US20110299848A1 - Camera Module with Premolded Lens Housing and Method of Manufacture - Google Patents
Camera Module with Premolded Lens Housing and Method of Manufacture Download PDFInfo
- Publication number
- US20110299848A1 US20110299848A1 US13/214,696 US201113214696A US2011299848A1 US 20110299848 A1 US20110299848 A1 US 20110299848A1 US 201113214696 A US201113214696 A US 201113214696A US 2011299848 A1 US2011299848 A1 US 2011299848A1
- Authority
- US
- United States
- Prior art keywords
- circuit substrate
- image capture
- camera module
- capture device
- housings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000000758 substrate Substances 0.000 claims abstract description 142
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 19
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 5
- BWWVXHRLMPBDCK-UHFFFAOYSA-N 1,2,4-trichloro-5-(2,6-dichlorophenyl)benzene Chemical compound C1=C(Cl)C(Cl)=CC(Cl)=C1C1=C(Cl)C=CC=C1Cl BWWVXHRLMPBDCK-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48464—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49175—Parallel arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the present invention relates generally to digital cameras, and more particularly to digital camera modules that can be mounted in host electronic devices. Even more particularly, the present invention relates to a process for manufacturing a digital camera module that substantially reduces potential damage to an image capture device during the manufacturing the digital camera or digital camera module.
- Digital camera modules are currently being incorporated into a variety of electronic devices.
- Such camera hosting devices include, but are not limited to, cellular telephones, personal digital assistants (PDAs), and computer cams.
- PDAs personal digital assistants
- the demand for digital camera modules continues to grow as the ability to incorporate the camera modules into host devices expands. Therefore, one design goal of digital camera modules is to make them as small as possible so that they will fit into an electronic device without substantially increasing the overall size of the device. Furthermore, it is also desirable to manufacture such digital camera modules as efficiently and robustly as possible. Means for achieving these design goals must, of course, preserve the quality of the image captured by the camera modules.
- digital camera modules include a lens unit, a housing, a circuit substrate, and a solid-state image capture device.
- the image capture device is electrically connected to the circuit substrate via a plurality of wire bonds or the like.
- the circuit substrate is then fixed to the bottom of the housing or the housing is mounted on the circuit substrate.
- housings of this type are fabricated (e.g., by injection molding) separately before they are coupled to circuit substrates. After the housing is formed, it is fixed to the circuit substrate by some suitable means such as an adhesive, thermal weld, post/aperture engagement, etc.
- the lens unit is then adjustably mounted to the opposite end of the housing so that images can be focused onto the image capture device.
- the image capture devices are very sensitive, which is a disadvantage in terms of manufacturing time, cost, quality, and yield of the camera module.
- the image capture device is extremely vulnerable to damage and contamination, particularly before and during the housing attach process. For example, before the housing is attached to the circuit substrate, the wire bonds are exposed to inadvertent contact (e.g., during handling), which can cause damage. Further, the image capture device is vulnerable to contamination from particulate debris caused by the housing attach process. Contamination of the sensor array will block light and cause visible artifacts in every image captured by the device. Obviously, damaged image capture devices causes a decrease in product yield and an increase in labor and material costs.
- the present invention overcomes the problems associated with the prior art by providing a digital camera module and a method of manufacturing the camera module, wherein the housing is mounted to the circuit substrate before the image capture device is mounted to the circuit substrate. Mounting the housing onto the circuit substrate before mounting the image capture device onto the circuit substrate prevents the image capture device from being damaged during the housing attachment process. In addition, having the housing attached to the circuit substrate provides a more robust substrate to mount the image capture device on.
- the digital camera module includes a circuit substrate, a lens housing mounted on the circuit substrate and an image capture device that is mounted on the circuit substrate.
- the structure and/or location of the lens housing allows the image capture device to be attached after the housing is mounted on the circuit substrate.
- the housing is formed on the circuit substrate via a molding process.
- the housing is formed separately and attached to the circuit substrate as a component part.
- the structure of the housing facilitates the later mounting of the image capture device.
- the housing includes a bore with a diameter that is larger than a diagonal of the image capture device, so the image capture device can be mounted through the bore.
- the position of the housing facilitates the later mounting of the image capture device.
- the housing is fixed to one surface (e.g., the top) of the circuit substrate and the image capture device is mounted to the opposite surface (e.g., the bottom) of the circuit substrate.
- the circuit substrate defines an aperture and the image capture device is mounted so that light passing through the aperture impinges on a light sensitive portion of the image capture device.
- a method of manufacturing a camera module includes the steps of providing an image capture device, providing a circuit substrate, mounting a housing on the circuit substrate, and mounting the image capture device on the circuit substrate after the housing is mounted on the circuit substrate.
- the housing is molded directly on the circuit substrate.
- the housing is preformed before it is mounted to the circuit substrate.
- the image capture device is flip-chip mounted.
- This particular method includes mounting the housing on a first surface (e.g., top) of the circuit substrate and mounting the image capture device on an opposite (e.g., bottom) surface of the circuit substrate.
- the image capture device is mounted so that a light sensitive portion of the image capture device faces through an aperture in the circuit substrate.
- image capture device is mounted through an opening in the housing.
- the image capture device can be mounted through a bore in the housing that is adapted to receive a lens unit.
- FIG. 1 is a perspective view of a camera module fixed to a host printed circuit board
- FIG. 2 is a perspective view of an array of lens housings formed on a circuit substrate sheet
- FIG. 3 is an exploded view of the camera module of FIG. 1 ;
- FIG. 4 is a cross-sectional view of the camera module of FIG. 1 ;
- FIG. 5 is a top view of a portion the camera module of FIG. 1 ;
- FIG. 6 is an exploded view of an alternate camera module
- FIG. 7 is a cross-sectional view of the alternate camera module of FIG. 6 ;
- FIG. 8 is a flow chart summarizing a method for manufacturing camera modules.
- the present invention overcomes the problems associated with the prior art, by providing a system and method for manufacturing a digital camera module, wherein a housing adapted to hold a lens unit is mounted on a substrate prior to mounting an image capture device on the substrate.
- a housing adapted to hold a lens unit is mounted on a substrate prior to mounting an image capture device on the substrate.
- numerous specific details are set forth (e.g., example lens housing structure, etc.) in order to provide a thorough understanding of the invention. Those skilled in the art will recognize, however, that the invention may be practiced apart from these specific details.
- details of well known camera module manufacturing practices e.g., assembly, circuit fabrication, molding processes, focusing means, etc.
- components have been omitted, so as not to unnecessarily obscure the present invention.
- FIG. 1 is a perspective view of a camera module 100 according to one embodiment of the present invention.
- Camera module 100 is shown mounted on a circuit substrate, in this particular example a portion of a printed circuit board (PCB) 102 that represents a PCB of a host device (remainder of host device not shown), and communicates electronically with other components of the host device via a plurality of electronic traces 104 .
- Devices 106 represent electronic components (e.g., passive devices, etc.) that are mounted on PCB 102 .
- PCB 102 , traces 104 , and devices 106 are representational in character only.
- Camera module 100 includes an image capture device 108 (not visible in the view of FIG. 1 ), a circuit substrate 110 , a housing 112 , and a lens unit 114 .
- Camera module 100 is mounted on PCB 102 via electrical contacts (not visible) on the bottom of circuit substrate 110 , which make electrical contact with traces 104 .
- Image capture device 108 is mounted on the top of circuit substrate 110 within housing 112 .
- housing 112 defines a cylindrical wall that extends upwardly from circuit substrate 110 and defines an opening for receiving and supporting lens unit 114 .
- Lens unit 114 is disposed within the top opening of housing 112 , and is adjustably mounted therein by some suitable means (e.g., threads, ramps, etc.) so as to focus an image onto image capture device 108 .
- suitable means e.g., threads, ramps, etc.
- the focusing means is not shown in detail, because it is not particularly relevant to the present invention.
- FIG. 2 shows a perspective view of an array of housings 112 (16 in this example) formed on a circuit substrate sheet 116 .
- housings 112 are all formed at the same time directly onto unitary circuit substrate sheet 116 via a molding process.
- housings 112 can be pre-fabricated and attached to circuit substrate sheet 116 via an adhesive or any other suitable means.
- the housing should be formed from a material (e.g., a thermosetting resin) that can withstand the subsequent process (e.g., soldering, wirebonding, etc.) for attaching image capture device 108 to circuit substrate 110 .
- a material e.g., a thermosetting resin
- substrate sheet 116 includes a plurality of individual camera module circuit substrates 110 , each with a respective one of housings 112 attached thereto.
- the individual circuit substrates 110 can be separated by some suitable means (e.g., sawing, scoring, etc.) either before or after the image capture devices 108 are mounted thereon.
- assembling camera modules 100 prior to dividing substrate sheet 116 provides certain advantages including, but not limited, reduced manufacturing time and protecting image capture devices 108 ( FIG. 3 ) from debris generated by the separation process.
- the array dimensions e.g., 4 ⁇ 4 array of housings
- the array could include a single strip of housings in a row or any other convenient layout.
- FIG. 3 is an exploded view of a representative one of camera modules 100 , which are assembled on substrate sheet 116 .
- conventional camera modules are manufactured by coupling image capture device 108 to circuit substrate 110 before the housing attach process
- camera module 100 is assembled by attaching image capture devices 108 to circuit substrate 110 after housings 112 are formed on circuit substrate sheet 116 .
- This method is particularly advantageous, because it minimizes the risks of damaging or contaminating image capture devices 108 during the process of attaching housing 112 to circuit substrate 110 .
- the term attaching is understood to include and means of joining housing 112 with substrate 110 , including, but not limited to, forming or molding housing 112 directly on circuit substrate 110 and attaching a preformed housing 112 to circuit substrate 110 .
- each image capture device 108 ( FIG. 3 ) is mounted through the central opening of one of housings 112 , mechanically fixed (e.g., by an adhesive) to the associated circuit substrate 110 , and electrically coupled to the circuitry of circuit substrate 110 .
- Circuit substrate 110 includes a top surface 118 whereon a plurality of electrical contacts 120 are formed. Contacts 120 facilitate the electrical connection between image capture device 108 and the circuitry of circuit substrate 110 .
- Image capture device 108 includes a corresponding set of electrical contacts 122 that are electrically coupled to contacts 120 by some suitable means (e.g., wire bonding shown in FIG. 4 ).
- contacts 122 need not be formed on the upper surface of image capture device 108 in order to provide for a sufficient electrical connection to circuit substrate 110 .
- image capture device 108 can include a plurality of contacts formed on it's rear surface such that image capture device 108 can be electrically coupled to corresponding contacts 122 of circuit substrate 110 via a solder process, thereby mechanically and electrically coupling image capture device 108 to circuit substrate 112 in a single process.
- Image capture device 108 further includes an image capture surface 124 on which images are focused by lens unit 114 . What ever particular process is used, image capture device 108 should be mounted so that surface 124 remains substantially perpendicular to optical axis 200 , so that surface 124 will lie in the focal plane of lens unit 114 .
- a lens unit 114 is positioned in each housing 112 .
- the position of lens unit 114 within housing 112 is adjustable to facilitate the focusing of lens unit 114 with respect to image capture device 108 .
- Housing 112 defines a bore 126 that accepts lens barrel 128 of lens unit 114 and facilitates the rotation of lens unit 114 about optical axis 200 .
- Various mechanical adjustment means are known in the art that convert the rotational motion of lens unit 114 into translational motion along optical axis 200 . However, no particular adjustment mechanism is shown, because the details of the adjustment mechanism, or even the inclusion of a focus mechanism, are not particularly relevant to the present invention.
- Lens unit 114 further includes a flange 130 that limits the vertical displacement of lens unit 114 with respect to housing 112 so that lens unit cannot contact and damage image capture device 108 .
- FIG. 4 shows a cross-sectional view of fully assembled camera module 100 .
- Contacts 120 of circuit substrate 110 are electrically coupled to corresponding contacts 122 of image capture device 108 via a plurality of wire bonds 132 .
- Lens unit 114 is shown to include a plurality of lenses 134 and an optical filter 136 (e.g., an infrared filter). The details of lens unit 114 and the particular optical elements contained therein are not particularly relevant to the present invention.
- FIG. 5 is a top view of camera module 100 with lens unit 114 removed. Note that the diameter of bore 126 is greater than the diagonal of image capture device 108 so that image capture device 108 can be mounted to circuit substrate 110 after housing 114 is formed thereon. Optionally, the diameter of bore 126 can be nearly the same size as the diagonal of image capture device 108 to provide an easy means for positioning image capture 108 .
- FIG. 6 is an exploded view of an alternative camera module 600 including an image capture device 602 , a circuit substrate 604 , a housing 606 , and a lens unit 608 .
- circuit substrate 604 includes an aperture 610 that allows light to travel through a portion of circuit substrate 604 .
- Aperture 610 is large enough to allow lens unit 608 to focus an image onto image capture surface 612 of image capture device 602 , through aperture 610 .
- image capture device 602 is flip-chip bonded to the bottom surface of substrate 604 after housing 606 is formed/mounted on substrate 604 .
- electrical contacts 614 of image capture device 602 are bonded to electrical contacts (not shown) on the bottom surface of circuit substrate 604 .
- the structure and assembly of housing 606 and lens unit 608 are substantially the same as housing 112 and lens unit 114 , respectively, as described above.
- Mounting image capture device 602 to the bottom surface of circuit substrate 604 provides several advantages. For example, because image capture device 602 is not mounted through bore 616 (as in camera module 100 ), housing 606 and lens unit 608 can be significantly smaller. Note that the diameter of bore 616 is only slightly larger than aperture 610 , which is about the same size as image capture surface 612 . Thus, the overall footprint of camera module 600 is significantly reduced. Another advantage is that even though housing 606 is attached to circuit substrate 604 prior to attaching image capture device 602 , housing 606 does not get in the way when attaching image capture device 602 . In fact, housing 606 provides extra support for circuit substrate 604 during the attachment of image capture device 602 , thereby making the attachment process more efficient and more reliable.
- FIG. 7 shows a cross-sectional side view of camera module 600 .
- circuit substrate 604 includes a plurality of conductive traces 700 formed on the rear surface. Traces 700 provide contacts for electrically connecting image capture device 602 to circuit substrate 604 and also for electrically connecting circuit substrate 604 , and thus image capture device 602 , to another device such as host device PCB ( FIG. 1 ).
- connections between contacts 614 of image capture device 602 and traces 700 of circuit substrate 604 are made by gold-stud-bump, thermocompression bonding.
- a plurality of bumps 702 e.g., au stud bumps
- Image capture device 602 is then positioned on circuit substrate 604 so that the gold bumps 702 contact traces 700 .
- bonded connections are formed between gold bumps 702 and traces 700 and contacts 614 by applying heat and pressure.
- nonconductive paste (NCP) 706 can be applied between image capture device 602 and circuit substrate 604 as part of the bonding process to further strengthen the bonded connections.
- FIG. 7 is not to scale. For example, the relative sizes of the features are not accurately shown. Instead, certain features are exaggerated to show the detailed structure thereof.
- FIG. 8 is a flow chart summarizing one method for manufacturing a camera module according to the present invention.
- a circuit substrate is provided in a first step 802 .
- an image capture device is provided in a second step 804 .
- a lens unit is provided in a third step 806 .
- a lens housing is mounted on the circuit substrate.
- the term “mount” includes, but is not limited to, forming a housing directly on the circuit substrate (e.g., via a molding process) as well as attaching a preformed housing.
- the image capture device is mounted to the circuit substrate after the housing has been mounted.
- the lens unit is coupled to the housing.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Studio Devices (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
A novel digital camera module includes an image capture device, a circuit substrate, a lens unit and a housing that is mounted to the circuit substrate before the image capture device is mounted to the circuit substrate. In one particular embodiment, the housing is formed onto the circuit substrate via molding. The housing includes a bore to receive the lens unit, with the diameter of the bore being larger than the diagonal of the image capture device such that image capture device can be mounted to the circuit substrate through the bore. In another particular embodiment, the circuit substrate includes an aperture so as to facilitate the flip-chip bonding of the image capture device. The order in which the image capture device and the housing are coupled to the circuit substrate helps prevent damage to the image capture device during the mounting of the housing to the circuit substrate.
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 11/444,277, filed May 31, 2006 by the same inventors, which is incorporated herein by reference in its entirety.
- 1. Field of the Invention
- The present invention relates generally to digital cameras, and more particularly to digital camera modules that can be mounted in host electronic devices. Even more particularly, the present invention relates to a process for manufacturing a digital camera module that substantially reduces potential damage to an image capture device during the manufacturing the digital camera or digital camera module.
- 2. Description of the Background Art
- Digital camera modules are currently being incorporated into a variety of electronic devices. Such camera hosting devices include, but are not limited to, cellular telephones, personal digital assistants (PDAs), and computer cams. The demand for digital camera modules continues to grow as the ability to incorporate the camera modules into host devices expands. Therefore, one design goal of digital camera modules is to make them as small as possible so that they will fit into an electronic device without substantially increasing the overall size of the device. Furthermore, it is also desirable to manufacture such digital camera modules as efficiently and robustly as possible. Means for achieving these design goals must, of course, preserve the quality of the image captured by the camera modules.
- Typically, digital camera modules include a lens unit, a housing, a circuit substrate, and a solid-state image capture device. Upon assembly, the image capture device is electrically connected to the circuit substrate via a plurality of wire bonds or the like. The circuit substrate is then fixed to the bottom of the housing or the housing is mounted on the circuit substrate. Typically, housings of this type are fabricated (e.g., by injection molding) separately before they are coupled to circuit substrates. After the housing is formed, it is fixed to the circuit substrate by some suitable means such as an adhesive, thermal weld, post/aperture engagement, etc. The lens unit is then adjustably mounted to the opposite end of the housing so that images can be focused onto the image capture device.
- The image capture devices are very sensitive, which is a disadvantage in terms of manufacturing time, cost, quality, and yield of the camera module. The image capture device is extremely vulnerable to damage and contamination, particularly before and during the housing attach process. For example, before the housing is attached to the circuit substrate, the wire bonds are exposed to inadvertent contact (e.g., during handling), which can cause damage. Further, the image capture device is vulnerable to contamination from particulate debris caused by the housing attach process. Contamination of the sensor array will block light and cause visible artifacts in every image captured by the device. Obviously, damaged image capture devices causes a decrease in product yield and an increase in labor and material costs.
- What is needed therefore, is a method for manufacturing camera modules that reduces the chance of damaging the image capture devices. What is also needed is a method for manufacturing camera modules that results in a higher yield. What is also needed is a method for manufacturing camera modules that results in a faster manufacturing throughput. What is also needed is a less expensive method for manufacturing camera modules.
- The present invention overcomes the problems associated with the prior art by providing a digital camera module and a method of manufacturing the camera module, wherein the housing is mounted to the circuit substrate before the image capture device is mounted to the circuit substrate. Mounting the housing onto the circuit substrate before mounting the image capture device onto the circuit substrate prevents the image capture device from being damaged during the housing attachment process. In addition, having the housing attached to the circuit substrate provides a more robust substrate to mount the image capture device on.
- The digital camera module includes a circuit substrate, a lens housing mounted on the circuit substrate and an image capture device that is mounted on the circuit substrate. The structure and/or location of the lens housing allows the image capture device to be attached after the housing is mounted on the circuit substrate. In one particular embodiment, the housing is formed on the circuit substrate via a molding process. Alternatively, the housing is formed separately and attached to the circuit substrate as a component part.
- In one embodiment, the structure of the housing facilitates the later mounting of the image capture device. The housing includes a bore with a diameter that is larger than a diagonal of the image capture device, so the image capture device can be mounted through the bore. In another embodiment, the position of the housing facilitates the later mounting of the image capture device. The housing is fixed to one surface (e.g., the top) of the circuit substrate and the image capture device is mounted to the opposite surface (e.g., the bottom) of the circuit substrate. In this embodiment, the circuit substrate defines an aperture and the image capture device is mounted so that light passing through the aperture impinges on a light sensitive portion of the image capture device.
- A method of manufacturing a camera module is also described. The method includes the steps of providing an image capture device, providing a circuit substrate, mounting a housing on the circuit substrate, and mounting the image capture device on the circuit substrate after the housing is mounted on the circuit substrate. In a particular method, the housing is molded directly on the circuit substrate. Alternatively, the housing is preformed before it is mounted to the circuit substrate.
- In another particular method, the image capture device is flip-chip mounted. This particular method includes mounting the housing on a first surface (e.g., top) of the circuit substrate and mounting the image capture device on an opposite (e.g., bottom) surface of the circuit substrate. The image capture device is mounted so that a light sensitive portion of the image capture device faces through an aperture in the circuit substrate.
- In another particular method, image capture device is mounted through an opening in the housing. For example, the image capture device can be mounted through a bore in the housing that is adapted to receive a lens unit.
- The present invention is described with reference to the following drawings, wherein like reference numbers denote substantially similar elements:
-
FIG. 1 is a perspective view of a camera module fixed to a host printed circuit board; -
FIG. 2 is a perspective view of an array of lens housings formed on a circuit substrate sheet; -
FIG. 3 is an exploded view of the camera module ofFIG. 1 ; -
FIG. 4 is a cross-sectional view of the camera module ofFIG. 1 ; -
FIG. 5 is a top view of a portion the camera module ofFIG. 1 ; -
FIG. 6 is an exploded view of an alternate camera module; -
FIG. 7 is a cross-sectional view of the alternate camera module ofFIG. 6 ; and -
FIG. 8 is a flow chart summarizing a method for manufacturing camera modules. - The present invention overcomes the problems associated with the prior art, by providing a system and method for manufacturing a digital camera module, wherein a housing adapted to hold a lens unit is mounted on a substrate prior to mounting an image capture device on the substrate. In the following description, numerous specific details are set forth (e.g., example lens housing structure, etc.) in order to provide a thorough understanding of the invention. Those skilled in the art will recognize, however, that the invention may be practiced apart from these specific details. In other instances, details of well known camera module manufacturing practices (e.g., assembly, circuit fabrication, molding processes, focusing means, etc.) and components have been omitted, so as not to unnecessarily obscure the present invention.
-
FIG. 1 is a perspective view of acamera module 100 according to one embodiment of the present invention.Camera module 100 is shown mounted on a circuit substrate, in this particular example a portion of a printed circuit board (PCB) 102 that represents a PCB of a host device (remainder of host device not shown), and communicates electronically with other components of the host device via a plurality ofelectronic traces 104.Devices 106 represent electronic components (e.g., passive devices, etc.) that are mounted onPCB 102. Those skilled in the art will recognize that the particular design ofPCB 102 will depend on the particular application (e.g., cell phone, PDA, etc.), and is not particularly relevant to the present invention. Therefore,PCB 102, traces 104, anddevices 106 are representational in character only. -
Camera module 100 includes an image capture device 108 (not visible in the view ofFIG. 1 ), acircuit substrate 110, ahousing 112, and alens unit 114.Camera module 100 is mounted onPCB 102 via electrical contacts (not visible) on the bottom ofcircuit substrate 110, which make electrical contact withtraces 104.Image capture device 108 is mounted on the top ofcircuit substrate 110 withinhousing 112. In this particular embodiment,housing 112 defines a cylindrical wall that extends upwardly fromcircuit substrate 110 and defines an opening for receiving and supportinglens unit 114.Lens unit 114 is disposed within the top opening ofhousing 112, and is adjustably mounted therein by some suitable means (e.g., threads, ramps, etc.) so as to focus an image ontoimage capture device 108. The focusing means is not shown in detail, because it is not particularly relevant to the present invention. -
FIG. 2 shows a perspective view of an array of housings 112 (16 in this example) formed on acircuit substrate sheet 116. In this particular embodiment,housings 112 are all formed at the same time directly onto unitarycircuit substrate sheet 116 via a molding process. Optionally,housings 112 can be pre-fabricated and attached tocircuit substrate sheet 116 via an adhesive or any other suitable means. In either case, the housing should be formed from a material (e.g., a thermosetting resin) that can withstand the subsequent process (e.g., soldering, wirebonding, etc.) for attachingimage capture device 108 tocircuit substrate 110. - As shown in
FIG. 2 ,substrate sheet 116 includes a plurality of individual cameramodule circuit substrates 110, each with a respective one ofhousings 112 attached thereto. Theindividual circuit substrates 110 can be separated by some suitable means (e.g., sawing, scoring, etc.) either before or after theimage capture devices 108 are mounted thereon. However, assemblingcamera modules 100 prior to dividingsubstrate sheet 116 provides certain advantages including, but not limited, reduced manufacturing time and protecting image capture devices 108 (FIG. 3 ) from debris generated by the separation process. Note that the array dimensions (e.g., 4×4 array of housings) are not particularly relevant to the present invention. For example, the array could include a single strip of housings in a row or any other convenient layout. -
FIG. 3 is an exploded view of a representative one ofcamera modules 100, which are assembled onsubstrate sheet 116. Although, conventional camera modules are manufactured by couplingimage capture device 108 tocircuit substrate 110 before the housing attach process,camera module 100 is assembled by attachingimage capture devices 108 tocircuit substrate 110 afterhousings 112 are formed oncircuit substrate sheet 116. This method is particularly advantageous, because it minimizes the risks of damaging or contaminatingimage capture devices 108 during the process of attachinghousing 112 tocircuit substrate 110. As used herein, the term attaching is understood to include and means of joininghousing 112 withsubstrate 110, including, but not limited to, forming ormolding housing 112 directly oncircuit substrate 110 and attaching apreformed housing 112 tocircuit substrate 110. - In this particular embodiment, each image capture device 108 (
FIG. 3 ) is mounted through the central opening of one ofhousings 112, mechanically fixed (e.g., by an adhesive) to the associatedcircuit substrate 110, and electrically coupled to the circuitry ofcircuit substrate 110.Circuit substrate 110 includes atop surface 118 whereon a plurality ofelectrical contacts 120 are formed.Contacts 120 facilitate the electrical connection betweenimage capture device 108 and the circuitry ofcircuit substrate 110.Image capture device 108 includes a corresponding set ofelectrical contacts 122 that are electrically coupled tocontacts 120 by some suitable means (e.g., wire bonding shown inFIG. 4 ). - It should be noted that
contacts 122 need not be formed on the upper surface ofimage capture device 108 in order to provide for a sufficient electrical connection tocircuit substrate 110. For example,image capture device 108 can include a plurality of contacts formed on it's rear surface such thatimage capture device 108 can be electrically coupled tocorresponding contacts 122 ofcircuit substrate 110 via a solder process, thereby mechanically and electrically couplingimage capture device 108 tocircuit substrate 112 in a single process. -
Image capture device 108 further includes animage capture surface 124 on which images are focused bylens unit 114. What ever particular process is used,image capture device 108 should be mounted so thatsurface 124 remains substantially perpendicular tooptical axis 200, so thatsurface 124 will lie in the focal plane oflens unit 114. - After
image capture device 108 is attached, alens unit 114 is positioned in eachhousing 112. The position oflens unit 114 withinhousing 112 is adjustable to facilitate the focusing oflens unit 114 with respect toimage capture device 108.Housing 112 defines abore 126 that acceptslens barrel 128 oflens unit 114 and facilitates the rotation oflens unit 114 aboutoptical axis 200. Various mechanical adjustment means are known in the art that convert the rotational motion oflens unit 114 into translational motion alongoptical axis 200. However, no particular adjustment mechanism is shown, because the details of the adjustment mechanism, or even the inclusion of a focus mechanism, are not particularly relevant to the present invention.Lens unit 114 further includes aflange 130 that limits the vertical displacement oflens unit 114 with respect tohousing 112 so that lens unit cannot contact and damageimage capture device 108. -
FIG. 4 shows a cross-sectional view of fully assembledcamera module 100.Contacts 120 ofcircuit substrate 110 are electrically coupled tocorresponding contacts 122 ofimage capture device 108 via a plurality ofwire bonds 132.Lens unit 114 is shown to include a plurality oflenses 134 and an optical filter 136 (e.g., an infrared filter). The details oflens unit 114 and the particular optical elements contained therein are not particularly relevant to the present invention. -
FIG. 5 is a top view ofcamera module 100 withlens unit 114 removed. Note that the diameter ofbore 126 is greater than the diagonal ofimage capture device 108 so thatimage capture device 108 can be mounted tocircuit substrate 110 afterhousing 114 is formed thereon. Optionally, the diameter ofbore 126 can be nearly the same size as the diagonal ofimage capture device 108 to provide an easy means for positioningimage capture 108. -
FIG. 6 . is an exploded view of analternative camera module 600 including animage capture device 602, acircuit substrate 604, ahousing 606, and alens unit 608. In this particular embodiment,circuit substrate 604 includes anaperture 610 that allows light to travel through a portion ofcircuit substrate 604.Aperture 610 is large enough to allowlens unit 608 to focus an image ontoimage capture surface 612 ofimage capture device 602, throughaperture 610. - In this embodiment,
image capture device 602 is flip-chip bonded to the bottom surface ofsubstrate 604 afterhousing 606 is formed/mounted onsubstrate 604. In this flip-chip bonding method,electrical contacts 614 ofimage capture device 602 are bonded to electrical contacts (not shown) on the bottom surface ofcircuit substrate 604. Except as explained below, the structure and assembly ofhousing 606 andlens unit 608 are substantially the same ashousing 112 andlens unit 114, respectively, as described above. - Mounting
image capture device 602 to the bottom surface ofcircuit substrate 604 provides several advantages. For example, becauseimage capture device 602 is not mounted through bore 616 (as in camera module 100),housing 606 andlens unit 608 can be significantly smaller. Note that the diameter ofbore 616 is only slightly larger thanaperture 610, which is about the same size asimage capture surface 612. Thus, the overall footprint ofcamera module 600 is significantly reduced. Another advantage is that even thoughhousing 606 is attached tocircuit substrate 604 prior to attachingimage capture device 602,housing 606 does not get in the way when attachingimage capture device 602. In fact,housing 606 provides extra support forcircuit substrate 604 during the attachment ofimage capture device 602, thereby making the attachment process more efficient and more reliable. -
FIG. 7 shows a cross-sectional side view ofcamera module 600. In this particular embodiment,circuit substrate 604 includes a plurality ofconductive traces 700 formed on the rear surface.Traces 700 provide contacts for electrically connectingimage capture device 602 tocircuit substrate 604 and also for electrically connectingcircuit substrate 604, and thusimage capture device 602, to another device such as host device PCB (FIG. 1 ). - The connections between
contacts 614 ofimage capture device 602 and traces 700 ofcircuit substrate 604 are made by gold-stud-bump, thermocompression bonding. A plurality of bumps 702 (e.g., au stud bumps) are formed oncontacts 614.Image capture device 602 is then positioned oncircuit substrate 604 so that the gold bumps 702 contact traces 700. Then, bonded connections are formed betweengold bumps 702 and traces 700 andcontacts 614 by applying heat and pressure. Optionally, nonconductive paste (NCP) 706 can be applied betweenimage capture device 602 andcircuit substrate 604 as part of the bonding process to further strengthen the bonded connections. - Note that the drawing of
FIG. 7 is not to scale. For example, the relative sizes of the features are not accurately shown. Instead, certain features are exaggerated to show the detailed structure thereof. -
FIG. 8 is a flow chart summarizing one method for manufacturing a camera module according to the present invention. In afirst step 802, a circuit substrate is provided. Next, in asecond step 804, an image capture device is provided. Then, in athird step 806, a lens unit is provided. Next, in afourth step 808, a lens housing is mounted on the circuit substrate. As used herein the term “mount” includes, but is not limited to, forming a housing directly on the circuit substrate (e.g., via a molding process) as well as attaching a preformed housing. Then, in afourth step 810, the image capture device is mounted to the circuit substrate after the housing has been mounted. Finally, in afifth step 812, the lens unit is coupled to the housing. - The description of particular embodiments of the present invention is now complete. Many of the described features may be substituted, altered or omitted without departing from the scope of the invention. For example, alternate lens units and housings, may be substituted for the lens units and housing shown. As another example, other processes (e.g., thermosonic bonding) can be used to mount the imagers to the circuit substrates. These and other deviations from the particular embodiments shown will be apparent to those skilled in the art, particularly in view of the foregoing disclosure.
Claims (34)
1. A digital camera module comprising:
a pre-fabricated circuit substrate;
a lens housing formed on said pre-fabricated circuit substrate; and
an image capture device mounted on said circuit substrate; and wherein
said lens housing allows said image capture device to be mounted on said circuit substrate after said lens housing is formed on said circuit substrate; and
said lens housing is formed on a first surface of said circuit substrate and said image capture device is mounted on a second surface of said circuit substrate opposite said first surface.
2. The digital camera module of claim 1 , wherein:
said circuit substrate defines an aperture; and
said image capture device is mounted so that light passing through said aperture impinges on a light-sensitive portion of said image capture device.
3. The digital camera module of claim 1 , wherein said lens housing is formed from a material capable of withstanding an attachment process used to mount said image capture device on said circuit substrate.
4. The digital camera module of claim 3 , wherein said lens housing is formed from a resin.
5. The digital camera module of claim 1 , wherein said lens housing is molded on said circuit substrate.
6. The digital camera module of claim 1 , wherein said circuit substrate includes at least one insulating layer and at least one conductive layer.
7. The digital camera module of claim 6 , wherein:
said lens housing is formed on said insulating layer; and
said image capture device is coupled to at least one electrical contact of said conductive layer.
8. The digital camera module of claim 1 , wherein:
said circuit substrate is made of a first material; and
said lens housing is formed from a second material different than said first material.
9. The digital camera module of claim 1 , wherein said camera module is free of adhesive between said circuit substrate and said lens housing.
10. A method for manufacturing a camera module comprising:
providing an image capture device;
providing a pre-fabricated circuit substrate;
forming a lens housing on said pre-fabricated circuit substrate; and
mounting said image capture device on said circuit substrate after said lens housing is formed on said circuit substrate; and wherein
said step of forming said lens housing on said circuit substrate includes forming said lens housing on a first surface of said circuit substrate; and
said step of mounting said image capture device on said circuit substrate includes mounting said image capture device on a second surface of said circuit substrate opposite said first surface of said circuit substrate.
11. The method of claim 10 , wherein:
said circuit substrate defines an aperture; and
said step of mounting said image capture device including mounting said image capture device such that light passing through said aperture impinges on a light-sensitive portion of said image capture device.
12. The method of claim 10 , wherein said step of forming said lens housing includes forming said lens housing from a material capable of withstanding an attachment process used to mount said image capture device on said circuit substrate.
13. The method of claim 10 , wherein said lens housing is formed from a resin.
14. The method of claim 10 , wherein said step of forming said lens housing includes molding said lens housing on said pre-fabricated circuit substrate.
15. The method of claim 10 , wherein said step of providing said pre-fabricated circuit substrate includes providing a circuit substrate having at least one insulating layer and at least one conductive layer.
16. The method of claim 15 , wherein:
said step of forming said lens housing includes forming said lens housing on said insulating layer of said circuit substrate; and
said step of mounting said image capture device on said circuit substrate includes electrically coupling said image capture device to at least one electrical contact of said conductive layer.
17. The method of claim 10 , wherein:
said circuit substrate is made of a first material; and
said lens housing is formed from a second material different than said first material.
18. A method for manufacturing a plurality of camera modules comprising:
providing a pre-fabricated circuit substrate including a plurality of individual camera module circuit boards;
forming a plurality of housings on said pre-fabricated circuit substrate, each of said housings being formed on an associated one of said individual camera module circuit boards;
providing a plurality of image capture devices; and
mounting said plurality of image capture devices on respective ones of said individual camera module circuit boards after said housings are formed on said associated individual camera module circuit boards; and wherein
said step of forming said plurality of housings on said circuit substrate includes forming said housings on a first surface of said circuit substrate; and
said step of mounting said image capture devices onto respective ones of said individual camera module circuit boards includes mounting said image capture devices on a second surface of said circuit substrate opposite said first surface of said circuit substrate.
19. The method of claim 18 , wherein:
each of said individual camera module circuit boards defines an aperture; and
said step of mounting said image capture devices includes mounting each of said image capture devices such that light passing through said aperture impinges on a light sensitive portion of said image capture device.
20. The method of claim 18 , wherein said step of forming said plurality of housings includes forming each of said housings from a material capable of withstanding an attachment process used to mount said image capture devices on said circuit substrate.
21. The method of claim 20 , wherein said material is a resin.
22. The method of claim 18 , wherein said step of forming said plurality of housings includes molding said plurality of housings on said pre-fabricated circuit substrate.
23. The method of claim 18 , wherein each of said individual camera module circuit boards includes at least one insulating layer and at least one conductive layer.
24. The method of claim 23 , wherein:
said step of forming said plurality of housings includes forming each of said housings on said insulating layer of said respective one of said individual camera module circuit boards; and
said step of mounting said plurality of image capture devices includes coupling each of said image capture devices to at least one electrical contact of said conductive layer of said respective one of said individual camera module circuit boards.
25. The method of claim 18 , wherein:
said pre-fabricated circuit substrate is made of a first material; and
said plurality of housings is formed from a second material different than said first material.
26. A camera module workpiece comprising:
a pre-fabricated circuit substrate including a plurality of individual camera module circuit boards;
a plurality of lens housings formed on said circuit substrate, each of said lens housings being formed on an associated one of said individual camera module circuit boards; and
a plurality of image capture devices mounted on said circuit substrate, each of said image capture devices being mounted on a respective one of said individual camera module circuit boards; and wherein
said plurality of lens housings allows said plurality of image capture devices to be mounted on said circuit substrate after said plurality of lens housings is formed on said circuit substrate; and
said plurality of lens housings is formed on a first surface of said circuit substrate and said plurality of image capture devices is mounted on a second surface of said circuit substrate opposite said first surface.
27. The workpiece of claim 26 , wherein:
each of said individual camera module circuit boards defines an aperture; and
each of said image capture devices is mounted such that light passing through said aperture of said respective individual camera module circuit board impinges on a light-sensitive portion of said image capture device.
28. The workpiece of claim 26 , wherein said plurality of lens housings is formed from a material capable of withstanding an attachment process used to mount said plurality of image capture devices on said circuit substrate.
29. The workpiece of claim 28 , wherein said plurality of lens housing is formed from a resin.
30. The workpiece of claim 26 , wherein said plurality of lens housings is molded on said circuit substrate.
31. The workpiece of claim 26 , wherein each of said individual camera module circuit boards includes at least one insulating layer and at least one conductive layer.
32. The workpiece of claim 31 , wherein:
each of said lens housings is formed on said insulating layer of said associated individual camera module circuit board; and
each of said image capture devices is coupled to at least one electrical contact of said conductive layer of said respective individual camera module circuit board.
33. The workpiece of claim 26 , wherein:
said circuit substrate is made of a first material; and
said plurality of lens housings is formed from a second material different then said first material.
34. The workpiece of claim 26 , wherein said workpiece is free of adhesive between said circuit substrate and each of said plurality of lens housings.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/214,696 US20110299848A1 (en) | 2006-05-31 | 2011-08-22 | Camera Module with Premolded Lens Housing and Method of Manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/444,277 US8092102B2 (en) | 2006-05-31 | 2006-05-31 | Camera module with premolded lens housing and method of manufacture |
US13/214,696 US20110299848A1 (en) | 2006-05-31 | 2011-08-22 | Camera Module with Premolded Lens Housing and Method of Manufacture |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/444,277 Continuation US8092102B2 (en) | 2006-05-31 | 2006-05-31 | Camera module with premolded lens housing and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110299848A1 true US20110299848A1 (en) | 2011-12-08 |
Family
ID=38789011
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/444,277 Expired - Fee Related US8092102B2 (en) | 2006-05-31 | 2006-05-31 | Camera module with premolded lens housing and method of manufacture |
US13/214,696 Abandoned US20110299848A1 (en) | 2006-05-31 | 2011-08-22 | Camera Module with Premolded Lens Housing and Method of Manufacture |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/444,277 Expired - Fee Related US8092102B2 (en) | 2006-05-31 | 2006-05-31 | Camera module with premolded lens housing and method of manufacture |
Country Status (5)
Country | Link |
---|---|
US (2) | US8092102B2 (en) |
JP (1) | JP4981129B2 (en) |
CN (1) | CN101490786B (en) |
CA (1) | CA2654422C (en) |
WO (1) | WO2007143134A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100325883A1 (en) * | 2007-07-19 | 2010-12-30 | Flextronics Ap, Llc | Camera module back-focal length adjustment method and ultra compact components packaging |
US8564715B2 (en) | 2005-09-08 | 2013-10-22 | Lothar Westerweck | System for stabilizing an optics assembly during translation |
US9178093B2 (en) | 2011-07-06 | 2015-11-03 | Flextronics Ap, Llc | Solar cell module on molded lead-frame and method of manufacture |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7872686B2 (en) * | 2004-02-20 | 2011-01-18 | Flextronics International Usa, Inc. | Integrated lens and chip assembly for a digital camera |
US7796187B2 (en) | 2004-02-20 | 2010-09-14 | Flextronics Ap Llc | Wafer based camera module and method of manufacture |
CA2685080A1 (en) | 2007-04-24 | 2008-11-06 | Flextronics Ap Llc | Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly |
US8488046B2 (en) * | 2007-12-27 | 2013-07-16 | Digitaloptics Corporation | Configurable tele wide module |
US9118825B2 (en) * | 2008-02-22 | 2015-08-25 | Nan Chang O-Film Optoelectronics Technology Ltd. | Attachment of wafer level optics |
US9419032B2 (en) | 2009-08-14 | 2016-08-16 | Nanchang O-Film Optoelectronics Technology Ltd | Wafer level camera module with molded housing and method of manufacturing |
JP5554957B2 (en) * | 2009-10-09 | 2014-07-23 | オリンパス株式会社 | Imaging unit |
US9136289B2 (en) * | 2011-08-23 | 2015-09-15 | Flextronics Ap, Llc | Camera module housing having built-in conductive traces to accommodate stacked dies using flip chip connections |
TWI573407B (en) * | 2013-01-14 | 2017-03-01 | 鴻海精密工業股份有限公司 | Optical communication module |
US9167161B1 (en) | 2013-08-30 | 2015-10-20 | Amazon Technologies, Inc. | Camera module package with a folded substrate and laterally positioned components |
US9241097B1 (en) | 2013-09-27 | 2016-01-19 | Amazon Technologies, Inc. | Camera module including image sensor die in molded cavity substrate |
CN105739218B (en) * | 2014-12-29 | 2021-02-05 | Lg伊诺特有限公司 | Lens moving device |
KR102465474B1 (en) * | 2016-02-18 | 2022-11-09 | 닝보 써니 오포테크 코., 엘티디. | Integral packaging process-based camera module, integral base component of same, and manufacturing method therefor |
KR102320911B1 (en) * | 2016-02-18 | 2021-11-02 | 닝보 써니 오포테크 코., 엘티디. | Array imaging module and molded photosensitive assembly, cirduit board assembly and manufacturing method thereof for electronic device |
US10925160B1 (en) | 2016-06-28 | 2021-02-16 | Amazon Technologies, Inc. | Electronic device with a display assembly and silicon circuit board substrate |
US10459189B2 (en) | 2016-10-05 | 2019-10-29 | Omnivision Technologies, Inc. | Lens barrel, lens-barrel wafer, and associated method |
US10767164B2 (en) | 2017-03-30 | 2020-09-08 | The Research Foundation For The State University Of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
JP2020150207A (en) | 2019-03-15 | 2020-09-17 | キヤノン株式会社 | Electronic component, manufacturing method of them, and equipment |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020005997A1 (en) * | 2000-07-17 | 2002-01-17 | Eiji Oba | Optical lens unit having a mechanism for adjusting the focal point of the optical lens |
US20020034022A1 (en) * | 2000-08-17 | 2002-03-21 | Masao Nakamura | Method for producing solid-state imaging device |
US6515269B1 (en) * | 2000-01-25 | 2003-02-04 | Amkor Technology, Inc. | Integrally connected image sensor packages having a window support in contact with a window and the active area |
US20030043478A1 (en) * | 2001-08-29 | 2003-03-06 | Samsung Electro-Mechanics Co., Ltd | Image module |
US20040150740A1 (en) * | 2003-01-30 | 2004-08-05 | Hsin Chung Hsien | Miniaturized image sensor module |
US20040239794A1 (en) * | 2003-03-31 | 2004-12-02 | Masahiro Saito | Compact camera module |
US20050007481A1 (en) * | 2003-07-11 | 2005-01-13 | Konica Minolta Opto, Inc. | Image pick-up lens, image pick-up unit, and mobile terminal provided with this image pick-up unit |
US20050185088A1 (en) * | 2004-02-20 | 2005-08-25 | Kale Vidyadhar S. | Integrated lens and chip assembly for a digital camera |
US20060043260A1 (en) * | 2004-08-24 | 2006-03-02 | Guolin Ma | Image sensor having integrated electrical optical device and related method |
US20060043513A1 (en) * | 2004-09-02 | 2006-03-02 | Deok-Hoon Kim | Method of making camera module in wafer level |
US20060132644A1 (en) * | 2004-02-20 | 2006-06-22 | Dongkai Shangguan | Wafer based camera module and method of manufacture |
US20060231750A1 (en) * | 2005-04-14 | 2006-10-19 | Chipmos Technologies (Bermuda) Ltd. | Image sensor module package |
US20070008631A1 (en) * | 2005-07-09 | 2007-01-11 | Altus Technology Inc. | Digital camera module with improved image quality |
US20070040932A1 (en) * | 2005-08-19 | 2007-02-22 | Wen-Ching Chen | Image sensor module |
US20070285555A1 (en) * | 2006-06-09 | 2007-12-13 | Hon Hai Precision Industry Co., Ltd. | Lens module and camera employing the same |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724287B2 (en) | 1987-02-12 | 1995-03-15 | 三菱電機株式会社 | Semiconductor device having light transmitting window and method of manufacturing the same |
US5976912A (en) | 1994-03-18 | 1999-11-02 | Hitachi Chemical Company, Ltd. | Fabrication process of semiconductor package and semiconductor package |
KR20040004472A (en) | 1995-05-31 | 2004-01-13 | 소니 가부시끼 가이샤 | Image pickup apparatus, fabrication method thereof, image pickup adaptor apparatus, signal processing apparatus, signal processing method thereof, information processing apparatus, and information processing method |
NL1003315C2 (en) | 1996-06-11 | 1997-12-17 | Europ Semiconductor Assembly E | Method for encapsulating an integrated semiconductor circuit. |
JPH10321827A (en) | 1997-05-16 | 1998-12-04 | Sony Corp | Image-pickup device and camera |
DE19756292C2 (en) * | 1997-12-10 | 1999-10-28 | Mannesmann Ag | Catalyst for the conversion of paraffinic hydrocarbons into corresponding olefins |
JP2000241696A (en) | 1999-02-17 | 2000-09-08 | Canon Inc | Holding/mounting method for optical sensor package |
JP2001188155A (en) * | 1999-12-28 | 2001-07-10 | Kuurii Components Kk | Imaging device fixing means |
JP3651580B2 (en) | 2000-04-07 | 2005-05-25 | 三菱電機株式会社 | Imaging apparatus and manufacturing method thereof |
US6471417B1 (en) * | 2000-04-27 | 2002-10-29 | Nexfon Corporation | High power optical adapter |
US6384397B1 (en) | 2000-05-10 | 2002-05-07 | National Semiconductor Corporation | Low cost die sized module for imaging application having a lens housing assembly |
EP1180718A1 (en) | 2000-08-11 | 2002-02-20 | EM Microelectronic-Marin SA | Apparatus for taking images of small dimensions, particularly still or motion picture camera |
JP3887162B2 (en) | 2000-10-19 | 2007-02-28 | 富士通株式会社 | Imaging semiconductor device |
US6686588B1 (en) * | 2001-01-16 | 2004-02-03 | Amkor Technology, Inc. | Optical module with lens integral holder |
JP3821652B2 (en) | 2001-02-26 | 2006-09-13 | 三菱電機株式会社 | Imaging device |
US6798031B2 (en) | 2001-02-28 | 2004-09-28 | Fujitsu Limited | Semiconductor device and method for making the same |
US20040012698A1 (en) | 2001-03-05 | 2004-01-22 | Yasuo Suda | Image pickup model and image pickup device |
JP2003032525A (en) | 2001-05-09 | 2003-01-31 | Seiko Precision Inc | Solid state imaging apparatus |
JP2003060948A (en) | 2001-06-05 | 2003-02-28 | Seiko Precision Inc | Solid-state photographing apparatus |
US6734419B1 (en) | 2001-06-28 | 2004-05-11 | Amkor Technology, Inc. | Method for forming an image sensor package with vision die in lens housing |
JP4647851B2 (en) * | 2001-08-07 | 2011-03-09 | 日立マクセル株式会社 | The camera module |
WO2003015400A1 (en) | 2001-08-07 | 2003-02-20 | Hitachi Maxell, Ltd | Camera module |
JP2003078077A (en) | 2001-09-05 | 2003-03-14 | Sanyo Electric Co Ltd | Camera module |
JP3887208B2 (en) | 2001-10-29 | 2007-02-28 | 富士通株式会社 | Camera module and manufacturing method thereof |
JP4143304B2 (en) | 2002-01-24 | 2008-09-03 | 富士通株式会社 | Manufacturing method of camera module |
JP2003333437A (en) | 2002-05-13 | 2003-11-21 | Rohm Co Ltd | Image sensor module and manufacturing method thereof |
US7304362B2 (en) | 2002-05-20 | 2007-12-04 | Stmicroelectronics, Inc. | Molded integrated circuit package with exposed active area |
KR100718421B1 (en) | 2002-06-28 | 2007-05-14 | 교세라 가부시키가이샤 | Imaging device package, camera module and camera module producing method |
US20040027687A1 (en) | 2002-07-03 | 2004-02-12 | Wilfried Bittner | Compact zoom lens barrel and system |
KR100774775B1 (en) | 2002-09-17 | 2007-11-07 | 앤터온 비.브이. | Camera device, method of manufacturing a camera device, wafer scale package |
JP2004194223A (en) | 2002-12-13 | 2004-07-08 | Konica Minolta Holdings Inc | Imaging apparatus and portable terminal |
JP2004200965A (en) | 2002-12-18 | 2004-07-15 | Sanyo Electric Co Ltd | Camera module and manufacturing method thereof |
JP2004296453A (en) | 2003-02-06 | 2004-10-21 | Sharp Corp | Solid-state imaging device, semiconductor wafer, optical device module, method of manufacturing the solid-state imaging device, and method of manufacturing the optical device module |
US6741405B1 (en) | 2003-03-27 | 2004-05-25 | Exquisite Optical Technology Co., Ltd | Hood for a digital image collecting lens |
US7122787B2 (en) | 2003-05-09 | 2006-10-17 | Matsushita Electric Industrial Co., Ltd. | Imaging apparatus with three dimensional circuit board |
US7619683B2 (en) | 2003-08-29 | 2009-11-17 | Aptina Imaging Corporation | Apparatus including a dual camera module and method of using the same |
US7199438B2 (en) | 2003-09-23 | 2007-04-03 | Advanced Semiconductor Engineering, Inc. | Overmolded optical package |
KR100541654B1 (en) | 2003-12-02 | 2006-01-12 | 삼성전자주식회사 | Wiring substrate and solid-state imaging apparatus using thereof |
US7091571B1 (en) * | 2003-12-11 | 2006-08-15 | Amkor Technology, Inc. | Image sensor package and method for manufacture thereof |
JP2005210628A (en) * | 2004-01-26 | 2005-08-04 | Mitsui Chemicals Inc | Substrate for mounting semiconductor for imaging device, and imaging device |
JP4446773B2 (en) | 2004-03-26 | 2010-04-07 | 富士フイルム株式会社 | Imaging device |
US7061106B2 (en) | 2004-04-28 | 2006-06-13 | Advanced Chip Engineering Technology Inc. | Structure of image sensor module and a method for manufacturing of wafer level package |
KR100712509B1 (en) * | 2004-06-10 | 2007-04-30 | 삼성전자주식회사 | Assembling method and structure of image sensor packages |
JP5252770B2 (en) * | 2004-06-10 | 2013-07-31 | 三星電子株式会社 | Image sensor package assembly method |
JP2005352314A (en) * | 2004-06-11 | 2005-12-22 | Canon Inc | Imaging device and electronic apparatus |
KR100652375B1 (en) | 2004-06-29 | 2006-12-01 | 삼성전자주식회사 | Image sensor module structure comprising a wire bonding package and method of manufacturing the same |
KR100674911B1 (en) | 2004-08-06 | 2007-01-26 | 삼성전자주식회사 | Image sensor camera module and method of fabricating the same |
KR101107265B1 (en) * | 2004-12-31 | 2012-01-19 | 엘지디스플레이 주식회사 | Thin Film Transistor Substrate of Horizontal Electric Field And Fabricating Method Thereof, Liquid Crystal Display Panel Using The Same And Fabricating Method Thereof |
US20070058069A1 (en) * | 2005-09-14 | 2007-03-15 | Po-Hung Chen | Packaging structure of a light sensation module |
KR100770684B1 (en) | 2006-05-18 | 2007-10-29 | 삼성전기주식회사 | Camera module package |
-
2006
- 2006-05-31 US US11/444,277 patent/US8092102B2/en not_active Expired - Fee Related
-
2007
- 2007-05-31 CA CA2654422A patent/CA2654422C/en not_active Expired - Fee Related
- 2007-05-31 JP JP2009513308A patent/JP4981129B2/en active Active
- 2007-05-31 CN CN2007800265424A patent/CN101490786B/en not_active Expired - Fee Related
- 2007-05-31 WO PCT/US2007/013014 patent/WO2007143134A2/en active Application Filing
-
2011
- 2011-08-22 US US13/214,696 patent/US20110299848A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6515269B1 (en) * | 2000-01-25 | 2003-02-04 | Amkor Technology, Inc. | Integrally connected image sensor packages having a window support in contact with a window and the active area |
US20020005997A1 (en) * | 2000-07-17 | 2002-01-17 | Eiji Oba | Optical lens unit having a mechanism for adjusting the focal point of the optical lens |
US20020034022A1 (en) * | 2000-08-17 | 2002-03-21 | Masao Nakamura | Method for producing solid-state imaging device |
US20030043478A1 (en) * | 2001-08-29 | 2003-03-06 | Samsung Electro-Mechanics Co., Ltd | Image module |
US20040150740A1 (en) * | 2003-01-30 | 2004-08-05 | Hsin Chung Hsien | Miniaturized image sensor module |
US20040239794A1 (en) * | 2003-03-31 | 2004-12-02 | Masahiro Saito | Compact camera module |
US20050007481A1 (en) * | 2003-07-11 | 2005-01-13 | Konica Minolta Opto, Inc. | Image pick-up lens, image pick-up unit, and mobile terminal provided with this image pick-up unit |
US20050185088A1 (en) * | 2004-02-20 | 2005-08-25 | Kale Vidyadhar S. | Integrated lens and chip assembly for a digital camera |
US20060132644A1 (en) * | 2004-02-20 | 2006-06-22 | Dongkai Shangguan | Wafer based camera module and method of manufacture |
US20060043260A1 (en) * | 2004-08-24 | 2006-03-02 | Guolin Ma | Image sensor having integrated electrical optical device and related method |
US20060043513A1 (en) * | 2004-09-02 | 2006-03-02 | Deok-Hoon Kim | Method of making camera module in wafer level |
US20060231750A1 (en) * | 2005-04-14 | 2006-10-19 | Chipmos Technologies (Bermuda) Ltd. | Image sensor module package |
US20070008631A1 (en) * | 2005-07-09 | 2007-01-11 | Altus Technology Inc. | Digital camera module with improved image quality |
US20070040932A1 (en) * | 2005-08-19 | 2007-02-22 | Wen-Ching Chen | Image sensor module |
US20070285555A1 (en) * | 2006-06-09 | 2007-12-13 | Hon Hai Precision Industry Co., Ltd. | Lens module and camera employing the same |
Non-Patent Citations (1)
Title |
---|
Translation of JP Publication No.2006-053232; Title: Electronic Imaging Device; Inventors: Orihashi et al.; Publication Date: 23 February 2006. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8564715B2 (en) | 2005-09-08 | 2013-10-22 | Lothar Westerweck | System for stabilizing an optics assembly during translation |
US20100325883A1 (en) * | 2007-07-19 | 2010-12-30 | Flextronics Ap, Llc | Camera module back-focal length adjustment method and ultra compact components packaging |
US8937681B2 (en) | 2007-07-19 | 2015-01-20 | Digitaloptics Corporation | Camera module back-focal length adjustment method and ultra compact components packaging |
US9178093B2 (en) | 2011-07-06 | 2015-11-03 | Flextronics Ap, Llc | Solar cell module on molded lead-frame and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
CN101490786A (en) | 2009-07-22 |
US8092102B2 (en) | 2012-01-10 |
WO2007143134A3 (en) | 2008-10-30 |
CA2654422A1 (en) | 2007-12-13 |
CA2654422C (en) | 2015-08-11 |
WO2007143134A2 (en) | 2007-12-13 |
JP4981129B2 (en) | 2012-07-18 |
US20070278394A1 (en) | 2007-12-06 |
JP2009539325A (en) | 2009-11-12 |
CN101490786B (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8092102B2 (en) | Camera module with premolded lens housing and method of manufacture | |
US7714931B2 (en) | System and method for mounting an image capture device on a flexible substrate | |
US8605208B2 (en) | Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly | |
US7964945B2 (en) | Glass cap molding package, manufacturing method thereof and camera module | |
US7796187B2 (en) | Wafer based camera module and method of manufacture | |
US8714843B2 (en) | Camera module and method of manufacturing the same | |
US7576401B1 (en) | Direct glass attached on die optical module | |
US20070269205A1 (en) | Camera module and manufacturing method thereof | |
US20070241273A1 (en) | Camera module | |
US20120092552A1 (en) | Image sensor module | |
JP2007012995A (en) | Microminiature camera module and method of manufacturing same | |
US20050059269A1 (en) | Connector and image sensor module using the same | |
KR101204901B1 (en) | Camera module and the fabricating method thereof | |
JP2005051535A (en) | Imaging apparatus and manufacturing method therefor | |
KR100613419B1 (en) | Image Sensor Module and the product method thereof | |
KR100939764B1 (en) | Camera module and method of manufacturing the same | |
CN111083344A (en) | CCM module lens mount attaching method and CCM module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |