US20110108020A1 - Ballast member for reducing active volume of a vessel - Google Patents
Ballast member for reducing active volume of a vessel Download PDFInfo
- Publication number
- US20110108020A1 US20110108020A1 US12/616,419 US61641909A US2011108020A1 US 20110108020 A1 US20110108020 A1 US 20110108020A1 US 61641909 A US61641909 A US 61641909A US 2011108020 A1 US2011108020 A1 US 2011108020A1
- Authority
- US
- United States
- Prior art keywords
- recited
- working fluid
- ballast
- solar power
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011257 shell materials Substances 0.000 claims description 35
- 239000011162 core materials Substances 0.000 claims description 26
- 239000000463 materials Substances 0.000 claims description 25
- 238000005260 corrosion Methods 0.000 claims description 10
- 239000011819 refractory materials Substances 0.000 claims description 9
- 239000000203 mixtures Substances 0.000 claims description 8
- 239000000956 alloys Substances 0.000 claims description 7
- 229910045601 alloys Inorganic materials 0.000 claims description 6
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class   [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquids Substances 0.000 claims description 6
- 239000011901 water Substances 0.000 claims description 5
- 229910010293 ceramic materials Inorganic materials 0.000 claims description 4
- 239000008187 granular materials Substances 0.000 claims description 4
- 229910052751 metals Inorganic materials 0.000 claims description 4
- 239000002184 metals Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- SMYKVLBUSSNXMV-UHFFFAOYSA-J aluminum;tetrahydroxide Chemical compound   [OH-].[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-J 0.000 claims description 3
- 150000004673 fluoride salts Chemical class 0.000 claims description 3
- 239000003921 oils Substances 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 claims description 2
- 239000007787 solids Substances 0.000 description 4
- 231100000078 corrosive Toxicity 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- BXNHTSHTPBPRFX-UHFFFAOYSA-M Potassium nitrite Chemical compound   [K+].[O-]N=O BXNHTSHTPBPRFX-UHFFFAOYSA-M 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M Sodium nitrite Chemical compound   [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010950 nickel Substances 0.000 description 2
- 235000010289 potassium nitrite Nutrition 0.000 description 2
- 239000004304 potassium nitrite Substances 0.000 description 2
- 229940064218 potassium nitrite Drugs 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 239000004314 sodium nitrite Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N [Fe].[Ni] Chemical compound   [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000006227 byproducts Substances 0.000 description 1
- 239000000919 ceramics Substances 0.000 description 1
- 238000006243 chemical reactions Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound   [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound   [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052803 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 239000002131 composite materials Substances 0.000 description 1
- 230000001627 detrimental Effects 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 239000000686 essences Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gases Substances 0.000 description 1
- 230000003100 immobilizing Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N potassium Chemical compound   [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound   [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000601 superalloys Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S90/00—Solar heat systems not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with means for concentrating solar rays
- F03G6/065—Devices for producing mechanical power from solar energy with means for concentrating solar rays having a Rankine cycle
- F03G6/067—Devices for producing mechanical power from solar energy with means for concentrating solar rays having a Rankine cycle using an intermediate fluid for heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S80/00—Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
- F24S80/20—Working fluids specially adapted for solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0056—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/0004—Particular heat storage apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/0004—Particular heat storage apparatus
- F28D2020/0021—Particular heat storage apparatus the heat storage material being enclosed in loose or stacked elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
- F28D2020/0047—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Abstract
Description
- This disclosure relates to power plants for generating electricity.
- Solar power plants for capturing solar energy and generating electricity are known and used. For instance, a solar collector system may direct solar energy toward a central receiver that includes a heat-absorbing fluid, such as a molten salt. The heated fluid may then be used to produce steam and drive a turbine to generate electricity. The heat-absorbing fluid may be stored in or circulated through one or more tanks.
- The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
-
FIG. 1A illustrates an example solar power system. -
FIG. 1B illustrates a tank from the solar power system ofFIG. 1A . -
FIG. 2 illustrates an example ballast member. -
FIG. 3 illustrates another example ballast member. -
FIG. 4 illustrates another example ballast member. -
FIG. 5 illustrates an arrangement of a plurality of ballast members. -
FIG. 6 illustrates another example solar power system. -
FIG. 7 illustrates an example nuclear reactor system that includes a ballast member. -
FIG. 1A illustrates selected portions of an example solar power system 20 for capturing and using solar energy 22. Although selected components of the solar power system 20 are shown in this example, it is to be understood that additional components may be utilized with the solar power system 20 to generate electricity in a known manner, for example. - The solar power system 20 includes a solar receiver 24 through which a working fluid 26 can be circulated. For instance, the working fluid 26 can be circulated through pipelines 28 (i.e., conduit) or other suitable conduits for handling the particular type of working fluid 26. As an example, the working fluid 26 may be a molten salt, such as potassium nitrite and sodium nitrite. These salts may be solid at ambient temperatures and pressures but may be molten or liquid at the operating temperatures of the system. Depending upon the type of system used, the working fluid 26 may alternatively be another type, such as water, oil, liquid metal or a fluoride salt, or even a mixture of compatible working fluids. Given this description, one of ordinary skill in the art will recognize suitable working fluids 26 to meet their particular needs.
- The solar power system 20 includes at least one solar collector 30 (three shown) that is operative to direct the solar energy 22 toward the solar receiver 24 to heat the working fluid 26 in a known manner. As an example, the solar collector 30 may include one or more heliostats for tracking and following the sun.
- The solar receiver 24 may include a trough-type solar collector or other type of solar collector that is known for receiving the solar energy 22 and transferring heat to the working fluid 26. It is to be understood that the solar power system 20 may be modified from the illustrated example and include other types of solar collectors 30 and solar receivers 24.
- A tank 32 (i.e., a vessel) is fluidly connected with the solar receiver 24 via the pipeline 28 or other conduit. In this case, the working fluid 26 may be temporarily held in the tank, circulated into the tank 32, or circulated from the tank 32, for example. Thus, the working fluid 26 generally is circulated through the tank 32, although the circulation may or may not be continuous. The tank 32 may therefore be considered to be a storage tank.
- The tank 32 includes an internal chamber 34 for holding or circulating the working fluid 26. At least one ballast member 36 is disposed within the internal chamber 34 to reduce the fillable or active volume of the internal chamber 34 through which the working fluid 26 can be circulated. Thus, the ballast member 36 may be regarded as any material that takes up or reduces the fillable volume of the internal chamber 34 such that less working fluid 26 can be used in the system along with a reduced burden on filtering or purifying high volumes of the working fluid 26. In some examples, the ballast member 36 serves the sole purpose of reducing or taking up the fillable volume of the internal chamber 34 and does not actively serve any other function within the solar power system 20. In other examples, the ballast may act as a thermal storage mechanism, as well as a volume reduction device.
-
FIG. 1B illustrates a cross-sectional view of the tank 32 showing a fill level 38 of the working fluid 26. In this case, the tank 32 includes an outlet 39 a through which the working fluid 26 leaves the tank 32, and a return inlet 39 b through which the working fluid 26 enters the tank 32. The ballast member 36 takes up at least a portion of the fillable volume of the internal chamber 34 such that the fill level 38 is above the return inlet 39 b. In this case, given the same amount of working fluid 26 within the tank 32, the fill level 38 would be below the return inlet 39 b if the ballast member 36 were not present, as shown at 38′. Thus, the ballast member 36 enables control over the level of the working fluid in the tank 32 by reducing the fillable volume of the internal chamber 34. In this regard, the level can be controlled such that the return inlet 39 b is below the fill level 38 of the working fluid 26. This provides the benefit of having the returned working fluid 26 flow directly into the working fluid 26 that is already in the tank 32 rather than dropping from a point above the fill level 38. Such an arrangement facilitates avoiding turbulence of the working fluid 26 and in entraining air or other gas within the working fluid 26 from turbulence. In a further example, the return inlet 39 b may be a ring sparger (i.e., a loop with a plurality of nozzles/holes) located at the bottom of the tank 32 to introduce the working fluid 26. Additionally, the tank 32 can have “dead space” with regard to the amount of working fluid 26 participating in the solar power system 20. Reducing the fillable volume of the internal chamber 34 reduces the dead space such that less of the working fluid 26 can be used. Thus, as can be appreciated, the ballast member 36 could be used in any type of vessel to reduce the fillable volume of the vessel. In this regard, the ballast member 36 may alternatively be located within the pipelines 28, such as the jumper piping of a trough-type solar energy system, a manifold of the system, or any other fluid-handling vessel. -
FIG. 2 illustrates an example ballast member 136 that may be used in the tank 32. The ballast member 136 is designed to withstand the expected temperatures and conditions within the tank 32. For instance, the working fluid 26 may be at a relatively high temperature compared to the ambient surroundings and may be corrosive to many types of materials. In this example, the ballast member 136 is generally an elongated rod and, in the illustration, is sectioned to reveal the interior. - The ballast member 136 includes a sealed shell 140 and a core material 142 disposed within the interior volume of the sealed shell 140. The sealed shell 140 may have closed-off ends such that the interior volume is sealed from the surroundings and the working fluid 26 is unable to flow into the interior volume. The closed-off ends may be welded ends or caps that are welded or sealed. Alternatively, the ends of the shell 140 may be crimped to seal off the shell 140.
- The ballast member 136 is essentially immobile and inert. For instance, the ballast member 136 cannot move within the tank 32 to plug up the outlet 39 a or return inlet 39 b. Additionally, the ballast member 136 is chemically unreactive with the working fluid 26 and thereby does not degrade the working fluid 26 or form byproducts from any reactions with the working fluid 26.
- In the illustrated example, the sealed shell 140 has a tubular shape, which provides the benefit of easy packing, manufacturing, and minimizes stress concentrators. However, the sealed shell 140 may alternatively have another type of shape or geometry that is suitable for the intended use within the tank 32.
- The sealed shell 140 may be formed of a material that is suitable for withstanding the expected temperatures and corrosion conditions within the tank 132. For instance, the sealed shell 140 may be formed of steel or stainless steel. In some examples, steel or stainless steel may be used when the working fluid 26 is potassium nitrite/sodium nitrite or liquid metal (e.g., sodium or potassium). In other examples where the working fluid 26 may be a more corrosive material, such as a fluoride salt, the sealed shell 140 may be formed from a nickel-based alloy, superalloy, or ceramic material. In some examples, the sealed shell 140 may be an alloy based on nickel, cobalt, nickel-iron, or alloy containing chromium to resist the corrosive conditions. Alternatively, the sealed shell 140 may be a composite of the disclosed types of shell materials or include a ceramic outer shell that extends around an inner shell of an alloy material.
- The core material 142 is generally formed of a high heat capacity material. In some examples, the core material 142 is a refractory material, such as a gunning mix, that can be preformed (e.g., cast) and then placed into the sealed shell 140 prior to sealing. The gunning mix may include aluminate and other refractories, as are generally known. Alternatively, or in addition to a refractory, another type of core material 142 may be used, such as sand, gravel, mine tailings, dirt, combinations thereof, or other material having a high heat resistance. In a further example, the core material 142 may be dry or dried prior to inclusion within the sealed shell 140 to facilitate reducing the presence of any gaseous water within the sealed shell 140 at the expected elevated temperatures. As an example, the core material 140 may have a moisture content of less than 5 wt % or even below 1 wt %.
- The core material 142 serves the purpose of adding weight to the ballast member 136 such that the ballast member 136 is not buoyant in the selected working fluid 26. Thus, a relatively inexpensive type of material may be used and robust properties aside from the heat capacity may not be required.
- In this example, the core material 142 is formed into the shape of a cylinder that fits within the internal volume of the sealed shell 140. In this case, an expansion gap 144 between the core material 142 and the inner diametrical surface of the sealed shell 140 allows for thermal differences in expansion/contraction of the sealed shell 140 and the core material 142.
-
FIG. 3 illustrates a modified example of a ballast member 236. In this case, the ballast member 236 also includes the sealed shell 140. However, the ballast member 236 includes core material 242 that is granular. As an example, granules of the core material 242 may be packed into the internal volume of the sealed shell 140 before sealing off the ends. The material selected for the core material 242 may be the same as described relative toFIG. 2 . -
FIG. 4 illustrates a modified example of another ballast member 336. In this example, the ballast member 336 also includes the sealed shell 140. However, the ballast member 336 includes a core material 342 that includes a plurality of elongated rods 346 that are packed within the interior volume of the sealed shell 140. The elongated rods 346 may have a cylindrical shape and extend unidirectionally within the interior volume. The elongated rods 346 may be formed of the same materials as described relative to the previous examples and then inserted into the sealed shell 140 before sealing off the ends. The ballast member 336 may further include a granular material in between the elongated rods 346, which may be used to modify ballast density and/or thermal storage capability. -
FIG. 5 illustrates a plurality of the ballast members 136 in a stacked arrangement. The stacked arrangement may then be disposed within the tank 32 as the ballast member 36. Although the ballast members 136 are shown in this example, it is to be understood that the ballast members 236 or 336 may alternatively be used in such an arrangement. In this case, the cylindrical shape of the ballast members 136 formed gaps 60 between neighboring ballast members 136. In operation, the working fluid 26 may flow through the gaps 60. In some cases, the working fluid 26 may include solid debris and the gaps 60 may facilitate trapping the solid debris among the ballast members 136 such that the ballast members 136 effectively function as a filter to purify the working fluid 26. The stacked arrangement shown may be oriented horizontally within the tank 32. It is to be understood however, that the ballast members 136 may alternatively be oriented vertically or in any other desired orientation. - In a modified example, the arrangement may also include one or more screens 62 (shown schematically) that extends between at least two of the ballast members 136 and further facilitates trapping any solid debris within the gaps 60. As shown, the screen is arranged near the ends of the ballast members 136 but alternatively may be provided along the sides or along the sides and ends.
-
FIG. 6 illustrates another example solar power system 120 that is somewhat similar to the solar power system 20 ofFIG. 1 . In this example, the solar power system 120 includes a hot tank 132 a and a cold tank 132 b for holding and/or circulating the working fluid 26. Depending on the system and the type of working fluid 26 that is used, the hot tank 132 a may operate at a temperature of approximately 1100-1800° F. (approximately 593-982° C.). The cold tank 132 b may operate at temperatures of as low as about 500° F. (260° C.). For an oil system, the hot tank 132 a may operate at a temperature of around 750-800° F. (approximately 400-427° C.) and the cold tank 132 b may operate at a temperature of around 72° F. (approximately 22° C.). - In this case, the working fluid 26 is heated within the solar receiver 24 and circulated into the hot tank 132 a. Pumps 70 may be used to circulate the working fluid 26 through the pipeline 28 or other type of conduit. The working fluid 26 circulates through an electric generator 72 for generating electricity in a know manner. As an example, the electric generator 72 may include a heater 74, a steam turbine 76, and a condenser 78.
- In operation, the heated working fluid 26 flows through the heater 74 to heat another working fluid, such as water. The vaporized water powers a steam turbine 76 that turns a shaft in a known manner to generate electricity. The steam is collected and then condensed in the condenser 78 before returning to the heater 74 for another cycle.
- The working fluid flows from the heater 74 into and through the cold tank 132 b. The relatively cooler working fluid 26 may then be provided from the cold tank 132 b to the solar receiver 24 for another cycle of use. As can be appreciated, other components may be used in combination with the illustrated components to facilitate or enhance operation of the solar power system 120.
-
FIG. 7 illustrates another example application of the ballast member 136, although any of the ballast members 236 or 336 disclosed herein may be used. The ballast member 136 is located within a nuclear reactor system 400 that utilizes liquid metal as the working fluid 26. Alternatively, the nuclear reactor system 400 may be a different type that utilizes a different working fluid. - The nuclear reactor system 400 is generally of a known arrangement and includes, for instance, a reactor vessel 432 that houses a reactor core 433 for receiving nuclear control rods 435. A plenum 437 divides the internal chamber 434 into a hot section (H) containing the core 433 and a cold section (C) outside of the core 433.
- The reactor vessel 432 operates in a known manner to heat a second working fluid contained within an electric generator system 472 of the nuclear generator system 400. The second working fluid may be used to drive a turbine 476 to in turn generate an electric current.
- In the illustrated example, a support structure 439 supports the ballast member 136 within the reactor vessel 432. For instance, the support structure may be a rack or other suitable structure that may be attached to the reactor vessel 432 for holding and immobilizing the ballast member 136. That is, the support structure 439 limits movement of the ballast member 136 such that flow of the working fluid 26 within the reactor vessel 432 does not cause the ballast member 136 to shift position and interfere with other components in the reactor vessel 432. The support structure 439 also enables the ballast member to be mounted in a desirable location within the reactor vessel 432, such as near a side wall of the reactor vessel 432 in the cold section (C). Locating the ballast member 136 in the cold section (C) facilitates reducing the exposure of the ballast member 136 to the elevated temperatures present of the hot section (H) that may otherwise be detrimental to the longevity of the sealed shell 140. It is to be understood that the support structure 439 may also be used in the other examples disclosed herein.
- Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments or other systems than solar power systems and nuclear power systems. That is, other types of heat transfer systems or systems utilizing working fluids may benefit from the disclosed examples.
- The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art and do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can be determined by studying the following claims.
Claims (38)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/616,419 US20110108020A1 (en) | 2009-11-11 | 2009-11-11 | Ballast member for reducing active volume of a vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/616,419 US20110108020A1 (en) | 2009-11-11 | 2009-11-11 | Ballast member for reducing active volume of a vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110108020A1 true US20110108020A1 (en) | 2011-05-12 |
Family
ID=43973195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/616,419 Abandoned US20110108020A1 (en) | 2009-11-11 | 2009-11-11 | Ballast member for reducing active volume of a vessel |
Country Status (1)
Country | Link |
---|---|
US (1) | US20110108020A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110314812A1 (en) * | 2010-06-24 | 2011-12-29 | Chandrashekhar Sonwane | Thermal storage system |
EP2589762A1 (en) * | 2011-11-04 | 2013-05-08 | Siemens Aktiengesellschaft | Storage and recovery of thermal energy using heat storage material being filled in a plurality of enclosures |
WO2013167538A1 (en) * | 2012-05-09 | 2013-11-14 | Commissariat à l'énergie atomique et aux énergies alternatives | Heat storage tank with improved thermal stratification |
WO2014128327A1 (en) * | 2013-02-20 | 2014-08-28 | Sener, Ingeniería Y Sistemas, S.A. | Cogeneration method for electric and thermal energy production from thermosolar energy |
WO2017057261A1 (en) * | 2015-09-30 | 2017-04-06 | 日立造船株式会社 | Steam generation device |
Citations (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1969187A (en) * | 1932-02-19 | 1934-08-07 | Clifton E Schutt | Heat balancing system |
US3029596A (en) * | 1959-11-17 | 1962-04-17 | Gen Motors Corp | Power plant heat storage arrangement |
US3356828A (en) * | 1964-04-30 | 1967-12-05 | Furness Raymond Francis | Electrically heated heat storage apparatus |
US3508393A (en) * | 1968-09-17 | 1970-04-28 | Donald A Kelly | Low friction stirling engines and chemical heating means |
US3786861A (en) * | 1971-04-12 | 1974-01-22 | Battelle Memorial Institute | Heat pipes |
US3892273A (en) * | 1973-07-09 | 1975-07-01 | Perkin Elmer Corp | Heat pipe lobar wicking arrangement |
US4037650A (en) * | 1975-05-23 | 1977-07-26 | National Research Development Corporation | Thermal storage apparatus |
US4094302A (en) * | 1975-07-29 | 1978-06-13 | Ed. Rohr Ag | Furnace with heat storage elements |
US4104185A (en) * | 1975-04-23 | 1978-08-01 | U.S. Philips Corporation | Latent heat accumulator |
US4127161A (en) * | 1977-03-02 | 1978-11-28 | Energy Recycling Company | Energy storage unit and system |
US4137898A (en) * | 1975-12-26 | 1979-02-06 | Tokyo Shibaura Electric Co., Ltd. | Air type solar heating system |
US4138995A (en) * | 1976-08-25 | 1979-02-13 | Yuan Shao W | Solar energy storage and utilization |
US4188915A (en) * | 1975-12-05 | 1980-02-19 | Dr. C. Otto & Comp. G.M.B.H. | Water-cooled, high-temperature gasifier |
US4191167A (en) * | 1977-04-11 | 1980-03-04 | Vladimir Ignatjev | Solar energy fluid heater |
US4248291A (en) * | 1978-10-18 | 1981-02-03 | Seymour Jarmul | Compact thermal energy reservoirs |
US4262653A (en) * | 1979-05-01 | 1981-04-21 | Neha International | Solar energy heat storage and transfer system |
US4276872A (en) * | 1978-11-13 | 1981-07-07 | Atlantic Richfield Company | Solar system employing ground level heliostats and solar collectors |
US4285389A (en) * | 1979-12-26 | 1981-08-25 | Horton Jack F | Thermal energy storage apparatus |
US4294078A (en) * | 1977-04-26 | 1981-10-13 | Calmac Manufacturing Corporation | Method and system for the compact storage of heat and coolness by phase change materials |
US4321962A (en) * | 1980-04-08 | 1982-03-30 | Doty Francis D | Sub-basement sensible heat storage for solar energy |
US4343989A (en) * | 1980-11-24 | 1982-08-10 | Brosnan Denis A | Magnesium oxide based heat storage device |
US4351388A (en) * | 1980-06-13 | 1982-09-28 | Mcdonnell Douglas Corporation | Inverted meniscus heat pipe |
US4362149A (en) * | 1980-12-08 | 1982-12-07 | Rockwell International Corporation | Heat storage system and method |
US4380154A (en) * | 1981-06-23 | 1983-04-19 | Thermacore, Inc. | Clean coal power system |
US4386501A (en) * | 1981-07-29 | 1983-06-07 | Martin Marietta Corporation | Heat pump using liquid ammoniated ammonium chloride, and thermal storage system |
US4392480A (en) * | 1981-03-12 | 1983-07-12 | Wayne Vautrin | Heat storage and delivery apparatus |
US4400946A (en) * | 1979-09-07 | 1983-08-30 | Bbc Brown, Boveri & Company Limited | Solar thermal power plant |
US4403645A (en) * | 1978-07-12 | 1983-09-13 | Calmac Manufacturing Corporation | Compact storage of seat and coolness by phase change materials while preventing stratification |
US4405010A (en) * | 1978-06-28 | 1983-09-20 | Sanders Associates, Inc. | Sensible heat storage unit |
US4421102A (en) * | 1978-05-02 | 1983-12-20 | Mario Posnansky | Process and apparatus for heating a transparent, gaseous medium by means of concentrated solar radiation |
US4441318A (en) * | 1978-08-14 | 1984-04-10 | Alexander Theckston | Method and apparatus for obtaining work from heat energy |
US4463799A (en) * | 1980-10-29 | 1984-08-07 | Agency Of Industrial Science Technology, Ministry Of International Trade & Industry | Heat storage medium for latent heat thermal energy storage unit |
US4474170A (en) * | 1981-08-06 | 1984-10-02 | The United States Of America As Represented By The United States Department Of Energy | Glass heat pipe evacuated tube solar collector |
US4479353A (en) * | 1979-10-31 | 1984-10-30 | The Babcock & Wilcox Company | Moving bed heat storage and recovery system |
US4491172A (en) * | 1981-04-22 | 1985-01-01 | Thermal Energy Storage, Inc. | Energy storage apparatus |
US4504402A (en) * | 1983-06-13 | 1985-03-12 | Pennwalt Corporation | Encapsulated phase change thermal energy _storage materials |
US4505953A (en) * | 1983-02-16 | 1985-03-19 | Pennwalt Corporation | Method for preparing encapsulated phase change materials |
US4523636A (en) * | 1982-09-20 | 1985-06-18 | Stirling Thermal Motors, Inc. | Heat pipe |
US4541864A (en) * | 1979-12-22 | 1985-09-17 | Mannesmann Demag Ag | Method and apparatus for recovery and recycling of heat from hot gases |
US4727930A (en) * | 1981-08-17 | 1988-03-01 | The Board Of Regents Of The University Of Washington | Heat transfer and storage system |
US4739748A (en) * | 1980-10-06 | 1988-04-26 | Stice James D | Solar collector storage system and method |
US4782890A (en) * | 1986-04-23 | 1988-11-08 | Showa Aluminum Corporation | Heat pipe |
US4807696A (en) * | 1987-12-10 | 1989-02-28 | Triangle Research And Development Corp. | Thermal energy storage apparatus using encapsulated phase change material |
US4809771A (en) * | 1987-04-24 | 1989-03-07 | The United States Of America As Represented By The Secretary Of The Air Force | Lih thermal storage capsule/heat exchanger |
US4827735A (en) * | 1988-04-07 | 1989-05-09 | Off-Peak Devices, Inc. | Off peak storage device |
US4838346A (en) * | 1988-08-29 | 1989-06-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Reusable high-temperature heat pipes and heat pipe panels |
US4873038A (en) * | 1987-07-06 | 1989-10-10 | Lanxide Technology Comapny, Lp | Method for producing ceramic/metal heat storage media, and to the product thereof |
US4890668A (en) * | 1987-06-03 | 1990-01-02 | Lockheed Missiles & Space Company, Inc. | Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system |
US4903761A (en) * | 1987-06-03 | 1990-02-27 | Lockheed Missiles & Space Company, Inc. | Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system |
US4954463A (en) * | 1988-12-12 | 1990-09-04 | Dresser Industries, Inc. | Magnesium aluminate spinel refractory |
US4993481A (en) * | 1988-10-03 | 1991-02-19 | The Agency Of Industrial Science And Technology | Thermal storage unit |
US5000252A (en) * | 1990-02-22 | 1991-03-19 | Wright State University | Thermal energy storage system |
US5036904A (en) * | 1989-12-04 | 1991-08-06 | Chiyoda Corporation | Latent heat storage tank |
US5077103A (en) * | 1990-06-25 | 1991-12-31 | Rockwell International Corporation | Refractory solid-state heat pipes and heat shields |
US5113659A (en) * | 1991-03-27 | 1992-05-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Solar thermal energy receiver |
US5161607A (en) * | 1991-08-19 | 1992-11-10 | Chao Wen Hua | Thermal storage device for interacting with a circulating coolant in an air conditioning system |
US5220954A (en) * | 1992-10-07 | 1993-06-22 | Shape, Inc. | Phase change heat exchanger |
US5255526A (en) * | 1992-03-18 | 1993-10-26 | Fischer Harry C | Multi-mode air conditioning unit with energy storage system |
US5441097A (en) * | 1993-05-19 | 1995-08-15 | Chiyoda Corporation | Heat storage tank equipped with heat storage members and fabrication process for the same |
US5497629A (en) * | 1993-03-23 | 1996-03-12 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage |
US5598720A (en) * | 1995-08-02 | 1997-02-04 | Calmac Manufacturing Corporation | Air bubble heat transfer enhancement system coolness storage apparatus |
US5685289A (en) * | 1994-10-04 | 1997-11-11 | Yeda Research And Development Co., Ltd. | Heat storage device |
US5687706A (en) * | 1995-04-25 | 1997-11-18 | University Of Florida | Phase change material storage heater |
US5755104A (en) * | 1995-12-28 | 1998-05-26 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage, and defrost cycles for same |
US5773796A (en) * | 1997-02-13 | 1998-06-30 | D&K Custom Machine Design, Inc. | Heated roller assembly |
US6059016A (en) * | 1994-08-11 | 2000-05-09 | Store Heat And Produce Energy, Inc. | Thermal energy storage and delivery system |
US6065529A (en) * | 1997-01-10 | 2000-05-23 | Trw Inc. | Embedded heat pipe structure |
US6079481A (en) * | 1997-01-23 | 2000-06-27 | Ail Research, Inc | Thermal storage system |
US6158499A (en) * | 1998-12-23 | 2000-12-12 | Fafco, Inc. | Method and apparatus for thermal energy storage |
US6247522B1 (en) * | 1998-11-04 | 2001-06-19 | Baltimore Aircoil Company, Inc. | Heat exchange members for thermal storage apparatus |
US6302188B1 (en) * | 1998-04-28 | 2001-10-16 | Megtec Systems, Inc. | Multi-layer heat exchange bed containing structured media and randomly packed media |
US6393861B1 (en) * | 1999-09-17 | 2002-05-28 | Robert Levenduski | Thermal storage apparatus and method for air conditioning system |
US6400896B1 (en) * | 1999-07-02 | 2002-06-04 | Trexco, Llc | Phase change material heat exchanger with heat energy transfer elements extending through the phase change material |
US20020162342A1 (en) * | 2001-05-01 | 2002-11-07 | Kuo-Liang Weng | Method for controlling air conditioner/heater by thermal storage |
US20040007011A1 (en) * | 2002-07-09 | 2004-01-15 | Masaaki Tanaka | Cooling system with adsorption refrigerator |
US6725910B2 (en) * | 1997-12-08 | 2004-04-27 | Diamond Electric Mfg. Co., Ltd. | Heat pipe and method for processing the same |
US6742325B2 (en) * | 2002-01-15 | 2004-06-01 | The Boeing Company | Method of generating thrust and electrical power from an optical solar image |
US20040211407A1 (en) * | 2003-04-22 | 2004-10-28 | Tetsuo Terashima | Heat accumulating method and device |
US6880624B1 (en) * | 1999-10-29 | 2005-04-19 | P1 Diamond, Inc. | Heat pipe |
US20050081557A1 (en) * | 2003-10-15 | 2005-04-21 | Mcrell Michael W. | High efficiency refrigerant based energy storage and cooling system |
US6889751B1 (en) * | 2000-10-04 | 2005-05-10 | Modine Manufacturing Company | Latent heat storage device |
US6896040B2 (en) * | 2003-07-18 | 2005-05-24 | Hsu Hul-Chun | Wick structure of heat pipes |
US6904956B2 (en) * | 2002-10-18 | 2005-06-14 | Thomas P. Noel | Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional-parity heat transfer elements in bi-phase heat exchanging composition |
US20050132734A1 (en) * | 2003-10-15 | 2005-06-23 | Ramachandran Narayanamurthy | Refrigeration apparatus |
US20050262870A1 (en) * | 2004-05-25 | 2005-12-01 | Ramachandran Narayanamurthy | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
US7013958B2 (en) * | 2003-04-24 | 2006-03-21 | Thermal Corp. | Sintered grooved wick with particle web |
US7051529B2 (en) * | 2002-12-20 | 2006-05-30 | United Technologies Corporation | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
US7055575B2 (en) * | 2002-10-18 | 2006-06-06 | Noel Thomas P | Thermally active convection apparatus |
US7084518B2 (en) * | 2003-05-08 | 2006-08-01 | United Technologies Corporation | Method and apparatus for solar power conversion |
US7134485B2 (en) * | 2004-07-16 | 2006-11-14 | Hsu Hul-Chun | Wick structure of heat pipe |
US7168480B2 (en) * | 2004-04-29 | 2007-01-30 | Los Alamos National Security, Llc | Off-axis cooling of rotating devices using a crank-shaped heat pipe |
US7207327B2 (en) * | 2004-06-15 | 2007-04-24 | United Technologies Corporation | Feedback control method for a heliostat |
US20070095093A1 (en) * | 2003-10-15 | 2007-05-03 | Ice Energy, Llc | Refrigeration apparatus |
US7220365B2 (en) * | 2001-08-13 | 2007-05-22 | New Qu Energy Ltd. | Devices using a medium having a high heat transfer rate |
US7225860B2 (en) * | 2005-08-03 | 2007-06-05 | Honeywell International, Inc. | Compact heat battery |
US20070175609A1 (en) * | 2006-02-01 | 2007-08-02 | Christ Martin U | Latent heat storage devices |
US7296410B2 (en) * | 2003-12-10 | 2007-11-20 | United Technologies Corporation | Solar power system and method for power generation |
US20080000231A1 (en) * | 2006-06-30 | 2008-01-03 | United Technologies Corporation | High temperature molten salt receiver |
US20080029150A1 (en) * | 2006-08-04 | 2008-02-07 | Solucar, Investigacion y Desarrollo, (Solucar R & D), S.A. | Solar concentrator plant |
US20080034760A1 (en) * | 2006-08-10 | 2008-02-14 | Ice Energy, Inc. | Thermal energy storage and cooling system with isolated external melt cooling |
US20090159242A1 (en) * | 2007-12-19 | 2009-06-25 | Teledyne Licensing, Llc | Heat pipe system |
US20090211732A1 (en) * | 2008-02-21 | 2009-08-27 | Lakhi Nandlal Goenka | Thermal energy exchanger for a heating, ventilating, and air conditioning system |
US20100155032A1 (en) * | 2008-12-22 | 2010-06-24 | Furui Precise Component (Kunshan) Co., Ltd. | Heat pipe and method of making the same |
US20100212656A1 (en) * | 2008-07-10 | 2010-08-26 | Infinia Corporation | Thermal energy storage device |
US7823374B2 (en) * | 2006-08-31 | 2010-11-02 | General Electric Company | Heat transfer system and method for turbine engine using heat pipes |
US20110120673A1 (en) * | 2009-09-17 | 2011-05-26 | Xiaodong Xiang | Systems and methods of thermal transfer and/or storage |
US20110120669A1 (en) * | 2009-09-10 | 2011-05-26 | Hunt Arlon J | Liquid metal thermal storage system |
US20110120452A1 (en) * | 2009-11-20 | 2011-05-26 | Miles Mark W | Solar flux conversion module |
US20110197585A1 (en) * | 2008-09-12 | 2011-08-18 | Internew Electronics S.R.L. | Thermal vector system for solar concentration power plant |
US20110265783A1 (en) * | 2008-12-29 | 2011-11-03 | Helioris Solar Systems Ltd. | solar energy collecting system |
US20110277746A1 (en) * | 2008-11-07 | 2011-11-17 | University Of Ulster | solar water heater |
US20120067551A1 (en) * | 2010-09-20 | 2012-03-22 | California Institute Of Technology | Thermal energy storage using supercritical fluids |
US8151788B2 (en) * | 2007-12-10 | 2012-04-10 | Stephen Glyn Bourne | Wall or roof of a building with at least one heat controlling element |
US20120145144A1 (en) * | 2009-07-23 | 2012-06-14 | W&E International Corp. | Solar cooking appliances |
US20120260656A1 (en) * | 2011-04-15 | 2012-10-18 | Chung-Jen Tseng | Phase-change heat-storage thermal power generation system |
US20120291433A1 (en) * | 2011-05-19 | 2012-11-22 | Ning Meng | Low temperature rankine cycle solar power system with low critical temperature hfc or hc working fluid |
US8378280B2 (en) * | 2007-06-06 | 2013-02-19 | Areva Solar, Inc. | Integrated solar energy receiver-storage unit |
US8448707B2 (en) * | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8459250B2 (en) * | 2008-10-03 | 2013-06-11 | Ail Research Inc. | Solar energy collection |
US8464535B2 (en) * | 2009-10-14 | 2013-06-18 | Infinia Corporation | Systems, apparatus and methods for thermal energy storage, coupling and transfer |
-
2009
- 2009-11-11 US US12/616,419 patent/US20110108020A1/en not_active Abandoned
Patent Citations (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1969187A (en) * | 1932-02-19 | 1934-08-07 | Clifton E Schutt | Heat balancing system |
US3029596A (en) * | 1959-11-17 | 1962-04-17 | Gen Motors Corp | Power plant heat storage arrangement |
US3356828A (en) * | 1964-04-30 | 1967-12-05 | Furness Raymond Francis | Electrically heated heat storage apparatus |
US3508393A (en) * | 1968-09-17 | 1970-04-28 | Donald A Kelly | Low friction stirling engines and chemical heating means |
US3786861A (en) * | 1971-04-12 | 1974-01-22 | Battelle Memorial Institute | Heat pipes |
US3892273A (en) * | 1973-07-09 | 1975-07-01 | Perkin Elmer Corp | Heat pipe lobar wicking arrangement |
US4104185A (en) * | 1975-04-23 | 1978-08-01 | U.S. Philips Corporation | Latent heat accumulator |
US4037650A (en) * | 1975-05-23 | 1977-07-26 | National Research Development Corporation | Thermal storage apparatus |
US4094302A (en) * | 1975-07-29 | 1978-06-13 | Ed. Rohr Ag | Furnace with heat storage elements |
US4188915A (en) * | 1975-12-05 | 1980-02-19 | Dr. C. Otto & Comp. G.M.B.H. | Water-cooled, high-temperature gasifier |
US4137898A (en) * | 1975-12-26 | 1979-02-06 | Tokyo Shibaura Electric Co., Ltd. | Air type solar heating system |
US4138995A (en) * | 1976-08-25 | 1979-02-13 | Yuan Shao W | Solar energy storage and utilization |
US4127161A (en) * | 1977-03-02 | 1978-11-28 | Energy Recycling Company | Energy storage unit and system |
US4191167A (en) * | 1977-04-11 | 1980-03-04 | Vladimir Ignatjev | Solar energy fluid heater |
US4294078A (en) * | 1977-04-26 | 1981-10-13 | Calmac Manufacturing Corporation | Method and system for the compact storage of heat and coolness by phase change materials |
US4421102A (en) * | 1978-05-02 | 1983-12-20 | Mario Posnansky | Process and apparatus for heating a transparent, gaseous medium by means of concentrated solar radiation |
US4405010A (en) * | 1978-06-28 | 1983-09-20 | Sanders Associates, Inc. | Sensible heat storage unit |
US4403645A (en) * | 1978-07-12 | 1983-09-13 | Calmac Manufacturing Corporation | Compact storage of seat and coolness by phase change materials while preventing stratification |
US4441318A (en) * | 1978-08-14 | 1984-04-10 | Alexander Theckston | Method and apparatus for obtaining work from heat energy |
US4248291A (en) * | 1978-10-18 | 1981-02-03 | Seymour Jarmul | Compact thermal energy reservoirs |
US4276872A (en) * | 1978-11-13 | 1981-07-07 | Atlantic Richfield Company | Solar system employing ground level heliostats and solar collectors |
US4262653A (en) * | 1979-05-01 | 1981-04-21 | Neha International | Solar energy heat storage and transfer system |
US4400946A (en) * | 1979-09-07 | 1983-08-30 | Bbc Brown, Boveri & Company Limited | Solar thermal power plant |
US4479353A (en) * | 1979-10-31 | 1984-10-30 | The Babcock & Wilcox Company | Moving bed heat storage and recovery system |
US4541864A (en) * | 1979-12-22 | 1985-09-17 | Mannesmann Demag Ag | Method and apparatus for recovery and recycling of heat from hot gases |
US4285389A (en) * | 1979-12-26 | 1981-08-25 | Horton Jack F | Thermal energy storage apparatus |
US4321962A (en) * | 1980-04-08 | 1982-03-30 | Doty Francis D | Sub-basement sensible heat storage for solar energy |
US4351388A (en) * | 1980-06-13 | 1982-09-28 | Mcdonnell Douglas Corporation | Inverted meniscus heat pipe |
US4739748A (en) * | 1980-10-06 | 1988-04-26 | Stice James D | Solar collector storage system and method |
US4463799A (en) * | 1980-10-29 | 1984-08-07 | Agency Of Industrial Science Technology, Ministry Of International Trade & Industry | Heat storage medium for latent heat thermal energy storage unit |
US4343989A (en) * | 1980-11-24 | 1982-08-10 | Brosnan Denis A | Magnesium oxide based heat storage device |
US4362149A (en) * | 1980-12-08 | 1982-12-07 | Rockwell International Corporation | Heat storage system and method |
US4392480A (en) * | 1981-03-12 | 1983-07-12 | Wayne Vautrin | Heat storage and delivery apparatus |
US4491172A (en) * | 1981-04-22 | 1985-01-01 | Thermal Energy Storage, Inc. | Energy storage apparatus |
US4380154A (en) * | 1981-06-23 | 1983-04-19 | Thermacore, Inc. | Clean coal power system |
US4386501A (en) * | 1981-07-29 | 1983-06-07 | Martin Marietta Corporation | Heat pump using liquid ammoniated ammonium chloride, and thermal storage system |
US4474170A (en) * | 1981-08-06 | 1984-10-02 | The United States Of America As Represented By The United States Department Of Energy | Glass heat pipe evacuated tube solar collector |
US4727930A (en) * | 1981-08-17 | 1988-03-01 | The Board Of Regents Of The University Of Washington | Heat transfer and storage system |
US4523636A (en) * | 1982-09-20 | 1985-06-18 | Stirling Thermal Motors, Inc. | Heat pipe |
US4505953A (en) * | 1983-02-16 | 1985-03-19 | Pennwalt Corporation | Method for preparing encapsulated phase change materials |
US4504402A (en) * | 1983-06-13 | 1985-03-12 | Pennwalt Corporation | Encapsulated phase change thermal energy _storage materials |
US4782890A (en) * | 1986-04-23 | 1988-11-08 | Showa Aluminum Corporation | Heat pipe |
US4809771A (en) * | 1987-04-24 | 1989-03-07 | The United States Of America As Represented By The Secretary Of The Air Force | Lih thermal storage capsule/heat exchanger |
US4903761A (en) * | 1987-06-03 | 1990-02-27 | Lockheed Missiles & Space Company, Inc. | Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system |
US4890668A (en) * | 1987-06-03 | 1990-01-02 | Lockheed Missiles & Space Company, Inc. | Wick assembly for self-regulated fluid management in a pumped two-phase heat transfer system |
US4873038A (en) * | 1987-07-06 | 1989-10-10 | Lanxide Technology Comapny, Lp | Method for producing ceramic/metal heat storage media, and to the product thereof |
US4807696A (en) * | 1987-12-10 | 1989-02-28 | Triangle Research And Development Corp. | Thermal energy storage apparatus using encapsulated phase change material |
US4827735A (en) * | 1988-04-07 | 1989-05-09 | Off-Peak Devices, Inc. | Off peak storage device |
US4838346A (en) * | 1988-08-29 | 1989-06-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Reusable high-temperature heat pipes and heat pipe panels |
US4993481A (en) * | 1988-10-03 | 1991-02-19 | The Agency Of Industrial Science And Technology | Thermal storage unit |
US4954463A (en) * | 1988-12-12 | 1990-09-04 | Dresser Industries, Inc. | Magnesium aluminate spinel refractory |
US5036904A (en) * | 1989-12-04 | 1991-08-06 | Chiyoda Corporation | Latent heat storage tank |
US5000252A (en) * | 1990-02-22 | 1991-03-19 | Wright State University | Thermal energy storage system |
US5077103A (en) * | 1990-06-25 | 1991-12-31 | Rockwell International Corporation | Refractory solid-state heat pipes and heat shields |
US5113659A (en) * | 1991-03-27 | 1992-05-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Solar thermal energy receiver |
US5161607A (en) * | 1991-08-19 | 1992-11-10 | Chao Wen Hua | Thermal storage device for interacting with a circulating coolant in an air conditioning system |
US5255526A (en) * | 1992-03-18 | 1993-10-26 | Fischer Harry C | Multi-mode air conditioning unit with energy storage system |
US5220954A (en) * | 1992-10-07 | 1993-06-22 | Shape, Inc. | Phase change heat exchanger |
US5497629A (en) * | 1993-03-23 | 1996-03-12 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage |
US5441097A (en) * | 1993-05-19 | 1995-08-15 | Chiyoda Corporation | Heat storage tank equipped with heat storage members and fabrication process for the same |
US6059016A (en) * | 1994-08-11 | 2000-05-09 | Store Heat And Produce Energy, Inc. | Thermal energy storage and delivery system |
US5685289A (en) * | 1994-10-04 | 1997-11-11 | Yeda Research And Development Co., Ltd. | Heat storage device |
US5687706A (en) * | 1995-04-25 | 1997-11-18 | University Of Florida | Phase change material storage heater |
US5598720A (en) * | 1995-08-02 | 1997-02-04 | Calmac Manufacturing Corporation | Air bubble heat transfer enhancement system coolness storage apparatus |
US5755104A (en) * | 1995-12-28 | 1998-05-26 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage, and defrost cycles for same |
US6065529A (en) * | 1997-01-10 | 2000-05-23 | Trw Inc. | Embedded heat pipe structure |
US6079481A (en) * | 1997-01-23 | 2000-06-27 | Ail Research, Inc | Thermal storage system |
US5773796A (en) * | 1997-02-13 | 1998-06-30 | D&K Custom Machine Design, Inc. | Heated roller assembly |
US6725910B2 (en) * | 1997-12-08 | 2004-04-27 | Diamond Electric Mfg. Co., Ltd. | Heat pipe and method for processing the same |
US6302188B1 (en) * | 1998-04-28 | 2001-10-16 | Megtec Systems, Inc. | Multi-layer heat exchange bed containing structured media and randomly packed media |
US6247522B1 (en) * | 1998-11-04 | 2001-06-19 | Baltimore Aircoil Company, Inc. | Heat exchange members for thermal storage apparatus |
US6158499A (en) * | 1998-12-23 | 2000-12-12 | Fafco, Inc. | Method and apparatus for thermal energy storage |
US6400896B1 (en) * | 1999-07-02 | 2002-06-04 | Trexco, Llc | Phase change material heat exchanger with heat energy transfer elements extending through the phase change material |
US6393861B1 (en) * | 1999-09-17 | 2002-05-28 | Robert Levenduski | Thermal storage apparatus and method for air conditioning system |
US6880624B1 (en) * | 1999-10-29 | 2005-04-19 | P1 Diamond, Inc. | Heat pipe |
US6889751B1 (en) * | 2000-10-04 | 2005-05-10 | Modine Manufacturing Company | Latent heat storage device |
US20020162342A1 (en) * | 2001-05-01 | 2002-11-07 | Kuo-Liang Weng | Method for controlling air conditioner/heater by thermal storage |
US7220365B2 (en) * | 2001-08-13 | 2007-05-22 | New Qu Energy Ltd. | Devices using a medium having a high heat transfer rate |
US6742325B2 (en) * | 2002-01-15 | 2004-06-01 | The Boeing Company | Method of generating thrust and electrical power from an optical solar image |
US20040007011A1 (en) * | 2002-07-09 | 2004-01-15 | Masaaki Tanaka | Cooling system with adsorption refrigerator |
US7055575B2 (en) * | 2002-10-18 | 2006-06-06 | Noel Thomas P | Thermally active convection apparatus |
US6904956B2 (en) * | 2002-10-18 | 2005-06-14 | Thomas P. Noel | Method and thermally active convection apparatus and method for abstracting heat with circulation intermediate three dimensional-parity heat transfer elements in bi-phase heat exchanging composition |
US7299633B2 (en) * | 2002-12-20 | 2007-11-27 | Pratt & Whitney Rocketdyne, Inc. | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
US7051529B2 (en) * | 2002-12-20 | 2006-05-30 | United Technologies Corporation | Solar dish concentrator with a molten salt receiver incorporating thermal energy storage |
US20040211407A1 (en) * | 2003-04-22 | 2004-10-28 | Tetsuo Terashima | Heat accumulating method and device |
US7013958B2 (en) * | 2003-04-24 | 2006-03-21 | Thermal Corp. | Sintered grooved wick with particle web |
US7084518B2 (en) * | 2003-05-08 | 2006-08-01 | United Technologies Corporation | Method and apparatus for solar power conversion |
US6896040B2 (en) * | 2003-07-18 | 2005-05-24 | Hsu Hul-Chun | Wick structure of heat pipes |
US20050081557A1 (en) * | 2003-10-15 | 2005-04-21 | Mcrell Michael W. | High efficiency refrigerant based energy storage and cooling system |
US20050132734A1 (en) * | 2003-10-15 | 2005-06-23 | Ramachandran Narayanamurthy | Refrigeration apparatus |
US20070095093A1 (en) * | 2003-10-15 | 2007-05-03 | Ice Energy, Llc | Refrigeration apparatus |
US7296410B2 (en) * | 2003-12-10 | 2007-11-20 | United Technologies Corporation | Solar power system and method for power generation |
US7168480B2 (en) * | 2004-04-29 | 2007-01-30 | Los Alamos National Security, Llc | Off-axis cooling of rotating devices using a crank-shaped heat pipe |
US20050262870A1 (en) * | 2004-05-25 | 2005-12-01 | Ramachandran Narayanamurthy | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
US7207327B2 (en) * | 2004-06-15 | 2007-04-24 | United Technologies Corporation | Feedback control method for a heliostat |
US7134485B2 (en) * | 2004-07-16 | 2006-11-14 | Hsu Hul-Chun | Wick structure of heat pipe |
US7225860B2 (en) * | 2005-08-03 | 2007-06-05 | Honeywell International, Inc. | Compact heat battery |
US20070175609A1 (en) * | 2006-02-01 | 2007-08-02 | Christ Martin U | Latent heat storage devices |
US20080000231A1 (en) * | 2006-06-30 | 2008-01-03 | United Technologies Corporation | High temperature molten salt receiver |
US20080029150A1 (en) * | 2006-08-04 | 2008-02-07 | Solucar, Investigacion y Desarrollo, (Solucar R & D), S.A. | Solar concentrator plant |
US20080034760A1 (en) * | 2006-08-10 | 2008-02-14 | Ice Energy, Inc. | Thermal energy storage and cooling system with isolated external melt cooling |
US7823374B2 (en) * | 2006-08-31 | 2010-11-02 | General Electric Company | Heat transfer system and method for turbine engine using heat pipes |
US8378280B2 (en) * | 2007-06-06 | 2013-02-19 | Areva Solar, Inc. | Integrated solar energy receiver-storage unit |
US8151788B2 (en) * | 2007-12-10 | 2012-04-10 | Stephen Glyn Bourne | Wall or roof of a building with at least one heat controlling element |
US20090159242A1 (en) * | 2007-12-19 | 2009-06-25 | Teledyne Licensing, Llc | Heat pipe system |
US20090211732A1 (en) * | 2008-02-21 | 2009-08-27 | Lakhi Nandlal Goenka | Thermal energy exchanger for a heating, ventilating, and air conditioning system |
US20100212656A1 (en) * | 2008-07-10 | 2010-08-26 | Infinia Corporation | Thermal energy storage device |
US20110197585A1 (en) * | 2008-09-12 | 2011-08-18 | Internew Electronics S.R.L. | Thermal vector system for solar concentration power plant |
US8459250B2 (en) * | 2008-10-03 | 2013-06-11 | Ail Research Inc. | Solar energy collection |
US20110277746A1 (en) * | 2008-11-07 | 2011-11-17 | University Of Ulster | solar water heater |
US20100155032A1 (en) * | 2008-12-22 | 2010-06-24 | Furui Precise Component (Kunshan) Co., Ltd. | Heat pipe and method of making the same |
US20110265783A1 (en) * | 2008-12-29 | 2011-11-03 | Helioris Solar Systems Ltd. | solar energy collecting system |
US8448707B2 (en) * | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US20120145144A1 (en) * | 2009-07-23 | 2012-06-14 | W&E International Corp. | Solar cooking appliances |
US20110120669A1 (en) * | 2009-09-10 | 2011-05-26 | Hunt Arlon J | Liquid metal thermal storage system |
US20110120673A1 (en) * | 2009-09-17 | 2011-05-26 | Xiaodong Xiang | Systems and methods of thermal transfer and/or storage |
US8464535B2 (en) * | 2009-10-14 | 2013-06-18 | Infinia Corporation | Systems, apparatus and methods for thermal energy storage, coupling and transfer |
US20110120452A1 (en) * | 2009-11-20 | 2011-05-26 | Miles Mark W | Solar flux conversion module |
US20120067551A1 (en) * | 2010-09-20 | 2012-03-22 | California Institute Of Technology | Thermal energy storage using supercritical fluids |
US20120260656A1 (en) * | 2011-04-15 | 2012-10-18 | Chung-Jen Tseng | Phase-change heat-storage thermal power generation system |
US20120291433A1 (en) * | 2011-05-19 | 2012-11-22 | Ning Meng | Low temperature rankine cycle solar power system with low critical temperature hfc or hc working fluid |
Non-Patent Citations (5)
Title |
---|
"Moisture Content and/or Moisture Absorption Rate (Bulk) Printed Board" IPC-TM-650 Test Methods Manual, page 2, 08/2010 * |
"Supperalloys Subject Guide, ASM International, http://www.asminternational.org/portal/site/www/SubjectGuideItem/ * |
Gregory L. Crawford and Joseph Lstiburek, "Steel Doesn't Absorb Water?" Environmental Building News, buildinggreen.com 10/1/2003 * |
Oxford Dictionary definition of "coarse" oxforddictionaries.com/us Oxford University Press * |
Oxford Dictionary definition of "granular" oxforddictionaries.com/us Oxford University Press * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110314812A1 (en) * | 2010-06-24 | 2011-12-29 | Chandrashekhar Sonwane | Thermal storage system |
US8833076B2 (en) * | 2010-06-24 | 2014-09-16 | Aerojet Rocketdyne Of De, Inc. | Thermal storage system |
WO2013064286A1 (en) * | 2011-11-04 | 2013-05-10 | Siemens Aktiengesellschaft | Storage and recovery of thermal energy using heat storage material being filled in a plurality of enclosures |
US9726437B2 (en) | 2011-11-04 | 2017-08-08 | Siemens Aktiengesellschaft | Storage and recovery of thermal energy using heat storage material being filled in a plurality of enclosures |
CN103890324A (en) * | 2011-11-04 | 2014-06-25 | 西门子公司 | Storage and recovery of thermal energy using heat storage material being filled in a plurality of enclosures |
EP2589762A1 (en) * | 2011-11-04 | 2013-05-08 | Siemens Aktiengesellschaft | Storage and recovery of thermal energy using heat storage material being filled in a plurality of enclosures |
FR2990502A1 (en) * | 2012-05-09 | 2013-11-15 | Commissariat Energie Atomique | HEAT STORAGE TANK WITH IMPROVED THERMAL STRATIFICATION |
WO2013167538A1 (en) * | 2012-05-09 | 2013-11-14 | Commissariat à l'énergie atomique et aux énergies alternatives | Heat storage tank with improved thermal stratification |
WO2014128327A1 (en) * | 2013-02-20 | 2014-08-28 | Sener, Ingeniería Y Sistemas, S.A. | Cogeneration method for electric and thermal energy production from thermosolar energy |
WO2017057261A1 (en) * | 2015-09-30 | 2017-04-06 | 日立造船株式会社 | Steam generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials | |
Zhang et al. | Thermal energy storage: Recent developments and practical aspects | |
Medrano et al. | State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies | |
Vasu et al. | Corrosion effect of phase change materials in solar thermal energy storage application | |
JP5922577B2 (en) | Energy system for residential facilities support | |
Liu et al. | Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems | |
Regin et al. | Heat transfer characteristics of thermal energy storage system using PCM capsules: a review | |
Alva et al. | An overview of thermal energy storage systems | |
US6877508B2 (en) | Expansion bellows for use in solar molten salt piping and valves | |
US9841243B2 (en) | Thermal energy storage system combining sensible heat solid material and phase change material | |
US9541070B2 (en) | Plant for energy production | |
US4104883A (en) | Mass transport heat exchanger method and apparatus for use in ocean thermal energy exchange power plants | |
ES2619639T3 (en) | Energy storage and transport | |
Chung et al. | Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer | |
ES2361218T3 (en) | Two temperature energy storage tank. | |
Liu et al. | Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies | |
US7971437B2 (en) | Thermal energy storage systems and methods | |
AU2011298700C1 (en) | Heat store | |
BR112012027817B1 (en) | DEVICE FOR STORAGE AND TRANSFER OF THERMAL ENERGY, PLANT TO PRODUCE STEAM OR HEAT FOR INDUSTRIAL USES AND SUBSEQUENT THERMAL ENERGY EXCHANGE METHOD | |
Stutz et al. | Storage of thermal solar energy | |
US4192144A (en) | Direct contact heat exchanger with phase change of working fluid | |
Vignarooban et al. | Heat transfer fluids for concentrating solar power systems–a review | |
ES2699649T3 (en) | Solar energy collector device | |
US8464535B2 (en) | Systems, apparatus and methods for thermal energy storage, coupling and transfer | |
US20090211249A1 (en) | Installation for generating electrical energy from solar energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HAMILTON SUNDSTRAND CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCENERNEY, BRYAN WILLIAM;ZILLMER, ANDREW J.;REEL/FRAME:023502/0509 Effective date: 20091110 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CARO Free format text: SECURITY AGREEMENT;ASSIGNOR:PRATT & WHITNEY ROCKETDYNE, INC.;REEL/FRAME:030628/0408 Effective date: 20130614 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:PRATT & WHITNEY ROCKETDYNE, INC.;REEL/FRAME:030656/0615 Effective date: 20130614 |
|
AS | Assignment |
Owner name: AEROJET ROCKETDYNE OF DE, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:PRATT & WHITNEY ROCKETDYNE, INC.;REEL/FRAME:033072/0180 Effective date: 20130617 Owner name: PRATT & WHITNEY ROCKETDYNE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMILTON SUNDSTRAND CORP;REEL/FRAME:033003/0058 Effective date: 20130125 |
|
AS | Assignment |
Owner name: SOLARRESERVE TECHNOLOGY, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AEROJET ROCKETDYNE OF DE;REEL/FRAME:034530/0978 Effective date: 20141009 |
|
AS | Assignment |
Owner name: AEROJET ROCKETDYNE OF DE, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:036666/0103 Effective date: 20141021 |
|
AS | Assignment |
Owner name: AEROJET ROCKETDYNE OF DE, INC. (F/K/A PRATT & WHIT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION;REEL/FRAME:039597/0890 Effective date: 20160715 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |