTGTGGG 1286 GTAATCCCATGTCCG 1287 CCATCCTAACGGAA 1288 GAGGAGGTGTGGGTGTTCCGCTTCCATCCTAACGGA
    CGAGCT
    ITPR3 NM_002224 1289 TTGCCATCGTGTC 1290 ATGGAGCTGGCGTCA 1291 TCCAGGTCTCGGAT 1292 TTGCCATCGTGTCAGTGCCCGTGTCTGAGATCCGAGA
    CTCAGA
    ITSN1 NM_003024 1293 TAACTGGGATGCA 1294 CTCTGCCTTAACTGGC 1295 AGCCCTCTCTCACC 1296 TAACTGGGATGCATGGGCAGCCCAGCCCTCTCTCAC
    GTTCCA
    JAG1 NM_000214 1297 TGGCTTACACTGG 1298 GCATAGCTGTGAGAT 1299 ACTCGATTTCCCAG 1300 TGGCTTACACTGGCAATGGTAGTTTCTGTGGTTGGCT
    CCAACC
    JUN NM_002228 1301 GACTGCAAAGATGGA 1302 TAGCCATAAGGTCCGC 1303 CTATGACGATGCCC 1304 GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCT
    AACGA TCTC TCAACGCCTC CAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCT
    JUNB NM_002229 1305 CTGTCAGCTGCTG 1306 AGGGGGTGTCCGTAA 1307 CAAGGGACACGCCT 1308 CTGTCAGCTGCTGCTTGGGGTCAAGGGACACGCCTT
    TCTGAA
    KCNN2 NM_021614 1309 TGTGCTATTCATCC 1310 GGGCATAGGAGAAGG 1311 TTATACATTCACAT 1312 TGTGCTATTCATCCCATACCTGGGAATTATACATTCA
    GGACGG
    KCTD12 NM_138444 1313 AGCAGTTACTGGC 1314 TGGAGACCTGAGCAG 1315 ACTCTTAGGCGGCA 1316 AGCAGTTACTGGCAAGAGGGAGAAAGGACGCTGCCG
    GCGTCC
    KHDRBS NM_006558 1317 CGGGCAAGAAGAG 1318 CTGTAGACGCCCTTT 1319 CAAGACACAAGGCA 1320 CGGGCAAGAAGAGTGGACTAACTCAAGACACAAGGC
    CCTTCA
    KIAA019 NM_014846 1321 CAGACACCAGCTC 1322 AACATTGTGAGGCGG 1323 TCCCCAGTGTCCAG 1324 CAGACACCAGCTCTGAGGCCAGTTAATCATCCCCAG
    GCACAG
    KIAA024 NM_014734 1325 CCGTGGGACATGG 1326 GAAGCAAGTCCGTCT 1327 TCCGCTAGTGATCC 1328 CCGTGGGACATGGAGTGTTCCTTCCGCTAGTGATCCT
    TTTGCA
    KIF4A NM_012310 1329 AGAGCTGTCTCC 1330 GCTGGTCTTGCTCTGT 1331 CAGGTCAGCAAACT 1332 AGAGCTGGTCTCCTCCAAAATACAGGTCAGCAAACT
    TGAAAG
    KIT NM_000222 1333 GAGGCAACTGCTTAT 1334 GGCACTCGGCTTGAGC 1335 TTACAGCGACAGTC 1336 GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGCC
    GGCTTAATTA AT ATGGCCGCAT ATGACTGTCGCTGTAAAGATGCTCAAGCCGAGT
    KLC1 NM_182923 1337 AGTGGCTACGGGA 1338 TGAGCCACAGACTGC 1339 CAACACGCAGCAGA 1340 AGTGGCTACGGGATGAACTGGCCAACACGCAGCAGA
    AACTG
    KLF6 NM_001300 1341 CACGAGACCGGCT 1342 GCTCTAGGCAGGTCT 1343 AGTACTCCTCCAGA 1344 CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGG
    GACGGC
    KLK1 NM_002257 1345 AACACAGCCCAGTTT 1346 CCAGGAGGCTCATGTT 1347 TCAGTGAGAGCTTC 1348 AACACAGCCCAGTTTGTTCATGTCAGTGAGAGCTTCCCA
    GTTCA GAAG CCACACCCTG CACCCTGGCTTCAACATGAGCCTCCTGG
    KLK10 NM_002776 1349 GCCCAGAGGCTCC 1350 CAGAGGTTTGAACAG 1351 CCTCTTCCTCCCCA 1352 GCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAG
    GTCGGC
    KLK11 NM_006853 1353 CACCCCGGCTTCA 1354 CATCTTCACCAGCAT 1355 CCTCCCCAACAAAG 1356 CACCCCGGCTTCAACAACAGCCTCCCCAACAAAGAC
    ACCACC
    KLK14 NM_022046 1357 CCCCTAAAATGTT 1358 CTCATCCTCTTGGCTC 1359 CAGCACTTCAAGTC 1360 CCCCTAAAATGTTCCTCCTGCTGACAGCACTTCAAGT
    CTGGCT
    KLK2 NM_005551 1361 AGTCTCGGATTGT 1362 TGTACACAGCCACCT 1363 TTGGGAATGCTTCT 1364 AGTCTCGGATTGTGGGAGGCTGGGAGTGTGAGAAGC
    CACACT
    KLK3 NM_001648 1365 CCAAGCTTACCAC 1366 AGGGTGAGGAAGACA 1367 ACCCACATGGTGAC 1368 CCAAGCTTACCACCTGCACCCGGAGAGCTGTGTCAC
    ACAGCT
    KLRK1 NM_007360 1369 TGAGAGCCAGGCT 1370 ATCCTGGTCCTCTTTG 1371 TGTCTCAAAATGCC 1372 TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGC
    AGCCTT
    KPNA2 NM_002266 1373 TGATGGTCCAAAT 1374 AAGCTTCACAAGTTG 1375 ACTCCTGTTTTCAC 1376 TGATGGTCCAAATGAACGAATTGGCATGGTGGTGAA
    CACCAT
    KRT1 NM_006121 1377 TGGACAACAACCG 1378 TATCCTCGTACTGGG 1379 CCTCAGCAATGATG 1380 TGGACAACAACCGCAGTCTCGACCTGGACAGCATCA
    CTGTCC
    KRT15 NM_002275 1381 GCCTGGTTCTTCA 1382 CTTGCTGGTCTGGATC 1383 TGAACAAAGAGGTG 1384 GCCTGGTTCTTCAGCAAGACTGAGGAGCTGAACAAA
    GCCTCC
    KRT18 NM_000224 1385 AGAGATCGAGGCT 1386 GGCCTTTTACTTCCTC 1387 TGGTTCTTCTTCAT 1388 AGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCAT
    GAAGAG
    KRT2 NM_000423 1389 CCAGTGACGCCTC 1390 GGGCATGGCTAGAAG 1391 ACCTAGACAGCACA 1392 CCAGTGACGCCTCTGTGTTCTGGGGCGGAATCTGTGC
    GATTCC
    KRT5 NM_000424 1393 TCAGTGGAGAAGG 1394 TGCCATATCCAGAGG 1395 CCAGTCAACATCTC 1396 TCAGTGGAGAAGGAGTTGGACCAGTCAACATCTCTG
    TGTTGT
    KRT75 NM_004693 1397 TCAAAGTCAGGTACG 1398 ACGCTCCTTTTTCAGG 1399 TTCATTCTCAGCAG 1400 TCAAAGTCAGGTACGAAGATGAAATTAACAAGCGCACAG
    AAGATGAAATT GCTACAA CTGTGCGCTTGT CTGCTGAGAATGAATTTGTAGCCCTGAAAAAGG
    KRT76 NM_015848 1401 ATCTCCAGACTGCTG 1402 TCAGGGAATTAGGGGA 1403 TCTGGGCTTCAGAT 1404 ATCTCCAGACTGCTGGTTCCCAGGGAACCCTCCCTACAT
    GTTCC CAGA CCTGACTCCC CTGGGCTTCAGATCCTGACTCCCTTCTGTCCCCTA
    KRT8 NM_002273 1405 GGATGAAGCTTACAT 1406 CATATAGCTGCCTGAG 1407 CGTCGGTCAGCCCT 1408 GGATGAAGCTTACATGAACAAGGTAGAGCTGGAGTCTCG
    GAACAAGGTAG GAAGTTGAT TCCAGGC CCTGGAAGGGCTGACCGACGAGATCAACTTCCT
    L1CAM NM_000425 1409 CTTGCTGGCCAAT 1410 TGATTGTCCGCAGTC 1411 ATCTACGTTGTCCA 1412 CTTGCTGGCCAATGCCTACATCTACGTTGTCCAGCTG
    GCTGCC
    LAG3 NM_002286 1413 GCCTTAGAGCAAG 1414 CGGTTCTTGCTCCAGC 1415 TCTATCTTGCTCTG 1416 GCCTTAGAGCAAGGGATTCACCCTCCGCAGGCTCAG
    AGCCTG
    LAMA3 NM_000227 1417 CCTGTCACTGAAG 1418 TGGGTTACTGGTCAG 1419 ATTCAGACTGACAG 1420 CCTGTCACTGAAGCCTTGGAAGTCCAGGGGCCTGTC
    GCCCCT
    LAMA4 NM_002290 1421 GATGCACTGCGGT 1422 CAGAGGATACGCTCA 1423 CTCTCCATCGAGGA 1424 GATGCACTGCGGTTAGCAGCGCTCTCCATCGAGGAA
    AGGCAA
    LAMA5 NM_005560 1425 CTCCTGGCCAACA 1426 ACACAAGGCCCAGCC 1427 CTGTTCCTGGAGCA 1428 CTCCTGGCCAACAGCACTGCACTAGAAGAGGCCATG
    TGGCCT
    LAMB1 NM_002291 1429 CAAGGAGACTGGG 1430 CGGCAGAACTGACAG 1431 CAAGTGCCTGTACC 1432 CAAGGAGACTGGGAGGTGTCTCAAGTGCCTGTACCA
    ACACGG
    LABM3 NM_000228 1433 ACTGACCAAGCCT 1434 GTCACACTTGCAGCA 1435 CCACTCGCCATACT 1436 ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGG
    GGGTGC
    LAMC1 NM_002293 1437 GCCGTGATCTCAG 1438 ACCTGCTTGCCCAAG 1439 CCTCGGTACTTCAT 1440 GCCGTGATCTCAGACAGCTACTTTCCTCGGTACTTCA
    TGCTCC
    LAMC2 NM_005562 1441 ACTCAAGCGGAAATT 1442 ACTCCCTGAAGCCGAG 1443 AGGTCTTATCAGCA 1444 ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCAC
    GAAGCA ACACT CAGTCTCCGCCTCC AGTCTCCGCCTCCTGGATTCAGTGTCTCGGCTTC
    LAPTM5 NM_006762 1445 TGCTGGACTTCTG 1446 TGAGATAGGTGGGCA 1447 TCCTGACCCTCTGC 1448 TGCTGGACTTCTGCCTGAGCATCCTGACCCTCTGCAG
    AGCTCC
    LGALS3 NM_002306 1449 AGCGGAAAATGGC 1450 CTTGAGGGTTTGGGT 1451 ACCCAGATAACGCA 1452 AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATG
    TCATGG
    LIG3 NM_002311 1453 GGAGGTGGAGAAG 1454 ACAGGTGTCATAGC 1455 CTGGACGCTCAGAG 1456 GGAGGTGGAGAAGGAGCCGGGCCAGAGACGAGCTCT
    CTCGTC
    LIMS1 NM_004987 1457 TGAACAGTAATGG 1458 TTCTGGGAACTGCTG 1459 ACTGAGCGCACACG 1460 TGAACAGTAATGGGGAGCTGTACCATGAGCAGTGTT
    AAACA
    LOX NM_002317 1461 CCAATGGGAGAAC 1462 CGCTGAGGCTGGTAC 1463 CAGGCTCAGCAAGC 1464 CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCT
    TGAACA
    LRP1 NM_002332 1465 TTTGGCCCAATGGGC 1466 GTCTCGATGCGGTCGT 1467 TCCCGGCTGGGCGC 1468 TTTGGCCCAATGGGCTAAGCCTGGACATCCCGGCTGGGC
    TAAG AGAAG CTCTACT GCCTCTACTGGGTGGATGCCTTCTACGACCGCAT
    LTBP2 NM_000428 1469 GCACACCCATCCT 1470 GATGGCTGGCCACGT 1471 CTTTGCAGCCCTCA 1472 GCACACCCATCCTTGAGTCTCCTTTGCAGCCCTCAGA
    GAACTC
    LUM NM_002345 1473 GGCTCTTTTGAAGGA 1474 AAAAGCAGCTGAAACA 1475 CCTGACCTTCATCC 1476 GGCTCTTTTGAAGGATTGGTAAACCTGACCTTCATCCAT
    TTGGTAA GCATC ATCTCCAGCA CTCCAGCACAATCGGCTGAAAGAGGATGCTGTTT
    MAGEA4 NM_002362 1477 GCATCTAACAGCC 1478 CAGAGTGAAGAATGG 1479 CAGCTTCCCTTGCC 1480 GCATCTAACAGCCCTGTGCAGCAGCTTCCCTTGCCTC
    TCGTGT
    MANF NM_006010 1481 CAGATGTGAAGCC 1482 AAGGGAATCCCCTCA 1483 TTCCTGATGATGCT 1484 CAGATGTGAAGCCTGGAGCTTTCCTGATGATGCTGG
    GGCCCT
    MAOA NM_000240 1485 GTGTCAGCCAAAG 1486 CGACTACGTCGAACA 1487 CCGCGATACTCGCC 1488 GTGTCAGCCAAAGCATGGAGAATCAAGAGAAGGCGA
    TTCTCT
    MAP3K5 NM_005923 1489 AGGACCAAGAGGC 1490 CCTGTGGCCATTTCA 1491 CAGCCCAGAGACCA 1492 AGGACCAAGAGGCTACGGAAAAGCAGCAGACATCTG
    GATGTC
    MAP3K7 NM_145333 1493 CAGGCAAGAACTAGT 1494 CCTGTACCAGGCGAGA 1495 TGCTGGTCCTTTTC 1496 CAGGCAAGAACTAGTTGCAGAACTGGACCAGGATGAAAA
    TGCAGAA TGTAT ATCCTGGTCC GGACCAGCAAAATACATCTCGCCTGGTACAGG
    MAP4K4 NM_004834 1497 TCGCCGAGATTTC 1498 CTGTTGTCTCCGAAG 1499 AACGTTCCTTGTTC 1500 TCGCCGAGATTTCCTGAGACTGCAGCAGGAGAACAA
    TCCTGC
    MAP7 NM_003980 1501 GAGGAACAGAGGT 1502 CTGCCAACTGGCTTTC 1503 CATGTACAACAAAC 1504 GAGGAACAGAGGTGTCTGCACTTCCATGTACAACAA
    GCTCCG
    MAPKAPK3 NM_004635 1505 AAGCTGCAGAGATAA 1506 GTGGGCAATGTTATGG 1507 ATTGGCACTGCCAT 1508 AAGCTGCAGAGATAATGCGGGATATTGGCACTGCCATCC
    TGCGG CTG CCAGTTTCTG AGTTTCTGCACAGCCATAACATTGCCCAC
    MCM2 NM_004526 1509 GACTTTTGCCCGCTA 1510 GCCACTAACTGCTTCA 1511 ACAGCTCATTGTTG 1512 GACTTTTGCCCGCTACCTTTCATTCCGCGTGACAACAAT
    CCTTTC GTATGAAGAG TCACGCCGGA GAGCTGTTGCTCTTCATACTGAAGCAGTTAGTGG
    MCM3 NM_002388 1513 GGAGAACAATCCC 1514 ATCTCCTGGATGGTG 1515 TGGCCTTTCTGTCT 1516 GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTC
    ACAAGG
    MCM6 NM_005915 1517 TGATGGTCCTATGTG 1518 TGGGACAGGAAACACA 1519 CAGGTTTCATACCA 1520 TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATAC
    TCACATTCA CCAA ACACAGGCTTCAGC CAACACAGGCTTCAGCACTTCCTTTGGTGTGTTTC
    MDK NM_002391 1521 GGAGCCGACGTGCA 1522 GACTTTGGTGCCTGT 1523 ATCACACGCACCCC 1524 GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGT
    AGTTCT
    MDM2 NM_002392 1525 CTACAGGGACGCC 1526 ATCCAACCAATCACC 1527 CTTACACCAGCATC 1528 CTACAGGGACGCCATCGAATCCGGATCTTGATGCTG
    AAGATC
    MELK NM_014791 1529 AGGATCGCCTGTC 1530 TGCACATAAGCAACA 1531 CCCGGGTTGTCTTC 1532 AGGATCGCCTGTCAGAAGAGGAGACCCGGGTTGTCT
    CGTCAG
    MET NM_000245 1533 GACATTTCCAGTCCT 1534 CTCCGATCGCACACAT 1535 TGCCTCTCTGCCCC 1536 GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCAC
    GCAGTCA TTGT ACCCTTTGT CCTTTGTTCAGTGTGGCTGGTGCCACGACAAATGT
    MGMT NM_002412 1537 GTGAAATGAAACG 1538 GACCCTGCTCACAAC 1539 CAGCCCTTTGGGGA 1540 GTGAAATGAAACGCACCACACTGGACAGCCCTTTGG
    AGCTGG
    MGST1 NM_020300 1541 ACGGATCTACCACAC 1542 TCCATATCCAACAAAA 1543 TTTGACACCCCTTC 1544 ACGGATCTACCACACCATTGCATATTTGACACCCCTTCC
    CATTGC AAACTCAAAG CCCAGCCA CCAGCCAAATAGAGCTTTGAGTTTTTTTGTTGGAT
    MICA NM_000247 1545 ATGGTGAATGTCA 1546 AAGCCAGAAGCCCTG 1547 CGAGGCCTCAGAGG 1548 ATGGTGAATGTCACCCGCAGCGAGGCCTCAGAGGGC
    GCAAC
    MKI67 NM_002417 1549 GATTGCACCAGGG 1550 TCCAAAGTGCCTCTG 1551 CCACTCTTCCTTGA 1552 GATTGCACCAGGGCAGAACAGGGGAGGGTGTTCAAG
    ACACCC
    MLXIP NM_014938 1553 TGCTTAGCTGGCA 1554 CAGCCTACTCTCCAT 1555 CATGAGATGCCAGG 1556 TGCTTAGCTGGCATGTGGCCGCATGAGATGCCAGGA
    AGACCC
    MMP11 NM_005940 1557 CCTGGAGGCTGCAAC 1558 TACAATGGCTTTGGAG 1559 ATCCTCCTGAAGCC 1560 CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCCG
    ATACC GATAGCA CTTTTCGCAGC GATCCTCCTGAAGCCCTTTTCGCAGCACTGCTAT
    MMP2 NM_004530 1561 CAGCCAGAAGCGG 1562 AGACACCATCACCTG 1563 AAGTCCGAATCTCT 1564 CAGCCAGAAGCGGAAACCTTAAAAAGTCCGATCTCT
    GCTCCC
    MMP7 NM_002423 1565 GGATGGTAGCAGTCT 1566 GGAATGTCCCATACCC 1567 CCTGTATGCTGCAA 1568 GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTGC
    AGGGATTAACT AAAGAA CTCATGAACTTGGC AACTCATGAACTTGGCCATTCTTTGGGTATGGGAC
    MMP9 NM_004994 1569 GAGAACCAATCTC 1570 CACCCGAGTGTAACC 1571 ACAGGTATTCCTCT 1572 GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGA
    GCCAGC
    MPPED2 NM_001584 1573 CCGACCAACCCTC 1574 AGGGCATTTAGAGCT 1575 ATTTGACCTTCCAA 1576 CCGACCAACCCTCCAATTATATTTGACCTTCCAAACC
    ACCCAC
    MRC1 NM_002438 1577 CTTGACCTCAGGA 1578 GGACTGCGGTCACTC 1579 CCAACCGCTGTTGA 1580 CTTGACCTCAGGACTCTGGATTGGACTTAACAGTCTG
    AGCTCA
    MRPL13 NM_014078 1581 TCCGGTTCCCTTCG 1582 GTGGAAAAACTGCGG 1583 CGGCTGGAAATTAT 1584 TCCGGTTCCCTTCGTTTAGGTCGGCTGGAAATTATGT
    GTCCTC
    MSH2 NM_000251 1585 GATGCAGAATTGA 1586 TCTTGGCAAGTCGGT 1587 CAAGAAGATTTACT 1588 GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTA
    TCGTCG
    MSH3 NM_002439 1589 TGATTACCATCATGG 1590 CTTGTGAAAATGCCAT 1591 TCCCAATTGTCGCT 1592 TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTG
    CTCAGA CCAC TCTTCTGCAG CAGAAGAAGCGACAATTGGGATTGTGGATGGCAT
    MSH6 NM_000179 1593 TCTATTGGGGGAT 1594 CAAATTGCGAGTGGT 1595 CCGTTACCAGCTGG 1596 TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGG
    AAATTC
    MTA1 NM_004689 1597 CCGCCCTCACCTGAA 1598 GGAATAAGTTAGCCGC 1599 CCCAGTGTCCGCCA 1600 CCGCCCTCACCTGCAGAGAAACGCGCTCCTTGGCGGACA
    GAGA GCTTCT AGGAGCG CTGGGGGAGGAGAGGAAGAAGCGCGGCTAACTT
    MTPN NM_145808 1601 GGTGGAAGGAAAC 1602 CAGCAGCAGAAATTC 1603 AAGCTGCCCACAAT 1604 GGTGGAAGGAAACCTCTTCATTATGCAGCAGATTGT
    CTGCTG
    MTSS1 NM_014751 1605 TTCGACAAGTCCT 1606 CTTGGAACATCCGTC 1607 CCAAGAAACAGCGA 1608 TTCGACAAGTCCTCCACCATTCCAAGAAACAGCGAC
    CATCA
    MUC1 NM_002456 1609 GGCCAGGATCTGTGG 1610 CTCCACGTCGTGGACA 1611 CTCTGGCCTTCCGA 1612 GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCC
    TGGTA TTGA GAAGGTACC GAGAAGGTACCATCAATGTCCACGACGTGGAG
    MVP NM_017458 1613 ACGAGAACGAGGGCA 1614 GCATGTAGGTGCTTCC 1615 CGCACCTTTCCGGT 1616 ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACCG
    TCTATGT AATCAC CTTGACATCCT GAAAGGTGCGCGCTGTGATTGGAAGCACCTACA
    MYBL2 NM_002466 1617 GCCGAGATCGCCAAG 1618 CTTTTGATGGTAGAGT 1619 CAGCATTGTCTGTC 1620 GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAAT
    ATG TCCAGTGATTC CTCCCTGGCA GCTGTGAAGAATCACTGGAACTCTACCATCAAA
    MYBPC1 NM_002465 1621 CAGCAACCAGGGA 1622 CAGCAGTAAGTGCCT 1623 AAATTCGCAAGCCC 1624 CAGCAACCAGGGAGTCTGTACCCTGGAAATTCGCAA
    AGCCCC
    MYC NM_002467 1625 TCCCTCCACTCGGAA 1626 CGGTTGTTGCTGATCT 1627 TCTGACACTGTCCA 1628 TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGGT
    GGACTA GTCTCA ACTTGACCCTCTT CAAGTTGGACAGTGTCAGAGTCCTGAGACAGAT
    MYLK3 NM_182493 1629 CACCTGACTGAGCTG 1630 GATGTAGTGCTGGTGC 1631 CACACCCTCACAGA 1632 CACCTGACTGAGCTGGATGTGGTCCTGTTCACCAGGCAG
    GATGT AGGT TCTGCCTGGT ATCTGTGAGGGTGTGCATTACCTGCACCAGCACT
    MYO6 NM_004999 1633 AAGCAGTTCTGGA 1634 GATGAGCTCGGCTTC 1635 CAATCCTCAGGGCC 1636 AAGCAGTTCTGGAGCAGGAGCGCAGGGACCGGGAGC
    AGCTCC
    NCAM1 NM_000615 1637 TAGTTCCCAGCTG 1638 CAGCCTTGTTCTCAGC 1639 CTCAGCCTCGTCGT 1640 TAGTTCCCAGCTGACCATCAAAAAGGTGGATAAGAA
    TCTTAT
    NCAPD3 NM_015261 1641 TCGTTGCTTAGAC 1642 CTCCAGACAGTGTGC 1643 CTACTGTCCGCAGC 1644 TCGTTGCTTAGACAAGGCGCCTACTGTCCGCAGCAA
    AAGGCA
    NCOR1 NM_006311 1645 AACCGTTACAGCC 1646 TCTGGAGAGACCCTT 1647 CCAGGCTCAGTCTG 1648 AACCGTTACAGCCCAGAATCCCAGGCTCAGTCTGTCC
    TCCATC
    NCOR2 NM_006312 1649 CGTCATCTACGAA 1650 GAGCACTGGGTCACA 1651 CCTCATAGGACAAG 1652 CGTCATCTACGAAGGCAAGAAGGGCCACGTCTTGTC
    ACGTGG
    NDRG1 NM_006096 1653 AGGGCAACATTCC 1654 CAGTGCTCCTACTCC 1655 CTGCAAGGACACTC 1656 AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAG
    ATCACA
    NDUFS5 NM_004552 1657 AGAAGAGTCAAGG 1658 AGGCCGAACCTTTTC 1659 TGTCCAAGAAAGGC 1660 AGAAGAGTCAAGGGCACGAGCATCGGGTAGCCATGC
    ATGGCT
    NEK2 NM_002497 1661 GTGAGGCAGCGCGAC 1662 TGCCAATGGTGTACAA 1663 TGCCTTCCCGGGCT 1664 GTGAGGCAGCGCGACTCTGGCGACTGGCCGGCCATGCCT
    TCT CACTTCA GAGGACT TCCCGGGCTGAGGACTATGAAGTGTTGTACACC
    NETO2 NM_018092 1665 CCAGGGCACCATA 1666 AACGGTAAATCAAGG 1667 AGCCAACCCTTTTC 1668 CCAGGGCACCATACTGTTTCCAGCAGCCAACCCTTTT
    TCCCAT
    NEXN NM_144573 1669 AGGAGGAGGAAGA 1670 GAGCTCCTGATCTGG 1671 TCATCTTCAGCAGT 1672 AGGAGGAGGAAGAAGGTAGCATCATGAATGGCTCCA
    GGAGCC
    NFAT5 NM_006599 1673 CTGAACCCCTCTC 1674 AGGAAACGATGGCGA 1675 CGAGAATCAGTCCC 1676 CTGAACCCCTCTCCTGGTCACCGAGAATCAGTCCCCG
    CGTGGA
    NFATC2 NM_173091 1677 CAGTCAAGGTCAG 1678 CTTTGGCTCGTGGCAT 1679 CGGGTTCCTACCCC 1680 CAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTACCC
    ACAGTC
    NFKB1 NM_003998 1681 CAGACCAAGGAGA 1682 AGCTGCCAGTGCTAT 1683 AAGCTGTAAACATG 1684 CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTC
    AGCCGC
    NFKBIA NM_020529 1685 C TACTGGACGACC 1686 CCTTGACCATCTGCTC 1687 CTCGTCTTTCATGG 1688 CTACTGGACGACCGCCACGACAGCGGCCTGGACTCC
    AGTCCA
    NME1 NM_000269 1689 CCAACCCTGCAGACT 1690 ATGTATAATGTTCCTG 1691 CCTGGGACCATCCG 1692 CCAACCCTGCAGACTCCAAGCCTGGGACCATCCGTGGAG
    CCAA CCAACTTGTATG TGGAGACTTCT ACTTCTGCATACAAGTTGGCAGGAACATTATAC
    NNMT NM_006169 1693 CCTAGGGCAGGGA 1694 CTAGTCCAGCCAAAC 1695 CCCTCTCCTCATGC 1696 CCTAGGGCAGGGATGGAGAGAGAGTCTGGGCATGAG
    CCAGAC
    NOS3 NM_000603 1697 ATCTCCGCCTCGC 1698 TCGGAGCCATACAGG 1699 TTCACTCGCTTCGC 1700 ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAG
    CATCAC
    NOX4 NM_016931 1701 CCTCAACTGCAGCCT 1702 TGCTTGGAACCTTCTG 1703 CCGAACACTCTTGG 1704 CCTCAACTGCAGCCTTATCCTTTTACCCATGTGCCGAAC
    TATCC TGAT CTTACCTCCG ACTCTTGGCTTACCTCCGAGGATCACAGAAGGTTC
    NPBWR1 NM_005285 1705 TCACCAACCTGTT 1706 GATGTTGATGGGCAG 1707 ATCGCCGACGAGCT 1708 TCACCAACCTGTTCATCCTCAACCTGGCCATCGCCGA
    CTTCAC
    NPM1 NM_002520 1709 AATGTTGTCCAGGTT 1710 CAAGCAAAGGGTGGAG 1711 AACAGGCATTTTGG 1712 AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCA
    CTATTGC TTC ACAACACATTCTTG AAATGCCTGTTTAGTTTTTAAAGATGGAACTCCAC
    NRG1 NM_013957 1713 CGAGACTCTCCTCAT
    AGTGAAAGGTA 1714 CTTGGCGTGTGGAAAT 1715 ATGACCACCCCGGC 1716 CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATG
    CTACAG TCGTATGTCA ACCACCCCGGCTCGTATGTCACCTGTAGATTTCC
    NRIP3 NM_020645 1717 CCCACAAGCATGA 1718 TGCTCAATCTGGCCC 1719 AGCTTTCTCTACCC 1720 CCCACAAGCATGAAGGAGAAAAGCTTTCTCTACCCC
    CGGCAT
    NRP1 NM_003873 1721 CAGCTCTCTCCACGC 1722 CCCAGCAGCTCCATTC 1723 CAGGATCTACCCCG 1724 CAGCTCTCTCCACGCGATTCATCAGGATCTACCCCGAGA
    GATTC TGA AGAGAGCCACTCAT GAGCCACTCATGGCGGACTGGGGCTCAGAATGGA
    NUP62 NM_153719 1725 AGCCTCTTTGCGTCA 1726 CTGTGGTCACAGGGGT 1727 TCATCTGCCACCAC 1728 AGCCTCTTTGCGTCAATAGCAACTGCTCCAACCTCATCT
    ATAGC ACAG TGGACTCTCC GCCACCACTGGACTCTCCCTCTGTACCCCTGTGAC
    OAZ1 NM_004152 1729 AGCAAGGACAGCT 1730 GAAGACATGGTCGGC 1731 CTGCTCCTCAGCGA 1732 AGCAAGGACAGCTTTGCAGTTCTCCTGGAGTTCGCTG
    ACTCCA
    OCLN NM_002538 1733 CCCTCCCATCCGA 1734 GACGCGGGAGTGTAG 1735 CTCCTCCCTCGGTG 1736 CCCTCCCATCCGAGTTTCAGGTGAATTGGTCACCGAG
    ACCAAT
    ODC1 NM_002539 1737 AGAGATCACCGGCGT 1738 CGGGCTCAGCTATGAT 1739 CCAGCGTTGGACAA 1740 AGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAATA
    AATCAA TCTCA ATACTTTCCGTCA CTTTCCGTCAGACTCTGGAGTGAGAATCATAGCT
    OLFML2 NM_015441 1741 CATGTTGGAAGGA 1742 CACCAGTTTGGTGGT 1743 TGGCCTGGATCTCC 1744 CATGTTGGAAGGAGCGTTCTATGGCCTGGATCTCCTG
    TGAAGC
    OLFML3 NM_020190 1745 TCAGAACTGAGGC 1746 CCAGATAGTCTACCT 1747 CAGACGATCCACTC 1748 TCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGG
    TCCCGG
    OMD NM_005014 1749 CGCAAACTCAAGACT 1750 CAGTCACAGCCTCAAT 1751 TCCGATGCACATTC 1752 CGCAAACTCAAGACTATCCCAAATATTCCGATGCACATT
    ATCCCA TTCATT AGCAACTCTACC CAGCAACTCTACCTTCAGTTCAATGAAATTGAGG
    OR51E1 NM_152430 1753 GCATGCTTTCAGG 1754 AGAAGATGGCCAGCA 1755 TCCTCATCTCCACC 1756 GCATGCTTTCAGGCATTGACATCCTCATCTCCACCTC
    TCATCC
    OR51E2 NM_030774 1757 TATGGTGCCAAAA 1758 GTCCTTGTCACAGCT 1759 ACATAGCCAGCACC 1760 TATGGTGCCAAAACCAAACAGATCAGAACACGGGTG
    CGTGTT
    OSM NM_020530 1761 GTTTCTGAAGGGG 1762 AGGTGTCTGGTTTGG 1763 CTGAGCTGGCCTCC 1764 GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTC
    TATGCC
    PAGE1 NM_003785 1765 CAACCTGACGAAGTG 1766 CAGATGCTCCCTCATC 1767 CCAACTCAAAGTCA 1768 CAACCTGACGAAGTGGAATCACCAACTCAAAGTCAGGAT
    GAATC CTCT GGATTCTACACCTG TCTACACCTGCTGAAGAGAGAGAGGATGAGGGA
    C
    PAGE4 NM_007003 1769 GAATCTCAGCAAGAG 1770 GTTCTTCGATCGGAGG 1771 CCAACTGACAATCA 1772 GAATCTCAGCAAGAGGAACCACCAACTGACAATCAGGAT
    GAACCA TGTT GGATATTGAACCTG ATTGAACCTGGACAAGAGAGAGAAGGAACACCT
    G
    PAK6 NM_020168 1773 CCTCCAGGTCACC 1774 GTCCCTTCAGGCCAG 1775 AGTTTCAGGAAGGC 1776 CCTCCAGGTCACCCACAGCCAGTTTCAGGAAGGCTG
    TGCCCC
    PATE1 NM_138294 1777 TGGTAATCCCTGG 1778 TCCACCTTATGCCTTT 1779 CAGCACAGTTCTTT 1780 TGGTAATCCCTGGTTAACCTTCATGGGCTGCCTAAAG
    AGGCAG
    PAC3 NM_015342 1781 CGTGATTGTCAGG 1782 AGAAAGGGGAGATGC 1783 CTGAGATGCTCCCT 1784 CGTGATTGTCAGGAGCAAGACCTGAGATGCTCCCTG
    GCCTTC
    PCDHGB NM_018927 1785 CCCAGCGTTGAAG 1786 GAAACGCCAGTCCGT 1787 ATTCTTAAACAGCA 1788 CCCAGCGTTGAAGCAGATAAGAAGATTCTTAAACAG
    AGCCCC
    PCNA NM_002592 1789 GAAGGTGTTGGAG 1790 GGTTTACACCGCTGG 1791 ATCCCAGCAGGCCT 1792 GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGA
    CGTTGA
    PDE9A NM_001001570 1793 TTCCACAACTTCCGG 1794 AGACTGCAGAGCCAGA 1795 TACATCATCTGGGC 1796 TTCCACAACTTCCGGCACTGCTTCTGCGTGGCCCAGATG
    CAC CCA CACGCAGAAG ATGTACAGCATGGTCTGGCTCTGCAGTCT
    PDGFRB NM_002609 1797 CCAGCTCTCCTTCC 1798 GGGTGGCTCTCACTT 1799 ATCAATGTCCCTGT 1800 CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTC
    CCGAGT
    PECAM1 NM_000442 1801 TGTATTTCAAGACCT 1802 TTAGCCTGAGGAATTG 1803 TTTATGAACCTGCC 1804 TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGC
    CTGTGCACTT CTGTGTT CTGCTCCCACA CCTGCTCCCACAGAACACAGCAATTCCTCAGGCT
    PEX10 NM_153818 1805 GGAGAAGTTCCCTCC 1806 ATCTGTGTCCAGGCCC 1807 CTACCTTCGGCACT 1808 GGAGAAGTTCCCTCCCCAGAAGCTCATCTACCTTCGGCA
    CCAG AC ACCGCTGAGC CTACCGCTGAGCCGGCGCCCGGGTGGGCCTGGAC
    PGD NM_002631 1809 ATTCCCATGCCCT 1810 CTGGCTGGAAGCATC 1811 ACTGCCCTCTCCTT 1812 ATTCCCATGCCCTGTTTTACCACTGCCCTCTCCTTCT
    CTATGA
    PGF NM_002632 1813 GTGGTTTTCCCTCG 1814 AGCAAGGGAACAGCC 1815 ATCTTCTCAGACGT 1816 GTGGTTTTCCCTCGGAGCCCCCTGGCTCGGGACGTCT
    CCCGAG
    PGK1 NM_000291 1817 AGAGCCAGTTGCTGT 1818 CTGGGCCTACACAGTC 1819 TCTCTGCTGGGCAA 1820 AGAGCCAGTTGCTGTAGAACTCAAATCTCTGCTGGGCAA
    AGAACTCAA CTTCA GGATGTTCTGTTC GGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCA
    PGR NM_000926 1821 GATAAAGGAGCCG 1822 TCACAAGTCCGGCAC 1823 TAAATTGCCGTCGC 1824 GATAAAGGAGCCGCGTGTCACTAAATTGCCGTCGCA
    AGCCGC
    PHTF2 NM_020432 1825 GATATGGCTGATG 1826 GGTTTGGGTGTTCTTG 1827 ACAATCTGGCAATG 1828 GATATGGCTGATGCTGCTCCTGGGAACTGTGCATTGC
    CACAGT
    PIK3C2A NM_002645 1829 ATACCAATCACCGCA 1830 CACACTAGCATTTCTC 1831 TGTGCTGTGACTGG 1832 ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGTC
    CAAACC CGCATA ACTTAACAAATAGC CAGTCACAGCACAAAGAAACATATGCGGAGAAAA
    CT
    PIK3CA NM_006218 1833 GTGATTGAAGAGC 1834 GTCCTGCGTGGGAAT 1835 TCCTGCTTCTCGGG 1836 GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGA
    ATACAG
    PIK3CG NM_002649 1837 GGAGAACTCAATG 1838 TGATGCTTAGGCAGG 1839 TTCTGGACAATTAC 1840 GGAGAACTCAATGTCCATCTCCATTCTTCTGGACAAT
    TGCCAC
    PIM1 NM_002648 1841 CTGCTCAAGGACA 1842 GGATCCACTCTGGAG 1843 TACACTCGGGTCCC 1844 CTGCTCAAGGACACCGTCTACACGGACTTCGATGGG
    ATCGAA
    PLA2G7 NM_005084 1845 CCTGGCTGTGGTT 1846 TGACCCATGCTGATG 1847 TGGCAATACATAAA 1848 CCTGGCTGTGGTTTATCCTTTTGACTGGCAATACATA
    TCCTGT
    PLAU NM_002658 1849 GTGGATGTGCCCT 1850 CTGCGGATCCAGGGT 1851 AAGCCAGGCGTCTA 1852 GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACA
    CACGAG
    PLAUR NM_002659 1853 CCCATGGATGCTC 1854 CCGGTGGCTACCAGA 1855 CATTGACTGCCGAG 1856 CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGA
    GCCCCA
    PLG NM_000301 1857 GGCAAAATTTCCA 1858 ATGTATCCATGAGCG 1859 TGCCAGGCCTGGGA 1860 GGCAAAATTTCCAAGACCATGTCTGGACTGGAATGC
    CTCTCA
    PLK1 NM_005030 1861 AATGAATACAGTATT 1862 TGTCTGAAGCATCTTC 1863 AACCCCGTGGCCGC 1864 AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGCC
    CCCAAGCACAT TGGATGA CTCC GCCTCCCTCATCCAGAAGATGCTTCAGACA
    PLOD2 NM_000935 1865 CAGGGAGGTGGTTGC 1866 TCTCCCAGGATGCATG 1867 TCCAGCCTTTTCGT 1868 CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTCT
    AAAT AAG GGTGACTCAA ATTGAGTCACCACGAAAAGGCTGGAGCTTCATG
    PLP2 NM_002668 1869 CCTGATCTGCTTCA 1870 GCAGCAAGGATCATC 1871 ACACCAGGCTACTC 1872 CCTGATCTGCTTCAGTGCCTCCACACCAGGCTACTCC
    CTCCCT
    PNLIPRP NM_005396 1873 TGGAGAAGGTGAA 1874 CACGGCTTGGGTGTA 1875 ACCCGTGCCTCCAG 1876 TGGAGAAGGTGAACTGCATCTGTGTGGACTGGAGGC
    TCCACA
    POSTN NM_006475 1877 GTGGCCCAATTAG 1878 TCACAGGTGCCAGCA 1879 TTCTCCATCTGGCC 1880 GTGGCCCAATTAGGCTTGGCATCTGCTCTGAGGCCA
    TCAGAG
    PPAP2B NM_003713 1881 ACAAGCACCATCC 1882 CACGAAGAAAACTAT 1883 ACCAGGGCTCCTTG 1884 ACAAGCACCATCCCAGTGATGTTCTGGCAGGATTTGC
    AGCAAA
    PPFIA3 NM_003660 1885 CCTGGAGCTCCGT 1886 AGCCACATAGGGATC 1887 CACCCACTTTACCT 1888 CCTGGAGCTCCGTTACTCTCAGGCACCCACTTTACCT
    TCTGGT
    PP1R12A NM_002480 1889 CGGCAAGGGGTTGAT 1890 TGCCTGGCATCTCTAA 1891 CCGTTCTTCTTCCT 1892 CGGCAAGGGGTTGATATAGAAGCAGCTCGAAAGGAAGAA
    ATAGA GCA TTCGAGCTGC GAACGGATCATGCTTAGAGATGCCAGGCA
    PPP3CA NM_000944 1893 ATACTCCGAGCCC 1894 GGAAGCCTGTTGTTT 1895 TACATGCGGTACCC 1896 ATACTCCGAGCCCACGAAGCCCAAGATGCAGGGTAC
    TGCATC
    PRIMA1 NM_178013 1897 ATCCTCTTCCCTGA 1898 CCCAGCTGAGAGGGA 1899 TGACGCATCCAGGG 1900 ATCCTCTTCCCTGAGCCGCTGACGCATCCAGGGCTCT
    CTCTAG
    PRKAR1 NM_002735 1901 ACAAAACCATGAC 1902 TGTCATCCAGGTGAG 1903 AAGGCCATCTCCAA 1904 ACAAAACCATGACTGCGCTGGCCAAGGCCATCTCCA
    GAACGT
    PRKAR2B NM_002736 1905 TGATAATCGTGGGAG 1906 GCACCAGGAGAGGTAG 1907 CGAACTGGCCTTAA 1908 TGATAATCGTGGGAGTTTCGGCGAACTGGCCTTAATGTA
    TTTCG CAGT TGTACAATACACCC CAATACACCCAGAGCAGCTACAATCACTGCTAC
    A
    PRKCA NM_002737 1909 CAAGCAATGCGTC 1910 GTAAATCCGCCCCCT 1911 CAGCCTCTGCGGAA 1912 CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGG
    TGGATC
    PRKCB NM_002738 1913 GACCCAGCTCCAC 1914 CCCATTCACGTACTCC 1915 CCAGACCATGGGAC 1916 GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGC
    CGCCTGT
    PROM1 NM_006017 1917 CTATGACAGGCAT 1918 CTCCAACCATGAGGA 1919 ACCCGAGGCTGTGT 1920 CTATGACAGGCATGCCACCCCGACCACCCGAGGCTG
    CTCCAA
    PROS1 NM_000313 1921 GCAGCACAGGAAT 1922 CCCACCTATCCAACCT 1923 CTCATCCTGACAGA 1924 GCAGCACAGGAATCTTCTTCTTGGCAGCTGCAGTCTG
    CTGCAG
    PSCA NM_005672 1925 ACCGTCATCAGCAAA 1926 CGTGATGTTCTTCTTG 1927 CCTGTGAGTCATCC 1928 ACCGTCATCAGCAAAGGCTGCAGCTTGAACTGCGTGGAT
    GGCT CCC ACGCAGTTCA GACTCACAGGACTACTACGTGGGCAAGAAGAAC
    PSMD13 NM_002817 1929 GGAGGAGCTCTACAC 1930 CGGATCCTGCACAAAA 1931 CCTGAAGTGTCAGC 1932 GGAGGAGCTCTACACGAAGAAGTTGTGGCATCAGCTGAC
    GAAGAAG TCA TGATGCCACA ACTTCAGGTGCTTGATTTTGTGCAGGATCCG
    PTCH1 NM_000264 1933 CCACGACAAAGCC 1934 TACTCGATGGGCTCT 1935 CCTGAAACAAGGCT 1936 CCACGACAAAGCCGACTACATGCCTGAAACAAGGCT
    GAGAAT
    PTEN NM_000314 1937 TGGCTAAGTGAAGAT 1938 TGCACATATCATTAC 1939 CCTTTCCAGCTTTA 1940 TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCAC
    GACAATCATG ACCAGTTCGT CAGTGAATTGCTGC TGTAAAGCTGGAAAGGGACGAACTGGTGTAATG
    A
    PTGER3 NM_000957 1941 TAACTGGGGCAAC 1942 TTGCAGGAAAAGGTG 1943 CCTTTGCCTTCCTG 1944 TAACTGGGGCAACTTTTCTTCGCCTCTGCCTTTGCC
    GGGCTC
    PTGS2 NM_000963 1945 GAATCATTCACCAGG 1946 CTGTACTGCGGGTGGA 1947 CCTACCACCAGCAA 1948 GAATCATTCACCAGGCAAATTGCTGGCAGGGTTGCTGGT
    CAAATTG ACAT CCCTGCCA GGTAGGAATGTTCCACCCGCAGTACAG
    PTH1R NM_000316 1949 CGAGGTACAAGCTGA 1950 GCGTGCCTTTCGCTTG 1951 CCAGTGCCAGTGTC 1952 CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCTG
    GATCAAGAA AA CAGCGGCT GACACTGGCACTGGACTTCAAGCGAAAGGCACG
    PTHLH NM_002820 1953 AGTGACTGGGAGTGG 1954 AAGCCTGTTACCGTGA 1955 TGACACCTCCACAA 1956 AGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTCTGA
    GCTAGAA ATCGA CGTCGCTGGA CACCTCCACAACGTCGCTGGAGCTCGATTCACG
    PTK2 NM_005607 1957 GACCGGTCGAATG 1958 CTGGACATCTCGATG 1959 ACCAGGCCCGTCAC 1960 GACCGGTCGAATGATAAGGTGTACGAGAATGTGACG
    ATTCTC
    PTK2B NM_004103 1961 CAAGCCCAGCCGA 1962 GAACCTGGAACTGCA 1963 CTCCGCAAACCAAC 1964 CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCA
    CTCCTG
    PTK6 NM_005975 1965 GTGCAGGAAAGGTTC 1966 GCACACACGATGGAGT 1967 AGTGTCTGCGTCCA 1968 GTGCAGGAAAGGTTCACAAATGTGGAGTGTCTGCGTCCA
    ACAAA AAGG ATACACGCGT ATACACGCGTGTGCTCCTCTCCTTACTCCATCGT
    PTK7 NM_002821 1969 TCAGAGGACTCAC 1970 CATACACCTCCACGC 1971 CGCAAGGTCCCATT 1972 TCAGAGGACTCACGGTTCGAGGTCTTCAAGAATGGG
    CTTGAA
    PTPN1 NM_002827 1973 AATGAGGAAGTTT 1974 CTTCGATCACAGCCA 1975 CTGATCCAGACAGC 1976 AATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGC
    CGACCA
    PTPRK NM_002844 1977 TCAAACCCTCCCA 1978 AGCAGCCAGTTCGTC 1979 CCCCATCGTTGTAC 1980 TCAAACCCTCCCAGTGCTGGCCCCATCGTTGTACATT
    ATTGCA
    PTTG1 NM_004219 1981 GGCTACTCTGATCTA 1982 GCTTCAGCCCATCCTT 1983 CACACGGGTGCCTG 1984 GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAACC
    TGTTGATAAGG AGCA GTTCTCCA AGGCACCCGTGTGGTTGCTAAGGATGGGCTGAA
    PYCARD NM_013258 1985 CTTTATAGACCAG 1986 AGCATCCAGCAGCCA 1987 ACGTTTGTGACCCT 1988 CTTTATAGACCAGCACCGGGCTGCGCTTATCGGCGAG
    CGCGAT
    RAB27A NM_004580 1989 TGAGAGATTAATG 1990 CCGGATGCTTTATTCG 1991 ACAAATTGCTTCTC 1992 TGAGAGATTAATGGGCATTGTGTACAAATTGCTTCTC
    ACCATC
    RAB30 NM_014488 1993 TAAAGGCTGAGGC 1994 CTCCCCAGCATCTCAT 1995 CCATCAGGGCAGTT 1996 TAAAGGCTGAGGCACGGAGAAGAAAAGGAATCAGCA
    GCTGAT
    RAB31 NM_006868 1997 CTGAAGGACCCTA 1998 ATGCAAAGCCAGTGT 1999 CTTCTCAAAGTGAG 2000 CTGAAGGACCCTACGCTCGGTGGCCTGGCACCTCAC
    GTGCCA
    RAD21 NM_006265 2001 TAGGGATGGTATCTG 2002 TCGCGTACACCTCTGC 2003 CACTTAAAACGAAT 2004 TAGGGATGGTATCTGAAACAACAATGGTCACCCTCTTGA
    AAACAACA TC CTCAAGAGGGTGAC GATTCGTTTTAAGTGTAATTCCATAATGAGCAGAG
    CA
    RAD51 NM_002875 2005 AGACTACTCGGGT 2006 AGCATCCGCAGAAAC 2007 CTTTCAGCCAGGCA 2008 AGACTACTCGGGTCGAGGTGAGCTTTCAGCCAGGCA
    GATGCA
    RAD9A NM_004584 2009 GCCATCTTCACCA 2010 CGGTGTCTGAGAGTG 2011 CTTTGCTGGACGGC 2012 GCCATCTTCACCATCAAGGACTCTTTGCTGGACGGCC
    CACTTT
    RAF1 NM_002880 2013 CGTCGTATGCGAG 2014 TGAAGGCGTGAGGTG 2015 TCCAGGATGCCTGT 2016 CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTA
    TAGTTC
    RAGE NM_014226 2017 ATTAGGGGGACTTT 2018 GGGTGGAGATGTATT 2019 CCGGAGTGTCTATT 2020 ATTAGGGGACTTTGGCTCCTGCCGGAGTGTCTATTCC
    CCAAGC
    RALA NM_005402 2021 TGGTCCTGAATGT 2022 CCCCATTTCACCTCTT 2023 TTGTGTTTCTTGGG 2024 TGGTCCTGAATGTAGCGTGTAAGCTTGTGTTTCTTGG
    CAGTCT
    RALBP1 NM_006788 2025 GGTGTCAGATATAAA 2026 TTCGATATTGCCAGCA 2027 TGCTGTCCTGTCGG 2028 GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCC
    TGTGCAAATGC GCTATAAA TCTCAGTACGTTCA TGTCGGTCTCAGTACGTTCACTTTATAGCTGCTGG
    RAP1B NM_001010942 2029 TGACAGCGTGAGAGG 2030 CTGAGCCAAGAACGAC 2031 CACGCATGATGCAA 2032 TGACAGCGTGAGAGGTACTAGGTTTTGACAAGCTTGCAT
    TACTAGG TAGCTT GCTTGTCAAA CATGCGTGAGTATAAGCTAGTCGTTCTTGGCTCA
    RARB NM_000965 2033 ATGAACCCTTGACCC 2034 GAGCTGGGTGAGATGC 2035 TGTGCTCTGCTGTG 2036 ATGAACCCTTGACCCCAAGTTCAAGTGGGAACACAGCAG
    CAAGT TAGG TTCCCACTTG AGCACAGTCCTAGCATCTCACCCAGCTC
    RASSF1 NM_007182 2037 AGGGCACGTGAAGTC 2038 AAAGAGTGCAAACTTG 2039 CACCACCAAGAACT 2040 AGGGCACGTGAAGTCATTGAGGCCCTGCTGCGAAAGTTC
    ATTG CGG TTCGCAGCAG TTGGTGGTGGATGACCCCCGCAAGTTTGCACTCT
    RB1 NM_000321 2041 CGAAGCCCTTACA 2042 GGACTCTTCAGGGGT 2043 CCCTTACGGATTCC 2044 CGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGGA
    TGGAGG
    RECK NM_021111 2045 GTCGCCGAGTGTG 2046 GTGGGATGATGGGTT 2047 TCAAGTGTCCTTCG 2048 GTCGCCGAGTGTGCTTCTGTCAAGTGTCCTTCGCTCT
    CTCTTG
    REG4 NM_032044 2049 TGCTAACTCCTGCAC 2050 TGCTAGGTTTCCCCTC 2051 TCCTCTTCCTTTCT 2052 TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGCT
    AGCC TGAA GCTAGCCTGGC AGCCTGGCTAAATCTGCTCATTATTTCAGAGGGGA
    RELA NM_021975 2053 CTGCCGGGATGGC 2054 CCAGGTTCTGGAAAC 2055 CTGAGCTCTGCCCG 2056 CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCC
    GACCGC
    RFX1 NM_002918 2057 TCCTCTCCAAGTTC 2058 CAGGCCCTGGTACAG 2059 TCCAATGGACCAAG 2060 TCCTCTCCAAGTTCGAGCCCGTGCTCCAATGGACCAA
    CACTGT
    RGS10 NM_001005339 2061 AGACATCCACGACAG 2062 CCATTTGGCTGTGCTC 2063 AGTTCCAGCAGCAG 2064 AGACATCCACGACAGCGATGGCAGTTCCAGCAGCAGCCA
    CGAT TTG CCACCAGAG CCAGAGCCTCAAGAGCACAGCCAAATGG
    RGS7 NM_002924 2065 CAGGCTGCAGAGAGC 2066 TTTGCTTGTGCTTCTG 2067 TGAAAATGAACTCC 2068 CAGGCTGCAGAGAGCATTTGCCCGGAAGTGGGAGTTCAT
    ATTT CTTG CACTTCCGGG TTTCATGCAAGCAGAAGCACAAGCAAA
    RHOA NM_001664 2069 TGGCATAGCTCTG 2070 TGCCACAGCTGCATG 2071 AAATGGGCTCAACC 2072 TGGCATAGCTCTGGGGTGGGCAGTTTTTTGAAAATG
    AGAAA
    RHOB NM_004040 2073 AAGCATGAACAGG 2074 CCTCCCCAAGTCAGT 2075 CTTTCCAACCCCTG 2076 AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTG
    GGGAAG
    RHOC NM_175744 2077 CCCGTTCGGTCTG 2078 GAGCACTCAAGGTAG 2079 TCCGGTTCGCCATG 2080 CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAAC
    TCCCG
    RLN1 NM_006911 2081 AGCTGAAGGCAGCCC 2082 TTGGAATCCTTTAATG 2083 TGAGAGGCAACCAT 2084 AGCTGAAGGCAGCCCTATCTGAGAGGCAACCATCATTAC
    TATC CAGGT CATTACCAGAGC CAGAGCTACAGCAGTATGTACCTGCATTAAAGG
    RND3 NM_005168 2085 TCGGAATTGGACT 2086 CTGGTTACTCCCCTCC 2087 TTTTAAGCCTGACT 2088 TCGGAATTGGACTTGGGAGGCGCGGTGAGGAGTCAG
    CCTCAC
    RNF114 NM_018683 2089 TGACAGGGGAAGT 2090 GGAAGACAGCTTTGG 2091 CCAGGTCAGCCCTT 2092 TGACAGGGGAAGTGGGTCCCCAGGTCAGCCCCTTCTC
    CTCTTC
    ROBO2 NM_002942 2093 CTACAAGGCCCAG 2094 CACCAGTGGCTTTAC 2095 CTGTACCATCCACT 2096 CTACAAGGCCCAGCCAACCAAACGCTGGCAGTGGAT
    GCCAGC
    RRM1 NM_001033 2097 GGGCTACTGGCAG 2098 CTCTCAGCATCGGTA 2099 CATTGGAATTGCCA 2100 GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCA
    TTAGTC
    RRM2 NM_001034 2101 CAGCGGGATTAAA 2102 ATCTGCGTTGAAGCA 2103 CCAGCACAGCCAGT 2104 CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCA
    TAAAAG
    S100P NM_005980 2105 AGACAAGGATGCC 2106 GAAGTCCACCTGGGC 2107 TTGCTCAAGGACCT 2108 AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCT
    GGACGC
    SAT1 NM_002970 2109 CCTTTTACCACTGC 2110 ACAATGCTGTGTCCTT 2111 TCCAGTGCTCTTTC 2112 CCTTTTACCACTGCCTGGTTGCGAAGTGCCGAAAGA
    GGCACT
    SCUBE2 NM_020974 2113 TGACAATCAGCACAC 2114 TGTGACTACAGCCGTG 2115 CAGGCCCTCTTCCG 2116 TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGGG
    CTGCAT ATCCTTA AGCGGT CCTGAGCTGCATGAATAAGGATCACGGCTGTAG
    SDC1 NM_002997 2117 GAAATTGACGAGG 2118 AGGAGCTAACGGAGA 2119 CTCTGAGCGCCTCC 2120 GAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTC
    ATCCAA
    SDC2 NM_002998 2121 GGATTGAAGTGGC 2122 ACCAGCCACAGTACC 2123 AACTCCATCTCCTT 2124 GGATTGAAGTGGCTGGAAAGAGTGATGCCTGGGGAA
    CCCCAG
    SDHC NM_003001 2125 CTTCCCTCGGGTCT 2126 TTCCCTCCTGGTAAA 2127 TTACATCCTCCCTC 2128 CTTCCCTCGGGTCTCAGGCATTTACATCCTCCCTCTC
    TCCCCG
    SEC14L1 NM_001039573 2129 AGGGTTCCCATGTGA 2130 GCAGGCATGCTGTGGA 2131 CGGGCTTCTACATC 2132 AGGGTTCCCATGTGACCAGGTGGCCGGGCTTCTACATCC
    CCAG AT CTGCAGTGG TGCAGTGGAAATTCCACAGCATGCCTGC
    SEC23A NM_006364 2133 CGTGTGCATTAGA 2134 CCCATTACCATGTATC 2135 TCCTGGAGATGAAA 2136 CGTGTGCATTAGATCAGACAGGTCTCCTGGAGATGA
    TGCTGT
    SEMA3A NM_006080 2137 TTGGAATGCAGTC 2138 CTCTTCATTTCGCCTC 2139 TTGCCAATAGACCA 2140 TTGGAATGCAGTCCGAAGTCGCAGAGAGCGCTGGTC
    GCGCTC
    SEPT9 NM_006640 2141 CAGTGACCACGAG 2142 CTTCGATGGTACCCC 2143 TTGCCAATAGACCA 2144 CAGTGACCACGAGTACCAGGTCAACGGCAAGAGGAT
    GCGCTC
    SERPINA3 NM_001085 2145 GTGTGGCCCTGTCTG 2146 CCCTGTGCATGTGAGA 2147 AGGGAATCGCTGTC 2148 GTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCGA
    CTTA GCTAC ACCTTCCAAG TTCCCTGTGTAGCTCTCACATGCACAGGG
    SERPINB5 NM_002639 2149 CAGATGGCCACTTTG 2150 GGCAGCATTAACCACA 2151 AGCTGACAACAGTG 2152 CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTG
    AGAACATT AGGATT TGAACGACCAGACC TGAACGACCAGACCAAAATCCTTGTGGTTAATG
    SESN3 NM_144665 2153 GACCCTGGTTTTG 2154 GAGCTCGGAATGTTG 2155 TGCTCTTCTCCTCG 2156 GACCCTGGTTTTGGGTATGAAGACTTTGCCAGACGA
    TCTGGC
    SFRP4 NM_003014 2157 TACAGGATGAGGC 2158 GTTGTTAGGGCAAGG 2159 CCTGGGACAGCCTA 2160 TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTA
    TGTAAG
    SH3RF2 NM_152550 2161 CCATCACAACAGCCT 2162 CACTGGGGTGCTGATC 2163 AACCGGATGGTCCA 2164 CCATACAACAGCCTTGAACACTCTCAACCGGATGGTCCA
    TGAAC TCTA TTCTCCTTCA TTCTCCTTCAGGGCGCCATATGGTAGAGATCAG
    SH3YL1 NM_015677 2165 CCTCCAAAGCCAT 2166 CTTTGAGAGCCAGAG 2167 CACAGCAGTCATCT 2168 CCTCCAAAGCCATTGTCAAGACCACAGCAGTCATCT
    GCACCA
    SHH NM_000193 2169 GTCCAAGGCACAT 2170 GAAGCAGCCTCCCGA 2171 CACCGAGTTCTCTG 2172 GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGA
    CTTTCA
    SHMT2 NM_005412 2173 AGCGGGTGCTAGA 2174 ATGGCACTTCGGTCT 2175 CCATCACTGCCAAC 2176 AGCGGGTGCTAGAGCTTGTATCCATCACTGCCAACA
    AAGAAC
    SIM2 NM_005069 2177 GATGGTAGGAAGG 2178 CACAAGGAGCTGTGA 2179 CGCCTCTCCACGCA 2180 GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCAC
    CTCAGC
    SIPA1L1 NM_015556 2181 CTAGGACAGCTTG 2182 CATAACCGTAGGGCT 2183 CGCCACAATGCCCT 2184 CTAGGACAGCTTGGCTTCCATGTCAACTATGAGGGC
    CATAGT
    SKIL NM_005414 2185 AGAGGCTGAATAT 2186 CTATCGGCCTCAGCA 2187 CCAATCTCTGCCTC 2188 AGAGGCTGAATATGCAGGACAGTTGGCAGAACTGAG
    AGTTCT
    SLC22A3 NM_021977 2189 ATCGTCAGCGAGT 2190 CAGGATGGCTTGGGT 2191 CAGCATCCACGCAT 2192 ATCGTCAGCGAGTTTGACCTTGTCTGTGTCAATGCGT
    TGACAC
    SLC25A21 NM_030631 2193 AAGTGTTTTTCCCCC 2194 GGCCGATCGATAGTCT 2195 TCATGGTGCTGCAT 2196 AAGTGTTTTTCCCCCTTGAGATAATGGATATTTGCTATG
    TTGAGAT CTCTT AGCAAATATCCA CAGCACCATGAAGAAGAGAGACTATCGATCGGCC
    SLC44A1 NM_080546 2197 AGGACCGTAGCTG 2198 ATCCCATCCCAATGC 2199 TACCATGGCTGCTG 2200 AGGACCGTAGCTGCACAGACATACCATGGCTGCTGC
    CTCTTC
    SMAD4 NM_005359 2201 GGACATTACTGGC 2202 ACCAATACTCAGGAG 2203 TGCATTCCAGCCTC 2204 GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCC
    CCATTT
    SMARCC2 NM_003075 2205 TACCGACTGAACCCC 2206 GACATCACCCGCTAGG 2207 TATCTTACCTCTAC 2208 TACCGACTGAACCCCCAAGAAGTATCTTACCTCTACCGC
    CAA TTTC CGCCTGCCGC CTGCCGCCGAAACCTAGCGGGTGATGTC
    SMARCD1 NM_003076 2209 CCGAGTTAGCATATC 2210 CCTTTGTGCCCAGCTG 2211 CCCACCCTTGCTGT 2212 CCGAGTTAGACATATCCCAGGCTCGCAGACTCAACACAG
    CCAGG TC GTTGAGTCTG CAAGGGTGGGAGACAGCTGGGCACAAAGG
    SMO NM_005631 2213 GGCATCCAGTGCC 2214 CGCGATGTAGCTGTG 2215 CTTCACAGAGGCTG 2216 GGCATCCAGTGCCAGAACCCGCTCTTCACAGAGGCT
    AGCACC
    SNA11 NM_005985 2217 CCCAATCGGAAGC 2218 GTAGGGCTGCTGGAA 2219 TCTGGATTAGAGTC 2220 CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGAC
    CTGCAG
    SNRPB2 NM_003092 2221 CGTTTCCTGCTTTT 2222 AGGTAGAAGGCGCAC 2223 CCCACCTAAGGCCT 2224 CGTTTCCTGCTTTTGGTTCTTACAGTAGTCGGCGTAG
    ACGCCG
    SOD1 NM_000454 2225 TGAAGAGAGGCAT 2226 AATAGACACATCGGC 2227 TTTGTCAGCAGTCA 2228 TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGAC
    CATTGC
    SORBS1 NM_015385 2229 GCAGATGAGTGGA 2230 AGCGAGTGAAGAGGG 2231 ATTTCCATTGGCAT 2232 GCAGATGAGTGGAGGCTTTCTTCCAGTGCTGATGCC
    CAGCAC
    SOX4 NM_003107 2233 AGATGATCTCGGG 2234 GCGCCCTTCAGTAGG 2235 CGAGTCCAGCATCT 2236 AGATGATCTCGGGAGACTGGCTCGAGTCCAGCATCT
    CCAACC
    SPARC NM_003118 2237 TCTTCCCTGTACACT 2238 AGCTCGGTGTGGGAGA 2239 TGGACCAGCACCCC 2240 TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAGC
    GGCAGTTC GGTA ATTGACGG ACCCCATTGACGGGTACCTCTCCCACACCGAGCT
    SPARCL NM_004684 2241 GGCACAGTGCAAG 2242 GATTGAGCTCTCTCG 2243 ACTTCATCCCAAGC 2244 GGCACAGTGCAAGTGATGACTACTTCATCCCAAGCC
    CAGGCC
    SPDEF NM_012391 2245 CCATCCGCCAGTATT 2246 GGGTGCACGAACTGGT 2247 ATCATCCGGAAGCC 2248 CCATCCGCCAGTATTACAAGAAGGGCATCATCCGGAAGC
    ACAAG AGA AGACATCTCC CAGACATCTCCCAGCGCCTCGTCTACCAGTTCGT
    SPINK1 NM_003122 2249 CTGCCATATGACC 2250 GTTGAAAACTGCACC 2251 ACCACGTCTCTTCA 2252 CTGCCATATGACCCTTCCAGTCCCAGGCTTCTGAAGA
    GAAGCC
    SPINT1 NM_003710 2253 ATTCCCAGCACAG 2254 AGATGGCTACCACCA 2255 CTGTCGCAGTGTTC 2256 ATTCCCAGCACAGGCTCTGTGGAGATGGCTGTCGCA
    CTGGTC
    SPP1 NM_001040058 2257 TCACACATGGAAAGC 2258 GTTCAGGTCCTGGGCA 2259 TGAATGGTGCATAC 2260 TCACACATGGAAAGCGAGGAGTTGAATGGTGCATACAAG
    GAGG AC AAGGCCATCC GCCATCCCCGTTGCCCAGGACCTGAAC
    SQLE NM_003219 2261 ATTTTCGAGGCCAAA 2262 CCTGAGCAAGGATATT 2263 TGGGCAAGAAAAAC 2264 ATTTTCGAGGCCAAAAAATCATTTACTGGGCAAGAAAAA
    AAATC CACG ATCTCATTCCTTTG CATCTCATTCCTTTGTCGTGAATATCCTTGCTC
    SRC NM_005417 2265 TGAGGAGTGGTATTT 2266 CTCTCGGGTTCTCTGC 2267 AACCGCTCTGACTC 2268 TGAGGAGTGGTATTTTGGCAAGATCACCAGACGGGAGTC
    TGGCAAGA ATTGA CCGTCTGGTG AGAGCGGTTACTGCTCAATGCAGAGAACCCGAG
    SRD5A1 NM_001047 2269 GGGCTGGAATCTG 2270 CCATGACTGCACAAT 2771 CCTCTCTCGGAGGC 2272 GGGCTGGAATCTGTCTAGGAGCCCTCTCTCGGAGGC
    CACAGA
    SRD5A2 NM_000348 2273 GTAGGTCTCCTGGCG 2274 TCCCTGGAAGGGTAGG 2275 AGACACCACTCAGA 2276 GTAGGTCTCCTGGCGTTCTGCCAGCTGGCCTGGGGATTC
    TTCTG AGTAA ATCCCCAGGC TGAGTGGTGTCTGCTTAGAGTTTACTCCTACCCTT
    ST5 NM_005418 2277 CCTGTCCTGCCAG 2278 CAGCTGCACAAAACT 2279 AGTCACGAGCACCC 2280 CCTGTCCTGCCAGAGCATGGATGAAGTTTCGCTGGGT
    AGCGA
    STAT1 NM_007315 2281 GGGCTCAGCTTTCAG 2282 ACATGTTCAGCTGGTC 2283 TGGCAGTTTTCTTC 2284 GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTT
    AAGTG CACA TGTCACCAAAA CTGTCACCAAAAGAGGTCTCAATGTGGACCAGCT
    STAT3 NM_003150 2285 TCACATGCCACTTT 2286 CTTGCAGGAAGCGGC 2287 TCCTGGGAGAGATT 2288 TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAG
    GACCAG
    STAT5A NM_003152 2289 GAGGCGCTCAACATG 2290 GCCAGGAACACGAGGT 2291 CGGTTGCTCTGCAC 2292 GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAGC
    AAATTC TCTC TTCGGCCT AACCGGGGCCTGACCAAGGAGAACCTCGTGTTC
    STAT5B NM_012448 2293 CCAGTGGTGGTGA 2294 GCAAAAGCATTGTCC 2295 CAGCCAGGACAACA 2296 CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAAC
    ATGCG
    STMN1 NM_005563 2297 AATACCCAACGCA 2298 GGAGACAATGCAAAC 2299 CACGTTCTCTGCCC 2300 AATACCCAACGCACAAATGACCGCACGTTCTCTGCC
    CGTTTC
    STS NM_000351 2301 GAAGATCCCTTTCCT 2302 GGATGATGTTCGGCCT 2303 CTGCGTGGCTCTCG 2304 GAAGATCCCTTTCCTCCTACTGTTCTTTCTGTGGGAAGC
    CCTACTGTTC TGAT GCTTCCCA CGAGAGCCACGCAGCATCAAGGCCGAACATCATC
    SULF1 NM_015170 2305 TGCAGTTGTAGGGAG 2306 TCTCAAGAATTGCCGT 2307 TACCGTGCCAGCAG 2308 TGCAGTTGTAGGGAGTCTGGTTACCGTGCCAGCAGAAGC
    TCTGG TGAC AAGCCAAAG CAAAGAAAGAGTCAACGGCAATTCTTGAGA
    SUMO1 NM_003352 2309 GTGAAGCCACCGT 2310 CCTTCCTTCTTATCCC 2311 CTGACCAGGAGGCA 2312 GTGAAGCCACCGTCATCATGTCTGACCAGGAGGCAA
    AAACCT
    SVIL NM_003174 2313 ACTTGCCCAGCAC 2314 GACACCATCCGTGTC 2315 ACCCCAGGACTGAT 2316 ACTTGCCCAGCACAAGGAAGACCCCAGGACTGATGT
    GTCAAG
    TAF2 NM_003184 2317 GCGCTCCACTCTCAG 2318 CTTGTGCTCATGGTGA 2319 AGCCTCCAAACACA 2320 GCGCTCCACTCTCAGTCTTTACTAAGGAATCTACAGCCT
    TCTTT TGGT GTGACCACCA CCAAACACAGTGACCACCATCACCACCATCACCAT
    TARP NM_001003799 2321 GAGCAACACGATTCT 2322 GGCACCGTTAACCAGC 2323 TCTTCATGGTGTTC 2324 GAGCAACACGATTCTGGGATCCCAGGAGGGGAACACCAT
    GGGA TAAAT CCCTCCTGG GAAGACTAACGACACATACATGAAATTTAGCTG
    TBP NM_003194 2325 GCCCGAAACGCCG 2326 CGTGGCTCTCTTATCC 2327 TACCGCAGCAAACC 2328 GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCT
    GCTTGG
    TFDP1 NM_007111 2329 TGCGAAGTGCTTTTG 2330 GCCTTCCAGACAGTCT 2331 CGCACCAGCATGGC 2332 TGCGAAGTGCTTTTGTTTGTTTGTTTTCGTTTGGTTAAA
    TTTGT CCAT AATAAGCTTT GCTTATTGCCATGCTGGTGCGGCTATGGAGACTGTC
    TFF1 NM_003225 2333 GCCCTCCCAGTGTGC 2334 CGTCGATGGTATTAGG 2335 TGCTGTTTCGACGA 2336 GCCCTCCCAGTGTGCAAATAAGGGCTGCTGTTTCGACGA
    AAAT ATAGAAGCA CACCGTTCG CACCGTTCGTGGGGTCCCCTGGTGCTTCTATCCTA
    TFF3 NM_003226 2337 AGGCACTGTTCATCT 2338 CATCAGGCTCCAGATA 2339 CAGAAGCGCTTGCC 2340 AGGCACTGTTCATCTCAGCTTTTCTGTCCCTTTGCTCCC
    CAGTTTTTCT TGAACTTTC GGGAGCAAAGG GGCAAGCGCTTCTGCTGAAAGTTCATATCTGGAG
    TGFA NM_003236 2341 GGTGTGCCACAGACC 2342 ACGGAGTTCTTGACAG 2343 TTGGCCTGTAATCA 2344 GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCT
    TTCCT AGTTTTGA CCTGTGCAGCCTT GTGCAGCCTTTTGTGGGCCTTCAAAACTCTGTCAA
    TGFB1II NM_001042454 2345 GCTACTTTGAGCGCT 2346 GGTCACCATCTTGTGT 2347 CAAGATGTGGCTTC 2348 GCTACTTTGAGCGCTTCTCGCCAAGATGTGGCTTCTGCA
    TCTCG CGG TGCAACCAGC ACCAGCCCATCCGACACAAGATGGTGACC
    TGFB2 NM_003238 2349 ACCAGTCCCCCAG 2350 CCTGGTGCTGTTGTA 2351 TCCTGAGCCCGAGG 2352 ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAA
    AAGTCC
    TGFB3 NM_003239 2353 GGATCGAGCTCTT 2354 GCCACCGATATAGCG 2355 CGGCCAGATGAGCA 2356 GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGC
    CATTGC
    TGFBR2 NM_003242 2357 AACACCAATGGGT 2358 CCTCTTCATCAGGCC 2359 TTCTGGGCTCCTGA 2360 AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTG
    TTGCTC
    THBS2 NM_003247 2361 CAAGACTGGCTACAT 2362 CAGCGTAGGTTTGGTC 2363 TGAGTCTGCCATGA 2364 CAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAAA
    CAGAGTCTTAG ATAGATAGG CCTGTTTTCCTTCA ACAGGTCATGGCAGACTCAGGACCTATCTATGA
    T
    THY1 NM_006288 2365 GGACAAGACCCTC 2366 TTGGAGGCTGTGGGT 2367 CAAGCTCCCAAGAG 2368 GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAG
    CTTCCA
    TIAM1 NM_003253 2369 GTCCCTGGCTGAA 2370 GGGCTCCCGAAGTCT 2371 TGGAGCCCTTCTCC 2372 GTCCCTGGCTGAAAATGGCCTGGAGCCCTTCTCCCAA
    CAAGAT
    TIMP2 NM_003255 2373 TCACCCTCTGTGA 2374 TGTGGTTCAGGCTCTT 2375 CCCTGGGACACCCT 2376 TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCT
    GAGCAC
    TIMP3 NM_000362 2377 CTACCTGCCTTGCT 2378 ACCGAAATTGGAGAG 2379 CCAAGAACGAGTGT 2380 CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGT
    CTCTGG
    TK1 NM_003258 2381 GCCGGGAAGACCGTA 2382 CAGCGGCACCAGGTTC 2383 CAAATGGCTTCCTC 2384 GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACC
    ATTGT AG TGGAAGGTCCCA TTCCAGAGGAAGCCATTTGGGGCCATCCTGAAC
    TMPRSS NM_005656 2385 GGACAGTGTGCAC 2386 CTCCCACGAGGAAGG 2387 AAGCACTGTGCATC 2388 GGACAGTGTGCACCTCAAAGACTAAGAAAGCACTGT
    ACCTTG
    TMPRSS DQ204772 2389 GAGGCGGAGGGCGAG 2390 ACTGGTCCTCACTCAC 2391 TAAGGCTTCCTGCC 2392 GAGGCGGAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCT
    2ERGA AACT GCGCTCCA GGAGCGCGGCAGGAAGCCTTATCAGTTGTGAG
    TMPRSS DQ204773 2393 GAGGCGGAGGGCGAG 2394 TTCCTCGGGTCTCCAA 2395 CCTGGAATAACCTG 2396 GAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCTGGAGCG
    2ERGB AGAT CCGCGC CGGCAGGTTATTCCAGGATCTTTGGAGACCCG
    TNF NM_000594 2397 GGAGAAGGGTGAC 2398 TGCCCAGACTCGGCA 2399 CGCTGAGATCAATC 2400 GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCG
    GGCCCG
    TNFRSF1 NM_003844 2401 TGCACAGAGGGTGTG 2402 TCTTCATCTGATTTAC 2403 CAATGCTTCCAACA 2404 TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAAT
    0A GGTTAC AAGCTGTACATG ATTTGTTTGCTTGC TTGTTTGCTTGCCTCCCATGTACAGCTTGTAAAT
    C
    TNFRSF1 NM_003842 2405 CTCTGAGACAGTGCT 2406 CCATGAGGCCCAACTT 2407 CAGACTTGGTGCCC 2408 CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTTG
    0B TCGATGACT CCT TTTGACTCC CCCTTTGACTCCTGGGAGCCGCTCATGAGGAAGTT
    TNFRSF1 NM_148901 2409 CAGAAGCTGCCAGTT 2410 CACCCACAGGTCTCCC 2411 CCTTCTCCTCTGCC 2412 CAGAAGCTGCCAGTTCCCCGAGGAAGAGCGGGGCGAGCG
    8 CCC AG GATCGCTC ATCGGCAGAGGAGAAGGGGCGGCTGGGAGACCT
    TNFSF10 NM_003810 2413 CTTCACAGTGCTC 2414 CATCTGCTTCAGCTCG 2415 AAGTACACGTAAGT 2416 CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTA
    TACAGC
    TNFSF11 NM_003701 2417 AACTGCATGTGGG 2418 TGACACCCTCTCCACT 2419 ACATGACCAGGGAC 2420 AACTGCATGTGGGCTATGGGAGGGGTTGGTCCCTGG
    CAACCC
    TOP2A NM_001067 2421 AATCCAAGGGGGA 2422 GTACAGATTTTGCCC 2423 CATATGGACTTTG 2424 AATCCAAGGGGGAGAGTGATGACTTCCATATGGACT
    ACTCAGC
    TP53 NM_000546 2425 CTTTGAACCCTTGC 2426 CCCGGGACAAAGCAA 2427 AAGTCCTGGGTGC 2428 CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAG
    TTCTGAC
    TP63 NM_003722 2429 CCCCAAGCAGTGC 2430 GAATCGCACAGCATC 2431 CCCGGGTCTCACT 2432 CCCCAAGCAGTGCCTCTACAGTCAGTGTGGGCTCCA
    GGAGCCC
    TPD52 NM_005079 2433 GCCTGTGAGATTC 2434 ATGTGCTTGGACCTC 2435 TCTGCTACCCACT 2436 GCCTGTGAGATTCCTACCTTTGTTCTGCTACCCACTG
    GCCAGAT
    TPM1 NM_001018005 2437 TCTCTGAGCTCTGCA 2438 GGCTCTAAGGCAGGAT 2439 TTCTCCAGCTGAC 2440 TCTCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCCT
    TTTGTC GCTA CCTGGTTCTCTC GGTTCTCTCTCTTAGCATCCTGCTTAGAGCC
    TPM2 NM_213674 2441 AGGAGATGCAGCT 2442 CCACCTCTTCATATTT 2443 CCAAGCACATCGC 2444 AGGAGATGCAGCTGAAGGAGGCCAAGCACATCGCTG
    TGAGGAT
    TPP2 NM_003291 2445 TAACCGTGGCATC 2446 ATGCCAACGCCATGA 2447 ATCCTGTTCAGGT 2448 TAACCGTGGCATCTACCTCCGAGATCCTGTTCAGGTG
    GGCTGCA
    TPX2 NM_012112 2449 TCAGCTGTGAGCTGC 2450 ACGGTCCTAGGTTTGA 2451 CAGGTCCCATTGC 2452 TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCT
    GGATA GGTTAAGA CGGGCG GCTCTTAACCTCAAACCTAGGACCGT
    TRA2A NM_013293 2453 GCAAATCCAGATC 2454 CTTCACGAAGATCCC 2455 AACTGAGGCCAAA 2456 GCAAATCCAGATCCCAACACTTGCCTTGGAGTGTTTG
    CACTCCA
    TRAF31P NM_147200 2457 CCTCACAGGAACC 2458 CTGGGGCTGGGAATC 2459 TGGATCTGCCAAC 2460 CCTCACAGGAACCGAGCAGGCCTGGATCTGCCAACC
    CATAGAC
    TRAM1 NM_014294 2461 CAAGAAAAGCACC 2462 ATGTCCGCGTGATTCT 2463 AGTGCTGAGCCAC 2464 CAAGAAAAGCACCAAGAGCCCCCCAGTGCTGAGCCA
    GAATTCG
    TRAP1 NM_016292 2465 TTACCAGTGGCTTT 2466 TGTCCCGGTTCTAACT 2467 TTCGGCGATTTCA 2468 TTACCAGTGGCTTTCAGATGGTTCTGGAGTGTTTGAA
    AACACTC
    TRIM14 NM_033220 2469 CATTCGCCTTAAG 2470 CAAGGTACCTGGCTT 2471 AACTGCCAGCTCT 2472 CATTCGCCTTAAGGAAAGCATAAACTGCCAGCTCTCA
    CAGACCC
    TRO NM_177556 2473 GCAACTGCCACCC 2474 TGGTGTGGATACTGG 2475 CCACCCAAGGCCAA 2476 GCAACTGCCACCCATACAGCTACCACCCAAGGCCAA
    ATTACC
    TRPC6 NM_004621 2477 CGAGAGCCAGGACTA 2478 TAGCCGTAGCAAGGCA 2479 CTTCTCCCAGCTCC 2480 CGAGAGCCAGGACTATCTGCTCATGGACTCGGAGCTGGG
    TCTGC GC GAGTCCATG AGAAGACGGCTGCCCGCAAGCCCCGCTGCCTTG
    TRPV6 NM_018646 2481 CCGTAGTCCCTGCAA 2482 TCCTCACTGTTCACAC 2483 ACTTTGGGGAGCAC 2484 CCGTAGTCCCTGCAACCTCATCTACTTTGGGGAGCACCC
    CCTC AGGC CCTTTGTCCT TTTGTCCTTTGCTGCCTGTGTGAACAGTGAGGA
    TSTA3 NM_003313 2485 CAATTTGGACTTCT 2486 CACCTCAAAGGCCGA 2487 AACGTGCACATGAA 2488 CAATTTGGACTTCTGGAGGAAAAACGTGCACATGAA
    CGACAA
    TUBB2A NM_001069 2489 CGAGGACGAGGCT 2490 ACCATGCTTGAGGAC 2491 TCTCAGATCAATCG 2492 CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGT
    TGCATC
    TYMP NM_001953 2493 CTATATGCAGCCAGA 2494 CCACGAGTTTCTTACT 2495 ACAGCCTGCCACTC 2496 CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAGC
    GATGTGACA GAGAATGG ATCACAGCC CTGCCACTCATCACAGCCTCCATTCTCAGTAAGA
    TYMS NM_001071 2497 GCCTCGGTGTGCC 2498 CGTGATGTGCGCAAT 2499 CATCGCCAGCTACG 2500 GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCT
    CCCTGC
    UAP1 NM_003115 2501 CTGGAGACGGTCGTA 2502 GCCAAGCTTTGTAGAA 2503 TACCTGTAAACCTT 2504 CTGGAGACGGTCGTAGCTGCGGTCGCGCCGAGAAAGGTT
    GCTG ATAGGG TCTCGGCGCG TACAGGTACATACATTACACCCCTATTTCTACAA
    UBE2C NM_007019 2505 TGTCTGGCGATAA 2506 ATGGTCCCTACCCATT 2507 TCTGCCTTCCCTGA 2508 TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATC
    ATCAGA
    UBE2G1 NM_003342 2509 TGACACTGAACGA 2510 AAGCAGAGAGGAATC 2511 TTGTCCCACCAGTG 2512 TGACACTGAACGAGGTGGCTTTTGTCCCACCAGTGCC
    CCTCAT
    UBE2T NM_014176 2513 TGTTCTCAAATTGC 2514 AGAGGTCAACAAGT 2515 AGGTGCTTGGAGAC 2516 TGTTCTCAAATTGCCACCAAAAGGTGCTTGGAGACC
    CATCCC
    UGDH NM_003359 2617 GAAACTCCAGAGG 2518 CTCTGGGAACCCAGT 2519 TATACAGCACACAG 2520 GAAACTCCAGAGGGCCAGAGAGCTGTGCAGGCCCTG
    GGCCTG
    UGT2B1 NM_001076 2521 AAGCCTGAAGTGG 2522 CCTCCATTTAAAACCC 2523 AAAGATGGGACTCC 2524 AAGCCTGAAGTGGAATGACTGAAAGATGGGACTCCT
    TCCTTT
    UGT2B1 NM_001077 2525 TTGAGTTTGTCATG 2526 TCCAGGTGAGGTTGT 2527 ACCCGAAGGTGCTT 2528 TTGAGTTTGTCATGCGCCATAAAGGAGCCAAGCACC
    GGCTCC
    UHRF1 NM_013282 2529 CTACAGGGGCAAA 2530 GGTGTCATTCAGGCG 2531 CGGCCATACCCTCT 2532 CTACAGGGGCAAACAGATGGAGGACGGCCATACCCT
    TCGACT
    UTP23 NM_032334 2533 GATTGCACAAAAA 2534 GGAAAGCAGACATTC 2535 TCGAAATTGTCCTC 2536 GATTGCACAAAAATGCCAAGTTCGAAATTGTCCTCAT
    ATTTCA
    VCAM1 NM_001078 2537 TGGCTTCAGGAGCTG 2538 TGCTGTCGTGATGAGA 2539 CAGGCACACACAGG 2540 TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAGG
    AATACC AAATAGTG TGGGACACAAAT TGGGACACAAATAAGGGTTTTGGAACCACTATT
    VCL NM_003373 2541 GATACCACAACTCCC 2542 TCCCTGTTAGGCGCAT 2543 AGTGGCAGCCACGG 2544 GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGCC
    ATCAAGCT CAG CGCC ACGGCGCCTCCTGATGCGCCTAACAGGGA
    VCPIP1 NM_025054 2545 TTTCTCCCAGTACC 2546 TGAATAGGGAGCCTT 2547 TGGTCCATCCTCTG 2548 TTTCTCCCAGTACCATTCGTGATGGTCCATCCTCTGC
    CACCTG
    VDR NM_000376 2549 CCTCTCCTTCCAGC 2550 TCATTGCCAAACACTT 2551 CAGCATGAAGCTAA 2552 CCTCTCCTTCCAGCCTGAGTGCAGCATGAAGCTAACG
    CGCCCC
    VEGFA NM_003376 2553 CTGCTGTCTTGGG 2554 GCAGCCTGGGACCAC 2555 TTGCCTTGCTGCTC 2556 CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGC
    TACCTC
    VEGFB NM_003377 2557 TGACGATGGCCTG 2558 GGTACCGGATCATGA 2559 CTGGGCAGCACCAA 2560 TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCA
    GTCCGG
    VEGFC NM_005429 2561 CCTCAGCAAGACGTT 2562 AAGTGTGATTGGCAAA 2563 CCTCTCTCTCAAGG 2564 CCTCAGCAAGACGTTATTTGAAATTACAGTGCCTCTCTC
    ATTTGAAATT ACTGATTG CCCCAAACCAGT TCAAGGCCCCAAACCAGTAACAATCAGTTTTGCCA
    VIM NM_003380 2565 TGCCCTTAAAGGA 2566 GCTTCAACGGCAAAG 2567 ATTTCACGCATCTG 2568 TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCA
    GCGTTC
    VTI1B NM_006370 2569 ACGTTATGCACCCCT 2570 CCGATGGAGTTTAGCA 2571 CGAAACCCCATGAT 2572 ACGTTATGCACCCCTGTCTTTCCGAAACCCCATGATGTC
    GTCTT AGGT GTCTAAGCTTCG TAAGCTTCGAAACTACCGGAAGGACCTTGCTAAA
    WDR19 NM_025132 2573 GAGTGGCCCAGAT 2574 GATGCTTGAGGGCTT 2575 CCCCTCGACGTATG 2576 GAGTGGCCCAGATGTCCATAAGAATGGGAGACATAC
    TCTCCC
    WFDC1 NM_021197 2577 ACCCCTGCTCTGT 2578 ATACCTTCGGCCACG 2579 CTATGAGTGCCACA 2580 ACCCCTGCTCTGTCCCTCGGGCTATGAGTGCCACATC
    TCCTGA
    WISP1 NM_003882 2581 AGAGGCATCCATGAA 2582 CAAACTCCACAGTACT 2583 CGGGCTGCATCAGC 2584 AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAG
    CTTCACA TGGGTTGA ACACGC GCACACGCTCCTATCAACCCAAGTACTGTGGAGTT
    WNT5A NM_003392 2585 GTATCAGGACCACAT 2586 TGTCGGAATTGATACT 2587 TTGATGCCTGTCTT 2588 GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGAA
    GCAGTACATC GGCATT CGCGCCTTCT GACAGGCATCAAAGAATGCCAGTATCAATTCCG
    WWOX NM_016373 2589 ATCGCAGCTGGTG 2590 AGCTCCCTGTTGCAT 2591 CTGCTGTTTACCTT 2592 ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTT
    GGCGAG
    XIAP NM_001167 2593 GCAGTTGGAAGACAC 2594 TGCGTGGCACTATTTT 2595 TCCCCAAATTGCAG 2596 GCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGA
    AGGAAAGT CAAGA ATTTATCAACGGC TTTATCAACGGCTTTTATCTTGAAAATAGTGCCA
    XRCC5 NM_021141 2597 AGCCCACTTCAGC 2598 AGCAGGATTCACACT 2599 TCTGGCTGAAGGCA 2600 AGCCCACTTCAGCGTCTCCAGTCTGGCTGAAGGCAG
    GTGTCA
    YY1 NM_003403 2601 ACCCGGGCAACAA 2602 GACCGAGAACTCGCC 2603 TTGATCTGCACCTG 2604 ACCCGGGCAACAAGAAGTGGGAGCAGAAGCAGGTGC
    CTTCTG
    ZFHX3 NM_006885 2605 CTGTGGAGCCTCT 2606 GGAGCAGGGTTGGAT 2607 ACCTGGCCCAACTC 2608 CTGTGGAGCCTCTGCCTGCGGACCTGGCCCAACTCTA
    TACCAG
    ZFP36 NM_003407 2609 CATTAACCCACTC 2610 CCCCCACCATCATGA 2611 CAGGTCCCCAAGTG 2612 CATTAACCCACTCCCCTGACCTCACGCTGGGGCAGGT
    TGCAAG
    ZMYND8 NM_183047 2613 GGTCTGGGCCAAA 2614 TGCCCGTCTTTATCCC 2615 CTTTTGCAGGCCAG 2616 GGTCTGGGCCAAACTGAAGGGGTTTCCATTCTGGCCT
    AATGGA
    ZNF3 NM_017715 2617 CGAAGGGACTCTG 2618 GCAGGAGGTCCTCAG 2619 AGGAGGTTCCACAC 2620 CGAAGGGACTCTGCTCCAGTGAACTGGCGAGTGTGG
    TCGCCA
    ZNF827 NM_178835 2621 TGCCTGAGGACCC 2622 GAGGTGGCGGAGTGA 2623 CCCGCCTTCAGAGA 2624 TGCCTGAGGACCCTCTACCGCCCCCGCCTTCAGAGA
    AGAAAC
    ZWINT NM_007057 2625 TAGAGGCCATCAA 2626 TCCGTTTCCTCTGGGC 2627 ACCAAGGCCCTGAC 2628 TAGAGGCCATCAAAATTGGCCTCACCAAGGCCCTGA
    TCAGAT
  • TABLE B
    SEQ
    ID
    microRNA Sequence NO
    hsa-miR-1 UGGAAUGUAAAGAAGUAUGUAU 2629
    hsa-miR-103 GCAGCAUUGUACAGGGCUAUGA 2630
    hsa-miR-106b UAAAGUGCUGACAGUGCAGAU 2631
    hsa-miR-10a UACCCUGUAGAUCCGAAUUUGUG 2632
    hsa-miR-133a UUUGGUCCCCUUCAACCAGCUG 2633
    hsa-miR-141 UAACACUGUCUGGUAAAGAUGG 2634
    hsa-miR-145 GUCCAGUUUUCCCAGGAAUCCCU 2635
    hsa-miR-146b-5p UGAGAACUGAAUUCCAUAGGCU 2636
    hsa-miR-150 UCUCCCAACCCUUGUACCAGUG 2637
    hsa-miR-152 UCAGUGCAUGACAGAACUUGG 2638
    hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGGU 2639
    hsa-miR-182 UUUGGCAAUGGUAGAACUCACACU 2640
    hsa-miR-191 CAACGGAAUCCCAAAAGCAGCUG 2641
    hsa-miR-19b UG UAAACAUCCUCGACUGGAAG 2642
    hsa-miR-200c UAAUACUGCCGGGUAAUGAUGGA 2643
    hsa-miR-205 UCCUUCAUUCCACCGGAGUCUG 2644
    hsa-miR-206 UGGAAUGUAAGGAAGUGUGUGG 2645
    hsa-miR-21 UAGCUUAUCAGACUGAUGUUGA 2646
    hsa-miR-210 CUGUGCGUGUGACAGCGGCUGA 2647
    hsa-miR-22 AAGCUGCCAGUUGAAGAACUGU 2648
    hsa-miR-222 AGCUACAUCUGGCUACUGGGU 2649
    hsa-miR-26a UUCAAGUAAUCCAGGAUAGGCU 2650
    hsa-miR-27a UUCACAGUGGCUAAGUUCCGC 2651
    hsa-miR-27b UUCACAGUGGCUAAGUUCUGC 2652
    hsa-miR-29b UAGCACCAUUUGAAAUCAGUGUU 2653
    hsa-miR-30a CUUUCAGUCGGAUGUUUGCAGC 2654
    hsa-miR-30e-5p CUUUCAGUCGGAUGUUUACAGC 2655
    hsa-miR-31 AGGCAAGAUGCUGGCAUAGCU 2656
    hsa-miR-331 GCCCCUGGGCCUAUCCUAGAA 2657
    hsa-miR-425 AAUGACACGAUCACUCCCGUUGA 2658
    hsa-miR-449a UGGCAGUGUAUUGUUAGCUGGU 2659
    hsa-miR-486-5p UCCUGUACUGAGCUGCCCCGAG 2660
    hsa-miR-92a UAUUGCACUUGUCCCGGCCUGU 2661
    hsa-miR-93 CAAAGUGCUGUUCGUGCAGGUAG 2662
    hsa-miR-99a AACCCGUAGAUCCGAUCUUGUG 2663

Claims (20)

1. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising:
measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene;
predicting a likelihood of cancer recurrence for the patient;
wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, and
wherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
2. The method of claim 1, wherein said expression level is measured using an RNA transcript of the at least one gene.
3. The method of claim 1, wherein said expression is measured using an oligonucleotide associated with the at least one gene.
4. The method of claim 1, further comprising normalizing said expression level to obtain a normalized expression level.
5. The method of claim 1, further comprising generating a report based on the Recurrence Score (RS).
6. The method of claim 5, wherein the report comprises an estimate of recurrence risk based on clinical recurrence-free interval (cRFI).
7. The method of claim 5, wherein the RS is based on a biochemical recurrence-free interval (bRFI).
8. The method of claim 1, wherein the biological sample has a positive TMPRSS2 fusion status.
9. The method of claim 1, wherein the biological sample has a negative TMPRSS2 fusion status.
10. The method of claim 1, wherein the patient has early-stage prostate cancer.
11. The method of claim 1, wherein the biological sample comprises prostate tumor tissue with the primary Gleason pattern for said prostate tumor.
12. The method of claim 1, wherein the biological samples comprises prostate tumor tissue with the highest Gleason pattern for said prostate tumor.
13. The method of claim 1, wherein the biological sample is prostate tumor tissue.
14. The method of claim 1, wherein the biological sample is non-tumor prostate tissue.
15. The method of claim 1, further comprising classifying the patient as TMPRSS2 fusion positive or negative,
wherein an expression level of any gene in Table 9A is associated with a positive TMPRSS2 fusion status, and
wherein an expression level of any gene in Table 9B is associated with a negative TMPRSS2 fusion status.
16. The method of claim 1, wherein the biological sample comprises non-tumor prostate tissue, and wherein the at least one gene comprises a gene from Tables 10A or 10B.
17. A method for determining a likelihood of upgrading or upstaging in a patient with prostate cancer, comprising:
measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Table 13A or 13B, or genes that co-express with the at least one gene;
wherein an expression level of any gene in Tables 13A is positively associated with an increased risk of upgrading/upstaging, and
wherein an expression level of any gene in Table 13B is negatively associated with a increased risk of upgrading/upstaging.
18. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising:
measuring an expression level of at least one microRNA in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one microRNA is a microRNA selected from hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; hsa-miR-200c; hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p; and
normalizing said expression level to obtain a normalized expression level;
wherein a normalized expression level of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c is positively associated with an increased risk of recurrence; and
wherein a normalized expression level of hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p is negatively associated with an increased risk of recurrence.
19. The method of claim 18, further comprising measuring an expression level of at least one gene in said biological sample.
20. The method of claim 19, wherein the at least one gene is a gene selected from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene;
wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, and
wherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
US13/190,391 2010-07-27 2011-07-25 Method for using gene expression to determine prognosis of prostate cancer Abandoned US20120028264A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/190,391 US20120028264A1 (en) 2010-07-27 2011-07-25 Method for using gene expression to determine prognosis of prostate cancer
US14/887,605 US10260104B2 (en) 2010-07-27 2015-10-20 Method for using gene expression to determine prognosis of prostate cancer
US16/282,540 US20190249260A1 (en) 2010-07-27 2019-02-22 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US16/800,292 US20200255911A1 (en) 2010-07-27 2020-02-25 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US17/820,987 US20220396842A1 (en) 2010-07-27 2022-08-19 Method for using gene expression to determine prognosis of prostate cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36821710P 2010-07-27 2010-07-27
US41431010P 2010-11-16 2010-11-16
US201161485536P 2011-05-12 2011-05-12
US13/190,391 US20120028264A1 (en) 2010-07-27 2011-07-25 Method for using gene expression to determine prognosis of prostate cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/887,605 Continuation US10260104B2 (en) 2010-07-27 2015-10-20 Method for using gene expression to determine prognosis of prostate cancer

Publications (1)

Publication Number Publication Date
US20120028264A1 true US20120028264A1 (en) 2012-02-02

Family

ID=45527113

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/190,391 Abandoned US20120028264A1 (en) 2010-07-27 2011-07-25 Method for using gene expression to determine prognosis of prostate cancer
US14/887,605 Active 2032-02-15 US10260104B2 (en) 2010-07-27 2015-10-20 Method for using gene expression to determine prognosis of prostate cancer
US16/282,540 Abandoned US20190249260A1 (en) 2010-07-27 2019-02-22 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US16/800,292 Abandoned US20200255911A1 (en) 2010-07-27 2020-02-25 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US17/820,987 Abandoned US20220396842A1 (en) 2010-07-27 2022-08-19 Method for using gene expression to determine prognosis of prostate cancer

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/887,605 Active 2032-02-15 US10260104B2 (en) 2010-07-27 2015-10-20 Method for using gene expression to determine prognosis of prostate cancer
US16/282,540 Abandoned US20190249260A1 (en) 2010-07-27 2019-02-22 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US16/800,292 Abandoned US20200255911A1 (en) 2010-07-27 2020-02-25 Method for Using Gene Expression to Determine Prognosis of Prostate Cancer
US17/820,987 Abandoned US20220396842A1 (en) 2010-07-27 2022-08-19 Method for using gene expression to determine prognosis of prostate cancer

Country Status (13)

Country Link
US (5) US20120028264A1 (en)
EP (5) EP2598659B1 (en)
JP (5) JP2013532482A (en)
AU (1) AU2011282892B2 (en)
CA (2) CA3081061C (en)
DK (3) DK2598659T3 (en)
ES (4) ES2537403T3 (en)
HK (2) HK1185116A1 (en)
IL (5) IL243206A (en)
MX (4) MX359416B (en)
NZ (1) NZ607282A (en)
SG (3) SG10201912361VA (en)
WO (1) WO2012015765A2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233691A1 (en) * 2007-03-30 2010-09-16 Source Precision Medicine, Inc. D/B/A Source Mdx Gene Expression Profiling for Identification, Monitoring and Treatment of Prostate Cancer
WO2013116144A1 (en) * 2012-01-31 2013-08-08 Genomic Health, Inc. Gene expression profile algorithm and test for determining prognosis of prostate cancer
WO2013142939A1 (en) * 2012-03-30 2013-10-03 Fundação Antônio Prudente Methods for predicting and classifying event outcomes
US20150104440A1 (en) * 2012-04-12 2015-04-16 Cornell University MiRNA-31 AS A DIAGNOSTIC, PROGNOSTIC AND THERAPEUTIC AGENT IN CANCER
US20150211077A1 (en) * 2012-11-02 2015-07-30 The Regents Of The University Of California Methods and Systems for Determining a Likelihood of Adverse Prostate Cancer Pathology
WO2015175692A1 (en) * 2014-05-13 2015-11-19 Myriad Genetics, Inc. Gene signatures for cancer prognosis
WO2016036994A1 (en) * 2014-09-04 2016-03-10 Miodx Method of analysis allowing avoidance of surgery
EP2831281A4 (en) * 2012-03-29 2016-03-30 Nat Health Research Institutes Molecular markers for prognostically predicting prostate cancer, method and kit thereof
EP2875157A4 (en) * 2012-07-20 2016-10-26 Diagnocure Inc Methods, kits and compositions for providing a clinical assessment of prostate cancer
JP2017503527A (en) * 2014-01-16 2017-02-02 イルミナ インコーポレイテッド Gene expression panel for prognosis of prostate cancer recurrence
US9605319B2 (en) 2010-08-30 2017-03-28 Myriad Genetics, Inc. Gene signatures for cancer diagnosis and prognosis
WO2017127696A1 (en) 2016-01-20 2017-07-27 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
WO2017136603A1 (en) * 2016-02-02 2017-08-10 Guardant Health, Inc. Cancer evolution detection and diagnostic
US9976188B2 (en) 2009-01-07 2018-05-22 Myriad Genetics, Inc. Cancer biomarkers
WO2018098241A1 (en) * 2016-11-22 2018-05-31 University Of Rochester Methods of assessing risk of recurrent prostate cancer
WO2018096072A1 (en) * 2016-11-23 2018-05-31 Queen Mary University Of London Biomarkers for the prognosis and diagnosis of cancer
US10196697B2 (en) 2013-12-12 2019-02-05 Almac Diagnostics Limited Prostate cancer classification
US10260104B2 (en) 2010-07-27 2019-04-16 Genomic Health, Inc. Method for using gene expression to determine prognosis of prostate cancer
US10317405B2 (en) 2012-05-02 2019-06-11 Bergenbio Asa Methods of detecting Akt3 and administering Ax1 inhibitor
US10724089B2 (en) 2016-10-06 2020-07-28 The Board Of Trustees Of The University Of Illinois Spatial molecular analysis of tissue
WO2020214718A1 (en) * 2019-04-16 2020-10-22 Memorial Sloan Kettering Cancer Center Rrm2 signature genes as prognostic markers in prostate cancer patients
US10876164B2 (en) 2012-11-16 2020-12-29 Myriad Genetics, Inc. Gene signatures for cancer prognosis
US10954568B2 (en) 2010-07-07 2021-03-23 Myriad Genetics, Inc. Gene signatures for cancer prognosis
WO2021154146A1 (en) * 2020-01-30 2021-08-05 Arocell Ab Predicting patient survival

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816862A (en) * 2012-09-19 2012-12-12 南开大学 Application of miRNA (Micro Ribonucleic Acid) 222 to prostatic cancer serological diagnosis kit
CN106796236A (en) * 2013-12-30 2017-05-31 促进军事医学的亨利·M·杰克逊基金会公司 Prostate cancer gene profile and the method using the gene profile
WO2016115312A1 (en) * 2015-01-14 2016-07-21 Ohio State Innovation Foundation Mirna-based predictive models for diagnosis and prognosis of prostate cancer
WO2016127998A1 (en) 2015-02-11 2016-08-18 Exiqon A microrna-based method for early detection of prostate cancer in urine samples
CA2977439A1 (en) 2015-02-27 2016-09-01 Exiqon A/S A microrna-based method for assessing the prognosis of a prostate cancer patient
CN104880565A (en) * 2015-05-04 2015-09-02 贵州省人民医院 Detection reagent for prognosis of ZFP36 prostatic cancer and kit of detection reagent
RU2721916C2 (en) * 2015-05-29 2020-05-25 Конинклейке Филипс Н.В. Methods for prostate cancer prediction
US20170107580A1 (en) 2015-10-15 2017-04-20 Dendreon Pharmaceuticals, Inc. Gene expression markers for predicting overall survival in subjects treated with sipuleucel-t
WO2017210662A1 (en) * 2016-06-03 2017-12-07 Castle Biosciences, Inc. Methods for predicting risk of recurrence and/or metastasis in soft tissue sarcoma
US20210040563A1 (en) * 2018-01-25 2021-02-11 Sorbonne Universite Molecular signature and use thereof for the identification of indolent prostate cancer
EP3755816A1 (en) * 2018-02-22 2020-12-30 Liquid Biopsy Research LLC Methods for prostate cancer detection and treatment
EP3994282A1 (en) * 2019-07-05 2022-05-11 Intellexon GmbH Determining individual hla patterns, use as prognosticators, target genes and therapeutic agents
WO2021124455A1 (en) * 2019-12-17 2021-06-24 株式会社 東芝 Analytical method and kit
JP2023506546A (en) * 2019-12-19 2023-02-16 エフ. ホフマン-ラ ロシュ エージー. Use of SEPT9 inhibitors to treat hepatitis B virus infection
US11845993B2 (en) * 2020-03-24 2023-12-19 The Regents Of The University Of Michigan Methods for identifying prostate cancer
ES1277194Y (en) 2021-03-25 2021-11-26 Keyzell Holding Sl Artificial intelligence-based system to analyze biomarkers and personalize cancer treatments
CN116640734A (en) * 2023-06-17 2023-08-25 青岛农业大学 Application of key gene in-vitro regulation of oocyte GVHD and interference fragment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048542A1 (en) * 2003-07-10 2005-03-03 Baker Joffre B. Expression profile algorithm and test for cancer prognosis
US20060166230A1 (en) * 2004-11-05 2006-07-27 Baker Joffre B Predicting response to chemotherapy using gene expression markers

Family Cites Families (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000449A1 (en) 1995-06-14 1997-01-03 Aberdeen University Prognostic and therapeutic system for cancer
US6300060B1 (en) 1995-11-09 2001-10-09 Dana-Farber Cancer Institute, Inc. Method for predicting the risk of prostate cancer morbidity and mortality
USRE38490E1 (en) 1995-11-16 2004-04-06 Baylor College Of Medicine Method for identifying metastatic sequences
US5712097A (en) 1996-01-19 1998-01-27 The Johns Hopkins University School Of Medicine Tumor suppressor gene, DPC4
EP0974057B1 (en) 1996-07-15 2005-09-21 Mayo Foundation For Medical Education And Research Methods to detect hk2 polypeptides
US6479263B1 (en) 1996-11-14 2002-11-12 Baylor College Of Medicine Method for detection of micrometastatic prostate cancer
US6190857B1 (en) 1997-03-24 2001-02-20 Urocor, Inc. Diagnosis of disease state using MRNA profiles in peripheral leukocytes
WO1999004238A2 (en) 1997-07-15 1999-01-28 Mitotix, Inc. Reagents and methods for diagnosis and prognosis of proliferative disorders
US20020132981A1 (en) 1997-12-03 2002-09-19 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
FI980488A (en) 1998-03-04 1999-09-05 Arctic Partners Oy Ab New diagnostic method
WO1999064627A2 (en) 1998-06-06 1999-12-16 Genostic Pharma Limited Probes used for genetic profiling
JP2003528564A (en) 1998-06-06 2003-09-30 ジェノスティック ファーマ リミテッド Probes used for genetic profiling
US6902892B1 (en) 1998-10-19 2005-06-07 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating prostate cancer
CA2359816C (en) 1999-01-06 2010-08-03 Genenews Inc. Method for the detection of gene transcripts in blood and uses thereof
WO2000044940A2 (en) 1999-01-28 2000-08-03 Gen-Probe Incorporated Nucleic acid sequences for detecting genetic markers for cancer in a biological sample
US20030207808A1 (en) 1999-02-18 2003-11-06 Kinneret Savitzky Novel nucleic acid and amino acid sequences
FI990382A0 (en) * 1999-02-23 1999-02-23 Arctic Partners Oy Ab New diagnostic method
JP4590107B2 (en) 1999-04-09 2010-12-01 中外製薬株式会社 New fetal gene
US6960439B2 (en) 1999-06-28 2005-11-01 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
US6692916B2 (en) 1999-06-28 2004-02-17 Source Precision Medicine, Inc. Systems and methods for characterizing a biological condition or agent using precision gene expression profiles
GB9926805D0 (en) 1999-11-13 2000-01-12 Zeneca Ltd Diagnostic methods
AU785055B2 (en) * 2000-01-13 2006-09-07 Genentech Inc. Novel stra6 polypeptides
US6448086B1 (en) 2000-01-18 2002-09-10 Diagnostic Systems Laboratories, Inc. Insulin-like growth factor system and cancer
US6566130B1 (en) 2000-01-28 2003-05-20 Henry M. Jackson Foundation For The Advancement Of Military Medicine Androgen-regulated gene expressed in prostate tissue
US7700359B2 (en) 2000-06-02 2010-04-20 Novartis Vaccines And Diagnostics, Inc. Gene products differentially expressed in cancerous cells
WO2002031209A2 (en) 2000-10-13 2002-04-18 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Genes related to development of refractory prostate cancer
AU2002216009A1 (en) 2000-11-03 2002-05-15 Michael Giesing Clinical and functional validation of targets from disseminated cancer cells
AU2002251844A1 (en) 2001-02-02 2002-10-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
WO2002079411A2 (en) 2001-03-29 2002-10-10 Van Andel Institute Microarray gene expression profiling in clear cell renal cell carcinoma: prognosis and drug target identification
US20040203012A1 (en) 2001-05-25 2004-10-14 Eleftherios Diamandis Method of detecting and monitoring prostate and ovarian cancers
EP1468110A4 (en) 2001-06-10 2008-01-30 Irm Llc Molecular signatures of commonly fatal carcinomas
US20030108963A1 (en) 2001-07-25 2003-06-12 Millennium Pharmaceuticals, Inc. Novel genes, compositions, kit, and methods for identification, assessment, prevention and therapy of prostate cancer
US7229774B2 (en) 2001-08-02 2007-06-12 Regents Of The University Of Michigan Expression profile of prostate cancer
US7700293B2 (en) 2001-08-02 2010-04-20 The Regents Of The University Of Michigan Expression profile of prostate cancer
US20100297657A1 (en) 2001-08-02 2010-11-25 The Regents Of The University Of Michigan Expression profile of prostate cancer
WO2003040404A1 (en) 2001-11-09 2003-05-15 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
AU2002357747A1 (en) 2001-12-10 2003-06-23 Millennium Pharmaceuticals Inc. Novel genes encoding colon cancer antigens
US6949342B2 (en) 2001-12-21 2005-09-27 Whitehead Institute For Biomedical Research Prostate cancer diagnosis and outcome prediction by expression analysis
US20030215835A1 (en) 2002-01-15 2003-11-20 Zairen Sun Differentially-regulated prostate cancer genes
JP2005519606A (en) * 2002-03-14 2005-07-07 エグゾニ・テラピューティック・ソシエテ・アノニム Variants of human kallikrein-2 and kallikrein-3 and their use
AUPS187002A0 (en) 2002-04-22 2002-05-30 Queensland University Of Technology Condition-specific molecules and uses therefor
CA2498418A1 (en) 2002-09-10 2004-03-25 Guennadi V. Glinskii Gene segregation and biological sample classification methods
US20060051763A1 (en) 2002-09-25 2006-03-09 Anu-Maria Loukola Detection methods
WO2004053106A2 (en) 2002-12-05 2004-06-24 Regulome Corporation Profiled regulatory sites useful for gene control
US20050282170A1 (en) 2003-02-07 2005-12-22 Diagnocure Inc. Method to detect prostate cancer in a sample
WO2004077942A2 (en) 2003-02-28 2004-09-16 Genpath Pharmaceuticals, Incorporated Inducible prostate cancer model
JP2006523456A (en) 2003-04-15 2006-10-19 アバロン ファーマシューティカルズ,インコーポレイテッド Identification of cancer-linked genes and therapeutic targets using molecular cytogenetic methods
US7659062B2 (en) * 2003-06-03 2010-02-09 The Board of Trustee of the University of Arkansas System Gene expression profiling of uterine serous papillary carcinomas and ovarian serous papillary tumors
CA2530738C (en) 2003-06-24 2020-01-21 Genomic Health, Inc. Prediction of likelihood of cancer recurrence
WO2005007830A2 (en) 2003-07-14 2005-01-27 Mayo Foundation For Medical Education And Research Methods and compositions for diagnosis, staging and prognosis of prostate cancer
US20070105114A1 (en) 2003-07-29 2007-05-10 Martha Li Biomarkers of cyclin-dependent kinase modulation
EP1709152A4 (en) 2003-12-15 2007-11-07 Univ California Molecular signature of the pten tumor suppressor
KR20070052694A (en) 2004-01-09 2007-05-22 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 Cell-type-specific patterns of gene expression
GB0400976D0 (en) 2004-01-16 2004-02-18 Univ Cambridge Tech Methods of diagnosis
JP2005211023A (en) 2004-01-30 2005-08-11 Hayashibara Biochem Lab Inc Method for estimating possibility of metastasis or relapse of renal cell carcinoma
WO2005076005A2 (en) 2004-01-30 2005-08-18 Medizinische Universität Wien A method for classifying a tumor cell sample based upon differential expression of at least two genes
WO2005083128A2 (en) 2004-02-25 2005-09-09 University Of South Florida Methods for predicting cancer outcome and gene signatures for use therein
AU2005233593B2 (en) 2004-04-09 2010-08-26 Fondazione Irccs Istituto Nazionale Dei Tumori Gene expression markers for predicting response to chemotherapy
US20070224596A1 (en) 2004-04-09 2007-09-27 Mariana Nacht Compositions and methods for the modifying hypoxia induced gene regulation
EP1740951B1 (en) 2004-04-29 2008-03-05 Marc Ramael Method and kit for detecting components in a sample
US10066268B2 (en) 2004-05-07 2018-09-04 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Methods of diagnosing or treating prostate cancer using the ERG gene, alone or in combination with other over or under expressed genes in prostate cancer
EP1766091A4 (en) 2004-05-27 2009-03-18 Vertex Pharma Biomarkers for monitoring inhibition of impdh pathway
CA2568732A1 (en) 2004-06-03 2005-12-15 Bayer Healthcare Ag Methods for predicting and monitoring response to cancer therapy
WO2006005043A2 (en) 2004-06-30 2006-01-12 Cemines, Inc. Compositions and methods for detecting protein interactions with target dna sequences
US7587279B2 (en) 2004-07-06 2009-09-08 Genomic Health Method for quantitative PCR data analysis system (QDAS)
EP1784511A4 (en) 2004-08-13 2009-03-11 Millennium Pharm Inc Genes, compositions, kits, and methods for identification, assessment, prevention, and therapy of prostate cancer
US7572640B2 (en) 2004-09-28 2009-08-11 Singulex, Inc. Method for highly sensitive detection of single protein molecules labeled with fluorescent moieties
CA2588705A1 (en) 2004-11-24 2006-06-01 St. George's Enterprises Limited Diagnosis of prostate cancer
BRPI0515794A (en) 2004-12-17 2008-08-05 Veridex Llc processes to evaluate patients with acute myeloid leukemia
US7943306B2 (en) 2005-01-12 2011-05-17 The Board Of Trustees Of The Leland Stanford Junior University Gene expression signature for prediction of human cancer progression
WO2006089087A2 (en) 2005-02-17 2006-08-24 Dana-Farber Cancer Institute, Inc. Compositions, kits and methods for identification, assessment, prevention and therapy of cancer
WO2006091776A2 (en) * 2005-02-25 2006-08-31 The Brigham And Women's Hospital, Inc. Biomarkers for predicting prostate cancer progression
WO2006110264A2 (en) * 2005-03-16 2006-10-19 Sidney Kimmel Cancer Center Methods and compositions for predicting death from cancer and prostate cancer survival using gene expression signatures
WO2006105642A1 (en) 2005-04-05 2006-10-12 British Columbia Cancer Agency Biomarkers for the detection of lung cancer and uses thereof
US20090203639A1 (en) 2005-04-15 2009-08-13 Oncomethylome Sciences, Inc. Methylation Markers for Diagnoses and Treatment of Cancers
US20080275652A1 (en) 2005-05-13 2008-11-06 Universite Libre De Bruxelles Gene-based algorithmic cancer prognosis
CA2608359A1 (en) 2005-05-13 2006-11-23 Duke University Gene expression signatures for oncogenic pathway deregulation
US20060292610A1 (en) 2005-06-06 2006-12-28 Regents Of The University Of Michigan Prognostic meta signatures and uses thereof
US8278038B2 (en) 2005-06-08 2012-10-02 Millennium Pharmaceuticals, Inc. Methods for the identification, assessment, and treatment of patients with cancer therapy
US20070099209A1 (en) 2005-06-13 2007-05-03 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
JP2008546387A (en) 2005-06-13 2008-12-25 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Compositions and methods for treating and diagnosing cancer
US7718369B2 (en) * 2005-09-12 2010-05-18 The Regents Of The University Of Michigan Recurrent gene fusions in prostate cancer
JP2009514555A (en) 2005-11-08 2009-04-09 ユークリッド ダイアグノスティックス リミテッド ライアビリティー カンパニー Materials and Methods for Gene-Related CpG Island Methylation Assays for Cancer Evaluation
WO2007072225A2 (en) 2005-12-01 2007-06-28 Medical Prognosis Institute Methods and devices for identifying biomarkers of treatment response and use thereof to predict treatment efficacy
US8445198B2 (en) 2005-12-01 2013-05-21 Medical Prognosis Institute Methods, kits and devices for identifying biomarkers of treatment response and use thereof to predict treatment efficacy
KR20080080525A (en) 2005-12-08 2008-09-04 노파르티스 아게 Effects of inhibitors of fgfr3 on gene transcription
US20090215054A1 (en) 2005-12-13 2009-08-27 Carter Scott L Prognosis indicators for solid human tumors
WO2007075672A2 (en) 2005-12-23 2007-07-05 Lankenau Institute For Medical Research Prognostic cancer markers
US7695913B2 (en) 2006-01-11 2010-04-13 Genomic Health, Inc. Gene expression markers for colorectal cancer prognosis
ES2300176B1 (en) * 2006-02-15 2009-05-01 Consejo Superior Investig. Cientificas METHOD FOR THE MOLECULAR PROSTATE CANCER DIAGNOSIS, KIT TO IMPLEMENT THE METHOD.
US20070218512A1 (en) 2006-02-28 2007-09-20 Alex Strongin Methods related to mmp26 status as a diagnostic and prognostic tool in cancer management
WO2007123772A2 (en) 2006-03-31 2007-11-01 Genomic Health, Inc. Genes involved in estrogen metabolism
US7914988B1 (en) 2006-03-31 2011-03-29 Illumina, Inc. Gene expression profiles to predict relapse of prostate cancer
US20090098538A1 (en) 2006-03-31 2009-04-16 Glinsky Gennadi V Prognostic and diagnostic method for disease therapy
WO2007140352A2 (en) 2006-05-26 2007-12-06 Invitrogen Corporation Plasma membrane and secreted cancer biomarkers
US7805183B2 (en) 2006-06-22 2010-09-28 Wisconsin Alumni Research Foundation Stromal collagen in the diagnosis and characterization of breast cancer
WO2008036717A2 (en) 2006-09-19 2008-03-27 Emory University Use of soluble galectin-3 (gal-3) for cancer treatment
WO2008046510A1 (en) 2006-10-16 2008-04-24 Bayer Healthcare Ag Fn1 as a biomarker, therapeutic and diagnostic target
WO2008048570A2 (en) 2006-10-16 2008-04-24 The Ohio State University Research Foundation Piwil2-related biomarkers and cell lines useful therewith
WO2008067065A2 (en) * 2006-10-19 2008-06-05 Shiv Srivastava Methods, kits, and systems for diagnosing and prognosing prostate cancer using secreted biomarkers
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
WO2008061104A2 (en) 2006-11-13 2008-05-22 Invitrogen Corporation Methods and kits for detecting prostate cancer biomarkers
US20080131887A1 (en) 2006-11-30 2008-06-05 Stephan Dietrich A Genetic Analysis Systems and Methods
WO2008070160A2 (en) 2006-12-06 2008-06-12 Avalon Pharmaceuticals, Inc. Cancer-linked genes as biomarkers to monitor response to impdh inhibitors
AT504702A1 (en) 2006-12-22 2008-07-15 Arc Austrian Res Centers Gmbh SET OF TUMOR MARKERS
US20100120788A1 (en) 2007-01-09 2010-05-13 Bristol-Myers Squibb Company Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in prostate cells
US20090047694A1 (en) 2007-08-17 2009-02-19 Shuber Anthony P Clinical Intervention Directed Diagnostic Methods
US20090258795A1 (en) 2007-03-15 2009-10-15 Genomic Health, Inc. Gene expression markers for prediction of patient response to chemotherapy
WO2008122447A2 (en) 2007-04-10 2008-10-16 Epigenomics Ag Dna methylation assay for the diagnosis or prognosis of medical conditions
EP2639316A1 (en) 2007-05-11 2013-09-18 The Johns Hopkins University Biomarkers for melanoma
WO2008153743A2 (en) 2007-05-21 2008-12-18 Dana Farber Cancer Institute Compositions and methods for cancer gene discovery
US20110136123A1 (en) 2007-08-15 2011-06-09 Universite De Sherbrooke Alternative splicing gene variants in cancer
CA2695814A1 (en) 2007-09-07 2009-04-23 Universite Libre De Bruxelles Methods and tools for prognosis of cancer in her2+ patients
WO2009051734A1 (en) 2007-10-17 2009-04-23 The General Hospital Corporation Microchip-based devices for capturing circulating tumor cells and methods of their use
GB0721605D0 (en) 2007-11-02 2007-12-12 Cancer Rec Tech Ltd Prostrate cancer susceptibility screening
US20090123439A1 (en) 2007-11-09 2009-05-14 The Jackson Laboratory Diagnostic and prognosis methods for cancer stem cells
WO2009070767A2 (en) 2007-11-28 2009-06-04 Whitehead Institute For Biomedical Research Systemic instigation systems to study tumor growth or metastasis
EP2065474A1 (en) 2007-11-28 2009-06-03 Siemens Healthcare Diagnostics GmbH A method to assess prognosis and to predict therapeutic response to endocrine treatment
EP2215251A2 (en) 2007-11-30 2010-08-11 Siemens Healthcare Diagnostics GmbH Method for predicting therapy responsiveness in basal like tumors
WO2009089521A2 (en) 2008-01-10 2009-07-16 Nuvera Biosciences, Inc. Predictors for evaluating response to cancer therapy
WO2009105154A2 (en) 2008-02-19 2009-08-27 The Jackson Laboratory Diagnostic and prognostic methods for cancer
WO2009105640A1 (en) 2008-02-22 2009-08-27 Virginia Commonwealth University Signatures associated with rejection or recurrence of cancer
WO2009114836A1 (en) 2008-03-14 2009-09-17 Genomic Health, Inc. Gene expression markers for prediction of patient response to chemotherapy
BRPI0910608A2 (en) 2008-03-26 2016-07-26 Theranos Inc methods and systems for evaluating clinical outcomes
EP2105511A1 (en) 2008-03-28 2009-09-30 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Medicament compositions and substances for treatment and identifying adenocarcinoma of the lung
US20110053804A1 (en) 2008-04-03 2011-03-03 Sloan-Kettering Institute For Cancer Research Gene Signatures for the Prognosis of Cancer
WO2009126122A1 (en) 2008-04-10 2009-10-15 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc Prostate cancer-specific alterations in erg gene expression and detection and treatment methods based on those alterations
EP2283148A4 (en) 2008-04-25 2011-11-30 Integrated Bioscience Solutions Llc Cytological methods for detecting cancer
US8093000B2 (en) 2008-05-09 2012-01-10 The Regents Of The University Of California Methods for predicting and treating tumors resistant to drug, immunotherapy, and radiation
US20110065605A1 (en) 2008-05-14 2011-03-17 Eth Zurich Method for biomarker and drug-target discovery for prostate cancer diagnosis and treatment as well as biomarker assays determined therewith
CA2724231A1 (en) 2008-05-15 2009-11-19 The University Of North Carolina At Chapel Hill Novel targets for regulation of angiogenesis
WO2009140741A1 (en) 2008-05-23 2009-11-26 The University Of Queensland Agents and methods for diagnosing the presence or risk of prostate cancer
WO2009143603A1 (en) 2008-05-28 2009-12-03 Genomedx Biosciences, Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
GB0809689D0 (en) 2008-05-28 2008-07-02 Cancer Res Inst Royal Markers for prostate cancee
US20090298082A1 (en) * 2008-05-30 2009-12-03 Klee George G Biomarker panels for predicting prostate cancer outcomes
WO2009149166A2 (en) 2008-06-03 2009-12-10 Children's Hospital Medical Center Methods and compositions for the diagnosis and treatment of proliferative disorders
RU2011101378A (en) 2008-06-16 2012-07-27 Сайвидон Дайагностикс Гмбх (De) ALGORITHMS FOR PREDICTING OUTCOME IN PATIENTS WITH NODAL FORM OF BREAST CANCER AFTER CHEMOTHERAPY
EP2405022A3 (en) 2008-07-08 2012-05-02 Genomic Health, Inc. Gene expression profiling for predicting the survivability of prostate cancer subjects
BRPI0916229A2 (en) 2008-07-16 2015-11-03 Dana Farber Cancer Inst Inc signatures and determinants pcs associated with prostate cancer and methods of using them
AU2009274563A1 (en) 2008-07-21 2010-01-28 Texas A & M University Methods for diagnosis and prognosis of skin cancer
AU2009291203B2 (en) 2008-09-10 2015-01-22 Life & Brain Gmbh Peripheral zone tumor cells, methods for their preparation and use
US20120058108A1 (en) 2008-10-20 2012-03-08 Kai Krohn Methods and uses involving genetic aberrations of nav3 and aberrant expression of multiple genes
MX2011004165A (en) 2008-10-22 2011-08-08 Genentech Inc Prostate stem cells and uses thereof.
CN102308004A (en) 2008-10-30 2012-01-04 卡里斯生命科学卢森堡控股有限责任公司 Methods for assessing RNA patterns
US20110230361A1 (en) * 2008-11-14 2011-09-22 Emory University Prostate cancer biomarkers to predict recurrence and metastatic potential
WO2010056351A2 (en) 2008-11-14 2010-05-20 Stc.Unm Gene expression classifiers for relapse free survival and minimal residual disease improve risk classification and out come prediction in pedeatric b-precursor acute lymphoblastic leukemia
GB0821787D0 (en) 2008-12-01 2009-01-07 Univ Ulster A genomic-based method of stratifying breast cancer patients
WO2010065940A1 (en) 2008-12-04 2010-06-10 The Regents Of The University Of California Materials and methods for determining diagnosis and prognosis of prostate cancer
US20120301887A1 (en) 2009-01-06 2012-11-29 Bankaitis-Davis Danute M Gene Expression Profiling for the Identification, Monitoring, and Treatment of Prostate Cancer
EP3118328A1 (en) 2009-01-07 2017-01-18 Myriad Genetics, Inc. Cancer biomarkers
NZ593514A (en) 2009-01-14 2013-03-28 Us Health p-mTOR and p-AKT as Ratio Based Biomarkers for the Prognosis and/or Diagnosis of Cancer
SG172984A1 (en) 2009-01-15 2011-08-29 Lab Corp America Holdings Methods of determining patient response by measurement of her-2 expression
EP2233590A1 (en) 2009-01-28 2010-09-29 AIT Austrian Institute of Technology GmbH Methylation assay
WO2010096734A2 (en) 2009-02-20 2010-08-26 John Wayne Cancer Institute B7-h3 antibody coupled bead assay for isolation and detection of circulating tumor cells in body fluids of melanoma and breast cancer patients
WO2010099577A1 (en) 2009-03-04 2010-09-10 The University Of Queensland Cancer biomarkers and uses therefor
US8341318B2 (en) 2009-03-16 2012-12-25 Apple Inc. Techniques for facilitating communication between an accessory and a mobile computing device using application specific protocols
US8765383B2 (en) 2009-04-07 2014-07-01 Genomic Health, Inc. Methods of predicting cancer risk using gene expression in premalignant tissue
CN102421920B (en) 2009-04-16 2015-09-30 加拿大国家研究委员会 For tumoral character and the qualification of marker group, the method for tumor grade and the marker group for cancer
EP2241634A1 (en) 2009-04-16 2010-10-20 Université Libre de Bruxelles Diagnostic method and tools to predict the effiacy of targeted agents against IGF-1 pathway activation in cancer
WO2010127399A1 (en) 2009-05-06 2010-11-11 Walter And Eliza Hall Institute Of Medical Research Gene expression profiles and uses thereof
WO2010129965A1 (en) 2009-05-08 2010-11-11 The Regents Of The University Of California Cancer specific mitotic network
US20100303795A1 (en) * 2009-05-27 2010-12-02 Soerensen Karina Dalsgaard Marker of prostate cancer
EA021945B1 (en) 2009-07-08 2015-10-30 Уорлдуайд Иновейтив Нетуорк Method for predicting efficacy of drugs in a patient
WO2011039734A2 (en) 2009-10-02 2011-04-07 Enzo Medico Use of genes involved in anchorage independence for the optimization of diagnosis and treatment of human cancer
NZ599194A (en) 2009-11-23 2014-07-25 Genomic Health Inc Methods to predict clinical outcome of cancer
NZ600268A (en) 2010-01-11 2014-08-29 Genomic Health Inc Method to use gene expression to determine likelihood of clinical outcome of renal cancer
DK2598659T3 (en) 2010-07-27 2015-05-26 Genomic Health Inc PROCEDURE FOR USING GENEPRESSION FOR DETERMINING PROSTATE CANCER FORECAST
WO2014108896A1 (en) 2013-01-08 2014-07-17 Marpe Technologies Ltd. Device and method for body moles mapping and tracking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048542A1 (en) * 2003-07-10 2005-03-03 Baker Joffre B. Expression profile algorithm and test for cancer prognosis
US20060166230A1 (en) * 2004-11-05 2006-07-27 Baker Joffre B Predicting response to chemotherapy using gene expression markers

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Barwick et al. British Journal of Cancer 1/12/2010 Vol 102 pages 570-576 *
Chan, Eric. Integrating Transcriptomics and Proteomics. G&P magazine 2006 Vol 6 No 3 pages 20-26 *
Cheville (Journal of Clinical Oncology Vol 26 No 24 8/20/2008 pages 3930-3936). *
Glinsky et al. The Journal of Clinical Investigation Vol 113 No 6 pages 913-923 March 2004 *
Hoshikawa, Yasushit et al. Hypoxia induces different genes in the lungs of rats compared with mice. Physical Genomics 2003 Vol 12 pages 209-219 *
Khuntia (Cancer Vol 100 No 6 pages 1283-1292 March 2004) *
Kube et al. BMC Molecular Biology 2007 Vol 8 No 25 *
Ohl et al. J Mol Med 2005 Vol 83 pages 1014-1024 *
Stephenson (Cancer July 15, 2005 Vol 104 No 2) *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233691A1 (en) * 2007-03-30 2010-09-16 Source Precision Medicine, Inc. D/B/A Source Mdx Gene Expression Profiling for Identification, Monitoring and Treatment of Prostate Cancer
US10519513B2 (en) 2009-01-07 2019-12-31 Myriad Genetics, Inc. Cancer Biomarkers
US9976188B2 (en) 2009-01-07 2018-05-22 Myriad Genetics, Inc. Cancer biomarkers
US10954568B2 (en) 2010-07-07 2021-03-23 Myriad Genetics, Inc. Gene signatures for cancer prognosis
US10260104B2 (en) 2010-07-27 2019-04-16 Genomic Health, Inc. Method for using gene expression to determine prognosis of prostate cancer
US9605319B2 (en) 2010-08-30 2017-03-28 Myriad Genetics, Inc. Gene signatures for cancer diagnosis and prognosis
EP3739595A2 (en) 2012-01-31 2020-11-18 Genomic Health, Inc. Gene expression profile algorithm and test for determining prognosis of prostate cancer
JP2015511814A (en) * 2012-01-31 2015-04-23 ジェノミック ヘルス, インコーポレイテッド Gene expression profile algorithms and tests to quantify the prognosis of prostate cancer
US8725426B2 (en) 2012-01-31 2014-05-13 Genomic Health, Inc. Gene expression profile algorithm and test for determining prognosis of prostate cancer
WO2013116144A1 (en) * 2012-01-31 2013-08-08 Genomic Health, Inc. Gene expression profile algorithm and test for determining prognosis of prostate cancer
US11011252B1 (en) 2012-01-31 2021-05-18 Genomic Health, Inc. Gene expression profile algorithm and test for determining prognosis of prostate cancer
EP2831281A4 (en) * 2012-03-29 2016-03-30 Nat Health Research Institutes Molecular markers for prognostically predicting prostate cancer, method and kit thereof
WO2013142939A1 (en) * 2012-03-30 2013-10-03 Fundação Antônio Prudente Methods for predicting and classifying event outcomes
US20150104440A1 (en) * 2012-04-12 2015-04-16 Cornell University MiRNA-31 AS A DIAGNOSTIC, PROGNOSTIC AND THERAPEUTIC AGENT IN CANCER
US10317405B2 (en) 2012-05-02 2019-06-11 Bergenbio Asa Methods of detecting Akt3 and administering Ax1 inhibitor
EP2875157A4 (en) * 2012-07-20 2016-10-26 Diagnocure Inc Methods, kits and compositions for providing a clinical assessment of prostate cancer
US9790557B2 (en) * 2012-11-02 2017-10-17 The Regents Of The University Of California Methods and systems for determining a likelihood of adverse prostate cancer pathology
US20150211077A1 (en) * 2012-11-02 2015-07-30 The Regents Of The University Of California Methods and Systems for Determining a Likelihood of Adverse Prostate Cancer Pathology
US10876164B2 (en) 2012-11-16 2020-12-29 Myriad Genetics, Inc. Gene signatures for cancer prognosis
US10196697B2 (en) 2013-12-12 2019-02-05 Almac Diagnostics Limited Prostate cancer classification
US11098372B2 (en) 2014-01-16 2021-08-24 Illumina, Inc. Gene expression panel for prognosis of prostate cancer recurrence
JP2017503527A (en) * 2014-01-16 2017-02-02 イルミナ インコーポレイテッド Gene expression panel for prognosis of prostate cancer recurrence
US10364469B2 (en) * 2014-01-16 2019-07-30 Illumina, Inc Gene expression panel for prognosis of prostate cancer recurrence
WO2015175692A1 (en) * 2014-05-13 2015-11-19 Myriad Genetics, Inc. Gene signatures for cancer prognosis
US11174517B2 (en) 2014-05-13 2021-11-16 Myriad Genetics, Inc. Gene signatures for cancer prognosis
EP3623482A1 (en) * 2014-05-13 2020-03-18 Myriad Genetics, Inc. Gene signatures for cancer prognosis
US10801072B2 (en) 2014-09-04 2020-10-13 Miodx Method of analysis allowing avoidance of surgery
WO2016036994A1 (en) * 2014-09-04 2016-03-10 Miodx Method of analysis allowing avoidance of surgery
WO2016037000A1 (en) * 2014-09-04 2016-03-10 Miodx Method of multivariate molecule analysis
US10822661B2 (en) 2014-09-04 2020-11-03 Miodx Method of multivariate molecule analysis
US20200041515A1 (en) * 2016-01-20 2020-02-06 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
EP3405583A4 (en) * 2016-01-20 2019-09-11 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
US11971411B2 (en) * 2016-01-20 2024-04-30 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
AU2017209307B2 (en) * 2016-01-20 2023-06-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
WO2017127696A1 (en) 2016-01-20 2017-07-27 Dana-Farber Cancer Institute, Inc. Compositions and methods for screening and identifying clinically aggressive prostate cancer
US11335463B2 (en) 2016-02-02 2022-05-17 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11996202B2 (en) 2016-02-02 2024-05-28 Guardant Health, Inc. Cancer evolution detection and diagnostic
CN109072309A (en) * 2016-02-02 2018-12-21 夸登特健康公司 Cancer evolution detection and diagnosis
US11621083B2 (en) 2016-02-02 2023-04-04 Guardant Health, Inc. Cancer evolution detection and diagnostic
WO2017136603A1 (en) * 2016-02-02 2017-08-10 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11282610B2 (en) 2016-02-02 2022-03-22 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11667970B2 (en) 2016-10-06 2023-06-06 The Board Of Trustees Of The University Of Illinois Spatial molecular analysis of tissue
US10724089B2 (en) 2016-10-06 2020-07-28 The Board Of Trustees Of The University Of Illinois Spatial molecular analysis of tissue
WO2018098241A1 (en) * 2016-11-22 2018-05-31 University Of Rochester Methods of assessing risk of recurrent prostate cancer
WO2018096072A1 (en) * 2016-11-23 2018-05-31 Queen Mary University Of London Biomarkers for the prognosis and diagnosis of cancer
WO2020214718A1 (en) * 2019-04-16 2020-10-22 Memorial Sloan Kettering Cancer Center Rrm2 signature genes as prognostic markers in prostate cancer patients
WO2021154146A1 (en) * 2020-01-30 2021-08-05 Arocell Ab Predicting patient survival

Also Published As

Publication number Publication date
CA2804626A1 (en) 2012-02-02
EP3147373A1 (en) 2017-03-29
JP2013532482A (en) 2013-08-19
IL243205A (en) 2017-04-30
JP6246845B2 (en) 2017-12-13
DK3147373T3 (en) 2019-08-12
US20200255911A1 (en) 2020-08-13
CA3081061A1 (en) 2012-02-02
IL251403A0 (en) 2017-05-29
EP3556870A1 (en) 2019-10-23
JP7042784B2 (en) 2022-03-28
EP3147373B1 (en) 2019-05-15
JP2020031642A (en) 2020-03-05
US10260104B2 (en) 2019-04-16
EP3556870B9 (en) 2022-09-28
ES2537403T3 (en) 2015-06-08
EP2913405B1 (en) 2016-11-09
EP2598659A2 (en) 2013-06-05
EP4083233A2 (en) 2022-11-02
HK1212395A1 (en) 2016-06-10
MX359416B (en) 2018-09-27
HK1185116A1 (en) 2014-02-07
DK2598659T3 (en) 2015-05-26
US20190249260A1 (en) 2019-08-15
SG10201505769PA (en) 2015-09-29
US20220396842A1 (en) 2022-12-15
WO2012015765A3 (en) 2012-06-14
ES2741745T3 (en) 2020-02-12
IL251403B (en) 2018-04-30
EP2913405A1 (en) 2015-09-02
JP2018068299A (en) 2018-05-10
EP2598659B1 (en) 2015-03-11
ES2925983T3 (en) 2022-10-20
IL243206A (en) 2017-04-30
EP3556870B1 (en) 2022-06-22
SG186940A1 (en) 2013-02-28
JP2016178921A (en) 2016-10-13
JP2022031750A (en) 2022-02-22
EP2598659A4 (en) 2014-01-01
ES2611000T3 (en) 2017-05-04
IL243201A (en) 2017-04-30
EP4083233A3 (en) 2023-01-25
US20160097105A1 (en) 2016-04-07
DK2913405T3 (en) 2017-02-13
CA3081061C (en) 2023-01-03
MX2013000996A (en) 2013-12-09
CA2804626C (en) 2020-07-28
MX2018011725A (en) 2021-11-16
WO2012015765A2 (en) 2012-02-02
AU2011282892B2 (en) 2015-07-16
SG10201912361VA (en) 2020-02-27
NZ607282A (en) 2014-06-27
AU2011282892A1 (en) 2013-03-07
IL243203A (en) 2017-04-30
MX346031B (en) 2017-03-01
MX338883B (en) 2016-05-04

Similar Documents

Publication Publication Date Title
US20220396842A1 (en) Method for using gene expression to determine prognosis of prostate cancer
US11776664B2 (en) Method to use gene expression to determine likelihood of clinical outcome of renal cancer
US20210062275A1 (en) Methods to predict clinical outcome of cancer
AU2020201779B2 (en) Method for using gene expression to determine prognosis of prostate cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENOMIC HEALTH, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAK, STEVEN;BAEHNER, FREDERICK L.;MADDALA, TARA;AND OTHERS;SIGNING DATES FROM 20111004 TO 20111118;REEL/FRAME:027360/0498

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MDXHEALTH SA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENOMIC HEALTH, INC.;REEL/FRAME:060705/0152

Effective date: 20220802