JP4949976B2 - Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device - Google Patents

Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device Download PDF

Info

Publication number
JP4949976B2
JP4949976B2 JP2007228274A JP2007228274A JP4949976B2 JP 4949976 B2 JP4949976 B2 JP 4949976B2 JP 2007228274 A JP2007228274 A JP 2007228274A JP 2007228274 A JP2007228274 A JP 2007228274A JP 4949976 B2 JP4949976 B2 JP 4949976B2
Authority
JP
Japan
Prior art keywords
filter
collection
microwave
particulate matter
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007228274A
Other languages
Japanese (ja)
Other versions
JP2009057948A (en
Inventor
加藤  仁志
一伸 石橋
重樹 大道
孝幸 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2007228274A priority Critical patent/JP4949976B2/en
Priority to PCT/JP2008/065928 priority patent/WO2009031600A2/en
Publication of JP2009057948A publication Critical patent/JP2009057948A/en
Application granted granted Critical
Publication of JP4949976B2 publication Critical patent/JP4949976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、粒子状物質の捕集分布検出方法及び捕集分布検出装置に関する。本発明は、ディーゼルエンジンの排気系に配置されたフィルタのPM堆積分布を検出する場合などに用いることができる。   The present invention relates to a collection distribution detection method and a collection distribution detection apparatus for particulate matter. The present invention can be used for detecting the PM accumulation distribution of a filter arranged in an exhaust system of a diesel engine.

ガソリンエンジンについては、排ガスの厳しい規制とそれに対処できる技術の進歩とにより、排ガス中の有害成分は確実に減少されてきている。しかし、ディーゼルエンジンについては、有害成分がPM(主として炭素微粒子からなるスート、高分子量炭化水素微粒子、サルフェート等の硫黄系微粒子など)として排出されるという特異な事情から、ガソリンエンジンに比べて排ガス浄化が難しい。   As for gasoline engines, harmful components in exhaust gas have been steadily reduced due to strict regulations on exhaust gas and advances in technology that can cope with it. However, for diesel engines, harmful components are emitted as PM (primarily carbon particulate soot, high molecular weight hydrocarbon particulates, sulfur particulates such as sulfate, etc.), and exhaust gas purification compared to gasoline engines. Is difficult.

現在までに開発されているディーゼルエンジン用排ガス浄化装置としては、大きく分けてトラップ型の排ガス浄化装置(ウォールフロー)と、オープン型の排ガス浄化装置(ストレートフロー)とが知られている。このうちトラップ型の排ガス浄化装置としては、セラミック製の目封じタイプのハニカム体(ディーゼルPMフィルタ)が知られている。このフィルタは、セラミックハニカム構造体のセルの開口部の両端を例えば交互に市松状に目封じしてなるものであり、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画するセル隔壁とよりなり、セル隔壁の細孔で排ガスを濾過してPMを捕集することで排出を抑制するものである。   As exhaust gas purification devices for diesel engines that have been developed so far, a trap type exhaust gas purification device (wall flow) and an open type exhaust gas purification device (straight flow) are known. Among these, as a trap-type exhaust gas purification device, a ceramic plug-type honeycomb body (diesel PM filter) is known. This filter is formed by alternately sealing both ends of the openings of the cells of the ceramic honeycomb structure, for example, in a checkered pattern, adjacent to the inflow side cells clogged on the exhaust gas downstream side and the inflow side cells. It consists of an outflow side cell clogged upstream of the exhaust gas and a cell partition partitioning the inflow side cell and the outflow side cell. The exhaust gas is filtered through the pores of the cell partition wall to collect PM, thereby suppressing emissions. To do.

しかしフィルタでは、PMの堆積によって排気圧損が上昇するため、何らかの手段で堆積したPMを定期的に除去して再生する必要がある。そこで従来は、排ガス中に燃料などの還元剤を添加し、高温となっているフィルタで発火させその燃焼熱で捕集されているPMを燃焼させる再生処理を行っている。またフィルタの上流側に酸化触媒を配置し、その酸化触媒で燃焼させることで排ガスを昇温し、その高温の排ガスをフィルタへ供給してフィルタを強制再生することも行われている。   However, in the filter, exhaust pressure loss increases due to the accumulation of PM, so it is necessary to periodically remove and regenerate PM accumulated by some means. Therefore, conventionally, a regenerating process is performed in which a reducing agent such as fuel is added to exhaust gas, and the PM collected by the combustion heat is ignited by a high-temperature filter and burned. In addition, an oxidation catalyst is disposed upstream of the filter, and the exhaust gas is heated by burning with the oxidation catalyst, and the high-temperature exhaust gas is supplied to the filter to forcibly regenerate the filter.

しかしながら、フィルタに捕集されているPM量が局部的に多い場合には、燃焼による発熱によってフィルタが局部的に溶損するという問題がある。またフィルタの上流側に多量のPMが捕集されていると、その部位での燃焼熱によって排ガスが過度に加熱され、それがフィルタの下流側に伝達され熱暴走が生じて溶損に至る場合もある。一方、PM捕集量が少ない間に再生処理を行えば、溶損が生じる確率は低減されるものの、添加燃料が多くなることにより燃費が悪化する。   However, when the amount of PM collected in the filter is locally large, there is a problem that the filter is locally melted due to heat generated by combustion. If a large amount of PM is collected on the upstream side of the filter, the exhaust gas is excessively heated by the heat of combustion at that site, which is transmitted to the downstream side of the filter, resulting in thermal runaway and melting. There is also. On the other hand, if the regeneration process is performed while the amount of collected PM is small, the probability of melting damage is reduced, but the fuel consumption deteriorates due to the increase in added fuel.

そのため、PMの捕集量が所定値を超えたと判定されたときに、排ガス温度を強制的に上昇させることが考えられる。例えば運転状況に対するPM排出量のデータをマップデータとして ECUに記憶しておき、運転時間の積算値からPM排出量を推定し、これを累積計算してPM捕集量を推定する。そしてPM捕集量が所定量を超えたと判断された時点で、 排ガス温度を強制的に上昇させフィルタを再生する方法がある。   For this reason, it is conceivable to forcibly raise the exhaust gas temperature when it is determined that the amount of collected PM exceeds a predetermined value. For example, the PM emission data for the driving situation is stored in the ECU as map data, the PM emission is estimated from the integrated value of the operation time, and this is cumulatively calculated to estimate the PM collection amount. There is a method to regenerate the filter by forcibly increasing the exhaust gas temperature when it is determined that the amount of PM collected exceeds a predetermined amount.

ところが運転状況に対するPM排出量のデータをマップデータとする場合においては、誤差が大きいという問題がある。またPMの捕集量の指標として、フィルタ前後の差圧を用いることも行われている。しかしこの方法においては、エンジンの運転状況によって判定の基準となる限界差圧の値が大きく変化するため、各運転条件による限界差圧のデータをマップデータとして記憶しておく必要があり、データ量が膨大となる。さらにPM捕集量と差圧との関係は直線関係になく、PM捕集量が少ない範囲において検出感度が低いという問題がある。   However, there is a problem that the error is large when the PM emission data for the driving situation is used as map data. In addition, the differential pressure before and after the filter is also used as an index of the amount of PM collected. However, in this method, the value of the limit differential pressure, which is a criterion for determination, varies greatly depending on the operating condition of the engine. Therefore, it is necessary to store the data of the limit differential pressure for each operating condition as map data, Becomes enormous. Furthermore, the relationship between the amount of collected PM and the differential pressure is not a linear relationship, and there is a problem that the detection sensitivity is low in a range where the amount of collected PM is small.

そこで特開2005−325771号公報には、捕集容器の外周に巻回した一次コイルに交流電流を流した時に、捕集容器の外周に巻回した二次コイルに発生する電流又は電圧を検出し、その値からPM捕集量を算出する方法が記載されている。二次コイルには、PM捕集量に対応した誘導起電力が発生するので、二次コイルに発生する電流又は電圧を検出することでPM捕集量を算出することができる。   Therefore, Japanese Patent Application Laid-Open No. 2005-327771 detects the current or voltage generated in the secondary coil wound around the collection container when an alternating current is passed through the primary coil wound around the collection container. In addition, a method for calculating the amount of collected PM from the value is described. Since an induced electromotive force corresponding to the PM trapping amount is generated in the secondary coil, the PM trapping amount can be calculated by detecting the current or voltage generated in the secondary coil.

また特開平10−220219号公報には、マイクロ波センサで電磁波強度を測定してPM量を検出する排ガス浄化装置が提案されている。この技術では、フィルタにPMが付着するとフィルタの誘電率、誘電損失が変化し、フィルタ内のマイクロ波の位相がずれ、マイクロ波強度が変化することを利用し、マイクロ波検出位置を固定して、その場所におけるマイクロ波強度を測定し、このマイクロ波強度の変化によりPM付着量を検出している。   Japanese Patent Application Laid-Open No. 10-220219 proposes an exhaust gas purification device that detects the amount of PM by measuring electromagnetic wave intensity with a microwave sensor. This technology uses the fact that when PM is attached to the filter, the dielectric constant and dielectric loss of the filter change, the phase of the microwave in the filter shifts, and the microwave intensity changes, and the microwave detection position is fixed. The microwave intensity at that location is measured, and the amount of PM attached is detected by the change in the microwave intensity.

しかしながらフィルタの誘電率、誘電損失は、温度の影響を受けるため温度補正をする必要があり、また直接的な位相差測定ではなく定在波を利用してマイクロ波センサで電磁場強度を検出しているため、1点測定ではマイクロ波の減衰の影響を分離するのが難しく、精度よく検出できないという問題がある。そのため、複数箇所で計測を行って総合的に評価したり、あるいはマップデータを用いて面倒な評価をする必要がある。そしてマイクロ波として通常使用している2.45 GHzのマイクロ波では、波長が12cm程度となり分解能が低いので、局所的なPM捕集量の濃淡を検出できない。
特開2005−325771号公報 特開平10−220219号公報
However, since the dielectric constant and dielectric loss of the filter are affected by temperature, it is necessary to correct the temperature, and the electromagnetic field intensity is detected by a microwave sensor using a standing wave rather than direct phase difference measurement. Therefore, there is a problem that it is difficult to separate the influence of the attenuation of the microwave in one point measurement and it cannot be accurately detected. Therefore, it is necessary to make a comprehensive evaluation by measuring at a plurality of locations, or to perform a troublesome evaluation using map data. The 2.45 GHz microwave, which is normally used as a microwave, has a wavelength of about 12 cm and has a low resolution, so it cannot detect the local concentration of PM collection.
JP 2005-327771 A JP-A-10-220219

上記した各公報に記載の方法では、フィルタ全体としての平均的なPM捕集量あるいはPM捕集総量に関連する物理量を検出することはできるものの、フィルタ中におけるPMの捕集分布を検出することは困難である。車両に搭載されたフィルタでは、例えば排ガス上流側の方が下流側よりPM堆積量が多くなる場合がある。また熱を奪われやすい外周部の方が内周部よりPM堆積量が多くなる。したがって平均的なPM捕集量あるいはPM捕集総量を検出したとしても、再生処理を行うべきか否かを精度高く判定するには情報量が不足していた。   Although the method described in each of the above publications can detect the average amount of PM collected as a whole filter or the physical quantity related to the total amount of PM collected, it can detect the PM collection distribution in the filter. It is difficult. In a filter mounted on a vehicle, for example, the PM accumulation amount may be greater on the exhaust gas upstream side than on the downstream side. Also, the amount of accumulated PM is larger in the outer peripheral part where heat is easily removed than in the inner peripheral part. Therefore, even if the average amount of PM collected or the total amount of PM collected is detected, the amount of information is insufficient to accurately determine whether or not the regeneration process should be performed.

一方、PMが捕集されたフィルタを切断すれば、PM捕集分布を測定することが可能である。しかし、非破壊検査にてPM捕集分布を検出できることが望ましい。   On the other hand, if the filter in which PM is collected is cut, the PM collection distribution can be measured. However, it is desirable that the PM collection distribution can be detected by nondestructive inspection.

本発明は上記事情に鑑みてなされたものであり、PMなどのマイクロ波を吸収する粒子状物質の捕集分布を、非破壊で、容易にかつ高い精度で検出することを解決すべき課題とする。 The present invention has been made in view of the above circumstances, and the problem to be solved is to detect the collection distribution of particulate matter that absorbs microwaves such as PM, nondestructively, easily and with high accuracy. To do.

上記課題を解決する本発明の粒子状物質の捕集分布検出方法の特徴は、粒子状物質が捕集されたセラミックス製の捕集容器に対して外部からミリ波レベルのマイクロ波を照射し、捕集容器を透過したマイクロ波の強度を検出し、予め決められたマイクロ波強度と捕集量との関係式に強度を代入して粒子状物質の捕集量を演算する工程を捕集容器の複数箇所についてそれぞれ行い、
捕集された粒子状物質の捕集容器内における捕集分布を検出することにある。
The feature of the collection distribution detection method of the particulate matter of the present invention that solves the above problems is that the ceramic collection container in which the particulate matter is collected is irradiated with millimeter-wave level microwaves from the outside, Detecting the intensity of the microwave that has passed through the collection container, and substituting the intensity into a predetermined relation between the microwave intensity and the collection amount to calculate the collection amount of the particulate matter. For each of multiple locations,
The purpose is to detect the collection distribution of the collected particulate matter in the collection container.

また本発明の粒子状物質の捕集分布検出装置の特徴は、粒子状物質が捕集されたセラミックス製の捕集容器の外部から捕集容器の複数箇所に向かってミリ波レベルのマイクロ波を照射するマイクロ波照射手段と、
捕集容器の複数箇所を透過したマイクロ波の強度をそれぞれ検出するマイクロ波受信手段と、
マイクロ波受信手段で検出された強度から粒子状物質の捕集量をそれぞれ演算し捕集容器中の粒子状物質の捕集分布を演算する演算手段と、を含むことにある。
In addition, the particulate matter collection and distribution detection device of the present invention is characterized by millimeter-wave level microwaves from the outside of a ceramic collection container in which particulate matter is collected toward multiple locations of the collection container. Microwave irradiation means for irradiating ;
Microwave receiving means for respectively detecting the intensity of the microwaves transmitted through a plurality of locations of the collection container;
And calculating means for calculating the collection amount of the particulate matter from the intensity detected by the microwave receiving means and calculating the collection distribution of the particulate matter in the collection container.

そして本発明の排ガス浄化装置の特徴は、排ガス流路に配置されカーボンを主とするPMを捕集するセラミックス製のフィルタと、
フィルタを収納する収納容器と、
収納容器に形成された入射窓からフィルタの複数箇所にミリ波レベルのマイクロ波を照射するマイクロ波照射手段と、
フィルタを透過し収納容器に形成された放射窓から放射されたマイクロ波の強度をそれぞれ検出するマイクロ波受信手段と、
マイクロ波受信手段で検出されたそれぞれの強度からPMの捕集分布を演算する演算手段と、を含むことにある。
And the feature of the exhaust gas purifying apparatus of the present invention is a ceramic filter that is arranged in the exhaust gas flow path and collects PM mainly composed of carbon,
A storage container for storing the filter;
A microwave irradiation means for irradiating a plurality of locations of the filter with millimeter-wave level microwaves from an incident window formed in the storage container;
Microwave receiving means for respectively detecting the intensity of the microwave transmitted through the filter and radiated from the radiation window formed in the storage container;
And calculating means for calculating the PM collection distribution from the respective intensities detected by the microwave receiving means .

本発明の粒子状物質の捕集分布検出方法及び捕集分布検出装置によれば、周波数が数10GHz 〜数THz (波長がmmレベル)のマイクロ波を用い、粒子状物質によるマイクロ波の吸収を利用して照射箇所における粒子状物質の捕集量を検出し、複数箇所における捕集量を検出することで粒子状物質の捕集分布を検出しているので、捕集容器内の粒子状物質の捕集分布を精度高く検出することができる。 According to the collection distribution detection method and collection distribution detection apparatus for particulate matter of the present invention, microwaves having a frequency of several tens of GHz to several THz (wavelength is in mm level) are used to absorb microwaves by particulate matter. Since the collection amount of particulate matter is detected by detecting the collection amount of particulate matter at the irradiated location and detecting the collection amount at multiple locations, the particulate matter in the collection container Can be detected with high accuracy.

そして本発明の排ガス浄化装置によれば、局所的なPM捕集量の濃淡を精度よく検出できるので、局部的に捕集量が多くなり過ぎない状態で再生処理を行うことで熱暴走によるフィルタの溶損を防止することができる。また再生処理時における排ガス中への還元剤供給量を最小限とできるため、燃費も向上する。   According to the exhaust gas purifying apparatus of the present invention, since the concentration of the local PM collection amount can be detected with high accuracy, a filter due to thermal runaway can be performed by performing a regeneration process in a state where the collection amount does not increase excessively locally. It is possible to prevent melting damage. Further, since the amount of reducing agent supplied to the exhaust gas during the regeneration process can be minimized, fuel efficiency is also improved.

本発明の捕集分布検出装置は、捕集容器と、捕集容器にマイクロ波を照射するマイクロ波照射手段と、捕集容器の複数箇所を透過したマイクロ波の強度をそれぞれ検出するマイクロ波受信手段と、マイクロ波受信手段で検出された強度から粒子状物質の捕集量を演算し捕集容器中の粒子状物質の捕集分布を演算する演算手段と、を含む。 Collecting distribution detection device of the present invention comprises a collection vessel, a microwave irradiating means for irradiating a microwave to the collection vessel, the microwave receiver for detecting the intensity of microwaves transmitted through the plurality of portions of the collecting container, respectively And means for calculating the collection amount of the particulate matter from the intensity detected by the microwave receiving means and calculating the collection distribution of the particulate matter in the collection container.

本発明にいう粒子状物質とは、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波を吸収し、そのエネルギーを最終的には熱エネルギーに変換する物質であれば特に制限なく、カーボンを主とするPM、フェライト粉などの磁性体粉末などが例示される。   The particulate matter referred to in the present invention is not particularly limited as long as it is a substance that absorbs a millimeter-wave level microwave having a frequency of several tens of GHz to several THz and ultimately converts the energy into heat energy. Examples thereof include magnetic powder such as main PM and ferrite powder.

また本発明では、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波が用いられる。周波数がこの範囲より低いと捕集された粒子状物質を透過しやすくなり、捕集量の検出精度が低下する。また周波数がこの範囲より高くなると、捕集された粒子状物質を透過しにくくなり、やはり検出精度が低下する。 100〜600GHz程度の周波数のマイクロ波を用いることが好ましい。特に、 100〜200GHzのマイクロ波を検出するマイクロ波受信手段には、品質が安定した安価な汎用品を用いることができる。 In the present invention, a microwave of millimeter wave level having a frequency of several tens of GHz to several THz is used. When the frequency is lower than this range, the collected particulate matter is easily transmitted, and the detection accuracy of the collected amount is lowered. Further, if the frequency is higher than this range, it becomes difficult for the collected particulate matter to pass through, and the detection accuracy also decreases. It is preferable to use a microwave having a frequency of about 100 to 600 GHz. In particular, an inexpensive general-purpose product with stable quality can be used as the microwave receiving means for detecting microwaves of 100 to 200 GHz.

捕集容器は、粒子状物質を含む気体が流通する流路中に配置されて粒子状物質を捕集するものであり、各種フィルタを用いることができる。この捕集容器は、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波を透過するものが用いられる。マイクロ波の一部が吸収されても構わない。排ガス浄化装置の場合には、コージェライト、炭化ケイ素、窒化ケイ素、アルミナなどセラミックス製のフィルタが代表的に用いられる。これらのセラミックスは、周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波の透過率が高い。   A collection container is arrange | positioned in the flow path through which the gas containing particulate matter distribute | circulates, and collects particulate matter, Various filters can be used. As this collection container, a container that transmits a microwave of millimeter wave level with a frequency of several tens GHz to several THz is used. A part of the microwave may be absorbed. In the case of an exhaust gas purification device, a filter made of ceramics such as cordierite, silicon carbide, silicon nitride, and alumina is typically used. These ceramics have a high transmittance of millimeter wave level microwaves having a frequency of several tens of GHz to several THz.

フィルタのセル隔壁表面及びセル隔壁内の細孔表面に酸化触媒層を形成した触媒付きフィルタを用いることも好ましい。マイクロ波は触媒としてのPtなどの貴金属にも吸収されるが、貴金属の担持量及び担持分布が一定であれば、粒子状物質の捕集分布を精度高く検出することができる。   It is also preferable to use a filter with a catalyst in which an oxidation catalyst layer is formed on the cell partition wall surface of the filter and the pore surface in the cell partition wall. Microwaves are also absorbed by noble metals such as Pt as a catalyst. However, if the loading and distribution of the noble metal are constant, the collection distribution of the particulate matter can be detected with high accuracy.

マイクロ波照射手段は、捕集容器の外部から捕集容器に周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波を照射する手段であり、マグネトロンなどを用いることができる。捕集容器にマイクロ波を直接的に照射することが望ましいが、排ガス浄化フィルタなど金属製の収納容器に収納されている捕集容器の場合には、収納容器に形成され数10GHz 〜数THz のミリ波レベルのマイクロ波を透過可能な入射窓を介して照射する。この入射窓の材質としては、コージェライト、窒化ケイ素、アルミナなどのセラミックス、ガラスなどを用いることができる。 The microwave irradiation means is means for irradiating the collection container with microwaves having a millimeter wave level of several tens of GHz to several THz from the outside of the collection container, and a magnetron or the like can be used. It is desirable to directly irradiate the collection container with microwaves. However, in the case of a collection container stored in a metal storage container such as an exhaust gas purification filter, it is formed on the storage container and has a frequency of several tens of GHz to several THz. It irradiates through the incident window which can transmit the microwave of millimeter wave level . As the material of the entrance window, cordierite, silicon nitride, ceramics such as alumina, glass, or the like can be used.

マイクロ波受信手段は捕集容器を透過したマイクロ波の強度を検出するものであり、マイクロ波センサなど公知のものを用いることができる。マイクロ波受信手段は、捕集容器に対してマイクロ波照射手段と反対側に配置され、捕集容器に近接して配置することが望ましい。しかし排ガス浄化装置の場合には、熱によってマイクロ波受信手段が劣化する恐れがあるので、収納容器に形成され数10GHz 〜数THz のミリ波レベルのマイクロ波を透過可能な放射窓を介して受信するように構成する。この放射窓は、入射窓と同様のもので耐熱性を有する材質から形成することができる。 The microwave receiving means detects the intensity of the microwave transmitted through the collection container, and a known one such as a microwave sensor can be used. The microwave receiving means is preferably arranged on the side opposite to the microwave irradiating means with respect to the collection container, and is arranged close to the collection container. However, in the case of an exhaust gas purification device, the microwave receiving means may be deteriorated by heat, so it is received through a radiation window that is formed in the storage container and can transmit millimeter wave level microwaves of several tens of GHz to several THz. To be configured. The radiation window can be formed of a material having heat resistance similar to the entrance window.

マイクロ波照射手段とマイクロ波受信手段とは、捕集容器に対して互いに反対側に位置するように配置される。例えばハニカムフィルタなど円柱形状の捕集容器の場合には、その直径方向の両側にそれぞれ配置することができる。あるいは排ガス流入側と排ガス流出側で、それぞれ軸を含む平面上で互いに反対側に位置するように配置することも好ましい。このようにすれば、排ガス流れ方向の全長におけるPM捕集量を検出することができる。 The microwave irradiating means and the microwave receiving means are arranged so as to be located on opposite sides of the collection container. For example, in the case of a cylindrical collection container such as a honeycomb filter, it can be arranged on both sides in the diameter direction. Alternatively, it is also preferable that the exhaust gas inflow side and the exhaust gas outflow side are disposed so as to be opposite to each other on the plane including the axis. In this way, it is possible to detect the amount of PM collected over the entire length in the exhaust gas flow direction.

本発明の捕集分布検出方法及び捕集分布検出装置では、粒子状物質が捕集された捕集容器を少なくとも湿度が一定の恒湿室に配置した状態で、捕集分布の検出を行うことが望ましい。周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波は水分に吸収されるため、測定雰囲気の湿度が変動すると検出値も変動して精度が低下するからである。   In the collection distribution detection method and the collection distribution detection apparatus of the present invention, the collection distribution is detected in a state where the collection container in which the particulate matter is collected is placed in a constant humidity chamber having at least a constant humidity. Is desirable. This is because a millimeter wave level microwave with a frequency of several tens of GHz to several THz is absorbed by moisture, so that when the humidity of the measurement atmosphere varies, the detection value also varies and the accuracy decreases.

本発明の捕集分布検出方法及び捕集分布検出装置では、マイクロ波は捕集容器に向かって複数箇所で照射され、それぞれの箇所で透過したマイクロ波の強度がマイクロ波受信手段によってそれぞれ検出される。マイクロ波発信手段とマイクロ波受信手段とを、捕集容器の表面に沿って互いに対向するようにそれぞれ複数個配置することができる。また一対のマイクロ波照射手段とマイクロ波受信手段とを互いに対向させた状態で、捕集容器の軸方向あるいは両端面の直径方向に沿って移動させながら複数箇所で検出してもよい。あるいはCTスキャンのように、マイクロ波照射手段とマイクロ波受信手段とを捕集容器の周囲に沿って回転させながら軸方向に移動させて複数箇所で検出することも好ましい。このようにすれば、捕集容器内の粒子状物質の捕集分布を立体的に検出することができ、二次元又は三次元の画像として表示することが可能となる。 In collecting distribution detecting method and collecting distribution detection device of the present invention, the microwave is irradiated at a plurality of locations toward the collection container, the intensity of microwave transmitted through the respective points are detected respectively by the microwave receiving means The A plurality of microwave transmitting means and microwave receiving means can be arranged so as to face each other along the surface of the collection container. In addition, detection may be performed at a plurality of locations while moving along the axial direction of the collection container or the diameter direction of both end faces in a state where the pair of microwave irradiation means and microwave reception means are opposed to each other. Alternatively, it is also preferable to detect at a plurality of locations by moving the microwave irradiating means and the microwave receiving means in the axial direction while rotating along the periphery of the collection container, as in a CT scan. In this way, the collection distribution of the particulate matter in the collection container can be detected three-dimensionally and can be displayed as a two-dimensional or three-dimensional image.

複数箇所としては、例えばハニカムフィルタなど円柱形状の捕集容器の場合には、その軸方向に複数箇所とすることが好ましく、端面の直径に沿う複数箇所とすることも好ましい。   In the case of a cylindrical collection container such as a honeycomb filter, the plurality of locations are preferably a plurality of locations in the axial direction, and more preferably a plurality of locations along the diameter of the end face.

演算手段は、複数箇所においてマイクロ波受信手段で検出されたマイクロ波強度から粒子状物質の捕集量をそれぞれ演算し、その演算結果から捕集容器中の粒子状物質の捕集分布を演算する。例えば予め決められた強度と捕集量との関係式に、マイクロ波受信手段で検出されたマイクロ波強度を代入することで、各照射位置における粒子状物質の捕集量を演算する。複数箇所の照射位置における捕集量を演算することで、捕集分布を演算することができる。 The computing means computes the collection amount of the particulate matter from the microwave intensity detected by the microwave receiving means at a plurality of locations, and computes the collection distribution of the particulate matter in the collection container from the computation result. . For example, the amount of collected particulate matter at each irradiation position is calculated by substituting the microwave intensity detected by the microwave receiving means into a relational expression between a predetermined intensity and the collected amount. The collection distribution can be calculated by calculating the collection amount at a plurality of irradiation positions.

捕集容器自体が周波数が数10GHz 〜数THz のミリ波レベルのマイクロ波をある程度吸収する場合が多いので、先ずブランクとして粒子状物質が捕集されていない状態の捕集容器のみの場合の受信強度を測定しておく。そうすれば、粒子状物質が捕集された状態における受信強度との差から、粒子状物質の捕集量を算出することができる。 Since the collection container itself often absorbs microwaves with a frequency of several tens of GHz to several THz to a certain extent, reception is first performed only with a collection container in which no particulate matter is collected as a blank. Measure the strength. If it does so, the amount of collection of particulate matter can be computed from the difference with the receiving intensity in the state where particulate matter was collected.

排ガス浄化装置の場合には、演算手段は、マイクロ波受信手段による検出値からPMが捕集されたフィルタにおけるマイクロ波の吸収係数を算出し、予め測定されたPMが捕集されていないフィルタのみにおけるマイクロ波の吸収係数に対する比からPMの捕集量を演算することが望ましい。マイクロ波の吸収係数を指標とすることで、温度などの各種因子に関わらずPM捕集量と吸収係数との関係が一次式となるので、PM捕集量の算出を容易にかつ精度高く行うことができる。なお吸収係数は透過率の対数で表され、透過率は放射出力の入射出力に対する割合である。 In the case of the exhaust gas purification device, the calculation means calculates the absorption coefficient of the microwave in the filter in which PM is collected from the detection value by the microwave reception means, and only the filter in which the PM measured in advance is not collected. It is desirable to calculate the amount of PM trapped from the ratio to the absorption coefficient of microwaves at . By using the microwave absorption coefficient as an index, the relationship between the amount of PM collected and the absorption coefficient is a primary expression regardless of various factors such as temperature, so calculation of the amount of PM collected is easy and accurate. be able to. The absorption coefficient is expressed by the logarithm of the transmittance, and the transmittance is a ratio of the radiation output to the incident output.

本発明の排ガス浄化装置によれば、PMの捕集分布を精度高く検出することができる。したがってPMが局部的に多く捕集されていることなどを検出できるので、その部位のPM捕集量が所定値より多くならない状態で再生処理を行うことで、燃費の悪化を最小限としつつフィルタ再生時の溶損を確実に防止することができる。   According to the exhaust gas purification apparatus of the present invention, the PM collection distribution can be detected with high accuracy. Therefore, it is possible to detect that a large amount of PM has been collected locally, so the regeneration process is performed in a state where the amount of PM collected at that part does not exceed a predetermined value, thereby minimizing deterioration in fuel consumption and filtering. It is possible to reliably prevent melting during regeneration.

本発明の排ガス浄化装置には、フィルタへ流入する排ガスの温度を外周と内周とで異ならせるように制御する手段、フィルタの流入側端面とそこへ流入する流路との関係を制御する手段、フィルタの軸方向の特定位置を加熱する手段、などをさらに用いることが好ましい。これらの手段を用いることで、PM捕集分布に応じてPM捕集量の多い部分を局部的に加熱することができ、フィルタ再生処理の時間を短縮したり、フィルタ再生処理までの時間を延長することができる。したがって燃費をさらに低減することが可能となる。   The exhaust gas purifying apparatus of the present invention includes means for controlling the temperature of the exhaust gas flowing into the filter to be different between the outer periphery and the inner periphery, and means for controlling the relationship between the inflow end face of the filter and the flow path flowing into the filter. It is preferable to further use a means for heating a specific position in the axial direction of the filter. By using these means, it is possible to locally heat a part with a large amount of PM collection according to the PM collection distribution, shortening the time for filter regeneration processing or extending the time until filter regeneration processing. can do. Therefore, the fuel consumption can be further reduced.

なお、上記したように水もマイクロ波吸収体であり、フィルタ内の水分量が検出値に影響を及ぼす。したがって、水分センサなどを用いて検出された水分量も加味して検出することが望ましい。しかしフィルタの温度を一定値に制御して検出すれば、飽和水蒸気圧が一定であるので排ガス中に含まれる水分は一定とみなすことができ、実用上は問題無くPM捕集分布を検出することができる。 As described above, water is also a microwave absorber, and the amount of water in the filter affects the detection value. Therefore, it is desirable to detect the amount of water detected using a moisture sensor or the like. However, if the temperature of the filter is controlled to a constant value and detected, the saturated water vapor pressure is constant, so the moisture contained in the exhaust gas can be regarded as constant, and the PM collection distribution can be detected without any problem in practice. Can do.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
図1に、本実施例の捕集分布検出装置を模式的に示す。この装置は、ディーゼルエンジンの排気系に用いられるフィルタ1と、マイクロ波発信器2と、マイクロ波受信器3と、演算装置4と、から構成されている。
Example 1
In FIG. 1, the collection distribution detection apparatus of a present Example is shown typically. This device is composed of a filter 1 used in an exhaust system of a diesel engine, a microwave transmitter 2, a microwave receiver 3, and an arithmetic device 4.

フィルタ1は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁と、を有するハニカム形状のウォールフロー構造をなし、コージェライトから形成されている。   The filter 1 includes an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and an inflow side cell and an outflow side cell. And a porous cell partition wall having a honeycomb-shaped wall flow structure having cordierite.

このフィルタ1は試料台10に流出側端面が接するように載置されている。また試料台10には、フィルタ1の重量を検出する重量センサ11が設けられている。   The filter 1 is placed so that the outflow side end surface is in contact with the sample stage 10. The sample table 10 is provided with a weight sensor 11 for detecting the weight of the filter 1.

マイクロ波発信器2には3系統の発信部20、21、22が備えられ、発信部20、21、22はフィルタ1の外周表面に沿い、フィルタ1の中心軸と平行な直線上に配置されている、発信部20はフィルタ1の流入側端部に向かって、発信部22は流出側端部に向かって、発信部21は発信部20と発信部22の中間でフィルタ1の軸方向中央部へ向かって、それぞれ600GHzのミリ波を照射する。   The microwave transmitter 2 includes three systems of transmitters 20, 21, and 22. The transmitters 20, 21, and 22 are arranged on a straight line along the outer peripheral surface of the filter 1 and parallel to the central axis of the filter 1. The transmitting part 20 is directed toward the inflow side end of the filter 1, the transmitting part 22 is directed toward the outflow side end, and the transmitting part 21 is located between the transmitting part 20 and the transmitting part 22 in the axial center of the filter 1. Irradiate each part with 600GHz millimeter waves.

マイクロ波受信器3には3系統の受信部30、31、32が備えられ、受信部30、31、32はフィルタ1の中心軸に対して発信部20、21、22とそれぞれ対称位置に配置され、フィルタ1を透過したマイクロ波を受信する。   The microwave receiver 3 is provided with three systems of receivers 30, 31, and 32. The receivers 30, 31, and 32 are arranged symmetrically with the transmitters 20, 21, and 22, respectively, with respect to the central axis of the filter 1. Then, the microwave transmitted through the filter 1 is received.

上記した捕集分布検出装置を用い、先ず新品のフィルタ1を試料台3に載置して、重量センサ11によって重量WBを測定するとともに、発信部20、21、22から600GHzのミリ波を入力強度IBで照射する。そして受信部30、31、32によって、フィルタ1を直径方向に透過したミリ波の出力強度I0、I1、I2をそれぞれ測定する。 With collecting distribution detection device described above, is first brand-new filter 1 is placed on the sample base 3, while measuring the weight W B by the weight sensor 11, the millimeter wave 600GHz from the transmission section 20, 21, 22 irradiation with input intensity I B. Then, the receiving units 30, 31, and 32 measure the output intensities I 0 , I 1 , and I 2 of the millimeter waves that have passed through the filter 1 in the diameter direction.

そして数1式から、PMが捕集されていない新品のフィルタ1の吸収係数αr (reference)が算出される。 Then, the absorption coefficient α r (reference) of the new filter 1 in which PM is not collected is calculated from Equation (1).

Figure 0004949976
Figure 0004949976

PMが捕集されておらず、フィルタ1は一端から他端まで同一断面構造であるので、上流側端部・中央部・下流側端部の各部位における吸収係数αr 値は同一となる。また各部位の透過率(I0/IB、I1/IB、I2/IB)も同一となる。 Since PM is not collected and the filter 1 has the same cross-sectional structure from one end to the other end, the absorption coefficient α r values at the upstream end portion, the central portion, and the downstream end portion are the same. Further, the transmittance (I 0 / I B , I 1 / I B , I 2 / I B ) of each part is also the same.

次に、予め既知量のPMが上流側端部から下流側端部まで均一に捕集されているフィルタ1を、PM捕集量のみが異なる複数種類用意し、上記と同様にしてフィルタ1を直径方向に透過したミリ波の出力強度I0、I1、I2をそれぞれ測定する。透過率(I0/IB、I1/IB、I2/IB)は、同一のフィルタ1内では同一であり、PM捕集量が異なる複数種類間で異なっている。予めわかっているPM捕集量と測定された透過率(I0/IB、I1/IB、I2/IB)との関係を図2に示す。 Next, a plurality of types of filters 1 in which a known amount of PM is uniformly collected from the upstream end to the downstream end in advance are prepared, and only the PM collection amount is different. The output intensities I 0 , I 1 and I 2 of the millimeter wave transmitted in the diameter direction are measured. The transmittance (I 0 / I B , I 1 / I B , I 2 / I B ) is the same in the same filter 1, and is different among a plurality of types having different PM collection amounts. FIG. 2 shows the relationship between the amount of PM collected in advance and the measured transmittance (I 0 / I B , I 1 / I B , I 2 / I B ).

図2からわかるように、PM捕集量と透過率との関係は一次式とはなっていない。したがって透過率からPM捕集量を推定するには、複雑な計算が必要となる。   As can be seen from FIG. 2, the relationship between the amount of collected PM and the transmittance is not a linear expression. Therefore, complicated calculation is required to estimate the amount of PM trapped from the transmittance.

そこで演算装置4では、数1式から、PMが均一に捕集されたフィルタ1を用いた場合の吸収係数αw (with PM)を算出する。そして新品のフィルタ1の吸収係数αr に対する比であるPM ratio(αw /αr )を算出し、PM捕集量とPM ratioとの関係を図3に示す。 Therefore, the arithmetic device 4 calculates the absorption coefficient α w (with PM) when the filter 1 in which PM is uniformly collected is used from Equation (1). And PM ratio ((alpha) w / (alpha) r ) which is ratio with respect to the absorption coefficient (alpha) r of the new filter 1 is calculated, and the relationship between PM collection amount and PM ratio is shown in FIG.

図3から、PM捕集量とPM ratioとの関係は一次式となることが明らかであり、PM ratioを測定することでPM捕集量を容易にかつ精度高く検出することができることがわかる。   From FIG. 3, it is clear that the relationship between the PM collection amount and the PM ratio is a linear expression, and it can be seen that the PM collection amount can be easily and accurately detected by measuring the PM ratio.

そこで新品のフィルタ1をディーセルエンジンの排気系に装着し、60km/hrの定常走行条件で 100km走行した後にフィルタ1を取り出して試料とした。この使用済みフィルタ1を試料台3に載置して、重量センサ11によって重量W0を測定するとともに、発信部20、21、22から600GHzのミリ波を入力強度IBで照射する。そして受信部30、31、32によって、フィルタ1を直径方向に透過したミリ波の出力強度I0、I1、I2をそれぞれ測定する。 Therefore, a new filter 1 was mounted on the exhaust system of the diesel engine, and after traveling 100 km under a steady running condition of 60 km / hr, the filter 1 was taken out and used as a sample. The spent filter 1 is placed on the sample stage 3, while measuring the weight W 0 by weight sensor 11, it is irradiated by the input intensity I B millimeter wave 600GHz from the transmission unit 20, 21, 22. Then, the receiving units 30, 31, and 32 measure the output intensities I 0 , I 1 , and I 2 of the millimeter waves that have passed through the filter 1 in the diameter direction.

そして演算装置4では、数1式から、使用済みフィルタ1の上流側端部・中央部・下流側端部の各部位における吸収係数(αw0、αw1、αw2)を算出し、新品のフィルタ1の吸収係数αr に対する比であるPM ratioをそれぞれ算出する。そして図3のグラフから、それぞれのPM ratioに該当するPM捕集量を読み取り、PM捕集重量(W0−WB、W−WB、W−WB)によって補正した結果を図4に示す。 Then, the arithmetic unit 4 calculates the absorption coefficient (α w0 , α w1 , α w2 ) at each of the upstream end portion, the central portion, and the downstream end portion of the used filter 1 from the equation ( 1 ). The PM ratio, which is the ratio of the filter 1 to the absorption coefficient α r , is calculated. The picture from the graph of FIG. 3, reads the amount of collected PM corresponding to each PM ratio, PM trapped by weight (W 0 -W B, W 1 -W B, W 2 -W B) the result of the correction by 4 shows.

図4から、使用済みフィルタ1の上流側端部が最もPM捕集量が多く、PM捕集量は中央部に向かうにつれて急激に減少し、中央部から下流側端部まではPM捕集量は緩やかに減少していることがわかる。すなわち本実施例の捕集分布検出方法及び捕集分布検出装置によれば、使用済みのフィルタ1を破壊することなく、排ガス流れ方向におけるPM捕集量の分布を容易にかつ精度高く検出することができる。   From FIG. 4, the upstream end of the used filter 1 has the largest amount of PM collected, and the amount of PM collected decreases rapidly toward the center, and the amount of PM collected from the center to the downstream end It can be seen that there is a gradual decrease. That is, according to the collection distribution detection method and the collection distribution detection apparatus of the present embodiment, the PM collection amount distribution in the exhaust gas flow direction can be easily and accurately detected without destroying the used filter 1. Can do.

この実施例では、PMが捕集されていないフィルタ1の上流側端部・中央部・下流側端部の各部位における吸収係数αr 値が同一であり、各部位の透過率(I0/IB、I1/IB、I2/IB)も同一である場合について示した。しかしながら各部位の透過率が異なる場合であっても、同一部位におけるPM捕集量の差異から、PM捕集量の分布を算出することが可能である。 In this embodiment, the absorption coefficient α r values at the upstream end portion, the central portion, and the downstream end portion of the filter 1 where PM is not collected are the same, and the transmittance (I 0 / I B , I 1 / I B , I 2 / I B ) are also the same. However, even if the transmittance of each part is different, it is possible to calculate the distribution of the PM collection amount from the difference in the PM collection amount in the same part.

(実施例2)
本実施例では、実施例1と同様のフィルタ1を用い、図5に示すようにその中心軸が試料台10の表面と平行になるように載置した。そして発信部20、21、22はフィルタ1の流入側端面に対向して直径方向に並び、発信部20と発信部22は外周側のセル又は目詰め栓に向かって、発信部21は軸芯位置のセル又は目詰め栓に向かって、それぞれ600GHzのミリ波を照射する。受信部30、31、32はフィルタ1の流出側端面に対向して直径方向に並び、発信部20、21、22とそれぞれ対向する位置に配置され、フィルタ1を透過したマイクロ波を受信する。
(Example 2)
In this example, the same filter 1 as in Example 1 was used, and the filter was placed so that the central axis thereof was parallel to the surface of the sample table 10 as shown in FIG. The transmitters 20, 21, and 22 are arranged in the diametrical direction facing the inflow side end face of the filter 1, the transmitter 20 and the transmitter 22 are directed toward the outer peripheral cell or plug, and the transmitter 21 is an axial core Irradiate a 600 GHz millimeter wave toward the cell or plug at the location. The receiving units 30, 31, and 32 are arranged in a diametrical direction so as to face the outflow side end face of the filter 1, are arranged at positions facing the transmitting units 20, 21, and 22, respectively, and receive microwaves that have passed through the filter 1.

その他は実施例1と同様にして、使用済みフィルタ1の外周部上・内周部・外周部下の各部位における吸収係数(αw0、αw1、αw2)を算出し、数2式を用いて新品のフィルタ1の吸収係数αr に対する比であるPM ratioをそれぞれ算出する。図3のグラフから、それぞれのPM ratioに該当するPM捕集量を読み取り、PM捕集重量(W0−WB、W−WB、W−WB)によって補正した結果を図6に示す。 Other than that, the absorption coefficient (α w0 , α w1 , α w2 ) is calculated for each part on the outer peripheral part, the inner peripheral part, and the lower peripheral part of the used filter 1 in the same manner as in the first embodiment. Then, the PM ratio, which is the ratio of the new filter 1 to the absorption coefficient α r , is calculated. Figure from the graph of FIG. 3, reads the amount of collected PM corresponding to each PM ratio, PM trapped by weight (W 0 -W B, W 1 -W B, W 2 -W B) the result of the correction by 6 Shown in

図6から、使用済みフィルタ1の上下外周部でPM捕集量が多く内周部で少ないことがわかる。すなわち本実施例の捕集分布検出方法及び捕集分布検出装置によれば、使用済みのフィルタ1を破壊することなく、直径方向のPM捕集量の分布を容易にかつ精度高く検出することができる。   From FIG. 6, it can be seen that the amount of collected PM is large at the upper and lower outer peripheral portions of the used filter 1 and is small at the inner peripheral portion. That is, according to the collection distribution detection method and the collection distribution detection apparatus of the present embodiment, it is possible to easily and accurately detect the PM collection amount distribution in the diameter direction without destroying the used filter 1. it can.

この実施例では、PMが捕集されていないフィルタ1の外周部上・内周部・外周部下の各部位における吸収係数αr 値が同一であり、各部位の透過率(I0/IB、I1/IB、I2/IB)も同一である場合について示した。しかしながら各部位の透過率が異なる場合であっても、同一部位におけるPM捕集量の差異から、PM捕集量の分布を算出することが可能である。 In this embodiment, the absorption coefficient α r value is the same in each part on the outer peripheral part, the inner peripheral part, and the lower peripheral part of the filter 1 where PM is not collected, and the transmittance (I 0 / I B) of each part. , I 1 / I B , I 2 / I B ) are also the same. However, even if the transmittance of each part is different, it is possible to calculate the distribution of the PM collection amount from the difference in the PM collection amount in the same part.

(実施例3)
図7に本実施例の排ガス浄化装置を示す。ディーゼルエンジン5の排気マニホールド50には、円筒形状の触媒付きフィルタ1’を収納した鋼製のコンバータ51が連結されている。排気マニホールド50からの排ガスの大部分は、コンバータ51内を流れてフィルタ1を通過した後に排出され、排ガスの一部は、ターボチャージャ52及びインタークーラー53を介してディーゼルエンジン5のインテークマニホールド54に戻される。また排気マニホールド50には噴射ノズル55が配置され、排ガス中に軽油が間欠的に噴射されるように構成されている。
(Example 3)
FIG. 7 shows the exhaust gas purifying apparatus of this embodiment. Connected to the exhaust manifold 50 of the diesel engine 5 is a steel converter 51 that houses a filter 1 ′ having a cylindrical shape with catalyst. Most of the exhaust gas from the exhaust manifold 50 flows through the converter 51 and passes through the filter 1 and is discharged. A part of the exhaust gas is returned to the intake manifold 54 of the diesel engine 5 through the turbocharger 52 and the intercooler 53. It is. An injection nozzle 55 is disposed in the exhaust manifold 50, and is configured so that light oil is intermittently injected into the exhaust gas.

触媒付きフィルタ1’は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁と、を有するハニカム形状のウォールフロー構造をなし、実施例1と同様のコージェライトから形成されたフィルタ1を有する。このフィルタ1のセル隔壁の表面と細孔内表面には、アルミナにPtが担持されてなる触媒層が形成されている。   The filter with a catalyst 1 ′ is divided into an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and an inflow side cell and an outflow side cell. The filter has a honeycomb-shaped wall flow structure having a porous cell partition wall having a plurality of pores, and is formed of cordierite similar to that in Example 1. A catalyst layer in which Pt is supported on alumina is formed on the surface of the cell partition wall and the surface of the pores of the filter 1.

コンバータ51には、そのほぼ中央部外側に、図示しないマイクロ波発信器から延びる3個の発信部(20、21、22)と、図示しないマイクロ波受信器から延びる3個の受信部(30、31、32)とが設置されている。3個の発信部(20、21、22)と3個の受信部(30、31、32)とは、触媒付きフィルタ1’の中心軸を含む平面上で触媒付きフィルタ1’を挟む両側に、互いに対向するようにそれぞれ配置されている。マイクロ波発信器は ECU6によって駆動が制御され、マイクロ波受信器によって受信された信号が ECU6に入力されている。3個の発信部(20、21、22)と3個の受信部(30、31、32)に対向するコンバータ51の表面には、図8に示すように、アルミナからなりマイクロ波が透過可能な入射窓56と放射窓57が形成されている。   The converter 51 has three transmitters (20, 21, 22) extending from a microwave transmitter (not shown) and three receivers (30, 30) extending from a microwave receiver (not shown) on the outer side of the center. 31 and 32) are installed. The three transmitters (20, 21, 22) and the three receivers (30, 31, 32) are on both sides of the filter with a catalyst 1 ′ on a plane including the central axis of the filter with a catalyst 1 ′. Are arranged so as to face each other. The driving of the microwave transmitter is controlled by the ECU 6, and a signal received by the microwave receiver is input to the ECU 6. As shown in FIG. 8, the surface of the converter 51 facing the three transmitters (20, 21, 22) and the three receivers (30, 31, 32) is made of alumina and can transmit microwaves. An incident window 56 and a radiation window 57 are formed.

この排ガス浄化装置において、先ず新品の触媒付きフィルタ1’を用い、エンジン5を駆動することなく、3個の発信部(20、21、22)から600GHzのミリ波を入力強度IBで発信し、3個の受信部(30、31、32)で受信された出力強度(I0、I1、I2)を測定する。発信されたミリ波のエネルギーは入射窓56、触媒付きフィルタ1’、放射窓57によってある程度吸収される。しかしPMが捕集されておらず、触媒付きフィルタ1’は一端から他端まで同一断面構造であり、Ptの担持分布も均一であるので、上流側端部・中央部・下流側端部の各部位における吸収係数αr 値は同一となる。また各部位の透過率(I0/IB、I1/IB、I2/IB)も同一となる。 In this exhaust gas purification apparatus, first, a new filter 1 ′ with catalyst is used, and 600 mm millimeter waves are transmitted from the three transmitters (20, 21, 22) with the input intensity IB without driving the engine 5. The output intensity (I 0 , I 1 , I 2 ) received by the three receiving units (30, 31, 32) is measured. The transmitted millimeter-wave energy is absorbed to some extent by the entrance window 56, the filter with catalyst 1 ', and the radiation window 57. However, since PM is not collected, the catalyst-equipped filter 1 ′ has the same cross-sectional structure from one end to the other end, and the Pt carrying distribution is uniform, so the upstream end, the center, and the downstream end The absorption coefficient α r value in each part is the same. Further, the transmittance (I 0 / I B , I 1 / I B , I 2 / I B ) of each part is also the same.

そして数1式から、触媒付きフィルタ1’のみの場合の吸収係数αr が算出される。 Then, the absorption coefficient α r in the case of only the filter with catalyst 1 ′ is calculated from the equation (1).

本実施例においては、エンジン5を駆動した状態で3個の発信部(20、21、22)を常時駆動し、 ECU6は受信部(30、31、32)で受信された出力強度から算出される各PM ratioを常時観測する。そして図3に相当する関係式からPM捕集量が算出され、受信部30で検出された流入側のPM捕集量が予め設定された所定値を超えた場合には、 ECU6は噴射ノズル55を駆動して排ガス中に所定量の軽油を供給する。   In this embodiment, the three transmitters (20, 21, 22) are always driven while the engine 5 is driven, and the ECU 6 is calculated from the output intensity received by the receivers (30, 31, 32). Always observe each PM ratio. When the PM collection amount is calculated from the relational expression corresponding to FIG. 3 and the PM collection amount on the inflow side detected by the receiving unit 30 exceeds a predetermined value, the ECU 6 To supply a predetermined amount of light oil into the exhaust gas.

排ガス中に供給された軽油は、触媒付きフィルタ1’に流入し触媒層に担持されたPtの触媒作用によって低温域でも発火し燃焼する。この燃焼熱によって触媒付きフィルタ1’は約 600℃以上に昇温し、捕集されていたPMが燃焼する。このとき ECU6は、各PM ratioを常時観測する。そして流入側、中央部、流出側のPM捕集量のうち少なくとも流入側のPM捕集量が所定値以下となるまでは軽油の添加が続行され、少なくとも流入側のPM捕集量が所定値以下となったときに、 ECU6は噴射ノズル55の駆動を停止し触媒付きフィルタ1’の溶損あるいはPtの粒成長を防止する。   The light oil supplied into the exhaust gas flows into the filter with a catalyst 1 ′ and ignites and burns even in a low temperature region due to the catalytic action of Pt supported on the catalyst layer. This combustion heat raises the temperature of the filter with catalyst 1 ′ to about 600 ° C. or more, and the collected PM burns. At this time, the ECU 6 constantly observes each PM ratio. Then, the addition of light oil is continued until at least the inflow side PM trapped amount falls below a predetermined value among the inflow side, central portion, and outflow side PM trapped amount, and at least the inflow side PM trap amount is at the predetermined value. When it becomes below, ECU6 stops the drive of the injection nozzle 55, and prevents the filter 1 'with a catalyst from melting and Pt grain growth.

すなわち本実施例の排ガス浄化装置によれば、PM ratioを測定することでPM捕集分布を容易にかつ精度高く検出することができる。またミリ波レベルのマイクロ波を用いることで、局所的なPM捕集量の濃淡を精度よく検出できる。したがってPM捕集量が多くなり過ぎない状態で確実に触媒付きフィルタ1’の再生処理を行うことができるので、熱暴走による溶損を未然に防止することができる。さらに噴射ノズル55の駆動を最小限とすることができるので、燃費が向上する。   That is, according to the exhaust gas purification apparatus of the present embodiment, the PM collection distribution can be easily and accurately detected by measuring the PM ratio. In addition, by using millimeter-wave level microwaves, it is possible to accurately detect the density of the amount of PM trapped locally. Therefore, since the regeneration process of the filter with catalyst 1 ′ can be reliably performed in a state where the amount of PM trapped does not increase excessively, melting damage due to thermal runaway can be prevented in advance. Furthermore, since the driving of the injection nozzle 55 can be minimized, fuel efficiency is improved.

なお、この実施例では、PMが捕集されていない触媒付きフィルタ1’の上流側端部・中央部・下流側端部の各部位における吸収係数αr 値が同一であり、各部位の透過率(I0/IB、I1/IB、I2/IB)も同一である場合について示した。しかしながら各部位の透過率が異なる場合であっても、同一部位におけるPM捕集量の差異から、PM捕集量の分布を算出することが可能である。 In this embodiment, the absorption coefficient α r values at the upstream end portion, the central portion, and the downstream end portion of the filter with catalyst 1 ′ where PM is not collected are the same, and the permeation of each portion is the same. The case where the rates (I 0 / I B , I 1 / I B , I 2 / I B ) are also the same is shown. However, even if the transmittance of each part is different, it is possible to calculate the distribution of the PM collection amount from the difference in the PM collection amount in the same part.

本発明の一実施例に係る捕集分布検出装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the collection distribution detection apparatus which concerns on one Example of this invention. PM捕集量と透過率との関係を示すグラフである。It is a graph which shows the relationship between PM collection amount and the transmittance | permeability. PM捕集量とPM ratioとの関係を示すグラフである。It is a graph which shows the relationship between PM collection amount and PM ratio. 本発明の一実施例で検出されたフィルタの流れ方向におけるPM捕集分布を示すグラフである。It is a graph which shows PM collection distribution in the flow direction of the filter detected in one Example of this invention. 本発明の第2の実施例に係る捕集分布検出装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the collection distribution detection apparatus which concerns on 2nd Example of this invention. 本発明の第2実施例で検出されたフィルタの直径方向におけるPM捕集分布を示すグラフである。It is a graph which shows PM collection distribution in the diameter direction of the filter detected in 2nd Example of this invention. 本発明の第3の実施例に係る排ガス浄化装置のブロック図である。It is a block diagram of the exhaust gas purification apparatus which concerns on the 3rd Example of this invention. 本発明の第3の実施例に係る排ガス浄化装置の要部拡大断面図である。It is a principal part expanded sectional view of the exhaust gas purification apparatus which concerns on the 3rd Example of this invention.

符号の説明Explanation of symbols

1:フィルタ 2:マイクロ波発信器 3:マイクロ波受信器
4:演算装置 10:試料台 11:温度センサ
20、21、22:発信部 30、31、32:受信部
1: Filter 2: Microwave transmitter 3: Microwave receiver 4: Computing device 10: Sample stage 11: Temperature sensor
20, 21, 22: Transmitter 30, 31, 32: Receiver

Claims (4)

粒子状物質が捕集されたセラミックス製の捕集容器に対して外部からミリ波レベルのマイクロ波を照射し、該捕集容器を透過した該マイクロ波の強度を検出し、予め決められたマイクロ波強度と捕集量との関係式に該強度を代入して該粒子状物質の捕集量を演算する工程を該捕集容器の複数箇所についてそれぞれ行い、
捕集された該粒子状物質の該捕集容器内における捕集分布を検出することを特徴とする粒子状物質の捕集分布検出方法。
Microwave irradiation of a millimeter wave level from the outside to the collection container made of ceramics particulate matter trapped, detects the intensity of the microwaves transmitted through the the collecting container, the predetermined micro Substituting the intensity into the relational expression between the wave intensity and the collected amount and calculating the collected amount of the particulate matter for each of a plurality of locations of the collecting container,
A method for detecting a collection distribution of particulate matter, comprising: detecting a collection distribution of the collected particulate matter in the collection container.
粒子状物質が捕集されたセラミックス製の捕集容器の外部から該捕集容器の複数箇所に向かってミリ波レベルのマイクロ波を照射するマイクロ波照射手段と、
該捕集容器の該複数箇所を透過した該マイクロ波の強度をそれぞれ検出するマイクロ波受信手段と、
該マイクロ波受信手段で検出された該強度から該粒子状物質の捕集量をそれぞれ演算し該捕集容器中の該粒子状物質の捕集分布を演算する演算手段と、を含むことを特徴とする粒子状物質の捕集量分布検出装置。
A microwave irradiation means for irradiating a millimeter-wave level microwave from the outside of a ceramic collection container in which particulate matter is collected toward a plurality of locations of the collection container;
Microwave receiving means for respectively detecting the intensity of the microwave transmitted through the plurality of locations of the collection container;
Calculating means for calculating the amount of collection of the particulate matter from the intensity detected by the microwave receiving means , and calculating the collection distribution of the particulate matter in the collection container. An apparatus for detecting the collection amount distribution of particulate matter.
排ガス流路に配置されカーボンを主とするPMを捕集するセラミックス製のフィルタと、
該フィルタを収納する収納容器と、
該収納容器に形成された入射窓から該フィルタの複数箇所にミリ波レベルのマイクロ波を照射するマイクロ波照射手段と、
該フィルタを透過し該収納容器に形成された放射窓から放射された該マイクロ波の強度をそれぞれ検出するマイクロ波受信手段と、
該マイクロ波受信手段で検出されたそれぞれの該強度からPMの捕集分布を演算する演算手段と、を含むことを特徴とする排ガス浄化装置。
A ceramic filter that collects PM, mainly carbon, arranged in the exhaust gas flow path;
A storage container for storing the filter;
Microwave irradiation means for irradiating a plurality of locations of the filter with millimeter-wave level microwaves from an incident window formed in the storage container;
Microwave receiving means for respectively detecting the intensity of the microwave transmitted through the filter and radiated from a radiation window formed in the storage container;
An exhaust gas purification apparatus comprising: an arithmetic means for calculating a PM collection distribution from each of the intensities detected by the microwave receiving means .
前記演算手段は、前記マイクロ波受信手段による検出値からPMが捕集された前記フィルタにおける前記マイクロ波の吸収係数を算出し、予め測定されたPMが捕集されていない前記フィルタのみにおける前記マイクロ波の吸収係数に対する比からPMの捕集量を演算する請求項3に記載の排ガス浄化装置。 Said calculating means, said calculating the absorption coefficient of the microwave in the filter PM is collected from the detection value by the microwave receiving means, said micro the definitive only the filter premeasured PM is not trapped The exhaust gas purification apparatus according to claim 3, wherein the amount of PM trapped is calculated from a ratio to a wave absorption coefficient.
JP2007228274A 2007-09-03 2007-09-03 Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device Expired - Fee Related JP4949976B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007228274A JP4949976B2 (en) 2007-09-03 2007-09-03 Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
PCT/JP2008/065928 WO2009031600A2 (en) 2007-09-03 2008-08-28 Method for detecting distribution of trapped particulate matter, device for detecting distribution of trapped particulate matter and exhaust gas purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228274A JP4949976B2 (en) 2007-09-03 2007-09-03 Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2009057948A JP2009057948A (en) 2009-03-19
JP4949976B2 true JP4949976B2 (en) 2012-06-13

Family

ID=40429506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228274A Expired - Fee Related JP4949976B2 (en) 2007-09-03 2007-09-03 Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP4949976B2 (en)
WO (1) WO2009031600A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568322B2 (en) 2009-03-25 2014-08-06 日本碍子株式会社 Particulate matter accumulation detection device
JP5562073B2 (en) 2009-03-25 2014-07-30 日本碍子株式会社 Particulate matter accumulation detection device
JP2010271303A (en) * 2009-04-22 2010-12-02 Ngk Insulators Ltd Method and device for detecting deposition amount of particulate matter
JP5337640B2 (en) * 2009-09-07 2013-11-06 株式会社日本自動車部品総合研究所 Particulate matter collection distribution detection method and apparatus
JP2011094512A (en) 2009-10-28 2011-05-12 Advantest Corp Collecting body, collecting quantity measuring device, measuring method, program and recording medium
JP2011094514A (en) 2009-10-28 2011-05-12 Advantest Corp Carrier, adhesion amount measuring apparatus, measuring method, program and recording medium
GB2475097A (en) * 2009-11-06 2011-05-11 Total Vehicle Technology Ltd Analysing an exhaust gas using an inorganic filter
JP5613540B2 (en) * 2009-12-01 2014-10-22 日本碍子株式会社 Method and apparatus for detecting accumulated amount of particulate matter
WO2011118669A1 (en) 2010-03-24 2011-09-29 日本碍子株式会社 Particulate matter detection method
US8942887B2 (en) 2010-12-16 2015-01-27 Caterpillar Inc. Machine, exhaust particulate filter system, and method
US8833063B2 (en) 2011-05-17 2014-09-16 Caterpillar Inc. Methods and system for ash detection in exhaust particulate filter
US8875496B2 (en) 2011-06-29 2014-11-04 Caterpillar Inc. Regeneration control system for exhaust filter and method
JP5639690B2 (en) * 2013-07-05 2014-12-10 株式会社アドバンテスト Adhesion amount measuring device, measuring method, program, recording medium
JP2013241939A (en) * 2013-07-11 2013-12-05 Advantest Corp Collection amount measuring device, measuring method, program and recording medium
WO2015188188A1 (en) 2014-06-06 2015-12-10 Filter Sensing Technologies, Inc. Radio frequency process sensing, control, and diagnostics network
JP6689208B2 (en) * 2014-06-06 2020-04-28 シーティーエス・コーポレーションCts Corporation Radio frequency state change measuring system and method
JP6242316B2 (en) * 2014-09-16 2017-12-06 株式会社日立製作所 Concentration detector
US10309953B2 (en) 2014-10-20 2019-06-04 Cts Corporation Filter retentate analysis and diagnostics
US10799826B2 (en) 2015-06-08 2020-10-13 Cts Corporation Radio frequency process sensing, control, and diagnostics network and system
US10118119B2 (en) 2015-06-08 2018-11-06 Cts Corporation Radio frequency process sensing, control, and diagnostics network and system
JP6199002B2 (en) * 2015-06-26 2017-09-20 株式会社日立製作所 Laser light position control device and measuring device
JP6931001B2 (en) 2016-04-11 2021-09-01 シーティーエス・コーポレーションCts Corporation Radio frequency systems and methods for monitoring engine exhaust components
JP6733275B2 (en) 2016-04-12 2020-07-29 富士通株式会社 Microwave heating device and exhaust gas purification device
JP6711183B2 (en) 2016-07-08 2020-06-17 富士通株式会社 Particle detector and exhaust gas purification device
US11215102B2 (en) 2018-01-16 2022-01-04 Cts Corporation Radio frequency sensor system incorporating machine learning system and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477771A (en) * 1982-06-21 1984-10-16 General Motors Corporation Microwave detection of soot content in a particulate trap
CA2022702C (en) * 1990-08-03 1995-02-07 Frank B. Walton Method and apparatus for detecting soot concentration in particulate trap
JP2780507B2 (en) * 1991-03-29 1998-07-30 松下電器産業株式会社 Filter regeneration device for internal combustion engine
JPH081128B2 (en) * 1992-02-03 1996-01-10 株式会社リケン Diesel exhaust filter particulate matter trapping amount distribution detection method and device
JP2738251B2 (en) * 1993-01-20 1998-04-08 松下電器産業株式会社 Filter regeneration device for internal combustion engine
EP0675267B1 (en) * 1994-04-01 1998-06-10 Matsushita Electric Industrial Co., Ltd. Exhaust-gas purifier
JPH1183758A (en) * 1997-09-09 1999-03-26 Toshiba Joho Seigyo Syst Kk Densitometer
DE19827358A1 (en) * 1998-06-19 1999-12-30 Brach Berthold Soot particle sensor, e.g. for investigating diesel engine operation
JP3925225B2 (en) * 2001-03-28 2007-06-06 株式会社デンソー Exhaust gas purification filter and manufacturing method thereof
JP4473522B2 (en) * 2003-05-20 2010-06-02 日本碍子株式会社 Plugged honeycomb structure
JP4385850B2 (en) * 2004-05-14 2009-12-16 いすゞ自動車株式会社 Collection amount detection method and collection amount detection device
US7253641B2 (en) * 2005-07-26 2007-08-07 Caterpillar Inc. Radio frequency particulate sensing system
JP2007199044A (en) * 2006-01-24 2007-08-09 Junichi Nishizawa Terahertz wave type measuring apparatus and method

Also Published As

Publication number Publication date
WO2009031600A3 (en) 2009-06-18
JP2009057948A (en) 2009-03-19
WO2009031600A2 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4949976B2 (en) Particulate matter collection distribution detection method, collection distribution detection device and exhaust gas purification device
JP2009002276A (en) Collection quantity detecting method of particulate matter, collection quantity detecting device and exhaust emission control device
JP5060368B2 (en) Particulate matter collection amount detection method, collection amount detection device and exhaust gas purification device
US8650857B2 (en) Apparatus and method for onboard performance monitoring of exhaust gas particulate filter
EP1916394B1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method, and particulate matter measuring method
KR102356117B1 (en) Method for detecting the degree of aging of catalytic converters
EP1914399B1 (en) Exhaust gas purifying apparatus
EP1921289B1 (en) Exhaust gas purifying apparatus for measuring particles
JP5568322B2 (en) Particulate matter accumulation detection device
US7658064B2 (en) Exhaust gas purifying apparatus
EP1914537A1 (en) Particulate matter sensor
JP5562073B2 (en) Particulate matter accumulation detection device
JP4798813B1 (en) Method for detecting particulate matter
CN105765188B (en) For onboard diagnostic system and diagnostic method through catalyst substrates
JP5613540B2 (en) Method and apparatus for detecting accumulated amount of particulate matter
Sappok et al. Radio frequency diesel particulate filter soot and ash level sensors: Enabling adaptive controls for heavy-duty diesel applications
JP2010271303A (en) Method and device for detecting deposition amount of particulate matter
JP4385850B2 (en) Collection amount detection method and collection amount detection device
JP2010223169A (en) Accumulation amount detection device for particulate
Sappok et al. Direct measurement of aftertreatment system stored water levels for improved dew point management using radio frequency sensing
KR102371238B1 (en) System for purifying exhaust of vehicle and regeneration control method thereof
JP2005023797A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees