US20110155688A1 - Non-removable finish and closure system - Google Patents

Non-removable finish and closure system Download PDF

Info

Publication number
US20110155688A1
US20110155688A1 US13/040,609 US201113040609A US2011155688A1 US 20110155688 A1 US20110155688 A1 US 20110155688A1 US 201113040609 A US201113040609 A US 201113040609A US 2011155688 A1 US2011155688 A1 US 2011155688A1
Authority
US
United States
Prior art keywords
finish
closure
lugs
thread
thread segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/040,609
Inventor
Richard R. Johnston
Joseph P. Labadie
Lance J. Novotny
Chris Danks
John Wisniewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graham Packaging Co LP
Original Assignee
Graham Packaging Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graham Packaging Co LP filed Critical Graham Packaging Co LP
Priority to US13/040,609 priority Critical patent/US20110155688A1/en
Publication of US20110155688A1 publication Critical patent/US20110155688A1/en
Assigned to REYNOLDS GROUP HOLDINGS INC. reassignment REYNOLDS GROUP HOLDINGS INC. SECURITY AGREEMENT Assignors: GRAHAM PACKAGING COMPANY, L.P.
Assigned to GRAHAM PACKAGING COMPANY, L.P. reassignment GRAHAM PACKAGING COMPANY, L.P. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: REYNOLDS GROUP HOLDINGS INC.
Assigned to THE BANK OF NEW YORK MELLON reassignment THE BANK OF NEW YORK MELLON PATENT SECURITY AGREEMENT Assignors: GRAHAM PACKAGING COMPANY, L.P.
Assigned to GRAHAM PACKAGING COMPANY, L.P. reassignment GRAHAM PACKAGING COMPANY, L.P. RELEASE OF SECURITY INTEREST IN CERTAIN PATENT COLLATERAL Assignors: THE BANK OF NEW YORK MELLON, AS THE COLLATERAL AGENT AND TRUSTEE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D55/00Accessories for container closures not otherwise provided for
    • B65D55/02Locking devices; Means for discouraging or indicating unauthorised opening or removal of closure
    • B65D55/022Locking devices; Means for discouraging or indicating unauthorised opening or removal of closure with ratchet effect between relatively rotating parts

Definitions

  • the invention relates to threaded closure and finish systems and more particularly to a closure and finish system in which the closure, once applied, substantially resists rotational movement and is rendered substantially non-removable by the customer.
  • a non-removable closure system is generally understood to be one in which, following attachment of the closure to the container body, the closure cannot be detached from the container without deliberately applying such large forces that would at least partially damage the container and/or the closure. Such damage would thus prevent continued use of the container body and/or closure.
  • the relatively thick finish wall provides the necessary structural strength for secure application of a closure having a complementary internal threaded portion, while the expanded container body is sufficiently strong to withstand product filling, handling and expected use, but is often substantially weaker than the finish area.
  • the preform(s)/container(s) for such applications are typically made from thermoplastic polymers such as polyesters (e.g., polyethylene terephthalate PET) and polyolefins (e.g., polypropylene or polyethylene).
  • the closure is also typically a molded plastic article, formed separately from the container, and may be made of polyolefin or polyester.
  • thermoplastic containers and closures are single use applications, wherein the container and closure are essentially discarded after the product is used. In such applications, it is desirable to minimize the amount of material required, and minimize the complexity of the injection and blow molding equipment, in order to produce the container and closure at a competitive price.
  • material usage and equipment/process complexity are also constraints on the design of a non-removable closure/container system where it is desired that customer be unable to remove the closure and refill (reuse) the container.
  • these constraints make it more difficult to design a closure/container system with sufficient structural integrity to withstand (resist) customer attempts to remove the closure.
  • a non-removable closure and finish system comprising:
  • each closure lug has a ramp edge to facilitate application of the closure to the finish, and an opposed abutment edge for locking the closure to the finish.
  • the finish lug may have a ramp edge to facilitate application of the closure to the finish and an opposed abutment edge for locking the closure to the finish.
  • a projecting stop may be provided at a lowermost end of the finish thread segment to prevent over-torquing of the closure onto the finish.
  • the inner skirt is of a lesser height than the outer skirt, wherein the height is defined with respect to the central container axis. Providing the closure lugs on the inner skirt, and more preferably on an inner skirt of lesser height, makes it more difficult to access the lugs if attempts are made to disengage by the lugs. Also, some or all of the lugs may be greater in height than the thread segments in order to increase the resistance of the lug locking mechanism to disengagment.
  • the finish is relatively more rigid than the closure.
  • the finish thread segments and lugs may be relatively more rigid than the closure thread segments and lugs.
  • the closure and/or the finish are each an injection molded article.
  • the finish and closure may be molded from plastic materials such as polyolefins, e.g. polypropylene or polyethylene, or polyesters, e.g. PET.
  • the finish and/or closure may be extrusion or compression molded.
  • the finish may also be blow molded or otherwise expanded after initial molding.
  • the finish thread segments may have overlapping ends, as well as the closure thread segments; this provides greater rigidity and resistance to removal of the closure.
  • the finish and closure each have three or more lugs e.g., four, six or more, depending on the finish size.
  • the lugs may be integral with the lower thread surface, or spaced therefrom.
  • the lugs may be spaced apart from one another, or integral.
  • the finish and closure lugs preferably prevent any rotational movement to loosen the closure on the finish.
  • the abutting surfaces of the finish and closure lugs may apply a positive sealing force between an inner surface of the closure and a top sealing surface of the finish.
  • the container finish and closure form a standing end, e.g. of a top down or inverted container.
  • the container may have at least one gripping surface or labeling surface and the finish lugs may be positioned to orient a hinge or spout on the closure with respect to the at least one gripping surface or labeling surface.
  • a non-removable closure and finish system comprising:
  • the engaging portions on the finish are disposed below the finish thread segment, and the engaging portions on the closure are spaced from the one end of the closure thread segment.
  • the engaging portions on the finish may extend from a lower surface of the finish thread segment.
  • the engaging portions on the finish may be spaced from a lower surface of the thread segment.
  • the engaging portions on the closure may extend below the closure thread segments or be spaced apart from the closure thread segments.
  • a stop may be provided at one end of the finish thread segment to prevent over-torquing.
  • Another stop may be provided on the inner wall of the inner skirt to engage the leading edge of the finish thread segment, for the same purpose.
  • the closure once applied) may thus be rendered substantially non-rotational in both directions.
  • the finish engaging portions may have a diameter greater than the finish thread segment diameter, and the closure engaging portions may have a diameter less than the closure thread segment diameter
  • FIG. 1 is a perspective view of a food container and non-removable closure according to one embodiment of the invention
  • FIG. 2A is a side plan view of the finish of the container of FIG. 1 ;
  • FIG. 2B is a sectional view taken along lines 2 B- 2 B of FIG. 2A ;
  • FIG. 2C is a top plan view of the finish of FIG. 2A ;
  • FIG. 3 is a bottom perspective view of the closure of FIG. 1A , including a partial view of the hinged cover (flip top) in the open position;
  • FIG. 4A is a cross sectional view of the closure of FIG. 3 ;
  • FIG. 4B is a partial sectional view taken along lines 4 B- 4 B in FIG. 4A , showing the inner skirt and central dispensing aperture;
  • FIG. 4C is a partial enlarged sectional view taken along lines 4 C- 4 C in FIG. 4A , showing a stop and four ratchet teeth at one end of a closure thread segment on the inner surface of the inner skirt;
  • FIG. 4D is a partial enlarged sectional view similar to FIG. 4C , but showing in phantom lines portions of the neck finish (of FIG. 2A ) after the closure is threaded onto the finish.
  • FIGS. 1-4 One or more embodiments of the present invention will now be described with respect to the container and closure illustrated in FIGS. 1-4 .
  • This embodiment is given by way of example only, and is not meant to be limiting.
  • FIG. 1 shows a container 10 having a closure 20 .
  • the container is shown “upside down” because it is designed to function as an inverted dispensing container (a.k.a. top down package) for ketchup or other viscous food products (e.g., mayonnaise, mustard), there being advantages in providing a dispensing container in which the closure forms a standing surface of the container. As is well known in the art, this facilitates dispensing of the product by the consumer.
  • This particular container is intended for use in commercial establishments, e.g. restaurants, and is provided with a substantially non-removable closure.
  • This enables the product manufacturer to deliver a filled container to the retail establishment (restaurant) and prevents (restaurant employee(s) from refilling the container.
  • the force required to remove the closure is sufficiently high that the closure cannot be manually removed (by hand).
  • a mechanical element e.g., a long thin instrument such as a knife
  • the difficulty in accessing the locking mechanism between the closure and finish and the respective strengths of the container and closure are such that the bottle and/or closure will be substantially deformed so as to be rendered unusable (if the employee is successful in removing the closure). Most likely the container will be crushed or buckle and thus rendered unacceptable for further use in a commercial establishment.
  • the container 10 has a finish portion 11 (shown generally in phantom lines in FIG. 1 as it is covered by the closure 20 ) and an integral body portion 16 .
  • the body portion includes a sidewall having an upper shoulder 12 , a central label panel area 13 , and a lower shoulder 14 , and below the sidewall is a closed end 15 (normally referred to as the base).
  • the closure 20 includes a flip top cover 22 joined by a hinge 23 to a lower closure portion which includes a top wall 67 having a dispensing aperture 29 (see FIG. 3 ) and an outer circumferential skirt 21 .
  • a lip 24 on the flip top 22 facilitates opening of the cover.
  • the container panel area 13 is substantially rectilinear, comprising two pairs of diametrically opposed gripping surfaces ( 17 a, 17 b and 18 a, 18 b respectively).
  • the closure is preferably oriented with respect to the gripping surfaces for ease of handling.
  • the container is otherwise generally substantially symmetrical with respect to a longitudinal container axis A.
  • FIGS. 2A , 2 B and 2 C show side, sectional and top views of the container finish 11 .
  • the finish has an open mouth defined by a cylindrical top sealing surface 31 , and an upper cylindrical thread finish portion 30 having an outer wall 32 with two thread segments 36 a and 36 b.
  • the two thread segments are symmetrically disposed about the circumference of the cylindrical outer wall 32 , and are diametrically opposed.
  • the thread segments have circumferentially overlapping end portions 44 a and 44 b, which further enhance secure attachment of the closure to the finish.
  • Below the upper thread portion 30 is a cylindrical recess 34 (without threads and of lesser diameter) and below the recess a lower support flange 33 .
  • the flange 33 is generally used for handling and/or supporting the container, or the preform from which the container is blow molded.
  • the finish 11 has a plurality of lugs which engage complementary lugs on the closure and provide a locking mechanism that renders the closure 20 substantially non-removable.
  • the lugs effectively function as ratchet teeth which allow rotational movement in only one direction.
  • the spaced-apart lugs or ratchet teeth 38 are separated by outer wall portions 35 between each pair of adjacent lugs. These spaces or wall portions 35 form notches which receive complementary shaped lugs or ratchet teeth on the closure, as shown in FIGS. 3 and 4 .
  • the closure 20 has inner thread segments 60 a and 60 b which are designed to sit below and support the finish thread segments 36 a and 36 b, respectively.
  • Each of the finish lugs 38 a - d (see FIG. 2B ) has a ramped edge 37 a - d on one side and an opposing abutment edge 39 a - d on the opposite side.
  • each of the closure lugs 64 a - d (see FIG. 3 ) has a ramped edge 65 a - d on one side and on opposing abutment edge 66 a - d on the opposite side.
  • the ramped edges 37 , 65 facilitate application (ease of rotation in the clockwise direction) of the closure onto the finish (positive rotation), while the abutment edges 39 , 66 resist removal (prevent manual rotation in the counterclockwise direction) of the closure from the finish (negative rotation).
  • each thread segment 36 a and 36 b is also provided at the end of each thread segment 36 a and 36 b .
  • Stop 40 prevents over-torqueing of the closure threads onto the finish threads, i.e., it prevents the closure threads and/or lugs from jumping over the finish threads during application of the closure to the finish.
  • FIGS. 3-4 show various features of the closure 20 .
  • the closure has a lower portion formed by an outer cylindrical skirt 21 which depends downwardly from a top wall 67 .
  • the top wall has a central aperture 29 for dispensing of the product; the aperture may include a nozzle fitment or valve system to prevent leakage or dispensing of the product unless the container is squeezed.
  • a cylindrical outer skirt 21 depends from the periphery of the top wall 67 .
  • An inner skirt 25 is disposed radially inwardly with respect to the outer skirt 21 and connecting ribs (spokes) 26 are symmetrically disposed between the inner and outer skirts.
  • the spokes provide structural support to both the inner and outer skirts and increase the closure's resistance to deformation by tampering or other efforts to remove the closure from the finish.
  • the outer skirt 21 is longer (in the longitudinal direction A) than the inner skirt 25 . Again this is useful for enhancing tamper resistance and preventing access to the locking mechanism (lugs) on the closure and finish.
  • a pair of diametrically opposed blocking lugs 72 are provided on the inner wall of the inner skirt to engage the ramped leading edge of each finish thread segment, which also prevents over-torquing.
  • a third skirt or sealing ring 28 lies radially within the inner skirt and is of a lesser height than the inner skirt 25 .
  • the ring 28 has an outer wall that forms a sealing surface for engaging an upper edge portion 45 of the finish wall 32 .
  • the top sealing surface 31 of the finish engages a sealing surface 27 on the bottom of top wall 67 , between sealing ring 28 and inner skirt 25 .
  • the sealing engagement of 28 / 45 and 27 / 31 provide both structural support between the closure and finish and prevention of product leakage.
  • each of the closure thread segments 60 a and 60 b has an upper surface 61 and a lower surface 62 .
  • the upper surface 61 is designed to sit below and engage (support) the lower surface 46 of the finish thread segment 36 a or 36 b.
  • Each of closure thread segments 60 a and 60 b has adjacent its lowermost end 69 a, 69 b a plurality of closure lugs 64 a - d (ratchet teeth), formed integral with and extending down from thread segments 60 a and 60 b.
  • Each lug has a ramped edge 65 on one side, and an abutment edge 66 on the other side, the ramped edge 65 facilitating application of the closure thread to the finish thread, and the abutment edge 66 engaging the abutment edge 39 of the corresponding finish lug 38 to prevent removal of the closure from the finish.
  • the closure lugs 64 a - d are vertically disposed and spaced apart, forming notches which receive finish lugs 38 a - d.
  • the upper edge 70 of each closure lug 64 is aligned with (forms a continuation of) a helical line formed by the upper surface 61 of the closure thread segment 60 .
  • the closure lugs 64 are of a height (in the logitudinal direction A) greater than the height of the thread segments 60 , and thus extend below a helical line formed by the lower surface 62 of the thread segments.
  • the greater height (of the closure lugs compared to the closure thread) provides increased resistance to removal of the closure from the finish.
  • an embodiment of the present invention comprising a locking mechanism for preventing reverse (loosening) rotation of the closure by application of manual force.
  • the abutting surfaces of the ratchet teeth (lugs) on each of the closure and finish prevent such reverse rotation.
  • the amount of force required to overcome the lugs is sufficiently high that the closure cannot be manually removed. If a user attempts to deform the container or closure either manually or with a tool in order to gain access to the locking mechanisms (ratchet teeth), such efforts are substantially thwarted by providing the ratchet teeth on the inner skirt of the closure.
  • this inner skirt is radially inwardly disposed with respect to the outer skirt, and also of a lesser height, simple insertion of a knife beneath the lower edge of the outer skirt will not be sufficient to engage or disrupt the locking mechanism.
  • the structural integrity of each of the closure and container will be such that any successful effort to reach the locking mechanism and overcome the lugs will substantially deform either the closure or container (or both) such that they will be rendered unusable.
  • the number, placement and dimensions of the lugs or ratchet teeth can be varied on one or more of the closure and finish.
  • the number of thread segments can be varied.
  • the thread segments have overlapping ends for greater engagement of the closure and finish thread segments. More than two thread segments can be provided; however it may be more difficult to remove an injection molded finish with more than two thread segments from the injection mold. Alternatively, there may be four thread segments. If more thread segments are used, there may be a lesser number of lugs associated with each thread segment.
  • Another benefit of the present embodiment is a reduced finish height, which for an inverted container is generally more stable.
  • the two thread segments can be provided with a relatively steep pitch so there is sufficient vertical height to add the lugs below the thread segments on the outer wall 32 .
  • the thread pitch is about 0.167 inch and the thread lead 0.334 inch.
  • the height of the finish is 0.530 inch.
  • a typical prior art finish for this type of container is 0.650 inch.
  • the height of at least some of the lugs (in the axial direction A) is four times greater than the height of the thread segments.
  • at least some of the lugs are at least double the height of the thread segment.
  • closure lugs are spaced from and separate from the end of the thread segment.
  • closure lugs may be integral with and/or below the closure thread segments.
  • the closure is made of polypropylene
  • the container is made from bottle grade polyethylene terephthalate (PET) resin.
  • PET polyethylene terephthalate
  • the container is made from an injection molded preform, the body portion of which is blow molded to form the container body.
  • the finish has an outer diameter of 33 mm, a wall thickness (upper portion 32 ) of 0.088 inch, a thread diameter (T dimension) of 1.255 inch, and a lug diameter of 1.270 inch; the sidewall thickness of the container is about 0.63 mm.
  • the closure in the present embodiment is injection molded.
  • the closure has an inside wall diameter of about 33 mm, a wall thickness of 0.045 inch, a thread diameter on the inside wall (E dimension) of 1.224 inch, a thread diameter (T dimension) of 1.280 inch, and a lug diameter of 1.272 inch.
  • the finish lug diameter can be made less than the closure thread diameter; this makes it easier to strip the closure from the injection mold.
  • the finish and closure can be injection molded from PET. Preferred ranges for the finish and closure are:
  • the container body (sidewall or weakest area) would typically have a wall thickness of 0.015-0.080 inch.
  • the container and/or finish may be extrusion molded or compression molded.
  • the finish may also be blow molded or otherwise expanded after the initial molding step.
  • a substantially non-removable and substantially non-rotatable closure and finish assembly there are various advantages to providing a substantially non-removable and substantially non-rotatable closure and finish assembly.
  • One benefit is to provide security to the customer that the product has not been tampered with.
  • a second benefit is an improvement of the mechanical seal between the top sealing surface and the closure, which prevents leakage.
  • a third benefit of the locking mechanism is that it provides an orientation point about the circumference of the container, which can be used to insure that the gripping orientation of the closure with respect to the container is fixed, i.e., the hinge on the flip top is positioned with respect to the nonsymmetrical container body to facilitate gripping of the container by the user and dispensing of the product.
  • One or more of these advantages may be useful in a particular application.

Abstract

Non-removable finish and closure finish system that resists rotational movement so as to be rendered substantially non-removable by the consumer. The closure and finish have complementary thread segments with ratchet-type engaging portions or lugs extending below thread segments on the finish and closure, the closure lugs being disposed on an inner skirt spaced radially inwardly from an outer skirt to inhibit access to the interlocking lugs.

Description

    FIELD OF THE INVENTION
  • The invention relates to threaded closure and finish systems and more particularly to a closure and finish system in which the closure, once applied, substantially resists rotational movement and is rendered substantially non-removable by the customer.
  • BACKGROUND OF THE INVENTION
  • There are a variety of food, beverage and healthcare products for which a non-removable closure would be advantageous. A non-removable closure system is generally understood to be one in which, following attachment of the closure to the container body, the closure cannot be detached from the container without deliberately applying such large forces that would at least partially damage the container and/or the closure. Such damage would thus prevent continued use of the container body and/or closure.
  • For example, it is well known to provide an injection molded preform with a relatively thick finish area having an external thread, and a lower body portion that is subsequently blow molded to form a relatively thin container body. The relatively thick finish wall provides the necessary structural strength for secure application of a closure having a complementary internal threaded portion, while the expanded container body is sufficiently strong to withstand product filling, handling and expected use, but is often substantially weaker than the finish area. The preform(s)/container(s) for such applications are typically made from thermoplastic polymers such as polyesters (e.g., polyethylene terephthalate PET) and polyolefins (e.g., polypropylene or polyethylene). The closure is also typically a molded plastic article, formed separately from the container, and may be made of polyolefin or polyester.
  • Most applications for such thermoplastic containers and closures are single use applications, wherein the container and closure are essentially discarded after the product is used. In such applications, it is desirable to minimize the amount of material required, and minimize the complexity of the injection and blow molding equipment, in order to produce the container and closure at a competitive price. These limitations on material usage and equipment/process complexity are also constraints on the design of a non-removable closure/container system where it is desired that customer be unable to remove the closure and refill (reuse) the container. However, these constraints make it more difficult to design a closure/container system with sufficient structural integrity to withstand (resist) customer attempts to remove the closure.
  • SUMMARY OF THE INVENTION
  • In one embodiment, a non-removable closure and finish system is provided comprising:
      • a plastic container having a longitudinal axis and an upper cylindrical neck finish with at least two thread segments symmetrically disposed around an outer wall of the finish;
      • a plurality of finish lugs disposed beneath the finish thread segment adjacent a lowermost end of each finish thread segment;
      • a plastic closure having a top wall, an outer skirt and an inner skirt disposed radially inwardly from the outer skirt, at least two closure thread segments symmetrically disposed around an inner wall of the inner skirt and adapted to lie beneath a respective finish thread segment, and;
      • a plurality of closure lugs adjacent a lowermost end of each closure thread segment, the closure lugs being disposed to lie between the finish lugs for resisting removal of the closure from the finish.
  • In one embodiment, each closure lug has a ramp edge to facilitate application of the closure to the finish, and an opposed abutment edge for locking the closure to the finish. Similarly, the finish lug may have a ramp edge to facilitate application of the closure to the finish and an opposed abutment edge for locking the closure to the finish. A projecting stop may be provided at a lowermost end of the finish thread segment to prevent over-torquing of the closure onto the finish.
  • In one embodiment, the inner skirt is of a lesser height than the outer skirt, wherein the height is defined with respect to the central container axis. Providing the closure lugs on the inner skirt, and more preferably on an inner skirt of lesser height, makes it more difficult to access the lugs if attempts are made to disengage by the lugs. Also, some or all of the lugs may be greater in height than the thread segments in order to increase the resistance of the lug locking mechanism to disengagment.
  • In one embodiment, the finish is relatively more rigid than the closure. The finish thread segments and lugs may be relatively more rigid than the closure thread segments and lugs.
  • In one embodiment, the closure and/or the finish are each an injection molded article. The finish and closure may be molded from plastic materials such as polyolefins, e.g. polypropylene or polyethylene, or polyesters, e.g. PET. Alternatively, the finish and/or closure may be extrusion or compression molded. The finish may also be blow molded or otherwise expanded after initial molding.
  • In one embodiment, there are at least two diametrically opposed thread segments on each of the closure and finish. The finish thread segments may have overlapping ends, as well as the closure thread segments; this provides greater rigidity and resistance to removal of the closure. Depending on the finish size, there may be four, six or more sets of diametrically opposed thread segments on each of the closure and finish.
  • In one embodiment, the finish and closure each have three or more lugs e.g., four, six or more, depending on the finish size. The lugs may be integral with the lower thread surface, or spaced therefrom. The lugs may be spaced apart from one another, or integral. The finish and closure lugs preferably prevent any rotational movement to loosen the closure on the finish. The abutting surfaces of the finish and closure lugs may apply a positive sealing force between an inner surface of the closure and a top sealing surface of the finish.
  • In one embodiment, the container finish and closure form a standing end, e.g. of a top down or inverted container. As a further option the container may have at least one gripping surface or labeling surface and the finish lugs may be positioned to orient a hinge or spout on the closure with respect to the at least one gripping surface or labeling surface.
  • In another embodiment, a non-removable closure and finish system is provided comprising:
      • complementary sets of thread segments on the closure and finish, each segment having a plurality of ratchet-type engaging portions disposed adjacent one end of the segment, each engaging portion having a ramped leading edge to facilitate rotation in one direction and a trailing abutment edge to resist rotation in the opposite direction; and the closure having an outer skirt and an inner skirt, the inner skirt being radially spaced from the outer skirt and having an inner wall on which the thread segments and engaging portions are disposed.
  • In one embodiment, the engaging portions on the finish are disposed below the finish thread segment, and the engaging portions on the closure are spaced from the one end of the closure thread segment. The engaging portions on the finish may extend from a lower surface of the finish thread segment. Alternatively, the engaging portions on the finish may be spaced from a lower surface of the thread segment. The engaging portions on the closure may extend below the closure thread segments or be spaced apart from the closure thread segments. A stop may be provided at one end of the finish thread segment to prevent over-torquing. Another stop may be provided on the inner wall of the inner skirt to engage the leading edge of the finish thread segment, for the same purpose. The closure (once applied) may thus be rendered substantially non-rotational in both directions. In a still further embodiment, the finish engaging portions may have a diameter greater than the finish thread segment diameter, and the closure engaging portions may have a diameter less than the closure thread segment diameter
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and further advantages of various embodiments of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings in which:
  • FIG. 1 is a perspective view of a food container and non-removable closure according to one embodiment of the invention;
  • FIG. 2A is a side plan view of the finish of the container of FIG. 1;
  • FIG. 2B is a sectional view taken along lines 2B-2B of FIG. 2A;
  • FIG. 2C is a top plan view of the finish of FIG. 2A;
  • FIG. 3 is a bottom perspective view of the closure of FIG. 1A, including a partial view of the hinged cover (flip top) in the open position;
  • FIG. 4A is a cross sectional view of the closure of FIG. 3;
  • FIG. 4B is a partial sectional view taken along lines 4B-4B in FIG. 4A, showing the inner skirt and central dispensing aperture;
  • FIG. 4C is a partial enlarged sectional view taken along lines 4C-4C in FIG. 4A, showing a stop and four ratchet teeth at one end of a closure thread segment on the inner surface of the inner skirt; and
  • FIG. 4D is a partial enlarged sectional view similar to FIG. 4C, but showing in phantom lines portions of the neck finish (of FIG. 2A) after the closure is threaded onto the finish.
  • DETAILED DESCRIPTION
  • One or more embodiments of the present invention will now be described with respect to the container and closure illustrated in FIGS. 1-4. This embodiment is given by way of example only, and is not meant to be limiting.
  • FIG. 1 shows a container 10 having a closure 20. The container is shown “upside down” because it is designed to function as an inverted dispensing container (a.k.a. top down package) for ketchup or other viscous food products (e.g., mayonnaise, mustard), there being advantages in providing a dispensing container in which the closure forms a standing surface of the container. As is well known in the art, this facilitates dispensing of the product by the consumer.
  • This particular container is intended for use in commercial establishments, e.g. restaurants, and is provided with a substantially non-removable closure. This enables the product manufacturer to deliver a filled container to the retail establishment (restaurant) and prevents (restaurant employee(s) from refilling the container. In this embodiment, the force required to remove the closure is sufficiently high that the closure cannot be manually removed (by hand). Furthermore, if a mechanical element (tool) is used by an employee in an attempt to remove the closure, e.g., a long thin instrument such as a knife, the difficulty in accessing the locking mechanism between the closure and finish and the respective strengths of the container and closure are such that the bottle and/or closure will be substantially deformed so as to be rendered unusable (if the employee is successful in removing the closure). Most likely the container will be crushed or buckle and thus rendered unacceptable for further use in a commercial establishment.
  • The container 10 has a finish portion 11 (shown generally in phantom lines in FIG. 1 as it is covered by the closure 20) and an integral body portion 16. The body portion includes a sidewall having an upper shoulder 12, a central label panel area 13, and a lower shoulder 14, and below the sidewall is a closed end 15 (normally referred to as the base). The closure 20 includes a flip top cover 22 joined by a hinge 23 to a lower closure portion which includes a top wall 67 having a dispensing aperture 29 (see FIG. 3) and an outer circumferential skirt 21. A lip 24 on the flip top 22 facilitates opening of the cover. In this embodiment, the container panel area 13 is substantially rectilinear, comprising two pairs of diametrically opposed gripping surfaces (17 a, 17 b and 18 a, 18 b respectively). As described below, the closure is preferably oriented with respect to the gripping surfaces for ease of handling. The container is otherwise generally substantially symmetrical with respect to a longitudinal container axis A.
  • FIGS. 2A, 2B and 2C show side, sectional and top views of the container finish 11. The finish has an open mouth defined by a cylindrical top sealing surface 31, and an upper cylindrical thread finish portion 30 having an outer wall 32 with two thread segments 36 a and 36 b. The two thread segments are symmetrically disposed about the circumference of the cylindrical outer wall 32, and are diametrically opposed. The thread segments have circumferentially overlapping end portions 44 a and 44 b, which further enhance secure attachment of the closure to the finish. Below the upper thread portion 30 is a cylindrical recess 34 (without threads and of lesser diameter) and below the recess a lower support flange 33. The flange 33 is generally used for handling and/or supporting the container, or the preform from which the container is blow molded.
  • In accordance with the present embodiment, the finish 11 has a plurality of lugs which engage complementary lugs on the closure and provide a locking mechanism that renders the closure 20 substantially non-removable. In this embodiment, there are four (4) spaced-apart vertical lugs 38 a, 38 b, 38 c and 38 d, provided adjacent the lowermost end 47 a and 47 b of each thread segment 36 a and 36 b, and formed integral with and extending down from each of the respective thread segments 36 a and 36 b. The lugs effectively function as ratchet teeth which allow rotational movement in only one direction. The spaced-apart lugs or ratchet teeth 38 are separated by outer wall portions 35 between each pair of adjacent lugs. These spaces or wall portions 35 form notches which receive complementary shaped lugs or ratchet teeth on the closure, as shown in FIGS. 3 and 4.
  • The closure 20 has inner thread segments 60 a and 60 b which are designed to sit below and support the finish thread segments 36 a and 36 b, respectively. Each of the finish lugs 38 a-d (see FIG. 2B) has a ramped edge 37 a-d on one side and an opposing abutment edge 39 a-d on the opposite side. Similarly, each of the closure lugs 64 a-d (see FIG. 3) has a ramped edge 65 a-d on one side and on opposing abutment edge 66 a-d on the opposite side. The ramped edges 37, 65 facilitate application (ease of rotation in the clockwise direction) of the closure onto the finish (positive rotation), while the abutment edges 39, 66 resist removal (prevent manual rotation in the counterclockwise direction) of the closure from the finish (negative rotation).
  • Also provided at the end of each thread segment 36 a and 36 b is a projecting portion 40 which functions as a stop. Stop 40 prevents over-torqueing of the closure threads onto the finish threads, i.e., it prevents the closure threads and/or lugs from jumping over the finish threads during application of the closure to the finish.
  • FIGS. 3-4 show various features of the closure 20. The closure has a lower portion formed by an outer cylindrical skirt 21 which depends downwardly from a top wall 67. The top wall has a central aperture 29 for dispensing of the product; the aperture may include a nozzle fitment or valve system to prevent leakage or dispensing of the product unless the container is squeezed.
  • As shown in FIG. 3, which is a bottom (interior) view of the lower closure portion, a cylindrical outer skirt 21 depends from the periphery of the top wall 67. An inner skirt 25 is disposed radially inwardly with respect to the outer skirt 21 and connecting ribs (spokes) 26 are symmetrically disposed between the inner and outer skirts. The spokes provide structural support to both the inner and outer skirts and increase the closure's resistance to deformation by tampering or other efforts to remove the closure from the finish. The outer skirt 21 is longer (in the longitudinal direction A) than the inner skirt 25. Again this is useful for enhancing tamper resistance and preventing access to the locking mechanism (lugs) on the closure and finish. Further, a pair of diametrically opposed blocking lugs 72 are provided on the inner wall of the inner skirt to engage the ramped leading edge of each finish thread segment, which also prevents over-torquing.
  • A third skirt or sealing ring 28 lies radially within the inner skirt and is of a lesser height than the inner skirt 25. The ring 28 has an outer wall that forms a sealing surface for engaging an upper edge portion 45 of the finish wall 32. The top sealing surface 31 of the finish engages a sealing surface 27 on the bottom of top wall 67, between sealing ring 28 and inner skirt 25. The sealing engagement of 28/45 and 27/31 provide both structural support between the closure and finish and prevention of product leakage.
  • As best shown in FIGS. 4A and 4C, each of the closure thread segments 60 a and 60 b has an upper surface 61 and a lower surface 62. The upper surface 61 is designed to sit below and engage (support) the lower surface 46 of the finish thread segment 36 a or 36 b. Each of closure thread segments 60 a and 60 b has adjacent its lowermost end 69 a, 69 b a plurality of closure lugs 64 a-d (ratchet teeth), formed integral with and extending down from thread segments 60 a and 60 b. Each lug has a ramped edge 65 on one side, and an abutment edge 66 on the other side, the ramped edge 65 facilitating application of the closure thread to the finish thread, and the abutment edge 66 engaging the abutment edge 39 of the corresponding finish lug 38 to prevent removal of the closure from the finish. In this embodiment, the closure lugs 64 a-d are vertically disposed and spaced apart, forming notches which receive finish lugs 38 a-d. The upper edge 70 of each closure lug 64 is aligned with (forms a continuation of) a helical line formed by the upper surface 61 of the closure thread segment 60. The closure lugs 64 are of a height (in the logitudinal direction A) greater than the height of the thread segments 60, and thus extend below a helical line formed by the lower surface 62 of the thread segments. The greater height (of the closure lugs compared to the closure thread) provides increased resistance to removal of the closure from the finish.
  • There has thus been described an embodiment of the present invention comprising a locking mechanism for preventing reverse (loosening) rotation of the closure by application of manual force. The abutting surfaces of the ratchet teeth (lugs) on each of the closure and finish prevent such reverse rotation. The amount of force required to overcome the lugs is sufficiently high that the closure cannot be manually removed. If a user attempts to deform the container or closure either manually or with a tool in order to gain access to the locking mechanisms (ratchet teeth), such efforts are substantially thwarted by providing the ratchet teeth on the inner skirt of the closure. Because this inner skirt is radially inwardly disposed with respect to the outer skirt, and also of a lesser height, simple insertion of a knife beneath the lower edge of the outer skirt will not be sufficient to engage or disrupt the locking mechanism. Generally, the structural integrity of each of the closure and container will be such that any successful effort to reach the locking mechanism and overcome the lugs will substantially deform either the closure or container (or both) such that they will be rendered unusable.
  • In alternative embodiments, the number, placement and dimensions of the lugs or ratchet teeth can be varied on one or more of the closure and finish. There should be at least two lugs on each of the closure and finish, with four or more being preferred (e.g., 4, 5, 6 . . . ) in select applications. Also, the number of thread segments can be varied. There should be at least two thread segments which are preferably diametrically opposed, so that the forces between the closure and finish are evenly distributed around the circumference of the closure and finish. Preferably, the thread segments have overlapping ends for greater engagement of the closure and finish thread segments. More than two thread segments can be provided; however it may be more difficult to remove an injection molded finish with more than two thread segments from the injection mold. Alternatively, there may be four thread segments. If more thread segments are used, there may be a lesser number of lugs associated with each thread segment.
  • Another benefit of the present embodiment is a reduced finish height, which for an inverted container is generally more stable. The two thread segments can be provided with a relatively steep pitch so there is sufficient vertical height to add the lugs below the thread segments on the outer wall 32. In the present embodiment, the thread pitch is about 0.167 inch and the thread lead 0.334 inch. The height of the finish is 0.530 inch. In contrast, a typical prior art finish for this type of container is 0.650 inch. By providing a lower finish height, there is less material used and a resulting cost savings. Also, by injection molding the lugs of both the finish and closure, a more rigid locking mechanism is provided.
  • In the described embodiment, it was found to require about 30 inch-pounds of force to apply the closure to the finish. Providing a stop at the end of the thread segments prevents the ratchets and threads from jumping over the threads if a very high application force, e.g., 60-70 inch-pounds, is applied.
  • In the present embodiment the height of at least some of the lugs (in the axial direction A) is four times greater than the height of the thread segments. Preferably, at least some of the lugs are at least double the height of the thread segment.
  • In the present embodiment the closure lugs are spaced from and separate from the end of the thread segment. Alternatively, the closure lugs may be integral with and/or below the closure thread segments.
  • The material used for the closure and finish will depend upon the particular application. In the present embodiment, the closure is made of polypropylene, and the container is made from bottle grade polyethylene terephthalate (PET) resin. The container is made from an injection molded preform, the body portion of which is blow molded to form the container body. The finish has an outer diameter of 33 mm, a wall thickness (upper portion 32) of 0.088 inch, a thread diameter (T dimension) of 1.255 inch, and a lug diameter of 1.270 inch; the sidewall thickness of the container is about 0.63 mm. The closure in the present embodiment is injection molded. The closure has an inside wall diameter of about 33 mm, a wall thickness of 0.045 inch, a thread diameter on the inside wall (E dimension) of 1.224 inch, a thread diameter (T dimension) of 1.280 inch, and a lug diameter of 1.272 inch. By making the finish lug diameter greater than the finish thread diameter, the closure lug diameter can be made less than the closure thread diameter; this makes it easier to strip the closure from the injection mold. Also, by extending the lugs closer to the closure wall and minimizing the distance/gap/clearance, the ability to deflect the lugs/notches is reduced and the non-removability of the closure thus enhanced. For greater rigidity, both the finish and closure can be injection molded from PET. Preferred ranges for the finish and closure are:
      • for the finish:
        • outer diameter 28-89 mm
        • wall thickness 0.045-0.110 inch
        • thread diameter (T dimension) 1.078-3.494 inch
        • lug diameter ±0.015 of the thread dimension
      • for the closure:
        • inside wall diameter 28-89 mm
        • wall thickness 0.030-0.110 inch
        • thread diameter on inside wall (E dimension) 1.047-3.463 inch
        • wall diameter 1.103-3.519
        • lug diameter 1.239-3.655
  • The container body (sidewall or weakest area) would typically have a wall thickness of 0.015-0.080 inch.
  • In alternative embodiments, the container and/or finish may be extrusion molded or compression molded. The finish may also be blow molded or otherwise expanded after the initial molding step.
  • There are various advantages to providing a substantially non-removable and substantially non-rotatable closure and finish assembly. One benefit is to provide security to the customer that the product has not been tampered with. A second benefit is an improvement of the mechanical seal between the top sealing surface and the closure, which prevents leakage. A third benefit of the locking mechanism is that it provides an orientation point about the circumference of the container, which can be used to insure that the gripping orientation of the closure with respect to the container is fixed, i.e., the hinge on the flip top is positioned with respect to the nonsymmetrical container body to facilitate gripping of the container by the user and dispensing of the product. One or more of these advantages may be useful in a particular application.
  • These and other modifications would be readily apparent to the skilled person as included within the scope of the described invention.

Claims (28)

1-28. (canceled)
29. A non-removable closure and finish system comprising:
a plastic container having a longitudinal axis and an upper cylindrical neck finish with at least two thread segments symmetrically disposed around an outer wall of the finish;
a plurality of finish lugs disposed beneath each of the finish thread segments adjacent a lowermost end of each finish thread segment;
a plastic closure having a top wall, an outer skirt and an inner skirt disposed radially inwardly from the outer skirt, at least two closure thread segments symmetrically disposed around an inner wall of the inner skirt and adapted to lie beneath a respective finish thread segment; and
a plurality of closure lugs on the inner wall of the inner skirt adjacent a lowermost end of each closure thread segment, the closure lugs being disposed to lie between the finish lugs for resisting removal of the closure from the finish.
30. The system of claim 29, wherein each of the closure and finish lugs has a ramp edge to facilitate application of the closure to the finish, and an opposed abutment edge for locking the closure to the finish.
31. The system of claim 29, wherein at least some of the lugs are at least double the height of the thread segment.
32. The system of claim 29, wherein a projecting stop is disposed at the lowermost end of the finish thread segment to prevent over-torquing of the closure on the finish.
33. The system of claim 29, wherein the inner skirt is of a lesser height than the outer skirt with respect to the longitudinal axis.
34. The system of claim 29, wherein the finish is relatively more rigid than the closure.
35. The system of claim 29, wherein the finish thread segments and lugs are relatively more rigid than the closure thread segments and lugs.
36. The system of claim 29, wherein the closure is an injection molded article.
37. The system of claim 29, wherein the closure is an injection molded article of polyolefin or polyester material.
38. The system of claim 37, wherein the container has an injection molded finish of a polyester material.
39. The system of claim 29, wherein there are at least two diametrically opposed thread segments on each of the closure and finish.
40. The system of claim 29, wherein there are four or more sets of diametrically opposed thread segments on each of the closure and finish.
41. The system of claim 29, wherein the finish and closure thread segments each have overlapping ends.
42. The system of claim 29, wherein each thread segment has four or more lugs.
43. The system of claim 29, wherein the finish lugs are integral with the lower surface of the thread segment.
44. The system of claim 29, wherein the finish lugs are spaced apart from one another.
45. The system of claim 29, wherein the container finish and closure form a standing end.
46. The system of claim 29, wherein the finish and closure lugs prevent rotational movement to loosen the closure on the finish.
47. The system of claim 29, wherein the container has at least one gripping surface or labeling surface and the finish lugs are positioned to orient a hinge or spout on the closure with respect to the at least one gripping surface or labeling surface.
48. A non-removable plastic closure and finish system comprising:
complementary sets of thread segments on the closure and finish, each segment having a plurality of ratchet-type engaging portions disposed adjacent one end of the segment, each engaging portion having a ramped leading edge to facilitate rotation in one direction and a trailing abutment edge to resist rotation in the opposite direction;
and the closure having an outer skirt and an inner skirt, the inner skirt being radially spaced from the outer skirt and having an inner wall on which the thread segments and engaging portions are disposed.
49. The system of claim 48, wherein:
the engaging portions on the finish are disposed below the finish thread segments; and
the engaging portions on the closure are spaced apart adjacent the one end of the closure thread segment.
50. The system of claim 48, wherein the finish engaging portions are integral with the finish thread segment.
51. The system of claim 48, wherein the finish engaging portions are spaced from the finish thread segment.
52. The system of claim 48, wherein a stop is provided at the one end of the finish thread segment.
53. The system of claim 48, wherein a stop is provided on the inner wall of the inner skirt to engage the leading edge of the finish thread segment.
54. The system of claim 48, wherein there are two sets of thread segments on the closure and finish with overlapping ends.
55. The system of claim 48, wherein the finish engaging portions have a diameter greater than the finish thread segment diameter, and the closure engaging portions have a diameter less than the closure thread segment diameter.
US13/040,609 2007-05-30 2011-03-04 Non-removable finish and closure system Abandoned US20110155688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/040,609 US20110155688A1 (en) 2007-05-30 2011-03-04 Non-removable finish and closure system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/755,097 US7900789B2 (en) 2007-05-30 2007-05-30 Non-removable finish and closure system
US13/040,609 US20110155688A1 (en) 2007-05-30 2011-03-04 Non-removable finish and closure system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/755,097 Continuation US7900789B2 (en) 2007-05-30 2007-05-30 Non-removable finish and closure system

Publications (1)

Publication Number Publication Date
US20110155688A1 true US20110155688A1 (en) 2011-06-30

Family

ID=39684310

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/755,097 Active 2030-01-05 US7900789B2 (en) 2007-05-30 2007-05-30 Non-removable finish and closure system
US13/040,609 Abandoned US20110155688A1 (en) 2007-05-30 2011-03-04 Non-removable finish and closure system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/755,097 Active 2030-01-05 US7900789B2 (en) 2007-05-30 2007-05-30 Non-removable finish and closure system

Country Status (6)

Country Link
US (2) US7900789B2 (en)
EP (1) EP2155577B1 (en)
AT (1) ATE515456T1 (en)
CA (1) CA2688221C (en)
ES (1) ES2366355T3 (en)
WO (1) WO2008150831A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147732A1 (en) * 2008-12-16 2010-06-17 Donald Paul Delagrange Child-resistant dispensing closures and closure components
US11472613B2 (en) * 2019-04-23 2022-10-18 Berry Global, Inc. Selectively openable closure for a container

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0616044B1 (en) * 2005-09-15 2018-02-27 Creanova Universal Closures Ltd. ARTICULATED CLOSING DEVICE, BOTTLE AND METHOD FOR OPENING AN ARTICULATED CLOSING DEVICE
US20080302799A1 (en) 2007-06-08 2008-12-11 Silgan Containers Corporation Metal container with screw-top closure and method of making the same
US8388886B2 (en) * 2010-06-10 2013-03-05 Smart Bottle, Inc. Blow-molded plastic bottle and method of manufacture
US20120114800A1 (en) * 2010-11-10 2012-05-10 Ecosentials, Llc Drink Enhancer System
WO2012154887A1 (en) * 2011-05-10 2012-11-15 The Clorox Company A closure
US9233772B2 (en) * 2011-06-03 2016-01-12 Gk Packaging, Inc. Spirally threaded molded bottle neck having areas of reduced wall thickness
GB201215254D0 (en) * 2012-08-24 2012-10-10 Obrist Closures Switzerland Improvements in or relating to closures and containers necks
US20140263149A1 (en) * 2013-03-14 2014-09-18 Portola Packaging, Inc. Container With Coupling Features
GB201402604D0 (en) 2014-02-14 2014-04-02 Obrist Closures Switzerland Closure combination
CA3035372A1 (en) 2018-03-02 2019-09-02 Op-Hygiene Ip Gmbh Non-removable container enclosure
US10611511B1 (en) 2018-10-29 2020-04-07 Gk Packaging, Inc. Spirally threaded molded bottle finish having removable and nonremovable closures and closures therefor
US10882673B2 (en) * 2018-11-26 2021-01-05 Tekni-Plex, Inc. Dual-seal liner and non-removable closure assembly
US10968017B2 (en) 2019-03-01 2021-04-06 Tekni-Plex, Inc. Induction heat seal liner and method of manufacture
BR112022005203A2 (en) * 2019-09-20 2022-06-14 Heinz Co Brands H J Llc Container, closure and manufacturing methods
US10843849B1 (en) * 2019-10-01 2020-11-24 Silgan White Cap LLC Flip top dispensing closure
USD1013521S1 (en) 2021-04-08 2024-02-06 H.J. Heinz Company Brands Llc Bottle
WO2023244556A1 (en) * 2022-06-18 2023-12-21 Aptargroup, Inc. Closure, container and assembly thereof

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849522A (en) * 1928-08-31 1932-03-15 Anchor Cap & Closure Corp Glass container
US2423582A (en) * 1945-02-27 1947-07-08 Robert Troxel Bottle cap
US4053077A (en) * 1976-10-19 1977-10-11 Defelice Amedio Child safety cap
US4084716A (en) * 1974-11-29 1978-04-18 Clayton Bogert Safety closure for containers
US4387817A (en) * 1980-06-19 1983-06-14 Ethyl Products Company Child resistant container cover
US4763801A (en) * 1987-10-08 1988-08-16 Owens-Illinois Closure Inc. Child-resistant, tamper evident dispensing closure
US4821898A (en) * 1988-06-10 1989-04-18 Owens-Illinois Closure Inc. Child resistant hinge top closure
US4913299A (en) * 1989-04-03 1990-04-03 Phoenix Closures, Inc. Back-off resistant closure for a container
US5169033A (en) * 1991-11-13 1992-12-08 Specialty Packaging Licensing Company, Inc. Container-closure assembly including a screw-cap having anti-backoff teeth on its threads
US5360127A (en) * 1994-02-17 1994-11-01 Calmar Inc. Non-removable container closure
US5458252A (en) * 1994-06-03 1995-10-17 American Precision Plastics Corporation Invertible, pressure-responsive sealing cap
US5722545A (en) * 1993-12-10 1998-03-03 Dental-Kosmetik Gmbh Container with twist-on-off closure cap
US5803291A (en) * 1993-06-21 1998-09-08 Sidel Method and arrangement for positioning a container or container blank in a predetermined angular orientation on a carrier mandrel
US5810184A (en) * 1995-01-30 1998-09-22 Portola Packaging, Inc. Fitment having removable membrane
US5850681A (en) * 1993-05-19 1998-12-22 Sidel Method and arrangement for angularly positioning a container or a container preform on a mandrel inserted in the neck thereof
US6047840A (en) * 1998-03-02 2000-04-11 Phoenix Closures, Inc. Back-off resistant closure
US6334555B1 (en) * 2000-05-25 2002-01-01 Seaquist Closures Foreign, Inc. Fitment and resealable dispensing closure assembly for high-pressure sealing and bi-modal dispensing
US20020016281A1 (en) * 2000-03-21 2002-02-07 Herman Scriven Aqueous cleaning composition with controlled PH
US6669063B1 (en) * 1998-11-03 2003-12-30 Pechiney Method for irreversibly fixing a cap on a container head enabling a limited rotation of said cap on said head
US6769895B2 (en) * 2000-01-20 2004-08-03 Sidel Machine for blow-molding containers, with means for orienting the preforms in the blow mold
US20060186078A1 (en) * 2005-02-22 2006-08-24 David Ziegenhorn Screw on dispensing closure with structure for preventing removal
US20060186077A1 (en) * 2005-02-18 2006-08-24 Owens-Illinois Closure Inc. Child-resistant flip-top dispensing closure, package and method of manufacture
US20070162817A1 (en) * 2005-12-28 2007-07-12 Sony Corporation Data structure, recording apparatus, reproducing apparatus, program, and record medium
US20080000932A1 (en) * 2006-06-30 2008-01-03 H.J. Heinz Co. Condiment bottle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB884691A (en) 1959-12-21 1961-12-13 Adam Krautkraemer A container with a screw stopper for closing the container neck
US4378073A (en) 1981-07-01 1983-03-29 Sunbeam Plastics Corporation Tamper indicating closure
GB2108095B (en) 1981-10-26 1986-03-12 Rieke Corp Childproof closures
US5806698A (en) 1996-06-10 1998-09-15 Tuboplast Hispana, S.A. Assembly device for hinge-caps with finger cot, on container tubes provided with printing
US6640987B2 (en) 1999-11-30 2003-11-04 Kerr Group, Inc. Child resistant closure and container having axially offset locking teeth
US20070034595A1 (en) 2005-08-10 2007-02-15 Continental Afa Dispensing Company Bottle and cap closure apparatus with torque feature

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849522A (en) * 1928-08-31 1932-03-15 Anchor Cap & Closure Corp Glass container
US2423582A (en) * 1945-02-27 1947-07-08 Robert Troxel Bottle cap
US4084716A (en) * 1974-11-29 1978-04-18 Clayton Bogert Safety closure for containers
US4053077A (en) * 1976-10-19 1977-10-11 Defelice Amedio Child safety cap
US4387817A (en) * 1980-06-19 1983-06-14 Ethyl Products Company Child resistant container cover
US4763801A (en) * 1987-10-08 1988-08-16 Owens-Illinois Closure Inc. Child-resistant, tamper evident dispensing closure
US4821898A (en) * 1988-06-10 1989-04-18 Owens-Illinois Closure Inc. Child resistant hinge top closure
US4913299A (en) * 1989-04-03 1990-04-03 Phoenix Closures, Inc. Back-off resistant closure for a container
US5169033A (en) * 1991-11-13 1992-12-08 Specialty Packaging Licensing Company, Inc. Container-closure assembly including a screw-cap having anti-backoff teeth on its threads
US5850681A (en) * 1993-05-19 1998-12-22 Sidel Method and arrangement for angularly positioning a container or a container preform on a mandrel inserted in the neck thereof
US5803291A (en) * 1993-06-21 1998-09-08 Sidel Method and arrangement for positioning a container or container blank in a predetermined angular orientation on a carrier mandrel
US5722545A (en) * 1993-12-10 1998-03-03 Dental-Kosmetik Gmbh Container with twist-on-off closure cap
US5360127A (en) * 1994-02-17 1994-11-01 Calmar Inc. Non-removable container closure
US5458252A (en) * 1994-06-03 1995-10-17 American Precision Plastics Corporation Invertible, pressure-responsive sealing cap
US5810184A (en) * 1995-01-30 1998-09-22 Portola Packaging, Inc. Fitment having removable membrane
US6047840A (en) * 1998-03-02 2000-04-11 Phoenix Closures, Inc. Back-off resistant closure
US6669063B1 (en) * 1998-11-03 2003-12-30 Pechiney Method for irreversibly fixing a cap on a container head enabling a limited rotation of said cap on said head
US6769895B2 (en) * 2000-01-20 2004-08-03 Sidel Machine for blow-molding containers, with means for orienting the preforms in the blow mold
US20020016281A1 (en) * 2000-03-21 2002-02-07 Herman Scriven Aqueous cleaning composition with controlled PH
US6334555B1 (en) * 2000-05-25 2002-01-01 Seaquist Closures Foreign, Inc. Fitment and resealable dispensing closure assembly for high-pressure sealing and bi-modal dispensing
US20060186077A1 (en) * 2005-02-18 2006-08-24 Owens-Illinois Closure Inc. Child-resistant flip-top dispensing closure, package and method of manufacture
US20060186078A1 (en) * 2005-02-22 2006-08-24 David Ziegenhorn Screw on dispensing closure with structure for preventing removal
US20070162817A1 (en) * 2005-12-28 2007-07-12 Sony Corporation Data structure, recording apparatus, reproducing apparatus, program, and record medium
US20080000932A1 (en) * 2006-06-30 2008-01-03 H.J. Heinz Co. Condiment bottle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147732A1 (en) * 2008-12-16 2010-06-17 Donald Paul Delagrange Child-resistant dispensing closures and closure components
US8579140B2 (en) * 2008-12-16 2013-11-12 Rexam Healthcare Packaging Inc. Child-resistant dispensing closures and closure components
US11472613B2 (en) * 2019-04-23 2022-10-18 Berry Global, Inc. Selectively openable closure for a container

Also Published As

Publication number Publication date
EP2155577A1 (en) 2010-02-24
CA2688221C (en) 2016-07-12
WO2008150831A1 (en) 2008-12-11
US7900789B2 (en) 2011-03-08
CA2688221A1 (en) 2008-12-11
US20080296251A1 (en) 2008-12-04
ES2366355T3 (en) 2011-10-19
ATE515456T1 (en) 2011-07-15
EP2155577B1 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US7900789B2 (en) Non-removable finish and closure system
RU2388672C2 (en) Drinks container
US4098419A (en) Blow molded plastic bottle and antitamper cap
US5411157A (en) Container and the manufacture thereof
US6003701A (en) Tamper resistant bottle cap and neck
JP3574445B2 (en) Lid for tamper evident
US5450973A (en) Tamper-evident closure apparatus
EP1114781B1 (en) Tamper restistant bottle cap
US20050269373A1 (en) Cover for dispensing closure with pressure actuated valve
CA2034704C (en) Container and closure with cooperating threaded portions having fastening configurations
US5915579A (en) Container with tamper-evident and pre-lockable closure assembly
US20060186079A1 (en) Screw on dispensing closure with structure for preventing removal
US5271512A (en) Tamper-evident closure with reinforced band
CA3120714C (en) Dual-seal liner and non-removable closure assembly
US4180175A (en) Blow molded plastic bottle and antitamper cap
US6102227A (en) Snap-on cap with twist on/off reclosure lid
CA2630858A1 (en) Jaw seals for container closure assemblies
US6257453B1 (en) Tamper-indicating, two-piece dispensing closure
US4269320A (en) Blow molded plastic bottle and anti-tamper cap
CN110267882B (en) Closing unit
US20220281658A1 (en) Child resistant closure and spout combination
US20090139954A1 (en) Closure With Improved Tamper-Evident Band
US20040188375A1 (en) Linerless plastic closure with a sealing lip
GB2251240A (en) Container and closure with co-operating threaded portions having fastening configurations
WO2023057742A1 (en) Tethered closure

Legal Events

Date Code Title Description
AS Assignment

Owner name: REYNOLDS GROUP HOLDINGS INC., NEW ZEALAND

Free format text: SECURITY AGREEMENT;ASSIGNOR:GRAHAM PACKAGING COMPANY, L.P.;REEL/FRAME:026970/0699

Effective date: 20110908

AS Assignment

Owner name: GRAHAM PACKAGING COMPANY, L.P., PENNSYLVANIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:REYNOLDS GROUP HOLDINGS INC.;REEL/FRAME:027895/0738

Effective date: 20120320

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:GRAHAM PACKAGING COMPANY, L.P.;REEL/FRAME:027910/0609

Effective date: 20120320

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GRAHAM PACKAGING COMPANY, L.P., PENNSYLVANIA

Free format text: RELEASE OF SECURITY INTEREST IN CERTAIN PATENT COLLATERAL;ASSIGNOR:THE BANK OF NEW YORK MELLON, AS THE COLLATERAL AGENT AND TRUSTEE;REEL/FRAME:053396/0531

Effective date: 20200804