US20110097649A1 - Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same - Google Patents

Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same Download PDF

Info

Publication number
US20110097649A1
US20110097649A1 US12/608,208 US60820809A US2011097649A1 US 20110097649 A1 US20110097649 A1 US 20110097649A1 US 60820809 A US60820809 A US 60820809A US 2011097649 A1 US2011097649 A1 US 2011097649A1
Authority
US
United States
Prior art keywords
electromagnetic wave
carrier
attachment
opening portion
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/608,208
Inventor
Motoki Imamura
Shigeki Nishina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Assigned to ADVANTEST CORPORATION reassignment ADVANTEST CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IMAMURA, MOTOKI, NISHINA, SHIGEKI
Publication of US20110097649A1 publication Critical patent/US20110097649A1/en
Priority to US13/679,081 priority Critical patent/US8969807B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to measurement of a density of a catalyst or promoter component in a carrier to which the catalyst or promoter is attached using an electromagnetic wave (frequency thereof is equal to or more than 0.01 [THz], and equal to or less than 100 [THz]) (such as a terahertz wave (frequency thereof is equal to or more than 0.03 [THz], and equal to or less than 10 [THz]), for example).
  • an electromagnetic wave frequency thereof is equal to or more than 0.01 [THz], and equal to or less than 100 [THz]
  • a terahertz wave frequency thereof is equal to or more than 0.03 [THz], and equal to or less than 10 [THz]
  • a carrier made of a ceramic has been immersed in a solution or suspension of a catalyst or promoter, the catalyst or promoter attaches to the carrier, and an oxidation catalyst for automobiles and the like and an electrode for a fuel cell are then obtained.
  • a carrier includes: an attachment hole to which a predetermined component attaches; and a non-attachment hole to which the predetermined component does not attach.
  • a predetermined component attaches to an attachment hole.
  • the predetermined component does not attach to a non-attachment hole.
  • the direction of an extension of the attachment hole and the direction of an extension of the non-attachment hole may be parallel with each other.
  • the carrier according to the present invention may includes two end surfaces that are parallel with each other, wherein the attachment hole and the non-attachment hole open on the two end surfaces.
  • the present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, the method of manufacturing the carrier including: a step of closing the first opening portion and the second opening portion of a part of the plurality of holes; and a step of immersing the carrier in a liquid in which the predetermined component is present.
  • the present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and a first end surface on which the first opening portion opens, the method of manufacturing the carrier including: a step of closing the first opening portion of a part of the plurality of holes; and a step of splaying, toward the first end surface, a liquid in which the predetermined component is present.
  • the present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, a first end surface on which the first opening portion opens, and a second end surface on which the second opening portion opens, the method of manufacturing the carrier including: a step of closing the second opening portion of a part of the plurality of holes; and a step of immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is higher than the second end surface and lower than the first end surface.
  • the present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and a first end surface on which the first opening portion opens, the method of manufacturing the carrier including: a step of immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is lower than the first opening portion of a part of the plurality of holes.
  • an attachment quantity measurement device includes: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; a reference value deriving unit that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving unit that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving unit, a weight or a density of the predetermined component present in the attachment hole.
  • an electromagnetic wave output device outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention.
  • An electromagnetic wave detector detects the electromagnetic wave to be measured which has transmitted through the carrier.
  • a reference value deriving unit derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole.
  • An attachment quantity deriving unit derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving unit, a weight or a density of the predetermined component present in the attachment hole.
  • the attachment quantity measurement device of the present invention includes: a rotational drive unit that rotates the carrier or a travel direction of the electromagnetic wave to be measured while a line in a direction perpendicular to the travel direction of the electromagnetic wave to be measured is set as a rotational axis; and a linear drive unit that moves the carrier or the travel direction of the electromagnetic wave to be measured in a direction perpendicular to the travel direction of the electromagnetic wave to be measured and the rotational axis, wherein the detection is carried out by the electromagnetic wave detector while the rotational drive unit and the linear drive unit are operating.
  • the present invention is an attachment quantity measurement method using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement method including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • the present invention is a program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement process including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • the present invention is a computer-readable medium having a program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement process including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01
  • FIG. 1( a ) is a front view of a carrier 1 according to a first embodiment of the present invention
  • FIG. 1( b ) is a cross-sectional view of a part II of the carrier 1 ;
  • FIGS. 2( a ) and 2 ( b ) show a configuration of an attachment quantity measurement device according to the first embodiment, in which FIG. 2( a ) is a plan view and FIG. 2( b ) is a partial front view;
  • FIG. 3( a ) is a front view of the carrier 1 before the attachment of the catalyst 24 according to the second embodiment
  • FIG. 3( b ) is a cross-sectional view of the part II of the carrier 1 ;
  • FIG. 4 is a partial cross-sectional view (corresponding to FIG. 3( b )) of the carrier 1 according to the second embodiment;
  • FIG. 5 shows a partial cross-sectional view (corresponding to FIG. 3( b )) of the carrier 1 according to the third embodiment
  • FIGS. 6( a ) and 6 ( b ) are partial cross-sectional views of the carrier 1 according to the fourth embodiment, in which FIG. 6( a ) is a partial cross-sectional view of the carrier 1 when the carrier 1 is being immersed in the solution 110 (corresponding to FIG. 3( b )), and FIG. 6( b ) is a partial cross-sectional view of the carrier 1 after the immersion in the solution 110 (corresponding to FIG. 3( b )); and
  • FIG. 7 is a front view when the carrier 1 according to the fifth embodiment is immersed in the solution 110 .
  • FIG. 1( a ) is a front view of a carrier 1 according to a first embodiment of the present invention
  • FIG. 1( b ) is a cross-sectional view of a part II of the carrier 1 .
  • the carrier 1 includes a first end surface 1 a, and a second end surface 1 b (refer to FIG. 1( b )).
  • the first end surface 1 a and second end surface 1 b are parallel with each other.
  • the first end surface 1 a and second end surface 1 b are circular (refer to FIG. 1( a )), and the carrier 1 itself is cylindrical.
  • the carrier 1 is made of a ceramic.
  • the carrier 1 includes attachment holes 12 and non-attachment holes 14 .
  • the attachment holes 12 and non-attachment holes 14 are shown only in a vicinity of the center (the same applies to FIGS. 3( a ), 3 ( b ), and 7 ).
  • non-attachment holes 14 are arranged approximately at the center of the first end surface 1 a in FIG. 1( a ). However, the non-attachment holes 14 may not be arranged approximately at the center of the first end surface 1 a, and may be arranged in a portion close to the periphery of the first end surface 1 a.
  • the attachment holes 12 and the non-attachment holes 14 are separated from each other by partition walls 22 .
  • a predetermined component is attached to the attachment holes 12 (inner surfaces of the partition walls 22 enclosing the attachment holes 12 ).
  • the attached predetermined component is a catalyst 24 , for example.
  • the predetermined component is not attached to the non-attachment holes 14 .
  • the catalyst (predetermined component) 24 attached to the attachment holes 12 serves as a catalyst which purifies an exhaust gas passing through the attachment holes 12 .
  • the catalyst (predetermined component) 24 is not attached to the non-attachment holes 14 , and actions such as the purification of the exhaust gas and the like is not expected in the non-attachment holes 14 .
  • the attachment hole 12 and the non-attachment hole 14 are distinguished from each other according to presence/absence of the attachment of the catalyst 24 in FIG. 1 .
  • the number of the types of the catalyst and promoter attached to the carrier 1 is not limited to one, and multiple types of them may be attached.
  • catalysts A, B, and C are attached to the attachment holes 12 , only the catalysts A and B are attached to the non-attachment holes 14 , but the catalyst C is not.
  • the direction of the extension of the attachment holes 12 and that of the non-attachment holes 14 are parallel with each other, and both of them are perpendicular to the first end surface 1 a and the second end surface 1 b.
  • the attachment holes 12 and the non-attachment holes 14 open on the first end surface 1 a as well as on the second end surface 1 b. In other words, the attachment holes 12 and the non-attachment holes 14 pass through the carrier 1 .
  • An exhaust gas or the like flows from the first end surface 1 a into the attachment holes 12 . Then, the catalyst 24 attached to the attachment holes 12 (surfaces on the side of the attachment holes 12 of the partition walls 22 enclosing the attachment holes 12 ) causes a chemical reaction, and the exhaust gas passes through the attachment holes 12 while being purified, and is exhausted from the second end surface 1 b.
  • the quantity of the catalyst 24 attached to the carrier 1 is measured.
  • FIGS. 2( a ) and 2 ( b ) show a configuration of an attachment quantity measurement device according to the first embodiment, in which FIG. 2( a ) is a plan view and FIG. 2( b ) is a partial front view.
  • the attachment quantity measurement device according to the first embodiment includes an electromagnetic wave output device 2 , an electromagnetic wave detector 4 , a scanning stage (rotational drive unit and a linear drive unit) 6 , a reference value deriving unit 7 , and an attachment quantity deriving unit 8 .
  • FIG. 2( a ) a portion of the non-attachment holes 14 of the carrier 1 (referring to FIG. 1( a ), three by three of non-attachment holes 14 at the center) is designated as a reference area A 0 , and an area other than the reference area A 0 is designated as a collection area A 1 .
  • the carrier 1 , the electromagnetic wave output device 2 , the electromagnetic wave detector 4 , and the scanning stage 6 are shown, and the reference value deriving unit 7 and the attachment quantity deriving unit 8 are omitted in FIG. 2( b ).
  • the electromagnetic wave output device 2 outputs an electromagnetic wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] (referred to as “electromagnetic wave to be measured” hereinafter) toward the carrier 1 .
  • the frequency of the electromagnetic wave to be measured output toward the carrier 1 includes a terahertz wave band (such as equal to or more than 0.03 [THz] and equal to or less than 10 [THz]). According to the embodiment of the present invention, it is assumed that a terahertz wave is employed as an example of the electromagnetic wave to be measured.
  • the terahertz wave output to the carrier 1 transmits through the carrier 1 .
  • the electromagnetic wave detector 4 detects the electromagnetic wave to be measured (such as a terahertz wave) which has transmitted through the carrier 1 .
  • the scanning stage (rotational drive unit and linear drive unit) 6 rotates the carrier 1 while a line Z orthogonal to the travel direction of the electromagnetic wave to be measured is set as a rotational axis (rotation in a ⁇ direction). It should be noted that the electromagnetic wave output device 2 and the electromagnetic wave detector 4 may be rotated while the line Z is set as a rotational axis (which corresponds to the rotation of the travel direction of the electromagnetic wave to be measured).
  • the scanning stage 6 moves the carrier 1 in a direction X orthogonal to the travel direction of the electromagnetic wave to be measured and to the rotational axis Z (movement in the X direction). It should be noted that the electromagnetic wave output device 2 and the electromagnetic wave detector 4 may be moved in the X direction (which corresponds to the movement of the travel direction of the electromagnetic wave to be measured).
  • the reference value deriving unit 7 derives, based on a result detected by the electromagnetic wave detector 4 , any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes 14 .
  • the absorption rate and the like of the terahertz wave in the non-attachment holes 14 can be derived by the widely-known computer tomography (CT).
  • the attachment quantity deriving unit 8 derives, based on the result detected by the electromagnetic wave detector 4 and the result derived by the reference value deriving unit 7 , a weight (unit thereof is [g], for example) or a density (unit thereof [g/l] (weight per liter), for example) of the catalyst 24 present in the attachment holes 12 .
  • the absorption rate of the terahertz wave when the density of the catalyst 24 is 0 is denoted by ⁇ 0
  • an increase rate of the absorption rate of the terahertz wave with respect to the density of the catalyst 24 is denoted by ⁇
  • the absorption rate of the terahertz wave in the attachment holes 12 is denoted by ⁇ .
  • the density of the catalyst 24 is represented as ( ⁇ 0)/ ⁇ . It should be noted that ⁇ is obtained in advance, and is recorded in the attachment quantity deriving unit 8 .
  • the attachment quantity deriving unit 8 can acquire ⁇ 0 from the reference value deriving unit 7 .
  • the attachment quantity deriving unit 8 derives a distribution of the absorption rate ⁇ of the terahertz wave in the attachment holes 12 from the result detected by the electromagnetic wave detector 4 by the widely-known CT.
  • the attachment quantity deriving unit 8 assigns ⁇ , ⁇ 0, and ⁇ to ( ⁇ 0)/ ⁇ , thereby deriving a distribution of the density of the catalyst 24 present in the attachment holes 12 .
  • the reference value deriving unit 7 and the attachment quantity deriving unit 8 may be realize in the following manner.
  • a computer is provided with a CPU, a hard disk, and a media (such as a floppy disk (registered trade mark) and a CD-ROM) reader, and the media reader is caused to read a medium recording a program realizing the reference value deriving unit 7 and the attachment quantity deriving unit 8 , thereby installing the program on the hard disk.
  • This method may also realize the above-described functions.
  • the non-attachment holes 14 exist inside the carrier 1 to be measured, an error caused by a passage of time and an error caused by an individual difference of the carrier 1 can be neglected.
  • the characteristics (such as the absorption rate) of the terahertz wave can be precisely measured when the density of the catalyst 24 is zero in the carrier 1 to which the catalyst 24 attaches.
  • the distribution of the density of the catalyst 24 in the carrier 1 can be precisely derived.
  • a second embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process to place closing members 30 on the first end surface 1 a and the second end surface 1 b of the carrier 1 .
  • FIG. 3( a ) is a front view of the carrier 1 before the attachment of the catalyst 24 according to the second embodiment
  • FIG. 3( b ) is a cross-sectional view of the part II of the carrier 1 .
  • the carrier 1 before the attachment of the catalyst 24 includes multiple holes 10 .
  • the hole 10 includes a first opening portion 10 a and a second opening portion 10 b on the opposite side of the first opening portion 10 a.
  • the first opening portion 10 a opens on the first end surface 1 a.
  • the second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as an arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a ).
  • a hole 10 to which the catalyst 24 is attached is the attachment hole 12 .
  • a hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14 .
  • the first opening portions 10 a and the second opening portions 10 b of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a ) and 3 ( a )) of the multiple holes 10 are closed by the closing member 30 .
  • FIG. 3( a ) shows the closing member 30 resting on the first end surface 1 a, the closing member 30 is similarly placed on the second end surface 1 b.
  • FIG. 4 is a partial cross-sectional view (corresponding to FIG. 3( b )) of the carrier 1 according to the second embodiment.
  • a container 100 stores a solution 110 in which a catalyst or promoter is dissolved as a solute.
  • a catalyst used for automobiles such as three-way catalyst, oxidation catalyst, and reduction catalyst
  • a promoter is dissolved as the solute.
  • a catalyst or promoter used as an electrode of a fuel cell is dissolved as a solute. This holds true for the solution 110 according to third to fifth embodiments.
  • the carrier 1 is immersed in the solution 110 .
  • the liquid surface of the solution 110 is preferably higher than the first end surface 1 a and the second end surface 1 b.
  • the solution 110 flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 4 ).
  • the catalyst 24 which is the solute of the solution 110 , attaches to (the partition walls 22 enclosing) these holes 10 , resulting in the attachment holes 12 .
  • the carrier 1 manufactured in this way becomes the carrier 1 as shown in FIG. 1 .
  • the solution 110 in which the catalyst C is used as a solute, is used in the process 2-2.
  • solutes of the solution 110 in which the carrier 1 without the closing by the closing members 30 is immersed are the catalyst A and catalyst B.
  • the solute of the solution 110 is the catalyst 24 .
  • a suspension in which the catalyst 24 is distributed may be used.
  • the solution 110 or the suspension may be used as long as the catalyst (predetermined component) 24 is present therein (the same holds true for the third to fifth embodiments).
  • the third embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process of placing the closing member 30 on the first end surface 1 a of the carrier 1 , and a process of spraying a solution.
  • the carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10 .
  • the hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a.
  • the first opening portion 10 a opens on the first end surface 1 a.
  • the second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as the arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a ).
  • a hole 10 to which the catalyst 24 is attached is the attachment hole 12 .
  • a hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14 .
  • FIG. 5 shows a partial cross-sectional view (corresponding to FIG. 3( b )) of the carrier 1 according to the third embodiment.
  • the first opening portions 10 a of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a ) and 3 ( a )) of the multiple holes 10 are closed by the closing member 30 . It should be noted it is not necessary to place the closing member 30 on the second end surface 1 b.
  • the solution flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 4 .).
  • the catalyst 24 which is the solute of the solution 110 , attaches to (the partition walls 22 enclosing) these holes 10 , resulting in the attachment holes 12 .
  • the carrier 1 manufactured in this way becomes the carrier 1 as shown in FIG. 1 .
  • the fourth embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process of placing the closing member 30 on the second end surface 1 b of the carrier 1 , and a process of immersing the carrier 1 in the solution.
  • the carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10 .
  • the hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a.
  • the first opening portion 10 a opens on the first end surface 1 a.
  • the second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as the arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a ).
  • a hole 10 to which the catalyst 24 is attached is the attachment hole 12 .
  • a hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14 .
  • the second opening portions 10 b of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a ) and 3 ( a )) of the multiple holes 10 are closed by the closing member 30 . It should be noted it is not necessary to place the closing member 30 on the first end surface 1 a.
  • FIGS. 6( a ) and 6 ( b ) are partial cross-sectional views of the carrier 1 according to the fourth embodiment, in which FIG. 6( a ) is a partial cross-sectional view of the carrier 1 when the carrier 1 is being immersed in the solution 110 (corresponding to FIG. 3( b )), and FIG. 6( b ) is a partial cross-sectional view of the carrier 1 after the immersion in the solution 110 (corresponding to FIG. 3( b )).
  • the container 100 stores the solution 110 in which a catalyst or a promoter is dissolved as a solute. After the closing member 30 is placed on the second end surface 1 b, the carrier 1 is immersed in the solution 110 . It should be noted that the liquid surface of the solution 110 is configured so as to be higher than the second end surface 1 b, and so as to be lower than the first end surface 1 a.
  • the solution 110 flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 6( a )).
  • the catalyst 24 which is the solute of the solution 110 , attaches to (the partition walls 22 enclosing) these holes 10 , resulting in the attachment holes 12 .
  • the liquid surface of the solution 110 reaches only a mid level of the holes 10 , and the catalyst 24 thus reaches only the mid level of the holes 10 (refer to FIG. 6( b )).
  • the state of the carrier 1 manufactured in this way and viewed from the first end surface 1 a is the same as that in FIG. 1( a ). It should be noted that the partial cross-sectional view of the carrier 1 manufactured as described above is like FIG. 6( b ).
  • the cross section of the non-attachment hole 14 is the same as that shown in FIG. 1( a ). However, the cross section of the attachment hole 12 is different from that in FIG. 1( a ), and the catalyst 24 has reached only to the mid level of (the partition walls 22 enclosing) the attachment hole 12 .
  • the fifth embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and the carrier 1 is arranged sideway.
  • FIG. 7 is a front view when the carrier 1 according to the fifth embodiment is immersed in the solution 110 .
  • the carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10 .
  • the hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a.
  • the first opening portion 10 a opens on the first end surface 1 a.
  • the second opening portion 10 b opens on the second end surface 1 b.
  • a hole 10 to which the catalyst 24 is attached is the attachment hole 12 .
  • a hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14 .
  • the container 100 stores the solution 110 in which a catalyst or a promoter is dissolved as a solute.
  • the carrier 1 is immersed in the solution 100 so that the liquid surface of the solution 110 is lower than the first opening portions 10 a of a part of the multiple holes 10 .
  • the carrier 1 is turned sideway, and is immersed in the solution 110 , for example.
  • the solution 110 flows into the holes 10 below the liquid surface of the solution 110 .
  • the catalyst 24 which is the solute of the solution 110 , attaches to (the partition walls 22 enclosing) these holes 10 , resulting in the attachment holes 12 .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention measures a quantity of attachment (such as density) of a material (such as catalyst and promoter) attached to a carrier. A carrier 1 includes attachment holes 12 to which a catalyst 24 attaches, and non-attachment holes 14 to which the catalyst 24 does not attach, where extension directions of the attachment holes 12 and the non-attachment holes 14 are parallel with each other (perpendicular to a first end surface 1 a), and are opened on the first end surface 1 a and a second end surface 1 b. An attachment quantity measurement device includes an electromagnetic wave output device 2 that outputs a terahertz wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward the carrier 1, an electromagnetic wave detector 4 that detects the terahertz wave which has transmitted through the carrier 1, a reference value deriving unit 7 that derives, based on a result detected by the electromagnetic wave detector 4, any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes 14, and an attachment quantity deriving unit 8 that derives, based on the result detected by the electromagnetic wave detector 4 and the result derived by the reference value deriving unit 7, a weight or a density of the catalyst 24 present in the attachment holes 12.

Description

    BACKGROUND ART
  • 1. Field of the Invention
  • The present invention relates to measurement of a density of a catalyst or promoter component in a carrier to which the catalyst or promoter is attached using an electromagnetic wave (frequency thereof is equal to or more than 0.01 [THz], and equal to or less than 100 [THz]) (such as a terahertz wave (frequency thereof is equal to or more than 0.03 [THz], and equal to or less than 10 [THz]), for example).
  • 2. Description of the Prior Art
  • Conventionally, a carrier made of a ceramic has been immersed in a solution or suspension of a catalyst or promoter, the catalyst or promoter attaches to the carrier, and an oxidation catalyst for automobiles and the like and an electrode for a fuel cell are then obtained.
  • It should be noted that the applicant does not know prior art documents describing the measurement of the quantity of the catalyst or promoter (such as density) attached to the carrier.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to measure a quantity of attachment (such as density) of a material (such as catalyst and promoter) attached to a carrier.
  • According to the present invention, a carrier includes: an attachment hole to which a predetermined component attaches; and a non-attachment hole to which the predetermined component does not attach.
  • According to the thus constructed carrier, a predetermined component attaches to an attachment hole. The predetermined component does not attach to a non-attachment hole.
  • According to the carrier of the present invention, the direction of an extension of the attachment hole and the direction of an extension of the non-attachment hole may be parallel with each other.
  • The carrier according to the present invention may includes two end surfaces that are parallel with each other, wherein the attachment hole and the non-attachment hole open on the two end surfaces.
  • The present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, the method of manufacturing the carrier including: a step of closing the first opening portion and the second opening portion of a part of the plurality of holes; and a step of immersing the carrier in a liquid in which the predetermined component is present.
  • The present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and a first end surface on which the first opening portion opens, the method of manufacturing the carrier including: a step of closing the first opening portion of a part of the plurality of holes; and a step of splaying, toward the first end surface, a liquid in which the predetermined component is present.
  • The present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, a first end surface on which the first opening portion opens, and a second end surface on which the second opening portion opens, the method of manufacturing the carrier including: a step of closing the second opening portion of a part of the plurality of holes; and a step of immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is higher than the second end surface and lower than the first end surface.
  • The present invention is a method of manufacturing the carrier of the present invention, wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and a first end surface on which the first opening portion opens, the method of manufacturing the carrier including: a step of immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is lower than the first opening portion of a part of the plurality of holes.
  • According to the present invention, an attachment quantity measurement device includes: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; a reference value deriving unit that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving unit that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving unit, a weight or a density of the predetermined component present in the attachment hole.
  • According to the thus constructed attachment quantity measurement device, an electromagnetic wave output device outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention. An electromagnetic wave detector detects the electromagnetic wave to be measured which has transmitted through the carrier. A reference value deriving unit derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole. An attachment quantity deriving unit derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving unit, a weight or a density of the predetermined component present in the attachment hole.
  • According to the present invention, the attachment quantity measurement device of the present invention, includes: a rotational drive unit that rotates the carrier or a travel direction of the electromagnetic wave to be measured while a line in a direction perpendicular to the travel direction of the electromagnetic wave to be measured is set as a rotational axis; and a linear drive unit that moves the carrier or the travel direction of the electromagnetic wave to be measured in a direction perpendicular to the travel direction of the electromagnetic wave to be measured and the rotational axis, wherein the detection is carried out by the electromagnetic wave detector while the rotational drive unit and the linear drive unit are operating.
  • The present invention is an attachment quantity measurement method using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement method including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • The present invention is a program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement process including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • The present invention is a computer-readable medium having a program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier of the present invention; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; the attachment quantity measurement process including: a reference value deriving step that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and an attachment quantity deriving step that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1( a) is a front view of a carrier 1 according to a first embodiment of the present invention, and FIG. 1( b) is a cross-sectional view of a part II of the carrier 1;
  • FIGS. 2( a) and 2(b) show a configuration of an attachment quantity measurement device according to the first embodiment, in which FIG. 2( a) is a plan view and FIG. 2( b) is a partial front view;
  • FIG. 3( a) is a front view of the carrier 1 before the attachment of the catalyst 24 according to the second embodiment, and FIG. 3( b) is a cross-sectional view of the part II of the carrier 1;
  • FIG. 4 is a partial cross-sectional view (corresponding to FIG. 3( b)) of the carrier 1 according to the second embodiment;
  • FIG. 5 shows a partial cross-sectional view (corresponding to FIG. 3( b)) of the carrier 1 according to the third embodiment;
  • FIGS. 6( a) and 6(b) are partial cross-sectional views of the carrier 1 according to the fourth embodiment, in which FIG. 6( a) is a partial cross-sectional view of the carrier 1 when the carrier 1 is being immersed in the solution 110 (corresponding to FIG. 3( b)), and FIG. 6( b) is a partial cross-sectional view of the carrier 1 after the immersion in the solution 110 (corresponding to FIG. 3( b)); and
  • FIG. 7 is a front view when the carrier 1 according to the fifth embodiment is immersed in the solution 110.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • A description will now be given of embodiments of the present invention with reference to drawings.
  • First Embodiment
  • FIG. 1( a) is a front view of a carrier 1 according to a first embodiment of the present invention, and FIG. 1( b) is a cross-sectional view of a part II of the carrier 1.
  • The carrier 1 according to the first embodiment includes a first end surface 1 a, and a second end surface 1 b (refer to FIG. 1( b)). The first end surface 1 a and second end surface 1 b are parallel with each other. The first end surface 1 a and second end surface 1 b are circular (refer to FIG. 1( a)), and the carrier 1 itself is cylindrical. The carrier 1 is made of a ceramic.
  • The carrier 1 according to the first embodiment includes attachment holes 12 and non-attachment holes 14. In FIG. 1( a), the attachment holes 12 and non-attachment holes 14 are shown only in a vicinity of the center (the same applies to FIGS. 3( a), 3(b), and 7).
  • It should be noted that the non-attachment holes 14 are arranged approximately at the center of the first end surface 1 a in FIG. 1( a). However, the non-attachment holes 14 may not be arranged approximately at the center of the first end surface 1 a, and may be arranged in a portion close to the periphery of the first end surface 1 a.
  • The attachment holes 12 and the non-attachment holes 14 are separated from each other by partition walls 22.
  • A predetermined component is attached to the attachment holes 12 (inner surfaces of the partition walls 22 enclosing the attachment holes 12). The attached predetermined component is a catalyst 24, for example. The predetermined component is not attached to the non-attachment holes 14. The catalyst (predetermined component) 24 attached to the attachment holes 12 serves as a catalyst which purifies an exhaust gas passing through the attachment holes 12. The catalyst (predetermined component) 24 is not attached to the non-attachment holes 14, and actions such as the purification of the exhaust gas and the like is not expected in the non-attachment holes 14.
  • It should be noted that the attachment hole 12 and the non-attachment hole 14 are distinguished from each other according to presence/absence of the attachment of the catalyst 24 in FIG. 1. On this occasion, the number of the types of the catalyst and promoter attached to the carrier 1 is not limited to one, and multiple types of them may be attached. For example, while catalysts A, B, and C are attached to the attachment holes 12, only the catalysts A and B are attached to the non-attachment holes 14, but the catalyst C is not.
  • The direction of the extension of the attachment holes 12 and that of the non-attachment holes 14 are parallel with each other, and both of them are perpendicular to the first end surface 1 a and the second end surface 1 b.
  • The attachment holes 12 and the non-attachment holes 14 open on the first end surface 1 a as well as on the second end surface 1 b. In other words, the attachment holes 12 and the non-attachment holes 14 pass through the carrier 1.
  • It is assumed that the number of the non-attachment holes 14 is extremely lower than that of the attachment holes 12. As a result, a decrease in performance (such as the purification of the exhaust gas) of the carrier 1 due to the presence of the non-attachment holes 14 is negligible.
  • A description will now be given of a usage of the carrier 1 according to the first embodiment.
  • An exhaust gas or the like flows from the first end surface 1 a into the attachment holes 12. Then, the catalyst 24 attached to the attachment holes 12 (surfaces on the side of the attachment holes 12 of the partition walls 22 enclosing the attachment holes 12) causes a chemical reaction, and the exhaust gas passes through the attachment holes 12 while being purified, and is exhausted from the second end surface 1 b.
  • It should be noted that, before (or after) the carrier 1 is used as described above, the quantity of the catalyst 24 attached to the carrier 1 is measured.
  • FIGS. 2( a) and 2(b) show a configuration of an attachment quantity measurement device according to the first embodiment, in which FIG. 2( a) is a plan view and FIG. 2( b) is a partial front view. The attachment quantity measurement device according to the first embodiment includes an electromagnetic wave output device 2, an electromagnetic wave detector 4, a scanning stage (rotational drive unit and a linear drive unit) 6, a reference value deriving unit 7, and an attachment quantity deriving unit 8.
  • In FIG. 2( a), a portion of the non-attachment holes 14 of the carrier 1 (referring to FIG. 1( a), three by three of non-attachment holes 14 at the center) is designated as a reference area A0, and an area other than the reference area A0 is designated as a collection area A1. It should be noted that the carrier 1, the electromagnetic wave output device 2, the electromagnetic wave detector 4, and the scanning stage 6 are shown, and the reference value deriving unit 7 and the attachment quantity deriving unit 8 are omitted in FIG. 2( b).
  • The electromagnetic wave output device 2 outputs an electromagnetic wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] (referred to as “electromagnetic wave to be measured” hereinafter) toward the carrier 1. The frequency of the electromagnetic wave to be measured output toward the carrier 1 includes a terahertz wave band (such as equal to or more than 0.03 [THz] and equal to or less than 10 [THz]). According to the embodiment of the present invention, it is assumed that a terahertz wave is employed as an example of the electromagnetic wave to be measured.
  • The terahertz wave output to the carrier 1 transmits through the carrier 1. The electromagnetic wave detector 4 detects the electromagnetic wave to be measured (such as a terahertz wave) which has transmitted through the carrier 1.
  • The scanning stage (rotational drive unit and linear drive unit) 6 rotates the carrier 1 while a line Z orthogonal to the travel direction of the electromagnetic wave to be measured is set as a rotational axis (rotation in a θ direction). It should be noted that the electromagnetic wave output device 2 and the electromagnetic wave detector 4 may be rotated while the line Z is set as a rotational axis (which corresponds to the rotation of the travel direction of the electromagnetic wave to be measured).
  • The scanning stage 6 moves the carrier 1 in a direction X orthogonal to the travel direction of the electromagnetic wave to be measured and to the rotational axis Z (movement in the X direction). It should be noted that the electromagnetic wave output device 2 and the electromagnetic wave detector 4 may be moved in the X direction (which corresponds to the movement of the travel direction of the electromagnetic wave to be measured).
  • While the scanning stage (rotational drive unit and linear drive unit) 6 is in operation, the detection by the electromagnetic wave detector 4 is carried out.
  • The reference value deriving unit 7 derives, based on a result detected by the electromagnetic wave detector 4, any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes 14. The absorption rate and the like of the terahertz wave in the non-attachment holes 14 can be derived by the widely-known computer tomography (CT).
  • The attachment quantity deriving unit 8 derives, based on the result detected by the electromagnetic wave detector 4 and the result derived by the reference value deriving unit 7, a weight (unit thereof is [g], for example) or a density (unit thereof [g/l] (weight per liter), for example) of the catalyst 24 present in the attachment holes 12.
  • A description will now be given of an example for causing the attachment quantity deriving unit 8 to derive, based on the absorption rate of the terahertz wave in the non-attachment holes 14, the density of the catalyst 24 present in the attachment holes 12.
  • The absorption rate of the terahertz wave when the density of the catalyst 24 is 0 is denoted by α0, an increase rate of the absorption rate of the terahertz wave with respect to the density of the catalyst 24 is denoted by β, and the absorption rate of the terahertz wave in the attachment holes 12 is denoted by α. Then, the density of the catalyst 24 is represented as (α−α0)/β. It should be noted that β is obtained in advance, and is recorded in the attachment quantity deriving unit 8.
  • Since the catalyst 24 is not attached to the non-attachment holes 14, it is considered that the density of the catalyst 24 is 0. Thus, the absorption rate of the terahertz wave in the non-attachment holes 14 derived by the reference value deriving unit 7 is considered as α0. Thus, the attachment quantity deriving unit 8 can acquire α0 from the reference value deriving unit 7.
  • Moreover, the attachment quantity deriving unit 8 derives a distribution of the absorption rate α of the terahertz wave in the attachment holes 12 from the result detected by the electromagnetic wave detector 4 by the widely-known CT.
  • Further, the attachment quantity deriving unit 8 assigns β, α0, and α to (α−α0)/β, thereby deriving a distribution of the density of the catalyst 24 present in the attachment holes 12.
  • As described before, while the catalysts A, B, and C are attached to the attachment holes 12, it is conceivable that only the catalysts A and B are attached to the non-attachment holes 14, but the catalyst C is not. In this case, a distribution of the density of the catalyst C present in the attachment holes 12 is to be derived.
  • It should be noted that the reference value deriving unit 7 and the attachment quantity deriving unit 8 may be realize in the following manner. A computer is provided with a CPU, a hard disk, and a media (such as a floppy disk (registered trade mark) and a CD-ROM) reader, and the media reader is caused to read a medium recording a program realizing the reference value deriving unit 7 and the attachment quantity deriving unit 8, thereby installing the program on the hard disk. This method may also realize the above-described functions.
  • According to the first embodiment, since the non-attachment holes 14 exist inside the carrier 1 to be measured, an error caused by a passage of time and an error caused by an individual difference of the carrier 1 can be neglected. Thus, the characteristics (such as the absorption rate) of the terahertz wave can be precisely measured when the density of the catalyst 24 is zero in the carrier 1 to which the catalyst 24 attaches. As a result, the distribution of the density of the catalyst 24 in the carrier 1 can be precisely derived.
  • Second Embodiment
  • A second embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process to place closing members 30 on the first end surface 1 a and the second end surface 1 b of the carrier 1.
  • FIG. 3( a) is a front view of the carrier 1 before the attachment of the catalyst 24 according to the second embodiment, and FIG. 3( b) is a cross-sectional view of the part II of the carrier 1.
  • The carrier 1 before the attachment of the catalyst 24 includes multiple holes 10. The hole 10 includes a first opening portion 10 a and a second opening portion 10 b on the opposite side of the first opening portion 10 a. The first opening portion 10 a opens on the first end surface 1 a. The second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as an arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a). A hole 10 to which the catalyst 24 is attached is the attachment hole 12. A hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14.
  • (Process 2-1) Process of Closing
  • The first opening portions 10 a and the second opening portions 10 b of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a) and 3(a)) of the multiple holes 10 are closed by the closing member 30. Though FIG. 3( a) shows the closing member 30 resting on the first end surface 1 a, the closing member 30 is similarly placed on the second end surface 1 b.
  • (Process 2.2) Process of Immersing
  • FIG. 4 is a partial cross-sectional view (corresponding to FIG. 3( b)) of the carrier 1 according to the second embodiment.
  • A container 100 stores a solution 110 in which a catalyst or promoter is dissolved as a solute. In the solution 110, a catalyst used for automobiles (such as three-way catalyst, oxidation catalyst, and reduction catalyst) or a promoter is dissolved as the solute. Alternatively, in the solution, a catalyst or promoter used as an electrode of a fuel cell is dissolved as a solute. This holds true for the solution 110 according to third to fifth embodiments.
  • It should be noted that a description will be given of the embodiments of the present invention assuming that the solute of the solution 110 is the catalyst 24.
  • After the closing members 30 are placed on the first end surface 1 a and the second end surface 1 b, the carrier 1 is immersed in the solution 110. It should be noted that the liquid surface of the solution 110 is preferably higher than the first end surface 1 a and the second end surface 1 b.
  • Then, the solution HO will not flow into the holes 10 (three holes 10 at the center in FIG. 4), the first opening portion 10 a and second opening portion 10 b of which are closed by the closing members 30. As a result, these holes 10 become non-attachment holes 14.
  • On the other hand, the solution 110 flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 4). As a result, the catalyst 24, which is the solute of the solution 110, attaches to (the partition walls 22 enclosing) these holes 10, resulting in the attachment holes 12.
  • The carrier 1 manufactured in this way becomes the carrier 1 as shown in FIG. 1.
  • It is conceivable to immerse the carrier 1 in the solution 110 without the closing by the closing members 30 in processes other than the processes 2-1 and 2-2. As a result, it is possible to attach multiple types of catalysts and promoters in the attachment holes 12 and non-attachment holes 14 (the same holds true for the third to fifth embodiments).
  • For example, it is assumed that the solution 110, in which the catalyst C is used as a solute, is used in the process 2-2. Moreover, it is assumed that solutes of the solution 110 in which the carrier 1 without the closing by the closing members 30 is immersed are the catalyst A and catalyst B. As a result, while catalysts A, B, and C are attached to the attachment holes 12, only the catalysts A and B are attached to the non-attachment holes 14, but the catalyst C is not.
  • It should be noted that the description has been given of the embodiment of the present invention assuming that the solute of the solution 110 is the catalyst 24. However, in place of the solution 110, a suspension in which the catalyst 24 is distributed may be used. In other words, the solution 110 or the suspension may be used as long as the catalyst (predetermined component) 24 is present therein (the same holds true for the third to fifth embodiments).
  • Third Embodiment
  • The third embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process of placing the closing member 30 on the first end surface 1 a of the carrier 1, and a process of spraying a solution.
  • The carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10. The hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a. The first opening portion 10 a opens on the first end surface 1 a. The second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as the arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a). A hole 10 to which the catalyst 24 is attached is the attachment hole 12. A hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14.
  • FIG. 5 shows a partial cross-sectional view (corresponding to FIG. 3( b)) of the carrier 1 according to the third embodiment.
  • (Process 3-1) Process of Closing
  • The first opening portions 10 a of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a) and 3(a)) of the multiple holes 10 are closed by the closing member 30. It should be noted it is not necessary to place the closing member 30 on the second end surface 1 b.
  • (Process 3.2) Process of Spraying
  • The solution in which a catalyst or promoter is dissolved as a solute is sprayed from above toward the first end surface 1 a.
  • Then, the solution will not flow into the holes 10 (three holes 10 at the center in FIG. 5) the first opening portions 10 a of which are closed by the closing member 30. As a result, these holes 10 become non-attachment holes 14.
  • On the other hand, the solution flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 4.). As a result, the catalyst 24, which is the solute of the solution 110, attaches to (the partition walls 22 enclosing) these holes 10, resulting in the attachment holes 12.
  • The carrier 1 manufactured in this way becomes the carrier 1 as shown in FIG. 1.
  • Fourth Embodiment
  • The fourth embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and includes a process of placing the closing member 30 on the second end surface 1 b of the carrier 1, and a process of immersing the carrier 1 in the solution.
  • The carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10. The hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a. The first opening portion 10 a opens on the first end surface 1 a. The second opening portion 10 b opens on the second end surface 1 b.
  • An arrangement of the multiple holes 10 on the first end surface 1 a is the same as the arrangement obtained by replacing the attachment holes 12 and the non-attachment holes 14 by the holes 10 in the arrangement shown in FIG. 1( a). A hole 10 to which the catalyst 24 is attached is the attachment hole 12. A hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14.
  • (Process 4-1) Process of Closing
  • The second opening portions 10 b of the part (the three-by-three holes 10 at the center, refer to FIGS. 1( a) and 3(a)) of the multiple holes 10 are closed by the closing member 30. It should be noted it is not necessary to place the closing member 30 on the first end surface 1 a.
  • (Process 4-2) Process of Immersing
  • FIGS. 6( a) and 6(b) are partial cross-sectional views of the carrier 1 according to the fourth embodiment, in which FIG. 6( a) is a partial cross-sectional view of the carrier 1 when the carrier 1 is being immersed in the solution 110 (corresponding to FIG. 3( b)), and FIG. 6( b) is a partial cross-sectional view of the carrier 1 after the immersion in the solution 110 (corresponding to FIG. 3( b)).
  • The container 100 stores the solution 110 in which a catalyst or a promoter is dissolved as a solute. After the closing member 30 is placed on the second end surface 1 b, the carrier 1 is immersed in the solution 110. It should be noted that the liquid surface of the solution 110 is configured so as to be higher than the second end surface 1 b, and so as to be lower than the first end surface 1 a.
  • Then, the solution 110 will not flow into the holes 10 (three holes 10 at the center in FIG. 6( a)) the second opening portions 10 b of which are closed by the closing member 30. As a result, these holes 10 become non-attachment holes 14.
  • On the other hand, the solution 110 flows into the rest of the holes 10 (two holes 10 on both ends in FIG. 6( a)). As a result, the catalyst 24, which is the solute of the solution 110, attaches to (the partition walls 22 enclosing) these holes 10, resulting in the attachment holes 12. However, the liquid surface of the solution 110 reaches only a mid level of the holes 10, and the catalyst 24 thus reaches only the mid level of the holes 10 (refer to FIG. 6( b)).
  • The state of the carrier 1 manufactured in this way and viewed from the first end surface 1 a is the same as that in FIG. 1( a). It should be noted that the partial cross-sectional view of the carrier 1 manufactured as described above is like FIG. 6( b). The cross section of the non-attachment hole 14 is the same as that shown in FIG. 1( a). However, the cross section of the attachment hole 12 is different from that in FIG. 1( a), and the catalyst 24 has reached only to the mid level of (the partition walls 22 enclosing) the attachment hole 12.
  • Fifth Embodiment
  • The fifth embodiment is a method of manufacturing the carrier 1 according to the first embodiment, and the carrier 1 is arranged sideway.
  • FIG. 7 is a front view when the carrier 1 according to the fifth embodiment is immersed in the solution 110.
  • The carrier 1 before the attachment of the catalyst 24 includes the multiple holes 10. The hole 10 includes the first opening portion 10 a and the second opening portion 10 b on the opposite side of the first opening portion 10 a. The first opening portion 10 a opens on the first end surface 1 a. The second opening portion 10 b opens on the second end surface 1 b.
  • A hole 10 to which the catalyst 24 is attached is the attachment hole 12. A hole 10 to which the catalyst 24 is not attached is the non-attachment hole 14.
  • (Process 5-1) Process of Immersing
  • The container 100 stores the solution 110 in which a catalyst or a promoter is dissolved as a solute. The carrier 1 is immersed in the solution 100 so that the liquid surface of the solution 110 is lower than the first opening portions 10 a of a part of the multiple holes 10. In order to achieve this state, it is conceived that the carrier 1 is turned sideway, and is immersed in the solution 110, for example.
  • Then, the solution 110 will not flow into the holes 10 above the liquid surface of the solution 110. As a result, these holes 10 become non-attachment holes 14.
  • On the other hand, the solution 110 flows into the holes 10 below the liquid surface of the solution 110. As a result, the catalyst 24, which is the solute of the solution 110, attaches to (the partition walls 22 enclosing) these holes 10, resulting in the attachment holes 12.

Claims (12)

1. A carrier comprising:
an attachment hole to which a predetermined component attaches; and
a non-attachment hole to which the predetermined component does not attach.
2. The carrier according to claim 1, wherein the direction of an extension of the attachment hole and the direction of an extension of the non-attachment hole are parallel with each other.
3. The carrier according to claim 1, comprising two end surfaces that are parallel with each other, wherein the attachment hole and the non-attachment hole open on the two end surfaces.
4. A method of manufacturing the carrier according to claim 1,
wherein the carrier includes a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion,
the method of manufacturing the carrier comprising:
closing the first opening portion and the second opening portion of a part of the plurality of holes; and
immersing the carrier in a liquid in which the predetermined component is present.
5. A method of manufacturing the carrier according to claim 1,
wherein the carrier includes
a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and
a first end surface on which the first opening portion opens,
the method of manufacturing the carrier comprising:
closing the first opening portion of a part of the plurality of holes; and
splaying, toward the first end surface, a liquid in which the predetermined component is present.
6. A method of manufacturing the carrier according to claim 1,
wherein the carrier includes
a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion,
a first end surface on which the first opening portion opens, and
a second end surface on which the second opening portion opens, the method of manufacturing the carrier comprising:
closing the second opening portion of a part of the plurality of holes; and
immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is higher than the second end surface and lower than the first end surface.
7. A method of manufacturing the carrier according to claim 1,
wherein the carrier includes
a plurality of holes having a first opening portion and a second opening portion on an opposite side with respect to the first opening portion, and
a first end surface on which the first opening portion opens,
the method of manufacturing the carrier comprising:
immersing the carrier in a liquid in which the predetermined component is present such that the liquid surface of the liquid is lower than the first opening portion of a part of the plurality of holes.
8. An attachment quantity measurement device comprising:
an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THzI toward the carrier according to claim 1;
an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier;
a reference value deriving unit that derives, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and
an attachment quantity deriving unit that derives, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving unit, a weight or a density of the predetermined component present in the attachment hole.
9. The attachment quantity measurement device according to claim 8, comprising:
a rotational drive unit that rotates the carrier or a travel direction of the electromagnetic wave to be measured while a line in a direction perpendicular to the travel direction of the electromagnetic wave to be measured is set as a rotational axis; and
a linear drive unit that moves the carrier or the travel direction of the electromagnetic wave to be measured in a direction perpendicular to the travel direction of the electromagnetic wave to be measured and the rotational axis,
wherein the detection is carried out by the electromagnetic wave detector while the rotational drive unit and the linear drive unit are operating.
10. An attachment quantity measurement method using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier according to claim 1; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; said attachment quantity measurement method comprising:
deriving a reference value, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and
deriving an attachment quantity, based on the result detected by the electromagnetic wave detector and the result derived by the reference value deriving step, a weight or a density of the predetermined component present in the attachment hole.
11. A program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including: an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier according to claim 1; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; said attachment quantity measurement process comprising:
deriving a reference value, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and
deriving an attachment quantity, based on the result detected by the electromagnetic wave detector and the result derived by the deriving of the reference value, a weight or a density of the predetermined component present in the attachment hole.
12. A computer-readable medium having a program of instructions for execution by a computer to perform an attachment quantity measurement process using an attachment quantity measurement device including an electromagnetic wave output device that outputs an electromagnetic wave to be measured having a frequency equal to or higher than 0.01 [THz] and equal to or lower than 100 [THz] toward the carrier according to claim 1; and an electromagnetic wave detector that detects the electromagnetic wave to be measured which has transmitted through the carrier; said attachment quantity measurement process comprising:
deriving a reference value, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the electromagnetic wave to be measured in the non-attachment hole; and
deriving an attachment quantity, based on the result detected by the electromagnetic wave detector and the result derived by the deriving of the reference value, a weight or a density of the predetermined component present in the attachment hole.
US12/608,208 2009-10-28 2009-10-29 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same Abandoned US20110097649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/679,081 US8969807B2 (en) 2009-10-28 2012-11-16 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-247872 2009-10-28
JP2009247872A JP2011094514A (en) 2009-10-28 2009-10-28 Carrier, adhesion amount measuring apparatus, measuring method, program and recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/679,081 Division US8969807B2 (en) 2009-10-28 2012-11-16 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same

Publications (1)

Publication Number Publication Date
US20110097649A1 true US20110097649A1 (en) 2011-04-28

Family

ID=43829008

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/608,208 Abandoned US20110097649A1 (en) 2009-10-28 2009-10-29 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same
US13/679,081 Expired - Fee Related US8969807B2 (en) 2009-10-28 2012-11-16 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/679,081 Expired - Fee Related US8969807B2 (en) 2009-10-28 2012-11-16 Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same

Country Status (3)

Country Link
US (2) US20110097649A1 (en)
JP (1) JP2011094514A (en)
DE (1) DE102010042994A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001048A1 (en) * 2009-07-01 2011-01-06 Advantest Corporation Electromagnetic wave measuring apparatus, measuring method, program, and recording medium
JP2016151562A (en) * 2015-02-19 2016-08-22 株式会社Screenホールディングス Measurement device and measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863508A (en) * 1991-04-22 1999-01-26 Corning Incorporated Catalytic reactor system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107744A (en) * 1997-10-07 1999-04-20 Toyota Motor Corp Exhaust gas purification catalyst device
JP4949976B2 (en) 2007-09-03 2012-06-13 トヨタ自動車株式会社 Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
US8319183B2 (en) * 2008-10-31 2012-11-27 Corning Incorporated Methods of characterizing and measuring particulate filter accumulation
US20100235114A1 (en) * 2009-03-10 2010-09-16 Kla-Tencor Corporation Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863508A (en) * 1991-04-22 1999-01-26 Corning Incorporated Catalytic reactor system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001048A1 (en) * 2009-07-01 2011-01-06 Advantest Corporation Electromagnetic wave measuring apparatus, measuring method, program, and recording medium
US8481938B2 (en) * 2009-07-01 2013-07-09 Advantest Corporation Electromagnetic wave measuring apparatus, measuring method, program, and recording medium
JP2016151562A (en) * 2015-02-19 2016-08-22 株式会社Screenホールディングス Measurement device and measurement method
US9766132B2 (en) * 2015-02-19 2017-09-19 SCREEN Holdings Co., Ltd. Measuring apparatus and measuring method

Also Published As

Publication number Publication date
US8969807B2 (en) 2015-03-03
DE102010042994A1 (en) 2011-05-05
JP2011094514A (en) 2011-05-12
US20130075612A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
CN106460628B (en) Method for detecting the aging degree of catalytic converter
US9151736B2 (en) Quality sensor apparatus
US8349260B2 (en) System and method for limiting sensor exposure to ozone
US7935191B2 (en) Controlling accumulation of select adsorbers on a piezoelectric cantilever sensor
US9678049B2 (en) Method for processing measured values from a nitrogen oxide sensor
RU2394993C2 (en) Method of positioning sensor in cellular element, corresponding cellular element and vehicle
US11422069B2 (en) Sensor device
Moos et al. Overview: Status of the microwave-based automotive catalyst state diagnosis
US8969807B2 (en) Carrier and adhesion amount measuring apparatus, and measuring method, program, and recording medium of the same
US8210035B2 (en) Collection medium and collection amount measuring apparatus, and measuring method, program, and recording medium of the same
WO2018160733A1 (en) Nitric oxide detection device with reducing gas
Schönebaum et al. Composition/performance evaluation of lean NOx trap catalysts for coupling with SCR technology
CN106232956A (en) Aging knowledge method for distinguishing, engine exhaust gas after-treatment system and internal combustion engine for heterogeneous catalysis device
Groß et al. The effect of the thickness of the sensitive layer on the performance of the accumulating NOx sensor
FI85773B (en) FOERFARANDE SAMT SYSTEM FOER INSPEKTION AV ETT FAST MATERIAL UNDER YTAN.
CN108333137B (en) Method for measuring generation performance of ammonia product of three-way catalytic material
JP5639690B2 (en) Adhesion amount measuring device, measuring method, program, recording medium
AU2020245058A1 (en) Detection of cardiac troponin or biological markers via shear horizontal surface acoustic wave biosensor using a wet-dry bioanalytical technique
WO2016068831A1 (en) Highly selective nox sensor in presence of nh3
JP5408580B2 (en) Odor sensing system
JP4607541B2 (en) Three-way catalyst deterioration diagnosis method
Moos et al. Automotive catalyst state diagnosis using microwaves
Walter et al. Dielectric Properties of Materials Used for Microwave-Based NOx Gas Dosimeters
JP5224188B2 (en) Exhaust gas purification device
JP2003161144A (en) Method and apparatus for diagnosing deterioration of exhaust gas control device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANTEST CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IMAMURA, MOTOKI;NISHINA, SHIGEKI;REEL/FRAME:023969/0249

Effective date: 20091208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION