US20120012273A1 - Operating method for twin-roll casting machine, and side weir supporting device - Google Patents

Operating method for twin-roll casting machine, and side weir supporting device Download PDF

Info

Publication number
US20120012273A1
US20120012273A1 US13/240,581 US201113240581A US2012012273A1 US 20120012273 A1 US20120012273 A1 US 20120012273A1 US 201113240581 A US201113240581 A US 201113240581A US 2012012273 A1 US2012012273 A1 US 2012012273A1
Authority
US
United States
Prior art keywords
rolls
side weirs
supporting device
weirs
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/240,581
Inventor
Hiroyuki Otsuka
Katsumi Nakayama
Hiroki Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to US13/240,581 priority Critical patent/US20120012273A1/en
Publication of US20120012273A1 publication Critical patent/US20120012273A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/066Side dams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to an operating method for a twin-roll casting machine, and a side weir supporting device.
  • twin roll continuous casting where molten metal is supplied to between a pair of horizontally juxtaposed rolls to deliver a solidified metal strip.
  • FIGS. 1-3 show an example of a twin-roll casting machine with a pair of chilled rolls 1 horizontally juxtaposed and a pair of side weirs 2 associated with the rolls 1 .
  • the chilled rolls 1 are constructed such that cooling water passes through insides of the rolls and a nip G between the rolls is increased/decreased depending on thickness of a steel strip 3 to be produced.
  • Rotational directions and velocities of the rolls 1 are set such that outer peripheries of the respective rolls 1 are moved from above toward the nip G at constant velocity.
  • One and the other of the side weirs 2 surface-contact one and the other ends of the respective rolls 1 , respectively.
  • a melt supplying nozzle 4 Arranged between the paired side weirs 2 is a melt supplying nozzle 4 so as to be positioned just above the nip G. Molten steel is poured from a ladle (not shown) to the nozzle 4 to supply the molten steel in a space defined by the rolls 1 and side weirs 2 . Thus, a melt pool 5 is provided.
  • melt pool 5 is formed and the chilled rolls 1 are rotated with the cooling water passing through and cooling the rolls 1 , so that molten steel is solidified on outer peripheries of the rolls 1 and steel strip 3 is delivered downward from the nip G.
  • the side weirs 2 are pushed by pressing actuators such as hydraulic cylinders against ends of the rolls 1 to prevent leaking of the molten steel (see, for example, Patent Literatures 1 and 2).
  • the invention was made in view of the above and has its object to make it possible to acquire a strip with less thickness even if arcuate worn steps are formed on side weirs.
  • the above object is accomplished such that a center-to-center distance between chilled rolls is reduced with side weirs in contact with ends of the rolls being displaced upward where a strip from a nip between the rolls is to be reduced in thickness and that the center-to-center distance between the rolls is increased with the side weirs in contact with the ends of the rolls being displaced downward where the strip from the nip between the rolls is to be increased in thickness.
  • the center-to-center distance between the rolls is reduced with the side weirs being displaced upward, which prevents outer peripheries of the rolls from interfering with the side weirs.
  • the center-to-center distance between the rolls is increased with the side weirs being displaced downward, which keeps overlapped degree of the side weirs to the ends of the rolls.
  • a side weir supporting device comprises pressing actuators for pressing side weirs against ends of chilled rolls of a twin-roll casting machine, and position adjusting mechanisms for vertically displacing said side weirs.
  • the center-to-center distance between the chilled rolls is reduced with the side weirs being displaced upward, which prevents outer peripheries of the rolls from interfering with the side weirs.
  • the center-to-center distance between the chilled rolls is increased with the side weirs being displaced downward by the position adjusting mechanisms, which keeps overlapped degree of the side weirs to the ends of the rolls.
  • An operating method for a twin-roll casting machine and a side weir supporting device of the invention can attain excellent effects and advantages as mentioned below.
  • the side weirs can continue to be used, provided that the portions of the side weirs with the arcuate worn steps formed have remaining thickness providing strength required for an operation of the twin-roll casting machine. As a consequence, the service life of the side weirs is prolonged, leading to reduction in maintenance cost.
  • FIG. 1 is a schematic view showing a conventional twin-roll casting machine
  • FIG. 2 is a perspective view showing a side weir with arcuate worn steps developing
  • FIG. 3 is a schematic view showing relationships between the side weirs and the chilled rolls shown in FIG. 2 ;
  • FIG. 4 is a schematic view showing an embodiment of an operating method for the twin-roll casting machine according to the invention.
  • FIG. 5 is a schematic view showing relative positions between the casting roll and the side weir in connection with FIG. 4 ;
  • FIG. 6 is a schematic view showing an embodiment of a side weir supporting device according to the invention.
  • FIGS. 4 and 5 show an embodiment of an operating method for a twin-roll casting machine and FIG. 6 shows an embodiment of a side weir supporting device.
  • parts similar to those in FIGS. 1-3 are represented by the same reference numerals.
  • the side weir supporting device comprises pressing cylinders for pressing side weirs 2 against ends of a pair of chilled rolls 1 horizontally juxtaposed, and position adjusting mechanisms 10 for vertically displacing the side weirs 2 , the side weirs 2 having arcuate worn steps 6 formed due to rotational sliding contact of the rolls 1 .
  • Each of the position adjusting mechanisms 10 comprises a platform 12 close to the corresponding side weir 2 and vertically guided by direct-acting bearings 11 , and a ball screw 14 which transmits rotation of a servo motor 13 , as vertical displacement, to the platform 12 .
  • the pressing cylinder 9 is mounted on the platform 12 of the adjusting mechanism 10 such that a piston rod 15 of the cylinder is positioned in parallel with a rotational axis of the chilled roll 1 .
  • a tip of the piston rod 15 is connected to the side weir 2 , so that the side weir 2 is pushed/pulled by the pressing cylinder 9 .
  • the servo motors 13 are actuated to vertically displace the platforms 12 , pressing cylinders 9 and side weirs 2 upward.
  • rise x of each of the side weirs 2 can be geometrically determined on the basis of increase/decrease in length of the center-to-center distance L between the rolls 1 .
  • rise of the side weirs 2 is several millimeters or so, assuming that the twin-roll casting machine has the chilled rolls 1 with radius of about 250 mm, horizontal displacement of each roll being d, increase/decrease of the center-to-center distance L between the rolls 1 due to nip variation 2 d being in a range of 0.2 to 0.3 mm (see FIG. 5 ).
  • the side weirs 2 Prior to reduction of the center-to-center distance L between the rolls 1 , the side weirs 2 are displaced upward, so that prevented is interference between the boundary surfaces 8 adjacent to the arcuate worn steps 6 on the side weirs 2 and the outer peripheries of the chilled rolls 1 , which makes it possible to acquire the steel strip 3 with less thickness.
  • the side weirs 2 can continue to be used, provided that the portions of the side weirs with the arcuate worn steps 6 formed have remaining thickness providing strength required for an operation of the twin-roll casting machine. As a consequence, the service life of the side weirs 2 is prolonged, leading to reduction in maintenance cost.
  • the center-to-center distance L between the rolls 1 is increased by some appropriate means.
  • the servo motors 13 are actuated to vertically displace the platforms 12 , pressing cylinders 9 and side weirs 2 downward while the side weirs 2 are pressed by the pressing cylinders 9 to contact the ends of the rolls 1 , which keeps overlapped degree of the side weirs to the ends of the rolls 1 and prevents leakage of the molten steel.
  • lowering of the side weirs 2 is several millimeters or so, assuming that the twin-roll casting machine has the chilled rolls 1 with radius of about 250 mm, horizontal displacement of each roll being d, increase/decrease of the center-to-center distance L between the rolls 1 due to nip variation 2 d being in a range of 0.2 to 0.3 mm.
  • a method for operating a twin-roll casting machine and a side weir supporting device according to the invention are applicable to production of strips made of various kinds of metals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

An operation to acquire a strip with less thickness even if arcuate worn steps are formed on side weirs is disclosed. During an operation of a twin-roll casting machine with arcuate worn steps developing on side weirs due to rotational sliding contact of chilled rolls, the thickness of a steel strip from a nip is reduced, and the center-to-center distance between the rolls is increased with the side weirs in contact with ends of the rolls being displaced upward. This prevents interference of outer peripheries of the rolls with boundary surfaces adjacent to the arcuate worn steps of the side weirs.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. application Ser. No. 12/524,664 filed Sep. 8, 2009, the entire contents of which is incorporated herein by reference. U.S. application Ser. No. 12/524,664 is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2007-022833 filed Feb. 1, 2007.
  • TECHNICAL FIELD
  • The present invention relates to an operating method for a twin-roll casting machine, and a side weir supporting device.
  • BACKGROUND ART
  • Known as one of techniques for directly producing a strip from molten metal is twin roll continuous casting where molten metal is supplied to between a pair of horizontally juxtaposed rolls to deliver a solidified metal strip.
  • FIGS. 1-3 show an example of a twin-roll casting machine with a pair of chilled rolls 1 horizontally juxtaposed and a pair of side weirs 2 associated with the rolls 1.
  • The chilled rolls 1 are constructed such that cooling water passes through insides of the rolls and a nip G between the rolls is increased/decreased depending on thickness of a steel strip 3 to be produced.
  • Rotational directions and velocities of the rolls 1 are set such that outer peripheries of the respective rolls 1 are moved from above toward the nip G at constant velocity.
  • One and the other of the side weirs 2 surface-contact one and the other ends of the respective rolls 1, respectively.
  • Arranged between the paired side weirs 2 is a melt supplying nozzle 4 so as to be positioned just above the nip G. Molten steel is poured from a ladle (not shown) to the nozzle 4 to supply the molten steel in a space defined by the rolls 1 and side weirs 2. Thus, a melt pool 5 is provided.
  • Specifically, the above-mentioned melt pool 5 is formed and the chilled rolls 1 are rotated with the cooling water passing through and cooling the rolls 1, so that molten steel is solidified on outer peripheries of the rolls 1 and steel strip 3 is delivered downward from the nip G.
  • In this case, forces are applied to bearing boxes (not shown) for rotary support of necks of the respective rolls in directions toward each other so as to make the steel strip 3 to have a targeted thickness value.
  • The side weirs 2 are pushed by pressing actuators such as hydraulic cylinders against ends of the rolls 1 to prevent leaking of the molten steel (see, for example, Patent Literatures 1 and 2).
    • [Patent Literature 1] JP 2000-190053A
    • [Patent Literature 2] JP 2004-050252A
    SUMMARY OF INVENTION Technical Problems
  • On the side weirs 2 pushed against the ends of the rolls 1, arcuate worn steps 6 develop due to rotational sliding contact of the rolls 1 (see FIGS. 2 and 3).
  • Once the arcuate worn steps 6 are formed on the side weirs 2, trial of reducing center-to-center distance L between the rolls 1 is in vain since outer peripheries of the rolls 1 abut on boundary surfaces 8 lying between unworn portions 7 and the arcuate worn steps 6 on the side weirs 2. As a result, the steel strip 3 delivered from the nip G cannot be reduced in thickness.
  • The invention was made in view of the above and has its object to make it possible to acquire a strip with less thickness even if arcuate worn steps are formed on side weirs.
  • Solution to Problems
  • In an operating method for a twin-roll casting machine according to the invention, the above object is accomplished such that a center-to-center distance between chilled rolls is reduced with side weirs in contact with ends of the rolls being displaced upward where a strip from a nip between the rolls is to be reduced in thickness and that the center-to-center distance between the rolls is increased with the side weirs in contact with the ends of the rolls being displaced downward where the strip from the nip between the rolls is to be increased in thickness.
  • Specifically, the center-to-center distance between the rolls is reduced with the side weirs being displaced upward, which prevents outer peripheries of the rolls from interfering with the side weirs.
  • The center-to-center distance between the rolls is increased with the side weirs being displaced downward, which keeps overlapped degree of the side weirs to the ends of the rolls.
  • A side weir supporting device according to the invention comprises pressing actuators for pressing side weirs against ends of chilled rolls of a twin-roll casting machine, and position adjusting mechanisms for vertically displacing said side weirs.
  • Specifically, the center-to-center distance between the chilled rolls is reduced with the side weirs being displaced upward, which prevents outer peripheries of the rolls from interfering with the side weirs.
  • The center-to-center distance between the chilled rolls is increased with the side weirs being displaced downward by the position adjusting mechanisms, which keeps overlapped degree of the side weirs to the ends of the rolls.
  • Advantageous Effects of Invention
  • An operating method for a twin-roll casting machine and a side weir supporting device of the invention can attain excellent effects and advantages as mentioned below.
  • (1) Reduction of the center-to-center distance between the rolls is accompanied by upward displacement of the side weirs so as to prevent the outer peripheries of the rolls from interfering with the side weirs, which makes it possible to acquire a strip with less thickness even if the side weirs have arcuate worn steps formed.
  • (2) The side weirs can continue to be used, provided that the portions of the side weirs with the arcuate worn steps formed have remaining thickness providing strength required for an operation of the twin-roll casting machine. As a consequence, the service life of the side weirs is prolonged, leading to reduction in maintenance cost.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic view showing a conventional twin-roll casting machine;
  • FIG. 2 is a perspective view showing a side weir with arcuate worn steps developing;
  • FIG. 3 is a schematic view showing relationships between the side weirs and the chilled rolls shown in FIG. 2;
  • FIG. 4 is a schematic view showing an embodiment of an operating method for the twin-roll casting machine according to the invention;
  • FIG. 5 is a schematic view showing relative positions between the casting roll and the side weir in connection with FIG. 4; and
  • FIG. 6 is a schematic view showing an embodiment of a side weir supporting device according to the invention.
  • REFERENCE SIGNS LIST
    • 1 chilled roll
    • 2 side weir
    • 3 steel strip
    • 6 arcuate worn step
    • 9 pressing cylinder (pressing actuator)
    • 10 position adjusting mechanism
    • G nip
    • L center-to-center distance
    DESCRIPTION OF EMBODIMENTS
  • An embodiment of the invention will be described in conjunction with the drawings.
  • FIGS. 4 and 5 show an embodiment of an operating method for a twin-roll casting machine and FIG. 6 shows an embodiment of a side weir supporting device. In the figures, parts similar to those in FIGS. 1-3 are represented by the same reference numerals.
  • The side weir supporting device comprises pressing cylinders for pressing side weirs 2 against ends of a pair of chilled rolls 1 horizontally juxtaposed, and position adjusting mechanisms 10 for vertically displacing the side weirs 2, the side weirs 2 having arcuate worn steps 6 formed due to rotational sliding contact of the rolls 1.
  • Each of the position adjusting mechanisms 10 comprises a platform 12 close to the corresponding side weir 2 and vertically guided by direct-acting bearings 11, and a ball screw 14 which transmits rotation of a servo motor 13, as vertical displacement, to the platform 12.
  • The pressing cylinder 9 is mounted on the platform 12 of the adjusting mechanism 10 such that a piston rod 15 of the cylinder is positioned in parallel with a rotational axis of the chilled roll 1. A tip of the piston rod 15 is connected to the side weir 2, so that the side weir 2 is pushed/pulled by the pressing cylinder 9.
  • During an operation of the twin-roll casting machine, where a steel strip 3 delivered downward from the nip G is to be reduced in thickness, the servo motors 13 are actuated to vertically displace the platforms 12, pressing cylinders 9 and side weirs 2 upward.
  • Then, the side weirs 2 are pressed by the pressing cylinders 9 into contact with the ends of the rolls 1 to prevent leakage of the molten steel.
  • Rise x of each of the side weirs 2 can be geometrically determined on the basis of increase/decrease in length of the center-to-center distance L between the rolls 1. For example, rise of the side weirs 2 is several millimeters or so, assuming that the twin-roll casting machine has the chilled rolls 1 with radius of about 250 mm, horizontal displacement of each roll being d, increase/decrease of the center-to-center distance L between the rolls 1 due to nip variation 2 d being in a range of 0.2 to 0.3 mm (see FIG. 5).
  • TABLE 1
    roll radius R mm 250 250 250
    horizontal displacement D mm 0.1 0.15 0.2
    of each roll
    nip variation 2d mm 0.2 0.3 0.4
    rise of side weirs X mm 7.07 8.66 10.00

  • r 2=(r−d)2 +x 2

  • x=(d(2r−d))0.5  [Equation 1]
  • Then, forces are applied to bearing boxes (not shown) for rotary support of necks of the respective rolls 1 in directions toward each other to reduce the center-to-center distance L between the rolls 1, thereby setting thickness of the steel strip 3 to a target value.
  • Prior to reduction of the center-to-center distance L between the rolls 1, the side weirs 2 are displaced upward, so that prevented is interference between the boundary surfaces 8 adjacent to the arcuate worn steps 6 on the side weirs 2 and the outer peripheries of the chilled rolls 1, which makes it possible to acquire the steel strip 3 with less thickness.
  • The side weirs 2 can continue to be used, provided that the portions of the side weirs with the arcuate worn steps 6 formed have remaining thickness providing strength required for an operation of the twin-roll casting machine. As a consequence, the service life of the side weirs 2 is prolonged, leading to reduction in maintenance cost.
  • To the contrary, when the steel strip 3 delivered downward from the nip G is to be increased in thickness, the center-to-center distance L between the rolls 1 is increased by some appropriate means.
  • Then, the servo motors 13 are actuated to vertically displace the platforms 12, pressing cylinders 9 and side weirs 2 downward while the side weirs 2 are pressed by the pressing cylinders 9 to contact the ends of the rolls 1, which keeps overlapped degree of the side weirs to the ends of the rolls 1 and prevents leakage of the molten steel.
  • Just as mentioned previously, lowering of the side weirs 2 is several millimeters or so, assuming that the twin-roll casting machine has the chilled rolls 1 with radius of about 250 mm, horizontal displacement of each roll being d, increase/decrease of the center-to-center distance L between the rolls 1 due to nip variation 2 d being in a range of 0.2 to 0.3 mm.
  • It is to be understood that an operating method for a twin-roll casting machine and a side weir supporting device of the invention are not limited to the above embodiments and that various changes and modifications may be made without departing from the scope of the invention.
  • INDUSTRIAL APPLICABILITY
  • A method for operating a twin-roll casting machine and a side weir supporting device according to the invention are applicable to production of strips made of various kinds of metals.

Claims (4)

1. A side weir supporting device comprising:
pressing actuators which press side weirs against ends of chilled rolls in a twin-roll casting machine; and
position adjusting mechanisms which vertically displace said side weirs,
wherein the side weirs in contact with ends of the chilled rolls are displaced upward by said pressing actuators and said position adjusting mechanisms where a center-to-center distance between the chilled rolls is reduced to reduce the thickness of a strip from a nip between the rolls, and
the side weirs in contact with ends of the chilled rolls are displaced downward by said pressing actuators and said position adjusting mechanisms where a center-to-center distance between the chilled rolls is increased to increase the thickness of a strip from a nip between the rolls.
2. The side weir supporting device as claimed in claim 1, wherein each of the position adjusting mechanisms includes a platform disposed close to the corresponding side weir, bearings which vertically guide the platform, and a ball screw which transmits vertical rotation of a servo motor as vertical displacement to the platform.
3. The side weir supporting device as claimed in claim 2, wherein the pressing actuator is mounted on the platform such that a piston rod of the pressing actuator is positioned in parallel with a rotational axis of the chilled roll.
4. The side weir supporting device as claimed in claim 3, wherein a tip of the piston rod is connected to the side weir.
US13/240,581 2007-02-01 2011-09-22 Operating method for twin-roll casting machine, and side weir supporting device Abandoned US20120012273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/240,581 US20120012273A1 (en) 2007-02-01 2011-09-22 Operating method for twin-roll casting machine, and side weir supporting device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007022833A JP5103916B2 (en) 2007-02-01 2007-02-01 Method of operating twin roll casting machine and side weir support device
JP2007-022833 2007-02-01
PCT/JP2008/000118 WO2008093505A1 (en) 2007-02-01 2008-01-31 Operating method for twin-roll casting machine, and side weir supporting device
US52466409A 2009-09-08 2009-09-08
US13/240,581 US20120012273A1 (en) 2007-02-01 2011-09-22 Operating method for twin-roll casting machine, and side weir supporting device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/000118 Division WO2008093505A1 (en) 2007-02-01 2008-01-31 Operating method for twin-roll casting machine, and side weir supporting device
US52466409A Division 2007-02-01 2009-09-08

Publications (1)

Publication Number Publication Date
US20120012273A1 true US20120012273A1 (en) 2012-01-19

Family

ID=39673819

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/524,664 Expired - Fee Related US8051895B2 (en) 2007-02-01 2008-01-31 Operating method for twin-roll casting machine, and side weir supporting device
US13/240,581 Abandoned US20120012273A1 (en) 2007-02-01 2011-09-22 Operating method for twin-roll casting machine, and side weir supporting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/524,664 Expired - Fee Related US8051895B2 (en) 2007-02-01 2008-01-31 Operating method for twin-roll casting machine, and side weir supporting device

Country Status (6)

Country Link
US (2) US8051895B2 (en)
EP (1) EP2127778B1 (en)
JP (1) JP5103916B2 (en)
KR (1) KR101086630B1 (en)
CN (1) CN101594949B (en)
WO (1) WO2008093505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464111B2 (en) 2014-02-07 2019-11-05 Primetals Technologies Austria GmbH Method of forming tailored cast blanks

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012353B2 (en) * 2007-09-19 2012-08-29 株式会社Ihi Method of operating twin roll casting machine and side weir support device
JP5837758B2 (en) * 2011-04-27 2015-12-24 キャストリップ・リミテッド・ライアビリティ・カンパニー Twin roll casting apparatus and control method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712526B2 (en) * 1987-04-08 1995-02-15 日新製鋼株式会社 Thin plate continuous casting machine
JPH082479B2 (en) * 1988-07-22 1996-01-17 日新製鋼株式会社 Thin plate continuous casting machine
JPH02247050A (en) * 1989-03-17 1990-10-02 Hitachi Zosen Corp Continuous casting method and apparatus thereof by twin roll
JPH0615414A (en) * 1991-11-19 1994-01-25 Nippon Steel Corp Method and device for twin roll continuous casting
KR100333070B1 (en) * 1997-12-20 2002-10-18 주식회사 포스코 Method for controlling position of edge dams in twin roll type strip caster
JPH11226702A (en) 1998-02-17 1999-08-24 Toshiba Ceramics Co Ltd Roll type continuous caster, and side weir and nozzle thereof
JP2000190053A (en) 1998-12-24 2000-07-11 Nippon Steel Corp Method and device for controlling side weir press in twin roll type continuous casting
JP2001038453A (en) * 1999-07-27 2001-02-13 Mitsubishi Heavy Ind Ltd Continuous casting device
AT412195B (en) * 2002-06-25 2004-11-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING A METAL STRIP WITH A TWO-ROLLING CASTING DEVICE
JP4013681B2 (en) 2002-07-22 2007-11-28 株式会社Ihi Twin roll side weir pressing device and side weir pressing control method
AT411822B (en) * 2002-09-12 2004-06-25 Voest Alpine Ind Anlagen METHOD AND DEVICE FOR STARTING A CASTING PROCESS
JP4014593B2 (en) 2004-11-15 2007-11-28 三菱日立製鉄機械株式会社 Twin roll type continuous casting machine and twin roll type continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464111B2 (en) 2014-02-07 2019-11-05 Primetals Technologies Austria GmbH Method of forming tailored cast blanks

Also Published As

Publication number Publication date
WO2008093505A1 (en) 2008-08-07
CN101594949B (en) 2012-10-10
CN101594949A (en) 2009-12-02
US20100101752A1 (en) 2010-04-29
EP2127778A1 (en) 2009-12-02
EP2127778A4 (en) 2010-04-21
KR101086630B1 (en) 2011-11-25
EP2127778B1 (en) 2014-10-15
JP5103916B2 (en) 2012-12-19
US8051895B2 (en) 2011-11-08
KR20090095672A (en) 2009-09-09
JP2008188603A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
US4702300A (en) Double drum type continuous casting machine
JP3367809B2 (en) Side wall support for equipment for continuous casting of metal strip between two rolls
US7584779B2 (en) Twin roll casting machine
US20120012273A1 (en) Operating method for twin-roll casting machine, and side weir supporting device
EP0782894B1 (en) Twin roll continuous caster
CN1200786C (en) Strip-casting machine used for producing a metal strip
US6044896A (en) Method and apparatus for controlling the gap in a strip caster
JP4913979B2 (en) Strip casting
US8567480B2 (en) Method and twin roll caster for the production of strip cast from a molten metal
EP1965937B1 (en) Casting roll moving apparatus of twin roll type continuous strip casting process
US8028741B2 (en) Strip casting apparatus with improved side dam force control
KR100472532B1 (en) Dynamic strand reduction segment apparatus
KR101186586B1 (en) Twin roll strip caster
KR100226902B1 (en) Device for thickness uniformity of continuous casting thin plate
EP1652605B1 (en) Bearing assembly
AU2001265683B8 (en) Strip casting
WO2010051590A1 (en) Strip casting apparatus with improved side dam force control
JPS626741A (en) Continuous casting device for thin sheet of steel
JPH03210952A (en) Guide for forge-working for cast slab strand
KR20130075276A (en) Guide roller assembly of continuous casting apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION