US20110172426A1 - Aromatic monomer- and conjugated polymer-metal complexes - Google Patents

Aromatic monomer- and conjugated polymer-metal complexes Download PDF

Info

Publication number
US20110172426A1
US20110172426A1 US13/053,776 US201113053776A US2011172426A1 US 20110172426 A1 US20110172426 A1 US 20110172426A1 US 201113053776 A US201113053776 A US 201113053776A US 2011172426 A1 US2011172426 A1 US 2011172426A1
Authority
US
United States
Prior art keywords
metal complex
aromatic monomer
polymer
fragment
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/053,776
Inventor
Wanglin Yu
James J. O'Brien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to US13/053,776 priority Critical patent/US20110172426A1/en
Publication of US20110172426A1 publication Critical patent/US20110172426A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an aromatic monomer-metal complex, an aromatic polymer-metal complex, which can be prepared from the monomer-metal complex, and an organic electronic device that contains a film of the polymer-metal complex.
  • Organic electronic devices are found in a variety of electronic equipment.
  • an organic active layer is sandwiched between two electrical contact layers; the active layer emits light upon application of a voltage bias across the contact layers.
  • Polymers containing pendant metal-complex groups constitute a class of polymers suitable for light emitting applications, particularly in active matrix driven polymeric LED displays. These polymers can be prepared, for example, by first polymerizing a monomer containing a ligand capable of complexing with a metal, then contacting the polymer with an organometallic complexing compound to insert the metal center into the polymer bound ligand.
  • a monomer containing a ligand capable of complexing with a metal then contacting the polymer with an organometallic complexing compound to insert the metal center into the polymer bound ligand.
  • organometallic complexing compound for example, in Macromolecules , Vol. 35, No. 19, 2002, Pei et al. describes a conjugated polymer with pendant bipyridyl groups directly coordinating with various Eu +3 ⁇ , ⁇ -diketones.
  • Periyasamy et al. describes lanthanide metal-complexed polymers prepared by either a one- or two-step synthetic route.
  • an ML n emitter is reacted with a polymer having metal-reactive functionality (X) to form a polymer with pendant —X-ML n-1 groups.
  • a polymer with pendant hydroxyethyl functionality is first condensed with a bipyridyl compound containing carboxylic acid functionality to form a polymer containing bipyridyl ester functionality (X-L′), which is then reacted with ML n to form a polymer with pendant X-L′-ML n-1 functionality.
  • halogenated aromatic monomer-metal complex compound comprising a halogenated aromatic monomer fragment and a metal complex fragment and represented by the following structure:
  • L is a bidentate ligand
  • M is Ir, Rh, or Os
  • Ar′ and Ar′′ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar′′ is heteroaromatic
  • R a and R b are each independently a monovalent substitutent or H, with the proviso that at least one of R a and R b contains a halogenated aromatic monomer fragment and a linking group that disrupts conjugation between the halogenated aromatic monomer fragment and the metal complex fragment.
  • the present invention is an electroluminescent polymer having a backbone comprising a) structural units of an aromatic monomer-metal complex having an aromatic fragment and a metal complex fragment, which structural units are represented by the following formula:
  • L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar′′ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar′′ is heteroaromatic; and wherein R′ a and R′ b are substitutents or H, with the proviso that at least one of R′ a and R′ b contains an aromatic group that is part of the polymer backbone and a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) structural units of at least one aromatic comonomer, which polymer is characterized by being conjugated along a polymer backbone created by structural units of the aromatic monomer-metal complex and structural units of the at least one aromatic comonomer.
  • the present invention is an electronic device comprising a thin film of a luminescent polymer sandwiched between an anode and a cathode, which luminescent polymer has a backbone with a) structural units of an aromatic monomer-metal complex, which structural units are represented by the following formula:
  • L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar′′ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar′′ is heteroaromatic; and wherein R′ a and R′ b are substitutents or H, with the proviso that at least one of R′ a and R′ b contains an aromatic group that is part of the polymer backbone and a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) structural units of at least one aromatic comonomer, which polymer is characterized by being conjugated along a polymer backbone created by structural units of the aromatic monomer-metal complex and structural units of the at least one aromatic comonomer.
  • the present invention addresses a need in the art by providing a simple way of preparing a conjugated electroactive polymer with precisely controlled metal complexation. Moreover, the metal complex groups have electronic and/or luminescent properties that are minimally affected by the conjugated polymer backbone.
  • the first aspect of the present invention is a composition comprising a halogenated aromatic monomer-metal complex having a halogenated aromatic monomer fragment and a metal complex fragment and represented by the following formula:
  • L is a bidentate ligand
  • M is Ir, Rh, or Os
  • Ar′ and Ar′′ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar′′ is heteroaromatic
  • R a and R b are each independently a monovalent substitutent or H, with the proviso that at least one of R a and R b contains a halogenated aromatic monomer fragment and a linking group that disrupts conjugation between the aromatic monomer fragment and the metal complex fragment.
  • halogenated aromatic monomer-metal complex of the present invention can be thought of as comprising a metal complex fragment and one or more halogenated aromatic monomer fragments as illustrated:
  • R a is X m Ar-G- and R b is X n Ar-G-; each Ar is independently an aromatic group; each G is independently a divalent linking group that disrupts conjugation between Ar and Ar′—Ar′′, preferably alkylene, O, S, carbonyl, SiR 2 , where R is a substituent, or oxyalkylene, more preferably methylene, oxymethylene, or O; each X is independently a halogen group, preferably, each X is chloro or bromo; the sum of m+n is a positive integer, preferably 1 or 2; more preferably 1; and the sum of o+p is a positive integer, preferably 1 or 2, more preferably 1.
  • R a (or R b ) can be any substituent including H.
  • each Ar′—Ar′′ ligand contain one monohalogenated aromatic substituent separated from Ar′—Ar′′ by conjugation disrupting group.
  • the ligand Ar′—Ar′′ is attached at least one substituent that is a polymerizable aromatic monomer separated from the ligand by a divalent linking group.
  • suitable substituted Ar′—Ar′′ ligands include, but are not restricted to 2-phenylpyridines, 2-benzylpyridines, 2-(2-thienyl)pyridines, 2-(2-furanyl)pyridines, 2,2′-dipyridines, 2-benzo[b]thien-2-yl-pyridines, 2-phenylbenzothiazoles, 2-(1-naphthalenyl)benzothiazoles, 2-(1-anthracenyl)benzothiazoles, 2-phenylbenzoxazoles, 2-(1-naphthalenyl)benzoxazoles, 2-(1-anthracenyebenzoxazoles, 2-(2-naphthalenyl)benzothiazoles, 2-(2-anthracenyl)benzothiazoles, 2-(2-na
  • aromatic compounds includes both aromatic and heteroaromatic compounds unless otherwise stated.
  • aryl is used herein to include both aryl and heteroaryl groups or compounds unless otherwise stated.
  • the divalent linking group G contains a linking group or atom that disrupts conjugation, thereby inhibiting electron delocalization between the aromatic monomer fragment and the metal complex fragment. This disruption of conjugation between the fragments results in a similar disruption between the complex and the conjugated polymer backbone formed from the aromatic monomer fragment. Disruption of conjugation is often desirable to preserve the light emission properties of the metal complex in a polymer formed from the aromatic monomer-metal complex. Such properties could be disadvantageously perturbed if electrons are delocalized between the conjugated polymer backbone and the complex.
  • the linking group is preferably a substituted or unsubstituted non-conjugated linear, branched, or cyclohydrocarbylene group or a divalent heteroatom or combinations. thereof.
  • linking groups include, alone or in combination, alkylene or cycloalkyl groups such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, t-butylene, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups; and heteroatoms such as oxygen and sulfur atoms and R—Si—R, carbonyl, and amine groups, except for triaryl amines.
  • Preferred linking groups include an oxygen atom and methylene and oxymethylene groups.
  • “oxymethylene” refers to —OCH 2 — or —CH 2 O—groups.
  • a halogenated aromatic monomer-metal complex containing a bis(monohalogenated aromatic) fragment attached to a metal complex through a linking group can be prepared by a 4-step process, as shown:
  • G is as previously defined and is preferably O, methylene, or oxymethylene;
  • Ar, Ar′, and Ar′′ are each independently aromatic moieties with the proviso that at least one of Ar′ and Ar′′ is heteroaromatic.
  • Ar is a non-heteroaromatic moiety including a benzene, a naphthalene, or an anthracene moiety, more preferably a benzene moiety.
  • Ar′ and Ar′′ are each independently selected from the group consisting of benzene, pyridine, thiophene, and fluorene moieties that are complexed with the metal so as to form a 5-membered ring. More preferably one of Ar′ and Ar′′ is a benzene moiety and the other of a Ar′ and Ar′′ is pyridine moiety.
  • X is halo
  • X′ and X′′ are each independently halogen, boronate, —ZnCl, —ZnBr, —MgCl, MgBr, or—Sn(C 1-10 -alkyl) 3 , with the proviso that one of X′ and X′′ is halogen and the other of X′ and X′′ is boronate, —ZnCl, —ZnBr, —MgCl, MgBr, or—Sn(C 1-10 -alkyl) 3 ;
  • X′′′ is halogen, hydroxy, or alkoxy, preferably chloro, bromo, methoxy, or ethoxy, more preferably chloro or bromo.
  • X′′′ is halogen, the addition of the hydroxide or alkoxide base is not necessary; where X′′′ is hydroxy or alkoxy, the addition of a hydroxide or alkoxide base is preferred
  • L is a bidentate ligand which can be the same as or different from Ar′—Ar′′.
  • Other examples of L include a diamine, including ethylene diamine, N,N,N′,N′-tetramethyl ethylene diamine, propylene diamine, N,N,N′,N′-tetramethyl propylene diamine, cis- and trans-diaminocyclohexane, and cis- and trans-N,N,N′,N′-tetramethyl diaminocyclohexane; an imine, including 2[(1-phenylimino)ethyl]pyridine, 2[(1-(2-methylphenylimino)ethyl]pyridine, 2[(1-(2,6-isopropylphenylimino)ethyl]pyridine, 2[(1-(methylimino)ethyl]pyridine, 2[(1-(ethylimino)methyl]pyridine, 2[
  • the halogenated aromatic monomer-metal complex is a precursor for a metal-complexed conjugated luminescent polymer, which can be a homopolymer, a copolymer, a terpolymer, etc., and which can be prepared by any of a number of means.
  • the polymer can be prepared by a Suzuki coupling reaction, described in U.S. Pat. No. 6,169,163 (the '163 patent), column 41, lines 50-67 to column 42, lines 1-24, which description is incorporated herein by reference.
  • the Suzuki coupling reaction can be carried out by reacting, in the presence of a catalyst, preferably a Pd/triphenylphosphine catalyst such as tetrakis(triphenylphosphine)palladium(0), the halogenated aromatic monomer-metal complex, preferably the bis(monohalogenated aromatic) complex, with a diboronated aromatic compound.
  • a catalyst preferably a Pd/triphenylphosphine catalyst such as tetrakis(triphenylphosphine)palladium(0)
  • the halogenated aromatic monomer-metal complex preferably the bis(monohalogenated aromatic) complex
  • a polymer having structural units of more than two monomers by including in the reaction mixture a variety of halogenated and boronated co-monomers along with the halogenated aromatic monomer-metal complex.
  • Polymerization can also be carried out by coupling one or more dihalogenated aromatic monomer-metal complexes with one or more dihalogenated aromatic compounds in the presence of a nickel salt, as described in the '163 patent, column 11, lines 9-34, which description is incorporated herein by reference.
  • aromatic co-monomers that can be used to couple with the halogenated aromatic monomer-metal complex is nearly endless but a representative list includes, 1,4-diXbenzenes, 1,3-diXbenzenes, 1,2-diXbenzenes 4,4′-diXbiphenyls, 1,4-diXnaphthalenes, 2,6-diXnaphthalenes, 2,5-diXfurans, 2,5-diXthiophenes, 5,5-diX-2,2′-bithiophenes, 9,10-diXanthracenes, 4,7-diX-2,1,3-benzothiadiazoles, diX triarylamines including N,N-di(4-Xphenyl) anilines, N,N-di(4-Xphenyl)-p-tolylamines, and N-diXphenyl-N-phenylanilines, 3,6-diX-N-substit
  • the resultant polymer has a backbone having structural units of a) an aromatic group which is also attached to a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) an aromatic comonomer, which forms a conjugated system with the aromatic group.
  • structural units is used herein to refer to the remnant of the monomer after polymerization.
  • a structural unit of the aromatic group that is attached to the metal complex through a linking group is represented by the following structure:
  • R′ a and R′ b preferably only one of R′ a and R′ b , contains an aromatic group that is part of the polymer backbone, preferably a phenyl group, a naphthalenyl group, or an anthracenyl group, more preferably a phenyl group; and a linking group, G, that disrupts conjugation between the aromatic group and the metal complex fragment.
  • the other of R′ a and R′ b is preferably a monovalent substituent, including H.
  • a structural unit of a benzene-containing comonomer that is incorporated into the polymer backbone through the 1,4-positions is a 1,4-phenylene group
  • a structural unit of a 9,9-disubstituted fluorene-containing comonomer that is incorporated into the polymer backbone through the 2,7-positions is a 9,9-disubstituted fluorene-2,7-diyl group, where each R is a substituent, as illustrated:
  • the structural units corresponding to the above listed co-monomers are 1,4-phenylenes, 1,3-phenylenes, 1,2-phenylenes, 4,4′-biphenylenes, naphthalene-1,4-diyls, naphthalene-2,6-diyl, furan-2,5-diyls, thiophene-2,5-diyls, 2,2′-bithiophene-5,5-diyls, anthracenes-9,10-diyls, 2,1,3-benzothiadiazoles-4,7-diyls, N-substituted carbazole-3,6-diyls, N-substituted carbazole-2,7-diyls, N-substituted-phenothiazine-3,7-diyls, N-substituted-phenoxazines-3,7-diyls, triary
  • the resultant polymer has a conjugated backbone with metal complexation that can be precisely controlled because preferably at least 90%, more preferably at least 95%, and most preferably 100% of the structural units of the aromatic monomer-metal complex contain a metal complex that is incorporated within the polymer backbone. Moreover, the metal complex is insulated from the conjugated polymer backbone due to the absence of direct delocalization between the ligand and the polymer backbone, which insulation preserves the luminescent properties of the metal complex.
  • conjugated polymer and “conjugated polymer backbone” are used to mean that the polymer backbone has electrons that are delocalized throughout at least two adjacent structural units, preferably at least five adjacent structural units, more preferably at least ten adjacent structural units.
  • the ratio of structural units of halogenated aromatic monomer-metal complex to structural units of the comonomer is preferably at least 0.01:99.99, more preferably at least 0.1:99.9, and most preferably at least 1:99; and preferably not greater than 20:80, more preferably not greater than 10:90.
  • the polymer of the present invention preferably has a weight average molecular weight M w of at least 5000 Daltons, more preferably at least 10,000 Daltons, more preferably at least 50,000 Daltons, and most preferably at least 100,000 Daltons; and preferably less than 2,000,000 Daltons.
  • M w is determined using gel permeation chromatography against polystyrene standards.
  • the polymer of the present invention can be combined with one or more other polymers to make a blend.
  • suitable blending polymers include homo- or co-polymers (including terpolymers or higher) of polyacrylates, polymethacrylates, polystyrenes, polyesters, polyimides, polyvinylenes, polycarbonates, polyvinyl ethers and esters, fluoropolymers, polycarbazoles, polyarylene vinylenes, polyarylenes, polythiophenes, polyfurans, polypyrroles, polypyridines, polyfluorenes, and combinations thereof.
  • the polymer or blend of the present invention can be combined with a sufficient amount of one or more solvents (hereinafter “solvent”) to make a solution which is useful, for example, as an ink.
  • solvent a solvent that varies depending upon the solvent itself and the application, but is generally used at a concentration of at least 80 weight percent, more preferably at least 90 weight percent, and most preferably at least 95 weight percent, based on the weight of the luminescent polymer, the optional additives or modifiers, and the solvent.
  • suitable solvents for the polymer include benzene; mono-, di- and trialkylbenzenes including C 1-12 -alkyl benzenes, xylenes, mesitylene, cyclohexylbenzene, and diethylbenzene; furans including tetrahydrofuran and 2,3-benzofuran; 1,2,3,4-tetrahydronaphthalene; cumene; decalin; durene; chloroform; limonene; dioxane; alkoxybenzenes including anisole, and methyl anisoles; alkyl benzoates including methyl benzoate; biphenyls including isopropyl biphenyl; pyrrolidinones including cyclohexylpyrrolidinone; imidazoles including dimethylimidazolinone; and fluorinated solvents; and combinations thereof.
  • More preferred solvents include C 1-8 -alkyl benzenes, cyclohexylbenzene, xylenes, mesitylene, 1,2,3,4-tetrahydronaphthalene, methyl benzoate, isopropyl biphenyl, and anisole, and combinations thereof.
  • the ink formulation can be deposited on a substrate such as indium-tin-oxide (ITO) glass having a hole transporting material disposed thereon.
  • ITO indium-tin-oxide
  • the solvent is then evaporated, whereupon the ink forms a thin film of the luminescent polymer.
  • the film is used as an active layer in an organic light-emitting diode (OLED) device, which can be used to make a display such as a self-emissive flat panel display.
  • OLED organic light-emitting diode
  • the film is also useful in other electronic devices including light sources, photovoltaic cells, and field effect transistor devices.
  • N-bromosuccinimide (NBS, 3.95 g, 22.2 mmol) in DMF (10 mL) was added to a solution of 2-(4′-Phenoxy)phenylpyridine (5.8 g, 23.4 mmol) in DMF (100 mL) at room temperature. The reaction mixture was stirred at 80° C. for 1 h. HPLC showed about 40% of the starting material was converted. Additional NBS (1.55 g) was added and the reaction continued at 80° C. overnight. HPLC indicated a conversion of 55%. Additional NBS (5 g) was added and the reaction was continued at 80° C. for 1 h. HPLC showed complete conversion of the starting material.
  • Tetrakis(triphenylphosphine)palladium(0) (5 mg) and 2M aqueous sodium carbonate solution (11 mL) were added under nitrogen to a stirred mixture of 9,9-di(1-octyl)fluorene-2,7-diboronic acid ethylene glycol ester (2.149 g, 4.04 mmol), 2,7-dibromo-9,9-di(1-octyl)fluorene (1.647 g, 3.00 mmol), 3,7-dibromo-N-(4-n-butyl)-phenyl-phenoxazine (0.190 g, 0.40 mmol), N,N′-(di(bromophenyl)-N,N′-di(9,9-dibutyl)fluorene-1,4-phenylenediamine (0.390 g, 0.40 mmol), iridium (III) bis ⁇ 2-[4′-(4′′
  • the mixture was allowed to cool to about 50° C., the aqueous layer removed, and the organic layer washed with water.
  • the resultant polymer solution was then poured into methanol (1.5 L) with stirring to precipitate pale yellow polymer fibers. These fibers were collected by filtration, washed with methanol, and dried in vacuo at 50° C. overnight.
  • the polymer was re-dissolved in toluene and the solution passed through a column packed with layers of celite and silica gel. The combined eluates were concentrated to about 100 mL, then poured into methanol (1.5 L) with stirring. The polymer fibers were collected and dried in vacuo at 50° C. overnight.
  • the polymer was re-dissolved in toluene and re-precipitated in methanol. After further filtration and drying, 2.26 g of pale yellow fibers were obtained.
  • the weight average molecular weight (M w ) of the polymer was measured by gel permeation chromatography (GPC) against the polystyrene standards as 121,000 with a polydispersity index (M w /M n ) of 3.78.
  • Example 2 The procedure described in Example 2 was followed except that N,N-aiphenyl-3,5-dibromoaniline (0.3248 g, 0.80 mmol) was used instead of dibromo-N-(4-n-butyl)-phenyl-phenoxazine and N,N′-(di(bromophenyl)-N,N′-di(9,9-dibutyl)fluorene-1,4-phenylenediamine (0.390 g, 0.40 mmol); the copolymer II was prepared in the yield of 2.13 g.
  • a thin film of poly(ethylenedioxythiophene)/polystyrenesulfonic acid (commercially available from H. C. Starck and BAYTRONTM P conducting polyer) was spin-coated on a ITO (indium tin oxide)-coated glass substrate, at a thickness of 80 nm.
  • a film of the metal complex-containing polymer described in Example 3 was spin-coated on the PEDOT film at a thickness of 80 nm from a solution in xylenes.
  • a thin layer (3 nm) of LiF was deposited on the top of the polymer layer by thermal evaporation, followed by the deposition of a calcium cathode (10-nm thick).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Pyridine Compounds (AREA)

Abstract

A halogenated aromatic monomer-metal complex useful for preparing a polymer for electronic devices such as a light-emitting diode (LED) device is described. The aromatic monomer-metal complex is designed to include a linking group that disrupts conjugation, thereby advantageously reducing or preventing electron delocalization between the aromatic monomer fragment and the metal complex fragment. Disruption of conjugation is often desirable to preserve the phosphorescent emission properties of the metal complex in a polymer formed from the aromatic monomer-metal complex. The resultant conjugated electroluminescent polymer has precisely controlled metal complexation and electronic properties that are substantially or completely independent of those of the polymer backbone.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of U.S. application Ser. No. 12/718,238 filed Mar. 5, 2010, which is a Divisional of U.S. application Ser. No. 10/893,182 filed Jul. 16, 2004, which claims the benefit of U.S. Provisional Application No. 60/492,434 filed Aug. 4, 2003. The entire disclosures of the prior applications are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an aromatic monomer-metal complex, an aromatic polymer-metal complex, which can be prepared from the monomer-metal complex, and an organic electronic device that contains a film of the polymer-metal complex.
  • Organic electronic devices are found in a variety of electronic equipment. In such devices, an organic active layer is sandwiched between two electrical contact layers; the active layer emits light upon application of a voltage bias across the contact layers.
  • Polymers containing pendant metal-complex groups constitute a class of polymers suitable for light emitting applications, particularly in active matrix driven polymeric LED displays. These polymers can be prepared, for example, by first polymerizing a monomer containing a ligand capable of complexing with a metal, then contacting the polymer with an organometallic complexing compound to insert the metal center into the polymer bound ligand. For example, in Macromolecules, Vol. 35, No. 19, 2002, Pei et al. describes a conjugated polymer with pendant bipyridyl groups directly coordinating with various Eu+3 α,β-diketones.
  • Similarly, in WO 02/31896, pp 17-18, Periyasamy et al. describes lanthanide metal-complexed polymers prepared by either a one- or two-step synthetic route. In the one-step route, an MLn emitter is reacted with a polymer having metal-reactive functionality (X) to form a polymer with pendant —X-MLn-1 groups. In the two-step route, a polymer with pendant hydroxyethyl functionality is first condensed with a bipyridyl compound containing carboxylic acid functionality to form a polymer containing bipyridyl ester functionality (X-L′), which is then reacted with MLn to form a polymer with pendant X-L′-MLn-1 functionality.
  • One of the problems with these metal complexed electroluminescent polymers is the incomplete reaction of pendant ligands with the metal complexing reagent. This inefficient coupling results in unpredictability of the properties of the final polymer due to the difficulty in controlling the degree of metal-ligand complexation. Accordingly, it would be advantageous to prepare a luminescent polymer with precisely controlled metal complexation.
  • SUMMARY OF THE INVENTION
  • The present invention addresses a need by providing in one aspect a halogenated aromatic monomer-metal complex compound comprising a halogenated aromatic monomer fragment and a metal complex fragment and represented by the following structure:
  • Figure US20110172426A1-20110714-C00001
  • where L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar″ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar″ is heteroaromatic; and wherein Ra and Rb are each independently a monovalent substitutent or H, with the proviso that at least one of Ra and Rb contains a halogenated aromatic monomer fragment and a linking group that disrupts conjugation between the halogenated aromatic monomer fragment and the metal complex fragment.
  • In a second aspect, the present invention is an electroluminescent polymer having a backbone comprising a) structural units of an aromatic monomer-metal complex having an aromatic fragment and a metal complex fragment, which structural units are represented by the following formula:
  • Figure US20110172426A1-20110714-C00002
  • where L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar″ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar″ is heteroaromatic; and wherein R′a and R′b are substitutents or H, with the proviso that at least one of R′a and R′b contains an aromatic group that is part of the polymer backbone and a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) structural units of at least one aromatic comonomer, which polymer is characterized by being conjugated along a polymer backbone created by structural units of the aromatic monomer-metal complex and structural units of the at least one aromatic comonomer.
  • In a third aspect, the present invention is an electronic device comprising a thin film of a luminescent polymer sandwiched between an anode and a cathode, which luminescent polymer has a backbone with a) structural units of an aromatic monomer-metal complex, which structural units are represented by the following formula:
  • Figure US20110172426A1-20110714-C00003
  • where L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar″ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar″ is heteroaromatic; and wherein R′a and R′b are substitutents or H, with the proviso that at least one of R′a and R′b contains an aromatic group that is part of the polymer backbone and a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) structural units of at least one aromatic comonomer, which polymer is characterized by being conjugated along a polymer backbone created by structural units of the aromatic monomer-metal complex and structural units of the at least one aromatic comonomer.
  • The present invention addresses a need in the art by providing a simple way of preparing a conjugated electroactive polymer with precisely controlled metal complexation. Moreover, the metal complex groups have electronic and/or luminescent properties that are minimally affected by the conjugated polymer backbone.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The first aspect of the present invention is a composition comprising a halogenated aromatic monomer-metal complex having a halogenated aromatic monomer fragment and a metal complex fragment and represented by the following formula:
  • Figure US20110172426A1-20110714-C00004
  • where L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar″ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar″ is heteroaromatic; and wherein Ra and Rb are each independently a monovalent substitutent or H, with the proviso that at least one of Ra and Rb contains a halogenated aromatic monomer fragment and a linking group that disrupts conjugation between the aromatic monomer fragment and the metal complex fragment.
  • The halogenated aromatic monomer-metal complex of the present invention can be thought of as comprising a metal complex fragment and one or more halogenated aromatic monomer fragments as illustrated:
  • Figure US20110172426A1-20110714-C00005
  • Ra is XmAr-G- and Rb is XnAr-G-; each Ar is independently an aromatic group; each G is independently a divalent linking group that disrupts conjugation between Ar and Ar′—Ar″, preferably alkylene, O, S, carbonyl, SiR2, where R is a substituent, or oxyalkylene, more preferably methylene, oxymethylene, or O; each X is independently a halogen group, preferably, each X is chloro or bromo; the sum of m+n is a positive integer, preferably 1 or 2; more preferably 1; and the sum of o+p is a positive integer, preferably 1 or 2, more preferably 1. When o (or p) is 0, Ra (or Rb) can be any substituent including H. Thus, it is most preferred that each Ar′—Ar″ ligand contain one monohalogenated aromatic substituent separated from Ar′—Ar″ by conjugation disrupting group.
  • The ligand Ar′—Ar″ is attached at least one substituent that is a polymerizable aromatic monomer separated from the ligand by a divalent linking group. Examples of suitable substituted Ar′—Ar″ ligands include, but are not restricted to 2-phenylpyridines, 2-benzylpyridines, 2-(2-thienyl)pyridines, 2-(2-furanyl)pyridines, 2,2′-dipyridines, 2-benzo[b]thien-2-yl-pyridines, 2-phenylbenzothiazoles, 2-(1-naphthalenyl)benzothiazoles, 2-(1-anthracenyl)benzothiazoles, 2-phenylbenzoxazoles, 2-(1-naphthalenyl)benzoxazoles, 2-(1-anthracenyebenzoxazoles, 2-(2-naphthalenyl)benzothiazoles, 2-(2-anthracenyl)benzothiazoles, 2-(2-naphthalenyl)benzoxazoles, 2-(2-anthracenyl)benzoxazoles, 2-(2-thienyl)benzothiazoles, 2-(2-furanyl)benzothiazoles, 2-(2-thienyl)benzoxazoles, 2-(2-furanyl)benzoxazoles, benzo[h]quinolines, 2-phenylquinolines, 2-(2-naphthalenyl)quinolines, 2-(2-anthracenyl)quinolines, 2-(1-naphthalenyl)quinolines, 2-(1-anthracenyl)quinolines, 2-phenylmethylpyridines, 2-phenoxypyridines, 2-phenylthiopyridines, phenyl-2-pyridinylmethanones, 2-ethenylpyridines, 2-benzenemethanimines, 2-(pyrrol-2-yl)pyridines, 2-(imidazol-2-yl)-pyridines, 2-phenyl-1H-imidazoles, and 2-phenylindoles.
  • As used herein, “aromatic compounds” includes both aromatic and heteroaromatic compounds unless otherwise stated. Similarly, the term “aryl” is used herein to include both aryl and heteroaryl groups or compounds unless otherwise stated.
  • The divalent linking group G contains a linking group or atom that disrupts conjugation, thereby inhibiting electron delocalization between the aromatic monomer fragment and the metal complex fragment. This disruption of conjugation between the fragments results in a similar disruption between the complex and the conjugated polymer backbone formed from the aromatic monomer fragment. Disruption of conjugation is often desirable to preserve the light emission properties of the metal complex in a polymer formed from the aromatic monomer-metal complex. Such properties could be disadvantageously perturbed if electrons are delocalized between the conjugated polymer backbone and the complex.
  • The linking group is preferably a substituted or unsubstituted non-conjugated linear, branched, or cyclohydrocarbylene group or a divalent heteroatom or combinations. thereof. Examples of linking groups include, alone or in combination, alkylene or cycloalkyl groups such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, t-butylene, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups; and heteroatoms such as oxygen and sulfur atoms and R—Si—R, carbonyl, and amine groups, except for triaryl amines. Preferred linking groups include an oxygen atom and methylene and oxymethylene groups. As used herein, “oxymethylene” refers to —OCH2— or —CH2O—groups.
  • General Procedure for Preparation of a Bis(Monohalogenated Aromatic) Monomer-Metal Complex
  • A halogenated aromatic monomer-metal complex containing a bis(monohalogenated aromatic) fragment attached to a metal complex through a linking group can be prepared by a 4-step process, as shown:
  • Figure US20110172426A1-20110714-C00006
  • G is as previously defined and is preferably O, methylene, or oxymethylene; Ar, Ar′, and Ar″ are each independently aromatic moieties with the proviso that at least one of Ar′ and Ar″ is heteroaromatic. Preferably, Ar is a non-heteroaromatic moiety including a benzene, a naphthalene, or an anthracene moiety, more preferably a benzene moiety. Preferably, Ar′ and Ar″ are each independently selected from the group consisting of benzene, pyridine, thiophene, and fluorene moieties that are complexed with the metal so as to form a 5-membered ring. More preferably one of Ar′ and Ar″ is a benzene moiety and the other of a Ar′ and Ar″ is pyridine moiety.
  • X is halo, X′ and X″ are each independently halogen, boronate, —ZnCl, —ZnBr, —MgCl, MgBr, or—Sn(C1-10-alkyl)3, with the proviso that one of X′ and X″ is halogen and the other of X′ and X″ is boronate, —ZnCl, —ZnBr, —MgCl, MgBr, or—Sn(C1-10-alkyl)3; X′″ is halogen, hydroxy, or alkoxy, preferably chloro, bromo, methoxy, or ethoxy, more preferably chloro or bromo. Where X′″ is halogen, the addition of the hydroxide or alkoxide base is not necessary; where X′″ is hydroxy or alkoxy, the addition of a hydroxide or alkoxide base is preferred.
  • L is a bidentate ligand which can be the same as or different from Ar′—Ar″. Other examples of L include a diamine, including ethylene diamine, N,N,N′,N′-tetramethyl ethylene diamine, propylene diamine, N,N,N′,N′-tetramethyl propylene diamine, cis- and trans-diaminocyclohexane, and cis- and trans-N,N,N′,N′-tetramethyl diaminocyclohexane; an imine, including 2[(1-phenylimino)ethyl]pyridine, 2[(1-(2-methylphenylimino)ethyl]pyridine, 2[(1-(2,6-isopropylphenylimino)ethyl]pyridine, 2[(1-(methylimino)ethyl]pyridine, 2[(1-(ethylimino)methyl]pyridine, 2[(1-(ethylimino)ethyl]pyridine, 2[(1-(isopropylimino)ethyl]pyridine, and 2[(1-(t-butylimino)ethyl]pyridine; a dimine, including 1,2-bis(methylimino)ethane, 1,2-bis(ethylimino)ethane, 1,2-bis(isopropylimino)ethane, 1,2-bis(t-butylimino)ethane, 2,3-bis(methylimino)butane, 2,3-bis(ethylimino)butane, 2,3-bis(isopropylimino)butane, 2,3-bis(t-butylimino)butane, 1,2-bis(phenyl)mino)ethane, 1,2-bis(2-methylphenylimino)ethane, 1,2-bis(2,6-diisopropylphenylimino)ethane, 1,2-bis(2,6-di-t-butylphenylimino)ethane, 2,3-bis(phenyl)mino)butane, 2,3-bis(2-methylphenylimino)butane, 2,3-bis(2,6-diisopropylphenylimino)butane, and 2,3-bis(2,6-di-t-butylphenylimino)butane; a heterocyclic compound containing two nitrogen atoms, including 2,2′-bypyridine, and o-phenanthroline; a diphosphine, including bis-(diphenylphosphino)methane, bis-(diphenylphosphino)ethane, bis-(diphenylphosphino)propane, bis-(dimethylphosphino)methane, bis-(dimethylphosphino)ethane, bis-(dimethylphosphino)propane, bis-(diethylphosphino)methane, bis-(diethylphosphino)ethane, bis-(diethylphosphino)propane, bis-(di-t-butylphosphino)methane, bis-(di-t-butylphosphino)ethane, and bis-(di-t-butylphosphino)propane; a 1,3-diketonate (β-diketonate) prepared from a 1,3-diketone (β-diketone), including acetyl acetone, benzoyl acetone, 1,5-diphenylacetyl acetone, dibenzoyl methane, and bis(1,1,1-trifluoroacetyl)methane; a 3-ketonate prepared from a 3-keto ester, including acetoacetic acid ethyl ester; a carboxylate prepared from an aminocarboxylic acid, including pyridine-2-carboxylate, 8-hydroquinolinate, quinoline-2-carboxylate, glycine, dimethyl glycine, alanine, and dimethylaminoalanine; a salicyliminates prepared from a salicylimine, including methyl salicylimine, ethyl salicylimine, and phenyl salicylimine; a dialcoholate prepared from a dialcohol, including ethylene glycol and 1,3-propylene glycol; a dithiolate prepared from a dithiol, including 1,2-ethylene dithiolate and 1,3-propylene dithiolate. Preferably, L is a β-diketonate, pyridine-2-carboxylate, a salicyliminate, or a derivative of 8-hydroquinoline or quinoline-2-carboxylic acid.
  • Conjugated Luminescent Polymers Containing Metal Complexes
  • The halogenated aromatic monomer-metal complex is a precursor for a metal-complexed conjugated luminescent polymer, which can be a homopolymer, a copolymer, a terpolymer, etc., and which can be prepared by any of a number of means. For example, the polymer can be prepared by a Suzuki coupling reaction, described in U.S. Pat. No. 6,169,163 (the '163 patent), column 41, lines 50-67 to column 42, lines 1-24, which description is incorporated herein by reference.
  • In the present case, the Suzuki coupling reaction can be carried out by reacting, in the presence of a catalyst, preferably a Pd/triphenylphosphine catalyst such as tetrakis(triphenylphosphine)palladium(0), the halogenated aromatic monomer-metal complex, preferably the bis(monohalogenated aromatic) complex, with a diboronated aromatic compound. The aromatic group of the co-monomer—which form structural units of the resultant polymer—may be the same as or different from, preferably different from, the aromatic group associated with the halogenated aromatic monomer-metal complex.
  • It is also possible, and sometimes preferable, to prepare a polymer having structural units of more than two monomers by including in the reaction mixture a variety of halogenated and boronated co-monomers along with the halogenated aromatic monomer-metal complex.
  • Polymerization can also be carried out by coupling one or more dihalogenated aromatic monomer-metal complexes with one or more dihalogenated aromatic compounds in the presence of a nickel salt, as described in the '163 patent, column 11, lines 9-34, which description is incorporated herein by reference.
  • The aromatic co-monomers that can be used to couple with the halogenated aromatic monomer-metal complex is nearly endless but a representative list includes, 1,4-diXbenzenes, 1,3-diXbenzenes, 1,2-diXbenzenes 4,4′-diXbiphenyls, 1,4-diXnaphthalenes, 2,6-diXnaphthalenes, 2,5-diXfurans, 2,5-diXthiophenes, 5,5-diX-2,2′-bithiophenes, 9,10-diXanthracenes, 4,7-diX-2,1,3-benzothiadiazoles, diX triarylamines including N,N-di(4-Xphenyl) anilines, N,N-di(4-Xphenyl)-p-tolylamines, and N-diXphenyl-N-phenylanilines, 3,6-diX-N-substituted carbazoles, 2,7-diX-N-substituted carbazoles, 3,6-diX-dibenzosiloles, 2,7-diX-dibenzosiloles, N-substituted-3,7-diXphenothiazines, N-substituted-3,7-diXphenoxazines, diX-N,N,N′,N′-tetraaryl-1,4-diaminobenzenes, diX-N,N,N′,N′-tetraarylbenzidines, diXarylsilanes, and 2,7-diX-9,9-disubstituted fluorenes, including fluorenes in which the 9,9-substituents combine to form a ring structure, and combinations thereof, where each X is independently a halogen or a boronate, preferably bromo or chloro or boronate, more preferably bromo or boronate. As used herein, “boronate” refers to an aromatic fragment or compound that is substituted with a borane group, a boronic acid ester group, or a boronic acid group.
  • The resultant polymer has a backbone having structural units of a) an aromatic group which is also attached to a linking group that disrupts conjugation between the aromatic group and the metal complex fragment; and b) an aromatic comonomer, which forms a conjugated system with the aromatic group. The term “structural units” is used herein to refer to the remnant of the monomer after polymerization. A structural unit of the aromatic group that is attached to the metal complex through a linking group is represented by the following structure:
  • Figure US20110172426A1-20110714-C00007
  • where L, M, Ar′, and Ar″ are as previously defined, and at least one of R′a and R′b, preferably only one of R′a and R′b, contains an aromatic group that is part of the polymer backbone, preferably a phenyl group, a naphthalenyl group, or an anthracenyl group, more preferably a phenyl group; and a linking group, G, that disrupts conjugation between the aromatic group and the metal complex fragment. The other of R′a and R′b is preferably a monovalent substituent, including H. Thus, where Ar is phenyl and Rb is H, the following structural unit is formed:
  • Figure US20110172426A1-20110714-C00008
  • Similarly, a structural unit of a benzene-containing comonomer that is incorporated into the polymer backbone through the 1,4-positions is a 1,4-phenylene group; a structural unit of a 9,9-disubstituted fluorene-containing comonomer that is incorporated into the polymer backbone through the 2,7-positions is a 9,9-disubstituted fluorene-2,7-diyl group, where each R is a substituent, as illustrated:
  • Figure US20110172426A1-20110714-C00009
  • Accordingly, the structural units corresponding to the above listed co-monomers are 1,4-phenylenes, 1,3-phenylenes, 1,2-phenylenes, 4,4′-biphenylenes, naphthalene-1,4-diyls, naphthalene-2,6-diyl, furan-2,5-diyls, thiophene-2,5-diyls, 2,2′-bithiophene-5,5-diyls, anthracenes-9,10-diyls, 2,1,3-benzothiadiazoles-4,7-diyls, N-substituted carbazole-3,6-diyls, N-substituted carbazole-2,7-diyls, N-substituted-phenothiazine-3,7-diyls, N-substituted-phenoxazines-3,7-diyls, triarylamine-diyls including triphenylamine-4,4′-diyls, diphenyl-p-tolylamine-4,4′-diyls, and N,N-diphenylaniline-3,5-diyls, dibenzosilole-3,6-diyls, dibenzosilole-2,7-diyls, N,N,N′,N′r-tetraaryl-1,4-diaminobenzene-diyls, N,N,N′,N′-tetraarylbenzidine-diyls, arylsilane-diyls, and 9,9-disubstituted fluorenes-2,7-diyls. It is to be understood that the polymer, copolymer, etc. is not limited by the manner in which it is made.
  • The resultant polymer has a conjugated backbone with metal complexation that can be precisely controlled because preferably at least 90%, more preferably at least 95%, and most preferably 100% of the structural units of the aromatic monomer-metal complex contain a metal complex that is incorporated within the polymer backbone. Moreover, the metal complex is insulated from the conjugated polymer backbone due to the absence of direct delocalization between the ligand and the polymer backbone, which insulation preserves the luminescent properties of the metal complex. The terms “conjugated polymer” and “conjugated polymer backbone” are used to mean that the polymer backbone has electrons that are delocalized throughout at least two adjacent structural units, preferably at least five adjacent structural units, more preferably at least ten adjacent structural units.
  • Preferably, the ratio of structural units of halogenated aromatic monomer-metal complex to structural units of the comonomer is preferably at least 0.01:99.99, more preferably at least 0.1:99.9, and most preferably at least 1:99; and preferably not greater than 20:80, more preferably not greater than 10:90.
  • The polymer of the present invention preferably has a weight average molecular weight Mw of at least 5000 Daltons, more preferably at least 10,000 Daltons, more preferably at least 50,000 Daltons, and most preferably at least 100,000 Daltons; and preferably less than 2,000,000 Daltons. Mw is determined using gel permeation chromatography against polystyrene standards.
  • The polymer of the present invention can be combined with one or more other polymers to make a blend. Examples of suitable blending polymers include homo- or co-polymers (including terpolymers or higher) of polyacrylates, polymethacrylates, polystyrenes, polyesters, polyimides, polyvinylenes, polycarbonates, polyvinyl ethers and esters, fluoropolymers, polycarbazoles, polyarylene vinylenes, polyarylenes, polythiophenes, polyfurans, polypyrroles, polypyridines, polyfluorenes, and combinations thereof.
  • The polymer or blend of the present invention can be combined with a sufficient amount of one or more solvents (hereinafter “solvent”) to make a solution which is useful, for example, as an ink. The amount of solvent varies depending upon the solvent itself and the application, but is generally used at a concentration of at least 80 weight percent, more preferably at least 90 weight percent, and most preferably at least 95 weight percent, based on the weight of the luminescent polymer, the optional additives or modifiers, and the solvent.
  • Examples of suitable solvents for the polymer include benzene; mono-, di- and trialkylbenzenes including C1-12-alkyl benzenes, xylenes, mesitylene, cyclohexylbenzene, and diethylbenzene; furans including tetrahydrofuran and 2,3-benzofuran; 1,2,3,4-tetrahydronaphthalene; cumene; decalin; durene; chloroform; limonene; dioxane; alkoxybenzenes including anisole, and methyl anisoles; alkyl benzoates including methyl benzoate; biphenyls including isopropyl biphenyl; pyrrolidinones including cyclohexylpyrrolidinone; imidazoles including dimethylimidazolinone; and fluorinated solvents; and combinations thereof. More preferred solvents include C1-8-alkyl benzenes, cyclohexylbenzene, xylenes, mesitylene, 1,2,3,4-tetrahydronaphthalene, methyl benzoate, isopropyl biphenyl, and anisole, and combinations thereof.
  • In a typical application, the ink formulation can be deposited on a substrate such as indium-tin-oxide (ITO) glass having a hole transporting material disposed thereon. The solvent is then evaporated, whereupon the ink forms a thin film of the luminescent polymer. The film is used as an active layer in an organic light-emitting diode (OLED) device, which can be used to make a display such as a self-emissive flat panel display. The film is also useful in other electronic devices including light sources, photovoltaic cells, and field effect transistor devices.
  • The following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
  • Example 1 Preparation of Iridium (III) bis{2-[4′-(4″-bromophenoxy)phenyl]pyridinato-N,C2′}(acetylacetonate A. Preparation of 2-(4′-Phenoxy)phenylpyridine
  • 4-Phenoxyphenylboronic acid (10.7 g, 0.05 mol) and 2-bromopyridine (11.58 g, 0.075 mol) were dissolved in 250 mL of THF followed by addition of 2M NaCO3 (60 mL) and tetrakis(triphenylphosphine)palladium (0) (0.29 g). The reaction mixture was boiled at reflux overnight and then transferred into a separation funnel to remove the aqueous layer. The organic layer was removed in vacuo and the residue was eluted through a silica gel column, first with 1:1 chloroform and hexane mixture and then with pure chloroform to afford a pale yellow oil. HPLC showed a purity of 99.5%. GCMS: M+=247.
  • B. Preparation of 2-[4′-(4″-Bromophenoxy)phenyl]pyridine
  • A solution of N-bromosuccinimide (NBS, 3.95 g, 22.2 mmol) in DMF (10 mL) was added to a solution of 2-(4′-Phenoxy)phenylpyridine (5.8 g, 23.4 mmol) in DMF (100 mL) at room temperature. The reaction mixture was stirred at 80° C. for 1 h. HPLC showed about 40% of the starting material was converted. Additional NBS (1.55 g) was added and the reaction continued at 80° C. overnight. HPLC indicated a conversion of 55%. Additional NBS (5 g) was added and the reaction was continued at 80° C. for 1 h. HPLC showed complete conversion of the starting material. After being cooled to room temperature, the reaction mixture was poured into water (300 mL) with stirring whereupon NaOH solution (15 mL of 50% (w/w)) was added into the mixture. The mixture was stirred at room temperature for 2 h and was then filtered to collect the solid. The solid was washed with water and was re-crystallized from ethanol to provide 5.5 g of the titled compound in white crystals. HPLC showed a purity of 98.6%. GCMS: M+=327.
  • C. Preparation of Iridium (III) bis{2-[4′-(4″-bromophenoxy)phenyl]pyridinato-N,C2′} μ-chloro-bridged dimer
  • Iridium (III) chloride (% Ir=54.11, 1.5 g, 4.25 mmol) and 2-[4′-(4″-bromophenoxy)phenyl]pyridine (3.5 g) were dispersed in 2-ethoxyetanol (30 mL) at room temperature. The mixture was boiled at reflux under nitrogen for 20 h, at which time, a yellow solid precipitated from solution. Methanol (100 mL) was added to the reaction mixture to complete the precipitation. The solid was collected by filtration and was washed with methanol, 1N HCl, and ethanol successively and then was dried in vacuo at 40° C. to provide 3.27 g of yellow powder.
  • D. Preparation of Iridium (III) bis{2-[4′-(4″-bromophenoxy)phenyl]pyridinato-N,C2′}(acetylacetonate)
  • Iridium (III) bis{2-[4′-(4″-bromophenoxy)phenyl]pyridinato-N,C2′} μ-chloro-bridged dimer (1.05 g, 0.6 mmol) and sodium carbonate (1.0 g) were dispersed in 2-ethoxyethanol (60 mL). The mixture was degassed with nitrogen at room temperature for 15 min, whereupon 2,4-pentanedione (0.132 g, 1.32 mmol) was added together with 2-ethoxyethanol (20 mL). The mixture was refluxed for 1 h. TLC showed no dimer starting material and the main product was found to be a green emissive material. After being cooled to room temperature, water (100 mL) was added to precipitate the product. The yellow solid was collected by filtration and dried in vacuo at 40° C. overnight. The crude product was re-dissolved in methylene chloride and purified on a silica gel column eluted by methylene chloride to give 0.48 g of yellow powder, purtiy of 99.5% by HPLC:
  • Example 2 Preparation of a Co-polymer Containing Iridium (III) bis[2-(4′-phenoxyphenyl)pyridinato-N,C2′](acetylacetonate)
  • Tetrakis(triphenylphosphine)palladium(0) (5 mg) and 2M aqueous sodium carbonate solution (11 mL) were added under nitrogen to a stirred mixture of 9,9-di(1-octyl)fluorene-2,7-diboronic acid ethylene glycol ester (2.149 g, 4.04 mmol), 2,7-dibromo-9,9-di(1-octyl)fluorene (1.647 g, 3.00 mmol), 3,7-dibromo-N-(4-n-butyl)-phenyl-phenoxazine (0.190 g, 0.40 mmol), N,N′-(di(bromophenyl)-N,N′-di(9,9-dibutyl)fluorene-1,4-phenylenediamine (0.390 g, 0.40 mmol), iridium (III) bis{2-[4′-(4″-bromophenoxy)phenyl]pyridinato-N,C2′}(acetylacetonate) (0.188 g, 0.20 mmol), and Aliquat 336 (0.75 g) phase transfer catalyst in toluene (50 mL). The reaction mixture was stirred at 101° C. under nitrogen for 16 h. Then, 9,9-di(1-octyl)fluorene-2,7-diboronic acid ethylene glycol ester (20 mg) was added and the polymerization was continued under the same conditions for another 3 h. Bromobenzene (0.15 g dissolved in 10 mL of toluene) was then added under the same reaction conditions for 2 h. Phenylboronic acid (0.4 g) and tetrakis(triphenylphosphine)palladium(0) (3 mg dissolved in 10 mL of toluene) was added under the same reaction conditions for 4 h. The mixture was allowed to cool to about 50° C., the aqueous layer removed, and the organic layer washed with water. The resultant polymer solution was then poured into methanol (1.5 L) with stirring to precipitate pale yellow polymer fibers. These fibers were collected by filtration, washed with methanol, and dried in vacuo at 50° C. overnight. The polymer was re-dissolved in toluene and the solution passed through a column packed with layers of celite and silica gel. The combined eluates were concentrated to about 100 mL, then poured into methanol (1.5 L) with stirring. The polymer fibers were collected and dried in vacuo at 50° C. overnight. The polymer was re-dissolved in toluene and re-precipitated in methanol. After further filtration and drying, 2.26 g of pale yellow fibers were obtained. The weight average molecular weight (Mw) of the polymer was measured by gel permeation chromatography (GPC) against the polystyrene standards as 121,000 with a polydispersity index (Mw/Mn) of 3.78.
  • Example 3 Iridium (III) bis[2-(4′-phenoxyphenyl)pyridinato-N,C2′](acetylacetonate) Containing a Fluorene copolymer II
  • The procedure described in Example 2 was followed except that N,N-aiphenyl-3,5-dibromoaniline (0.3248 g, 0.80 mmol) was used instead of dibromo-N-(4-n-butyl)-phenyl-phenoxazine and N,N′-(di(bromophenyl)-N,N′-di(9,9-dibutyl)fluorene-1,4-phenylenediamine (0.390 g, 0.40 mmol); the copolymer II was prepared in the yield of 2.13 g.
  • Example 4 Light-Emitting Devices of a Metal Complex-Containing Polymer
  • A thin film of poly(ethylenedioxythiophene)/polystyrenesulfonic acid (commercially available from H. C. Starck and BAYTRON™ P conducting polyer) was spin-coated on a ITO (indium tin oxide)-coated glass substrate, at a thickness of 80 nm. Then, a film of the metal complex-containing polymer described in Example 3 was spin-coated on the PEDOT film at a thickness of 80 nm from a solution in xylenes. After drying, a thin layer (3 nm) of LiF was deposited on the top of the polymer layer by thermal evaporation, followed by the deposition of a calcium cathode (10-nm thick). An additional aluminum layer was applied by evaporation to cover the calcium cathode. By applying a bias (ITO wired positively) on the resultant device, bluish green light emission was obtained. The electroluminescent spectrum recorded at 200 cd/m2 corresponds to the chromaticity coordinates of (x=0.240, y=0.270) in the CIE 1931 diagram. The brightness of the emission reached 200 cd/m2 at about 13 V with the luminance efficiency of 0.08 cd/A.

Claims (4)

1. A halogenated aromatic monomer-metal complex compound comprising a halogenated aromatic monomer fragment and a metal complex fragment and represented by the following formula (I):
Figure US20110172426A1-20110714-C00010
where L is a bidentate ligand; M is Ir, Rh, or Os; Ar′ and Ar″ are aromatic moieties which may be the same or different with the proviso that at least one of Ar′ and Ar″ is heteroaromatic; and wherein Ra and Rb are each independently a monovalent substitutent or H, with the proviso that at least one of Ra and Rb contains a halogenated aromatic monomer fragment and a linking group that disrupts conjugation between the halogenated aromatic monomer fragment and the metal complex fragment;
wherein the halogenated aromatic monomer-metal complex compound is not a compound of formula (I) in which Ar′ represents a benzene moiety, Ar″ represents a pyridine moiety, and Ra represents a phenoxy group which may be substituted by halogen.
2. The compound of claim 1 wherein Ar′ and Ar″ are each independently selected from the group consisting of benzene, pyridine, thiophene, and fluorene moieties; L is selected from the group consisting of diamines, imines, diimines, heterocyclics containing two nitrogen atoms, diphosphines, β-diketonates, 3-ketonates, salicyliminates, dialcoholates, and dithiolates; and Ra is -G-Ar—X, where G is selected from the group consisting of O, methylene, or oxymethylene, Ar is a benzene, napthalene, or anthracene moiety, and X is a halogen, provided that the compound is not a compound in which Ar′ represents a benzene moiety, Ar″ represents a pyridine moiety, G is O, Ar is benzene, and X is a halogen.
3. The compound of claim 2 wherein Ar′ is a benzene moiety and Ar″ is a pyridine moiety; L is selected from the group consisting of β-diketonates, pyridine-2-carboxylates, salicyliminates, derivatives of 8-hydroquinoline, derivatives of quinoline-2-carboxylic acid; and Ar is a benzene moiety; and X is Br.
4. The compound of claim 3 wherein L is a β-diketonate.
US13/053,776 2003-08-04 2011-03-22 Aromatic monomer- and conjugated polymer-metal complexes Abandoned US20110172426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/053,776 US20110172426A1 (en) 2003-08-04 2011-03-22 Aromatic monomer- and conjugated polymer-metal complexes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US49243403P 2003-08-04 2003-08-04
US10/893,182 US7705528B2 (en) 2003-08-04 2004-07-16 Aromatic monomer-and conjugated polymer-metal complexes
US12/718,238 US8071769B2 (en) 2003-08-04 2010-03-05 Aromatic monomer- and conjugated polymer-metal complexes
US13/053,776 US20110172426A1 (en) 2003-08-04 2011-03-22 Aromatic monomer- and conjugated polymer-metal complexes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/718,238 Division US8071769B2 (en) 2003-08-04 2010-03-05 Aromatic monomer- and conjugated polymer-metal complexes

Publications (1)

Publication Number Publication Date
US20110172426A1 true US20110172426A1 (en) 2011-07-14

Family

ID=34193124

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/893,182 Expired - Fee Related US7705528B2 (en) 2003-08-04 2004-07-16 Aromatic monomer-and conjugated polymer-metal complexes
US12/718,238 Expired - Fee Related US8071769B2 (en) 2003-08-04 2010-03-05 Aromatic monomer- and conjugated polymer-metal complexes
US13/053,776 Abandoned US20110172426A1 (en) 2003-08-04 2011-03-22 Aromatic monomer- and conjugated polymer-metal complexes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/893,182 Expired - Fee Related US7705528B2 (en) 2003-08-04 2004-07-16 Aromatic monomer-and conjugated polymer-metal complexes
US12/718,238 Expired - Fee Related US8071769B2 (en) 2003-08-04 2010-03-05 Aromatic monomer- and conjugated polymer-metal complexes

Country Status (9)

Country Link
US (3) US7705528B2 (en)
JP (1) JP4648316B2 (en)
KR (1) KR101180135B1 (en)
CN (1) CN100582114C (en)
DE (1) DE112004001446T5 (en)
GB (1) GB2421242B (en)
MY (1) MY136817A (en)
TW (1) TW200513511A (en)
WO (1) WO2005016945A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462410B (en) * 2008-07-21 2011-04-27 Cambridge Display Tech Ltd Compositions and methods for manufacturing light-emissive devices
DE102009003767B3 (en) * 2009-04-08 2010-12-30 Karlsruher Institut für Technologie Dye based on complex compounds
JP6073216B2 (en) * 2010-04-12 2017-02-01 メルク パテント ゲーエムベーハー Compositions and methods for making organic electronic devices
EP3259331A1 (en) * 2015-02-18 2017-12-27 Cambridge Display Technology Limited Organic light emitting polymer comprising light-emitting repeat unit in backbone of polymer and device therewith
CN116465703B (en) * 2023-04-25 2024-01-26 大庆信辰油田技术服务有限公司 Complex tracer and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708130A (en) * 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US6169163B1 (en) * 1995-07-28 2001-01-02 The Dow Chemical Company Fluorene-containing polymers and compounds useful in the preparation thereof
US6310231B1 (en) * 1999-04-07 2001-10-30 Fuji Photo Film Co., Ltd. Particular silane compounds, luminescent device materials comprising said compounds, and luminescent devices containing said materials
US20020034656A1 (en) * 1998-09-14 2002-03-21 Thompson Mark E. Organometallic complexes as phosphorescent emitters in organic LEDs
US20020193532A1 (en) * 2001-03-27 2002-12-19 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US20030091862A1 (en) * 2001-08-31 2003-05-15 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US20030168970A1 (en) * 2000-11-24 2003-09-11 Tsuyoshi Tominaga Luminescent element material and luminescent element comprising the same
US20030186080A1 (en) * 2001-09-04 2003-10-02 Jun Kamatani High-molecular compounds and organic luminescent devices
US20040135131A1 (en) * 2001-03-24 2004-07-15 Kevin Treacher Conjugated polymers containing spirobifluorene units and fluorene units, and the use thereof
US20040247934A1 (en) * 2001-06-20 2004-12-09 Masataka Takeuchi Light emitting material and organic light-emitting device
US20050038223A1 (en) * 2001-09-04 2005-02-17 Heinrich Becker Conjugated polymers containing spirobifluorene units and the use thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112381A (en) * 1999-02-18 2000-09-05 Milliken & Company Face finishing of fabrics containing immobilized fibers
EP1252803B2 (en) 1999-12-01 2015-09-02 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
DE60103442T3 (en) 2000-03-31 2014-05-15 Sumitomo Chemical Co. Ltd. Polymeric fluorescent material, process for its preparation, and luminescent polymer device in which it is used
JP5034140B2 (en) * 2000-03-31 2012-09-26 住友化学株式会社 Polymer phosphor, method for producing the same, and polymer light-emitting device using the same
KR100889516B1 (en) 2000-06-12 2009-03-19 맥스뎀인코포레이티드 Polymer matrix electroluminescent materials and devices
IL154960A0 (en) * 2000-10-10 2003-10-31 Du Pont Polymers having attached luminescent metal complexes and devices made with sych polymers
JP3899907B2 (en) 2000-11-24 2007-03-28 東レ株式会社 Light emitting element
DE10109027A1 (en) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium and iridium complexes
JP4048810B2 (en) * 2001-03-27 2008-02-20 住友化学株式会社 Polymer light emitter and polymer light emitting device using the same
DE10116962A1 (en) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium and iridium complexes
WO2003092334A1 (en) * 2002-04-26 2003-11-06 Nippon Hoso Kyokai Phosphorescent polymer compound, light emitting material and organic electroluminescent (el) device using the compound

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708130A (en) * 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US6169163B1 (en) * 1995-07-28 2001-01-02 The Dow Chemical Company Fluorene-containing polymers and compounds useful in the preparation thereof
US20020034656A1 (en) * 1998-09-14 2002-03-21 Thompson Mark E. Organometallic complexes as phosphorescent emitters in organic LEDs
US6310231B1 (en) * 1999-04-07 2001-10-30 Fuji Photo Film Co., Ltd. Particular silane compounds, luminescent device materials comprising said compounds, and luminescent devices containing said materials
US20030168970A1 (en) * 2000-11-24 2003-09-11 Tsuyoshi Tominaga Luminescent element material and luminescent element comprising the same
US20040135131A1 (en) * 2001-03-24 2004-07-15 Kevin Treacher Conjugated polymers containing spirobifluorene units and fluorene units, and the use thereof
US20020193532A1 (en) * 2001-03-27 2002-12-19 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US20040247934A1 (en) * 2001-06-20 2004-12-09 Masataka Takeuchi Light emitting material and organic light-emitting device
US7396598B2 (en) * 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
US20030091862A1 (en) * 2001-08-31 2003-05-15 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US20030186080A1 (en) * 2001-09-04 2003-10-02 Jun Kamatani High-molecular compounds and organic luminescent devices
US20050038223A1 (en) * 2001-09-04 2005-02-17 Heinrich Becker Conjugated polymers containing spirobifluorene units and the use thereof

Also Published As

Publication number Publication date
JP4648316B2 (en) 2011-03-09
DE112004001446T5 (en) 2006-11-02
GB0602029D0 (en) 2006-03-15
KR20060069439A (en) 2006-06-21
KR101180135B1 (en) 2012-09-05
GB2421242A (en) 2006-06-21
WO2005016945A1 (en) 2005-02-24
US20100160631A1 (en) 2010-06-24
US8071769B2 (en) 2011-12-06
US20050031900A1 (en) 2005-02-10
MY136817A (en) 2008-11-28
TW200513511A (en) 2005-04-16
CN1829725A (en) 2006-09-06
GB2421242B (en) 2008-01-02
JP2007501230A (en) 2007-01-25
US7705528B2 (en) 2010-04-27
CN100582114C (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US7220819B2 (en) Electroluminescent conjugated polymers containing phosphorescent moieties and the application thereof in LED
KR101292376B1 (en) Organometallic compounds and devices made with such compounds
JP5836894B2 (en) Method for producing solution-processable phosphor
JP5410657B2 (en) Polymer compound and organic electroluminescence device using the same
US7830081B2 (en) Optoelectronic devices with multilayered structures
US8071769B2 (en) Aromatic monomer- and conjugated polymer-metal complexes
US8008418B2 (en) High-molecular copolymer containing metal coordination compound and organic electroluminescence element using the same
KR20090003241A (en) Optoelectronic devices with multilayered structures
Liang et al. Recent progresses of iridium complex-containing macromolecules for solution-processed organic light-emitting diodes
KR101193480B1 (en) Electroluminescent materials and devices
US20050014023A1 (en) Aromatic monomer- and conjugated polymer-metal complexes
TW201326141A (en) Compound, device and method of making same
KR20100015591A (en) Polycarbazolyl(meth)acrylate light emissive compositions
JP2005029782A (en) High-molecular copolymer containing metal coordination compound and organic electroluminescent element using the same
US20210226129A1 (en) Charge transport material, ink composition using said material, organic electronic element, organic electroluminescent element, display element, lighting device and display device
US11476421B2 (en) Organic electronics material and organic electronics element
JP2020145234A (en) Organic electronics material and use thereof
KR101411885B1 (en) Optoelectronic devices with multilayered structures
JP2020145236A (en) Organic electronics material and use thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION