US20110069294A1 - Apparatus and method for exposing edge of substrate - Google Patents

Apparatus and method for exposing edge of substrate Download PDF

Info

Publication number
US20110069294A1
US20110069294A1 US12/954,362 US95436210A US2011069294A1 US 20110069294 A1 US20110069294 A1 US 20110069294A1 US 95436210 A US95436210 A US 95436210A US 2011069294 A1 US2011069294 A1 US 2011069294A1
Authority
US
United States
Prior art keywords
substrate
exposure unit
stage
edge
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/954,362
Inventor
Jong Ho Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Priority to US12/954,362 priority Critical patent/US20110069294A1/en
Publication of US20110069294A1 publication Critical patent/US20110069294A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2026Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure for the removal of unwanted material, e.g. image or background correction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to an apparatus and method for exposing an edge of a substrate to manufacture a flat display device, and more particularly, to an apparatus and method for exposing an edge of a substrate, in which an exposure time period for exposing the edge of the substrate is reduced.
  • a photolithography process is used to pattern a substrate in a process of manufacturing a semiconductor device or a flat display device.
  • the photolithography process includes a deposition process of depositing a photoresist on a substrate, an exposure process of exposing the photoresist deposited on the substrate, and a development process of developing the exposed substrate.
  • the exposure process is to selectively expose the photoresist deposited on the substrate using a mask.
  • an edge exposure process is performed before the exposure process to remove the edge of the substrate at a certain width.
  • FIG. 1 is a block diagram illustrating a related art apparatus for exposing an edge of a substrate.
  • the related art apparatus for exposing an edge of a substrate includes a loading/unloading unit 10 loading and unloading the substrate, and an edge exposure unit 20 exposing the edge of the substrate loaded by the loading/unloading unit 10 .
  • the loading/unloading unit 10 loads the substrate externally deposited with a photoresist into the edge exposure unit 20 using a robot arm. Also, the loading/unloading unit 10 unloads the substrate exposed by the edge exposure unit 20 from the edge exposure unit 20 using the robot arm.
  • the edge exposure unit 20 exposes the edge, i.e., long and short sides, of the substrate loaded by the loading/unloading unit 10 at a certain width.
  • FIG. 2 illustrates the related art edge exposure unit 20 shown in FIG. 1 .
  • the related art edge exposure unit 20 includes a stage 21 supporting the substrate deposited with the photoresist, a driving shaft 22 moving the stage 21 in a first direction (X axis) and rotating the stage 21 , a rail 23 guiding the driving shaft 22 to move the driving shaft 22 to the first direction, and an exposure unit provided in the rail 23 to expose the edge of the substrate.
  • the stage 21 includes a plurality of lift pins 25 supporting and fixing the substrate loaded from the loading/unloading unit 10 .
  • the lift pins 25 are ascended and descended by a driving device (not shown) to adsorb the substrate under the vacuum state.
  • the driving shaft 22 is linked to the driving device to move the stage 21 in the first direction (X axis) along the rail 23 . Also, the driving shaft 22 is rotated by the driving device to rotate the stage 21 .
  • the rail 23 guides the driving shaft 22 to move the driving shaft 22 to the first direction (X axis).
  • the exposure unit includes a support bar 24 arranged to vertically cross the rail 23 , first and second optical systems 26 a and 26 b arranged in parallel at a side of the support bar 24 , and a distance controller 28 controlling the distance between the first and second optical systems 26 a and 26 b.
  • the support bar 24 is fixed to the rail 23 to vertically cross the rail 23 .
  • Each of the first and second optical systems 26 a and 26 b are spaced apart from each other to correspond to the distance between the long sides or the short sides of the substrate.
  • Each of the first and second optical systems 26 a and 26 b irradiates light toward the long sides or the short sides of the substrate to expose the edge of the substrate.
  • the distance controller 28 controls the distance between the first and second optical systems 26 a and 26 b to correspond to the distance between the long sides or the short sides of the substrate.
  • FIGS. 3A to 3G are sectional views illustrating exposure process steps of exposing the edge of the substrate using the related art edge exposure unit 20 .
  • the substrate 2 deposited with the photoresist is loaded, as shown by arrow 30 , onto the stage 21 of the home position by the robot arm of the loading/unloading unit 10 . If the robot arm of the loading/unloading unit 10 on which the substrate is mounted is positioned on the stage 21 , the lift pins 25 are ascended by the driving device to lift the substrate 2 mounted on the robot arm. If the substrate 2 is lifted at a certain height by the lift pins 25 , the robot arm returns to the loading/unloading unit 10 . At this time, the distance between the first and second optical systems 26 a and 26 b is set by the distance controller 28 to correspond to the distance between the long sides of the substrate 2 .
  • the driving shaft 22 moves to the first direction (X axis) along the rail 23 so that the stage 21 moves, as shown by arrow 31 , to the exposure unit.
  • the first and second optical systems 26 a and 26 b irradiate light toward both edges 29 a of the long sides of the substrate 2 to expose the long sides of the substrate 2 .
  • the first and second optical systems 26 a and 26 b may be driven by a sensing signal of a sensor (not shown) that senses the position of the substrate 2 .
  • the driving shaft 22 is clockwise rotated, as shown by arrow 32 , at an angle of 90° as shown in FIG. 3D .
  • the distance between the first and second optical systems 26 a and 26 b is set, as shown by arrow 33 , by the distance controller 28 to correspond to the distance between the short sides of the substrate 2 .
  • the driving shaft 22 moves to the first direction (X axis) along the rail 23 so that the stage 21 moves to the home position. If the substrate 2 , which is moving to the home position, moves near the exposure unit, the first and second optical systems 26 a and 26 b irradiate light toward both edges 29 b of the short sides of the substrate 2 to expose the short sides of the substrate 2 .
  • the driving shaft 22 is clockwise rotated, as shown by arrow 34 , at an angle of 90° as shown in FIG. 3G .
  • the distance between the first and second optical systems 26 a and 26 b is set by the distance controller 28 to correspond to the distance between the long sides of the substrate 2 .
  • the substrate 2 whose long and short sides have completely been exposed is ascended at a certain height by the lift pins 25 .
  • the robot arm of the loading/unloading unit 10 is inserted between the ascended substrate 2 and the stage 21 .
  • the lift pins 25 are descended into the stage 21 so that the substrate 2 is mounted on the robot arm and thus unloaded from the loading/unloading unit 10 .
  • the edge of the substrate 2 is exposed in the order of loading of the substrate 2 , movement of the stage 21 and exposure of the long sides, rotation of the stage 21 , movement of the stage 21 and exposure of the short sides, rotation of the stage 21 , and unloading of the substrate 2 .
  • the process time of exposing the edge of the substrate 2 increases due to a standby time period of the substrate 2 .
  • the present invention is directed to an apparatus and method for exposing an edge of a substrate, which substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • An objective of the present invention is to provide an apparatus and method for exposing an edge of a substrate, in which an exposure time period for exposing the edge of the substrate is reduced.
  • an apparatus for exposing an edge of a substrate.
  • the apparatus comprises a loading unit loading the substrate, and an edge exposure unit exposing the edge of the substrate loaded by the loading unit using each of a long side exposure unit and a short side exposure unit.
  • a method for exposing an edge of a substrate includes mounting the substrate on a stage, and then exposing the edge of the substrate mounted on the stage using each of a long side exposure unit and a short side exposure unit.
  • a method for exposing an edge of a substrate includes mounting the substrate on a stage, exposing both edges of a first side of the substrate in a state that the stage is stopped, exposing both edges of a second side of the substrate while moving the stage, and drawing the substrate of which both edges of the first and second sides have been exposed, from the stage and moving the drawn substrate to the outside.
  • FIG. 1 is a block diagram illustrating a related art apparatus for exposing an edge of a substrate
  • FIG. 2 illustrates a related art edge exposure unit shown in FIG. 1 ;
  • FIGS. 3A to 3G are sectional views illustrating exposure process steps of exposing an edge of a substrate using a related art edge exposure unit
  • FIG. 4 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the first embodiment of the present invention
  • FIGS. 5A and 5B are sectional views illustrating an edge exposure unit shown in FIG. 4 ;
  • FIG. 6 illustrates a conveyer unit shown in FIG. 4 ;
  • FIGS. 7A to 7J are sectional views illustrating exposure process steps of exposing an edge of a substrate in accordance with the first embodiment of the present invention
  • FIG. 8 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention.
  • FIG. 9 is a sectional view illustrating an edge exposure unit shown in FIG. 8 ;
  • FIGS. 10A to 10G are sectional views illustrating exposure process steps of exposing an edge of a substrate in accordance with the second embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the first embodiment of the present invention.
  • the apparatus for exposing an edge of a substrate includes a loading unit 110 loading the substrate, an edge exposure unit 120 exposing the edge of the substrate loaded by the loading unit 110 , and a conveyer unit 125 moving the substrate whose edge has been exposed by the edge exposure unit 120 .
  • the substrate may be a wafer for manufacture of a semiconductor device or a glass for manufacture of an image display device.
  • the loading unit 110 loads the substrate externally deposited with photoresist into the edge exposure unit 120 using a robot arm.
  • the edge exposure unit 120 fixes the substrate loaded by the loading unit 110 and exposes long sides of the fixed substrate at a certain width using a long side exposure unit. Then, the edge exposure unit 120 exposes short sides of the exposed substrate at a certain width using a short side exposure unit.
  • the conveyer unit 125 moves the substrate whose edge has been exposed by the edge exposure unit 120 using a conveyer.
  • the apparatus for exposing the edge of the substrate in accordance with the first embodiment of the present invention can reduce an edge exposure process time period by arranging the loading unit 110 , the edge exposure unit 120 and the conveyer unit 125 in an in-line type.
  • FIGS. 5A and 5B illustrate the edge exposure unit 120 shown in FIG. 4 .
  • the edge exposure unit 120 includes a stage 221 supporting the substrate 202 loaded from the loading unit 110 , a driving shaft 222 moving the stage 221 in a first direction (X axis), a rail 223 guiding the driving shaft 222 to move the driving shaft 222 to the first direction, a long side exposure unit exposing the long sides of the substrate 202 supported by the stage 221 , and a short side exposure unit exposing the short sides of the substrate 202 moved by movement of the stage 221 .
  • the stage 221 includes a plurality of lift pins 225 supporting and fixing the substrate 202 loaded from the loading unit 110 .
  • the lift pins 225 are ascended and descended by a driving device (not shown) to adsorb the substrate 202 under the vacuum state.
  • the substrate 202 from the loading unit 110 is loaded onto the stage 221 through a port 215 provided to face one side of the stage 221 .
  • the driving shaft 222 is linked to the driving device to move the stage 221 in the first direction (X axis) along the rail 223 .
  • the rail 223 is provided on a support 200 and guides the driving shaft 222 to move the driving shaft 222 to the first direction (X axis).
  • the long side exposure unit includes first and second driving bars 230 and 232 arranged on the stage 221 to face each other, a moving bar 234 arranged between the first and second driving bars 230 and 232 to move to a second direction (Y axis), and first and second optical systems 226 a and 226 b arranged at a side of the moving bar 234 to correspond to the distance between the long sides of the substrate 202 .
  • the first and second driving bars 230 and 232 are arranged on the stage 221 to vertically cross the rail 223 and move the moving bar 234 to the second direction (Y axis). At this time, the first driving bar 230 is arranged near the port 215 to which the substrate 202 is loaded by the loading unit 110 while the second driving bar 232 is arranged near the short side exposure unit.
  • the moving bar 234 is arranged to vertically cross the first and second driving bars 230 and 232 and faces the stage 221 .
  • the moving bar 234 is linked to driving of the first and second driving bars 230 and 232 to move to the second direction (Y axis).
  • the moving bar 234 may be any one of LM (Linear Motion) rail and LM block of LM guide.
  • Each of the first and second driving bars 230 and 232 may be the other one of LM rail and LM block of LM guide.
  • the first and second optical systems 226 a and 226 b are arranged in parallel at a side of the moving bar 234 and spaced apart from each other to correspond to the distance between the long sides of the substrate 202 .
  • Each of the first and second optical systems 226 a and 226 b irradiates light toward the long sides of the substrate 202 moved by the moving bar 234 and mounted on the stage 221 .
  • each of the first and second optical systems 226 a and 226 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • the long side exposure unit may further include a distance controller 228 a that controls the distance between the first and second optical systems 226 a and 226 b in accordance with the size of the substrate 202 .
  • the short side exposure unit includes a support bar 240 arranged in parallel with the long side exposure unit, and third and fourth optical systems 246 a and 246 b arranged at a side of the support bar 240 to correspond to the distance between the short sides of the substrate 202 .
  • the support bar 240 is arranged in parallel with the second driving bar 232 of the long side exposure unit to vertically cross the rail 223 .
  • the third and fourth optical systems 246 a and 246 b are arranged in parallel at a side of the support bar 240 and spaced apart from each other to correspond to the distance between the short sides of the substrate 202 .
  • Each of the third and fourth optical systems 246 a and 246 b irradiates light toward the short sides of the substrate 202 mounted on the stage 221 moved to the first direction (X axis) along the rail 223 .
  • each of the third and fourth optical systems 246 a and 246 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • the short side exposure unit may further include a distance controller 228 b that controls the distance between the third and fourth optical systems 246 a and 246 b in accordance with the size of the substrate 202 .
  • FIG. 6 illustrates the conveyer unit 125 shown in FIG. 4 .
  • the conveyer unit 125 includes a substrate drawing unit 250 drawing the substrate, whose edge has been exposed, from the edge exposure unit 120 , and a substrate moving unit 270 moving the substrate drawn by the substrate drawing unit 250 to an external development unit (not shown).
  • the substrate drawing unit 250 includes at least one cylinder 252 arranged at an end of the support 220 , a driving shaft 254 vertically driven by driving of the cylinder 252 , a frame 256 arranged at an end of the driving shaft 254 , and a roller driver arranged in parallel with the frame 256 to draw the substrate from the stage 221 of the edge exposure unit 120 .
  • Each of the cylinders 252 is driven by a driving device (not shown) to ascend and descend the driving shaft 254 .
  • the driving shaft 254 is linked to driving of the cylinder 252 to ascend and descend the frame 256 .
  • the roller driver includes a plurality of guide wings 260 arranged in parallel at constant intervals, and a plurality of rollers 262 arranged in the respective guide wings 260 in parallel at constant intervals.
  • the guide wings 260 are arranged in parallel to be inserted between the stage 221 and the substrate. In other words, each of the guide wings 260 is inserted into a space between the lift pins ascended from the stage 221 at a certain height.
  • the rollers 262 are rotated by a driving motor (not shown) to move the substrate to the substrate moving unit 270 .
  • a driving motor not shown
  • the substrate is mounted on the rollers 262 .
  • the driving shaft 254 is ascended by driving of the cylinder 252
  • the substrate is mounted on the rollers 262 .
  • the substrate moving unit 270 is arranged near the substrate drawing unit 250 and includes a plurality of rollers 272 that moves the substrate moved by the roller driver to the external development unit.
  • the substrate moving unit 270 may be a conveyer arranged in the external development unit to move the substrate during development.
  • FIGS. 7A to 7J are sectional views illustrating exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the first embodiment of the present invention.
  • the lift pins 225 arranged in the stage 221 are ascended to lift the substrate 202 mounted on the robot arm.
  • the robot arm returns to the loading unit 110 .
  • the lift pins 225 descend so that the substrate 202 is mounted on the stage 221 and then aligned.
  • the moving bar 234 is slowly moved to the second direction (Y axis) by means of driving of the first and second driving units 230 and 232 and the moving bar 234 .
  • the first and second optical systems 226 a and 226 b irradiate, as shown by arrow 280 , light toward both edges of the long sides of the substrate 202 to expose the long sides of the substrate 202 .
  • the first and second optical systems 226 a and 226 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 202 .
  • the stage 221 is slowly moved, as shown by arrow 290 , to the first direction (X axis), i.e., toward the conveyer unit 125 by driving of the driving shaft 222 .
  • the third and fourth optical systems 246 a and 246 b irradiate, as shown by arrow 282 , light toward both edges of the short sides of the substrate 202 mounted on the stage 221 , which is moving along the rail 223 , as shown by arrows 290 and 291 , so as to expose the short sides of the substrate 202 .
  • the third and fourth optical systems 246 a and 246 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 202 .
  • the stage 221 continues to move, as shown by arrow 292 , to the conveyer unit 125 along the rail 223 .
  • the lift pins 225 ascend before the stage 221 is near the guides 260 of the substrate drawing unit.
  • the substrate 202 mounted on the stage 221 ascends at a certain height.
  • the guide wings 260 are inserted into the space between the stage 221 and the substrate 202 .
  • the substrate 202 supported by the lift pins 225 is mounted on the rollers 262 arranged in the guide wings 260 .
  • the cylinder 252 is driven so that the guide wings 260 ascend at a certain height.
  • the substrate 202 supported by the lift pins 225 may be mounted on the rollers 262 arranged in the guide wings 260 .
  • the driving shaft 254 is linked to driving of the cylinder 252 and ascends, so that the guide wings 260 ascend.
  • the guide wings 260 ascend, as shown by arrow 294 , to the position corresponding to the rollers 272 arranged in the substrate drawing unit 270 .
  • the stage 221 stopped at the drawing position of the substrate 202 is moved, as shown by arrow 295 , to the first direction (X axis), i.e., the port 215 along the rail 223 and returns to the home position.
  • the edge of the substrate 202 is exposed in the order of loading of the substrate 202 , exposure of the long sides of the stopped substrate 202 , movement of the stage 221 and exposure of the short sides of the substrate 202 concurrently, and movement of the stage 221 and unloading of the substrate 202 concurrently.
  • the substrate 202 is moved in an in-line type without any unnecessary standby time period of the substrate 202 such as rotation of the substrate 202 and reciprocating movement of the stage 221 to expose the edge of the substrate 202 , thereby reducing the edge exposure time period. Therefore, it is possible to improve productivity. Also, since no rotation of the substrate 202 is required, it is possible to reduce the size of the apparatus.
  • the aforementioned apparatus and method for exposing the edge of the substrate according to the first embodiment of the present invention may depend on the position between the loading unit 110 and the edge exposure unit 120 .
  • FIG. 8 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention.
  • the apparatus for exposing an edge of a substrate includes a loading unit 110 loading the substrate, an edge exposure unit 320 arranged below the loading unit 110 to expose the edge of the substrate loaded by the loading unit 110 using a short side exposure unit and a long side exposure unit, and a conveyer unit 125 moving the substrate whose edge has been exposed by the edge exposure unit 320 .
  • the apparatus for exposing the edge of the substrate in accordance with the second embodiment of the present invention can reduce an edge exposure process time period by arranging the edge exposure unit 320 and the conveyer unit 125 excluding the loading unit 110 in an in-line type.
  • the apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention has the same elements as those of the first embodiment excluding the edge exposure unit 320 . Therefore, description of other elements excluding the edge exposure unit 320 will be replaced with the description according to the first embodiment.
  • FIG. 9 illustrates the edge exposure unit 320 shown in FIG. 8 .
  • the edge exposure unit 320 includes a stage 321 supporting the substrate 302 loaded from the loading unit 110 , a driving shaft (not shown) moving the stage 321 to a first direction (X axis), a rail 323 guiding the driving shaft to move the driving shaft to the first direction, a short side exposure unit exposing the short sides of the substrate 302 supported by the stage 321 , and a long side exposure unit exposing the long sides of the substrate 302 moved along the movement of the stage 321 .
  • the stage 321 includes a plurality of lift pins 325 supporting and fixing the substrate 302 loaded from the loading unit 110 .
  • the lift pins 325 are ascended and descended by a driving device (not shown) to adsorb to the substrate 302 under the vacuum state.
  • the substrate 302 from the loading unit 110 is loaded onto the stage 321 through a port 315 provided to face an upper end of the stage 321 .
  • the driving shaft is linked to the driving device to move the stage 321 in the first direction (X axis) along the rail 323 .
  • the rail 323 guides the driving shaft to move the driving shaft to the first direction (X axis).
  • the short side exposure unit includes first and second driving bars 330 and 332 arranged on the stage 321 to face each other, a moving bar 334 arranged between the first and second driving bars 330 and 332 to move to a second direction (Y axis), and first and second optical systems 326 a and 326 b arranged at a side of the moving bar 334 to correspond to the distance between the short sides of the substrate 302 .
  • the first and second driving bars 330 and 332 are arranged on the stage 321 to vertically cross the rail 323 and move the moving bar 334 to the second direction (Y axis). At this time, the first driving bar 330 is arranged to be vertical to the port 315 to which the substrate 302 is loaded by the loading unit 110 , while the second driving bar 332 is arranged near the short side exposure unit.
  • the moving bar 334 is arranged to vertically cross the first and second driving bars 330 and 332 and faces the stage 321 .
  • the moving bar 334 is linked to driving of the first and second driving bars 330 and 332 to move to the second direction (Y axis).
  • the moving bar 334 may be any one of LM rail and LM block of LM guide.
  • Each of the first and second driving bars 330 and 332 may be other one of LM rail and LM block of LM guide.
  • the first and second optical systems 326 a and 326 b are arranged in parallel at a side of the moving bar 334 and spaced apart from each other to correspond to the distance between the short sides of the substrate 302 .
  • Each of the first and second optical systems 326 a and 326 b irradiates light toward the short sides of the substrate 302 moved by the moving bar 334 and mounted on the stage 321 .
  • each of the first and second optical systems 326 a and 326 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • the short side exposure unit may further include a distance controller 328 a that controls the distance between the first and second optical systems 326 a and 326 b in accordance with the size of the substrate 302 .
  • the long side exposure unit includes a support bar 340 arranged in parallel with the long side exposure unit, and third and fourth optical systems 346 a and 346 b arranged at each side of the support bar 340 to correspond to the distance between the long sides of the substrate 302 .
  • the support bar 340 is arranged in parallel with the second driving bar 332 of the short side exposure unit to vertically cross the rail 323 .
  • the third and fourth optical systems 346 a and 346 b are arranged in parallel at each side of the support bar 340 and spaced apart from each other to correspond to the distance between the long sides of the substrate 302 .
  • Each of the third and fourth optical systems 346 a and 346 b irradiates light toward the long sides of the substrate 302 mounted on the stage 321 moved to the first direction (X axis) along the rail 323 .
  • each of the third and fourth optical systems 346 a and 346 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • the long side exposure unit may further include a distance controller 328 b that controls the distance between the third and fourth optical systems 346 a and 346 b in accordance with the size of the substrate 302 .
  • FIGS. 10A to 10G are sectional views illustrating exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the second embodiment of the present invention.
  • the substrate 302 is loaded, as shown by arrow 390 , onto the stage 321 of the edge exposure unit 320 through the port 315 by the robot arm of the loading unit 110 .
  • the lift pins 325 arranged in the stage 321 are ascended to lift the substrate 302 mounted on the robot arm.
  • the robot arm returns to the loading unit 110 .
  • the lift pins 325 descend so that the substrate 302 is mounted on the stage 321 and then aligned.
  • the moving bar 334 is slowly moved to the second direction (Y axis) by means of driving of the first and second driving bars 330 and 332 and the moving bar 334 .
  • the first and second optical systems 326 a and 326 b irradiate light toward both edges 329 a of the short sides of the substrate 302 to expose the short sides of the substrate 302 .
  • the first and second optical systems 326 a and 326 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 302 .
  • the stage 321 is slowly moved, as shown by arrow 391 , to the first direction (X axis), i.e., toward the conveyer unit 125 along the rail 323 .
  • the third and fourth optical systems 346 a and 346 b irradiate light toward both edges 329 b of the long sides of the substrate 302 mounted on the stage 321 , which is moving along the rail 323 , as shown by arrow 391 , so as to expose the long sides of the substrate 302 .
  • the third and fourth optical systems 346 a and 346 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 302 .
  • the stage 321 continues to move to the conveyer unit 125 along the rail 323 .
  • the stage 321 is moved to the drawing position of the substrate and then stopped.
  • the substrate 302 mounted on the stage 321 stopped at the drawing position of the substrate is drawn from the stage 321 in accordance with the operation of the conveyer unit 125 shown in FIGS. 7F to 7I and then moved, as shown by arrow 392 , to the external development unit.
  • the operation of the conveyer unit 125 will be replaced with the description of FIGS. 7F to 7I .
  • the stage 321 is moved to the first direction (X axis), i.e., toward the port 325 along the rail 323 and returns to the home position.
  • the edge of the substrate 302 is exposed in the order of loading of the substrate 302 , exposure of the short sides of the stopped substrate 302 , movement of the stage 321 and exposure of the long sides of the substrate 302 concurrently, and movement of the stage 321 , and unloading of the substrate 302 .
  • the substrate 302 is moved in an in-line type without any unnecessary standby time period of the substrate 302 such as rotation of the substrate 302 and reciprocating movement of the stage 321 to expose the edge of the substrate 302 , thereby reducing the edge exposure time period. Therefore, it is possible to improve productivity. Also, since no rotation of the substrate 302 is required, it is possible to reduce the size of the apparatus.
  • the aforementioned apparatus and method for exposing the edge of the substrate according to the embodiments of the present invention have the following advantages.
  • the apparatus since no rotation of the substrate is required, it is possible to reduce the size of the apparatus. Moreover, since the apparatus is provided in an in-line type, it is possible to easily draw the substrate using the conveyer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An apparatus and method for exposing an edge of a substrate are disclosed, in which an exposure time period for exposing the edge of the substrate is reduced. The apparatus for exposing an edge of a substrate includes a loading unit loading the substrate, and an edge exposure unit exposing the edge of the substrate loaded by the loading unit using each of a long side exposure unit and a short side exposure unit. Therefore, since the edge of the substrate is exposed using each of the long side exposure unit and the short side exposure unit, it is possible to reduce the edge exposure time period, thereby improving productivity. In addition, since no rotation of the substrate is required, it is possible to reduce the size of the apparatus. Moreover, since the apparatus is provided in an in-line type, it is possible to easily draw the substrate using a conveyer.

Description

    FIELD OF THE INVENTION
  • The present patent document is a divisional of U.S. patent application Ser. No. 11/455,433, filed Jun. 19, 2006, which claims priority to Korean Patent Application No. P2005-0133112 filed in Korea on Dec. 29, 2005, which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an apparatus and method for exposing an edge of a substrate to manufacture a flat display device, and more particularly, to an apparatus and method for exposing an edge of a substrate, in which an exposure time period for exposing the edge of the substrate is reduced.
  • Generally, a photolithography process is used to pattern a substrate in a process of manufacturing a semiconductor device or a flat display device.
  • The photolithography process includes a deposition process of depositing a photoresist on a substrate, an exposure process of exposing the photoresist deposited on the substrate, and a development process of developing the exposed substrate.
  • The exposure process is to selectively expose the photoresist deposited on the substrate using a mask.
  • Meanwhile, a process defect occurs due to foreign materials generated by peeling at the edge of the substrate during movement, exposure or development of the substrate. To prevent such peeling at the edge of the substrate, an edge exposure process is performed before the exposure process to remove the edge of the substrate at a certain width.
  • FIG. 1 is a block diagram illustrating a related art apparatus for exposing an edge of a substrate.
  • Referring to FIG. 1, the related art apparatus for exposing an edge of a substrate includes a loading/unloading unit 10 loading and unloading the substrate, and an edge exposure unit 20 exposing the edge of the substrate loaded by the loading/unloading unit 10.
  • The loading/unloading unit 10 loads the substrate externally deposited with a photoresist into the edge exposure unit 20 using a robot arm. Also, the loading/unloading unit 10 unloads the substrate exposed by the edge exposure unit 20 from the edge exposure unit 20 using the robot arm.
  • The edge exposure unit 20 exposes the edge, i.e., long and short sides, of the substrate loaded by the loading/unloading unit 10 at a certain width.
  • FIG. 2 illustrates the related art edge exposure unit 20 shown in FIG. 1.
  • Referring to FIG. 2 in connection with FIG. 1, the related art edge exposure unit 20 includes a stage 21 supporting the substrate deposited with the photoresist, a driving shaft 22 moving the stage 21 in a first direction (X axis) and rotating the stage 21, a rail 23 guiding the driving shaft 22 to move the driving shaft 22 to the first direction, and an exposure unit provided in the rail 23 to expose the edge of the substrate.
  • The stage 21 includes a plurality of lift pins 25 supporting and fixing the substrate loaded from the loading/unloading unit 10. The lift pins 25 are ascended and descended by a driving device (not shown) to adsorb the substrate under the vacuum state.
  • The driving shaft 22 is linked to the driving device to move the stage 21 in the first direction (X axis) along the rail 23. Also, the driving shaft 22 is rotated by the driving device to rotate the stage 21.
  • The rail 23 guides the driving shaft 22 to move the driving shaft 22 to the first direction (X axis).
  • The exposure unit includes a support bar 24 arranged to vertically cross the rail 23, first and second optical systems 26 a and 26 b arranged in parallel at a side of the support bar 24, and a distance controller 28 controlling the distance between the first and second optical systems 26 a and 26 b.
  • The support bar 24 is fixed to the rail 23 to vertically cross the rail 23.
  • Each of the first and second optical systems 26 a and 26 b are spaced apart from each other to correspond to the distance between the long sides or the short sides of the substrate. Each of the first and second optical systems 26 a and 26 b irradiates light toward the long sides or the short sides of the substrate to expose the edge of the substrate.
  • The distance controller 28 controls the distance between the first and second optical systems 26 a and 26 b to correspond to the distance between the long sides or the short sides of the substrate.
  • FIGS. 3A to 3G are sectional views illustrating exposure process steps of exposing the edge of the substrate using the related art edge exposure unit 20.
  • The exposure process steps of exposing the edge of the substrate according to the related art will be described as follows.
  • First, as shown in FIG. 3A, the substrate 2 deposited with the photoresist is loaded, as shown by arrow 30, onto the stage 21 of the home position by the robot arm of the loading/unloading unit 10. If the robot arm of the loading/unloading unit 10 on which the substrate is mounted is positioned on the stage 21, the lift pins 25 are ascended by the driving device to lift the substrate 2 mounted on the robot arm. If the substrate 2 is lifted at a certain height by the lift pins 25, the robot arm returns to the loading/unloading unit 10. At this time, the distance between the first and second optical systems 26 a and 26 b is set by the distance controller 28 to correspond to the distance between the long sides of the substrate 2.
  • When the robot arm is taken out from the stage 21, the lift pins 25 descend and are fixed to the surface of the stage 21 as shown in FIG. 3B.
  • Subsequently, as shown in FIG. 3C, the driving shaft 22 moves to the first direction (X axis) along the rail 23 so that the stage 21 moves, as shown by arrow 31, to the exposure unit. When the substrate 2 moves near the exposure unit, the first and second optical systems 26 a and 26 b irradiate light toward both edges 29 a of the long sides of the substrate 2 to expose the long sides of the substrate 2. At this time, the first and second optical systems 26 a and 26 b may be driven by a sensing signal of a sensor (not shown) that senses the position of the substrate 2.
  • Subsequently, as shown in FIG. 3D, when the long sides of the substrate 2 are completely exposed, the driving shaft 22 is clockwise rotated, as shown by arrow 32, at an angle of 90° as shown in FIG. 3D. At this time, the distance between the first and second optical systems 26 a and 26 b is set, as shown by arrow 33, by the distance controller 28 to correspond to the distance between the short sides of the substrate 2.
  • Next, as shown in FIG. 3E, when the substrate 2 is completely rotated, the driving shaft 22 moves to the first direction (X axis) along the rail 23 so that the stage 21 moves to the home position. If the substrate 2, which is moving to the home position, moves near the exposure unit, the first and second optical systems 26 a and 26 b irradiate light toward both edges 29 b of the short sides of the substrate 2 to expose the short sides of the substrate 2.
  • Subsequently, as shown in FIG. 3F, when the short sides of the substrate 2 are completely exposed, the driving shaft 22 is clockwise rotated, as shown by arrow 34, at an angle of 90° as shown in FIG. 3G. At this time, the distance between the first and second optical systems 26 a and 26 b is set by the distance controller 28 to correspond to the distance between the long sides of the substrate 2.
  • Then, when rotation of the substrate 2 is completed, the substrate 2 whose long and short sides have completely been exposed is ascended at a certain height by the lift pins 25. The robot arm of the loading/unloading unit 10 is inserted between the ascended substrate 2 and the stage 21. Subsequently, the lift pins 25 are descended into the stage 21 so that the substrate 2 is mounted on the robot arm and thus unloaded from the loading/unloading unit 10.
  • Consequently, in the related art apparatus and method for exposing the edge of the substrate, as shown in FIGS. 3A to 3G, the edge of the substrate 2 is exposed in the order of loading of the substrate 2, movement of the stage 21 and exposure of the long sides, rotation of the stage 21, movement of the stage 21 and exposure of the short sides, rotation of the stage 21, and unloading of the substrate 2.
  • However, the related art apparatus and method for exposing the edge of the substrate have several problems.
  • Since both a reciprocating movement time period of the stage 21 to the first direction (X axis) and a rotational time period of the stage 21 are required, the process time of exposing the edge of the substrate 2 increases.
  • Further, since the substrate 2 is unloaded through a port after being loaded into the port, the process time of exposing the edge of the substrate 2 increases due to a standby time period of the substrate 2.
  • Moreover, since the stage 21 should be rotated, the size of the apparatus increases.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to an apparatus and method for exposing an edge of a substrate, which substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • An objective of the present invention is to provide an apparatus and method for exposing an edge of a substrate, in which an exposure time period for exposing the edge of the substrate is reduced.
  • Additional advantages, objectives, and features of the invention in part will be set forth in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
  • In one embodiment, an apparatus is provided for exposing an edge of a substrate. The apparatus comprises a loading unit loading the substrate, and an edge exposure unit exposing the edge of the substrate loaded by the loading unit using each of a long side exposure unit and a short side exposure unit.
  • In another aspect of the present invention, a method for exposing an edge of a substrate includes mounting the substrate on a stage, and then exposing the edge of the substrate mounted on the stage using each of a long side exposure unit and a short side exposure unit.
  • In other aspect of the present invention, a method for exposing an edge of a substrate includes mounting the substrate on a stage, exposing both edges of a first side of the substrate in a state that the stage is stopped, exposing both edges of a second side of the substrate while moving the stage, and drawing the substrate of which both edges of the first and second sides have been exposed, from the stage and moving the drawn substrate to the outside.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
  • FIG. 1 is a block diagram illustrating a related art apparatus for exposing an edge of a substrate;
  • FIG. 2 illustrates a related art edge exposure unit shown in FIG. 1;
  • FIGS. 3A to 3G are sectional views illustrating exposure process steps of exposing an edge of a substrate using a related art edge exposure unit;
  • FIG. 4 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the first embodiment of the present invention;
  • FIGS. 5A and 5B are sectional views illustrating an edge exposure unit shown in FIG. 4;
  • FIG. 6 illustrates a conveyer unit shown in FIG. 4;
  • FIGS. 7A to 7J are sectional views illustrating exposure process steps of exposing an edge of a substrate in accordance with the first embodiment of the present invention;
  • FIG. 8 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention;
  • FIG. 9 is a sectional view illustrating an edge exposure unit shown in FIG. 8;
  • and
  • FIGS. 10A to 10G are sectional views illustrating exposure process steps of exposing an edge of a substrate in accordance with the second embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • FIG. 4 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the first embodiment of the present invention.
  • Referring to FIG. 4, the apparatus for exposing an edge of a substrate according to the first embodiment of the present invention includes a loading unit 110 loading the substrate, an edge exposure unit 120 exposing the edge of the substrate loaded by the loading unit 110, and a conveyer unit 125 moving the substrate whose edge has been exposed by the edge exposure unit 120.
  • The substrate may be a wafer for manufacture of a semiconductor device or a glass for manufacture of an image display device.
  • The loading unit 110 loads the substrate externally deposited with photoresist into the edge exposure unit 120 using a robot arm.
  • The edge exposure unit 120 fixes the substrate loaded by the loading unit 110 and exposes long sides of the fixed substrate at a certain width using a long side exposure unit. Then, the edge exposure unit 120 exposes short sides of the exposed substrate at a certain width using a short side exposure unit.
  • The conveyer unit 125 moves the substrate whose edge has been exposed by the edge exposure unit 120 using a conveyer.
  • The apparatus for exposing the edge of the substrate in accordance with the first embodiment of the present invention can reduce an edge exposure process time period by arranging the loading unit 110, the edge exposure unit 120 and the conveyer unit 125 in an in-line type.
  • FIGS. 5A and 5B illustrate the edge exposure unit 120 shown in FIG. 4.
  • Referring to FIGS. 5A and 5B in connection with FIG. 4, the edge exposure unit 120 according to the first embodiment of the present invention includes a stage 221 supporting the substrate 202 loaded from the loading unit 110, a driving shaft 222 moving the stage 221 in a first direction (X axis), a rail 223 guiding the driving shaft 222 to move the driving shaft 222 to the first direction, a long side exposure unit exposing the long sides of the substrate 202 supported by the stage 221, and a short side exposure unit exposing the short sides of the substrate 202 moved by movement of the stage 221.
  • The stage 221 includes a plurality of lift pins 225 supporting and fixing the substrate 202 loaded from the loading unit 110. The lift pins 225 are ascended and descended by a driving device (not shown) to adsorb the substrate 202 under the vacuum state. The substrate 202 from the loading unit 110 is loaded onto the stage 221 through a port 215 provided to face one side of the stage 221.
  • The driving shaft 222 is linked to the driving device to move the stage 221 in the first direction (X axis) along the rail 223.
  • The rail 223 is provided on a support 200 and guides the driving shaft 222 to move the driving shaft 222 to the first direction (X axis).
  • The long side exposure unit includes first and second driving bars 230 and 232 arranged on the stage 221 to face each other, a moving bar 234 arranged between the first and second driving bars 230 and 232 to move to a second direction (Y axis), and first and second optical systems 226 a and 226 b arranged at a side of the moving bar 234 to correspond to the distance between the long sides of the substrate 202.
  • The first and second driving bars 230 and 232 are arranged on the stage 221 to vertically cross the rail 223 and move the moving bar 234 to the second direction (Y axis). At this time, the first driving bar 230 is arranged near the port 215 to which the substrate 202 is loaded by the loading unit 110 while the second driving bar 232 is arranged near the short side exposure unit.
  • The moving bar 234 is arranged to vertically cross the first and second driving bars 230 and 232 and faces the stage 221. The moving bar 234 is linked to driving of the first and second driving bars 230 and 232 to move to the second direction (Y axis). The moving bar 234 may be any one of LM (Linear Motion) rail and LM block of LM guide. Each of the first and second driving bars 230 and 232 may be the other one of LM rail and LM block of LM guide.
  • The first and second optical systems 226 a and 226 b are arranged in parallel at a side of the moving bar 234 and spaced apart from each other to correspond to the distance between the long sides of the substrate 202. Each of the first and second optical systems 226 a and 226 b irradiates light toward the long sides of the substrate 202 moved by the moving bar 234 and mounted on the stage 221. To this end, each of the first and second optical systems 226 a and 226 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • Meanwhile, the long side exposure unit may further include a distance controller 228 a that controls the distance between the first and second optical systems 226 a and 226 b in accordance with the size of the substrate 202.
  • The short side exposure unit includes a support bar 240 arranged in parallel with the long side exposure unit, and third and fourth optical systems 246 a and 246 b arranged at a side of the support bar 240 to correspond to the distance between the short sides of the substrate 202.
  • The support bar 240 is arranged in parallel with the second driving bar 232 of the long side exposure unit to vertically cross the rail 223.
  • The third and fourth optical systems 246 a and 246 b are arranged in parallel at a side of the support bar 240 and spaced apart from each other to correspond to the distance between the short sides of the substrate 202. Each of the third and fourth optical systems 246 a and 246 b irradiates light toward the short sides of the substrate 202 mounted on the stage 221 moved to the first direction (X axis) along the rail 223. To this end, each of the third and fourth optical systems 246 a and 246 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • Meanwhile, the short side exposure unit may further include a distance controller 228 b that controls the distance between the third and fourth optical systems 246 a and 246 b in accordance with the size of the substrate 202.
  • FIG. 6 illustrates the conveyer unit 125 shown in FIG. 4.
  • Referring to FIG. 6 in connection with FIG. 4, the conveyer unit 125 includes a substrate drawing unit 250 drawing the substrate, whose edge has been exposed, from the edge exposure unit 120, and a substrate moving unit 270 moving the substrate drawn by the substrate drawing unit 250 to an external development unit (not shown).
  • The substrate drawing unit 250 includes at least one cylinder 252 arranged at an end of the support 220, a driving shaft 254 vertically driven by driving of the cylinder 252, a frame 256 arranged at an end of the driving shaft 254, and a roller driver arranged in parallel with the frame 256 to draw the substrate from the stage 221 of the edge exposure unit 120.
  • Each of the cylinders 252 is driven by a driving device (not shown) to ascend and descend the driving shaft 254.
  • The driving shaft 254 is linked to driving of the cylinder 252 to ascend and descend the frame 256.
  • The roller driver includes a plurality of guide wings 260 arranged in parallel at constant intervals, and a plurality of rollers 262 arranged in the respective guide wings 260 in parallel at constant intervals.
  • The guide wings 260 are arranged in parallel to be inserted between the stage 221 and the substrate. In other words, each of the guide wings 260 is inserted into a space between the lift pins ascended from the stage 221 at a certain height.
  • The rollers 262 are rotated by a driving motor (not shown) to move the substrate to the substrate moving unit 270. At this time, when the lift pins arranged in the stage 221 are ascended into the stage 221, the substrate is mounted on the rollers 262. Otherwise, when the driving shaft 254 is ascended by driving of the cylinder 252, the substrate is mounted on the rollers 262.
  • The substrate moving unit 270 is arranged near the substrate drawing unit 250 and includes a plurality of rollers 272 that moves the substrate moved by the roller driver to the external development unit. The substrate moving unit 270 may be a conveyer arranged in the external development unit to move the substrate during development.
  • FIGS. 7A to 7J are sectional views illustrating exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the first embodiment of the present invention.
  • The exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the first embodiment of the present invention will be described as follows.
  • First, when the substrate is loaded onto the stage 221 of the edge exposure unit 120 through the port (not shown) by the robot arm of the loading unit 110, as shown in FIG. 7A, the lift pins 225 arranged in the stage 221 are ascended to lift the substrate 202 mounted on the robot arm. When the substrate 202 is lifted by the lift pins 225, the robot arm returns to the loading unit 110.
  • When the robot arm is taken out from the stage 221, as shown in FIG. 7B, the lift pins 225 descend so that the substrate 202 is mounted on the stage 221 and then aligned.
  • Subsequently, the moving bar 234 is slowly moved to the second direction (Y axis) by means of driving of the first and second driving units 230 and 232 and the moving bar 234. When the moving bar 234 moves near the substrate 202, the first and second optical systems 226 a and 226 b irradiate, as shown by arrow 280, light toward both edges of the long sides of the substrate 202 to expose the long sides of the substrate 202. At this time, the first and second optical systems 226 a and 226 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 202.
  • Subsequently, when the long sides of the substrate 202 are completely exposed, the stage 221 is slowly moved, as shown by arrow 290, to the first direction (X axis), i.e., toward the conveyer unit 125 by driving of the driving shaft 222.
  • Next, when the substrate 202 mounted on the stage 221 moves near the short side exposure unit, as shown in FIGS. 7C and 7D, the third and fourth optical systems 246 a and 246 b irradiate, as shown by arrow 282, light toward both edges of the short sides of the substrate 202 mounted on the stage 221, which is moving along the rail 223, as shown by arrows 290 and 291, so as to expose the short sides of the substrate 202. At this time, the third and fourth optical systems 246 a and 246 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 202.
  • Subsequently, when the short sides of the substrate 202 are completely exposed, as shown in FIG. 7E, the stage 221 continues to move, as shown by arrow 292, to the conveyer unit 125 along the rail 223. At this time, the lift pins 225 ascend before the stage 221 is near the guides 260 of the substrate drawing unit. Thus, the substrate 202 mounted on the stage 221 ascends at a certain height.
  • When the stage 221 is moved, as shown by arrow 293, to the drawing position of the substrate, as shown in FIG. 7F, the guide wings 260 are inserted into the space between the stage 221 and the substrate 202.
  • Next, as shown in FIG. 7G, as the lift pins 225 are descended into the stage 221, the substrate 202 supported by the lift pins 225 is mounted on the rollers 262 arranged in the guide wings 260. At the same time, the cylinder 252 is driven so that the guide wings 260 ascend at a certain height. In this case, the substrate 202 supported by the lift pins 225 may be mounted on the rollers 262 arranged in the guide wings 260.
  • Subsequently, as shown in FIG. 7H, to move the substrate 202 to the external development unit, the driving shaft 254 is linked to driving of the cylinder 252 and ascends, so that the guide wings 260 ascend. At this time, the guide wings 260 ascend, as shown by arrow 294, to the position corresponding to the rollers 272 arranged in the substrate drawing unit 270. At the same time, the stage 221 stopped at the drawing position of the substrate 202 is moved, as shown by arrow 295, to the first direction (X axis), i.e., the port 215 along the rail 223 and returns to the home position.
  • Afterwards, when the rollers 262 arranged in the guide wings 260 and the rollers 272 arranged in the substrate drawing unit 270 are aligned, as shown in FIG. 7I, the substrate 202 is moved to the external development unit as the rollers 262 and 272 rotate.
  • Then, when the substrate 202 is moved to the external development unit, as shown in FIG. 7J, a new substrate 202 is loaded onto the stage 221, which has returned to the home position, by the robot arm of the loading unit 110. While the substrate 202 is being loaded onto the stage, the guide wings 260 is descended to the position for drawing the substrate 202 by driving of the cylinder 252 and is in a standby state.
  • In the aforementioned apparatus and method for exposing the edge of the substrate according to the first embodiment of the present invention, as shown in FIGS. 7A to 7J, the edge of the substrate 202 is exposed in the order of loading of the substrate 202, exposure of the long sides of the stopped substrate 202, movement of the stage 221 and exposure of the short sides of the substrate 202 concurrently, and movement of the stage 221 and unloading of the substrate 202 concurrently.
  • Accordingly, in the aforementioned apparatus and method for exposing the edge of the substrate according to the first embodiment of the present invention, the substrate 202 is moved in an in-line type without any unnecessary standby time period of the substrate 202 such as rotation of the substrate 202 and reciprocating movement of the stage 221 to expose the edge of the substrate 202, thereby reducing the edge exposure time period. Therefore, it is possible to improve productivity. Also, since no rotation of the substrate 202 is required, it is possible to reduce the size of the apparatus.
  • Meanwhile, the aforementioned apparatus and method for exposing the edge of the substrate according to the first embodiment of the present invention may depend on the position between the loading unit 110 and the edge exposure unit 120.
  • FIG. 8 is a block diagram illustrating an apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention.
  • Referring to FIG. 8, the apparatus for exposing an edge of a substrate according to the second embodiment of the present invention includes a loading unit 110 loading the substrate, an edge exposure unit 320 arranged below the loading unit 110 to expose the edge of the substrate loaded by the loading unit 110 using a short side exposure unit and a long side exposure unit, and a conveyer unit 125 moving the substrate whose edge has been exposed by the edge exposure unit 320.
  • The apparatus for exposing the edge of the substrate in accordance with the second embodiment of the present invention can reduce an edge exposure process time period by arranging the edge exposure unit 320 and the conveyer unit 125 excluding the loading unit 110 in an in-line type.
  • Meanwhile, the apparatus for exposing an edge of a substrate in accordance with the second embodiment of the present invention has the same elements as those of the first embodiment excluding the edge exposure unit 320. Therefore, description of other elements excluding the edge exposure unit 320 will be replaced with the description according to the first embodiment.
  • FIG. 9 illustrates the edge exposure unit 320 shown in FIG. 8.
  • Referring to FIG. 9 in connection with FIG. 8, the edge exposure unit 320 according to the second embodiment of the present invention includes a stage 321 supporting the substrate 302 loaded from the loading unit 110, a driving shaft (not shown) moving the stage 321 to a first direction (X axis), a rail 323 guiding the driving shaft to move the driving shaft to the first direction, a short side exposure unit exposing the short sides of the substrate 302 supported by the stage 321, and a long side exposure unit exposing the long sides of the substrate 302 moved along the movement of the stage 321.
  • The stage 321 includes a plurality of lift pins 325 supporting and fixing the substrate 302 loaded from the loading unit 110. The lift pins 325 are ascended and descended by a driving device (not shown) to adsorb to the substrate 302 under the vacuum state. The substrate 302 from the loading unit 110 is loaded onto the stage 321 through a port 315 provided to face an upper end of the stage 321.
  • The driving shaft is linked to the driving device to move the stage 321 in the first direction (X axis) along the rail 323.
  • The rail 323 guides the driving shaft to move the driving shaft to the first direction (X axis).
  • The short side exposure unit includes first and second driving bars 330 and 332 arranged on the stage 321 to face each other, a moving bar 334 arranged between the first and second driving bars 330 and 332 to move to a second direction (Y axis), and first and second optical systems 326 a and 326 b arranged at a side of the moving bar 334 to correspond to the distance between the short sides of the substrate 302.
  • The first and second driving bars 330 and 332 are arranged on the stage 321 to vertically cross the rail 323 and move the moving bar 334 to the second direction (Y axis). At this time, the first driving bar 330 is arranged to be vertical to the port 315 to which the substrate 302 is loaded by the loading unit 110, while the second driving bar 332 is arranged near the short side exposure unit.
  • The moving bar 334 is arranged to vertically cross the first and second driving bars 330 and 332 and faces the stage 321. The moving bar 334 is linked to driving of the first and second driving bars 330 and 332 to move to the second direction (Y axis). The moving bar 334 may be any one of LM rail and LM block of LM guide. Each of the first and second driving bars 330 and 332 may be other one of LM rail and LM block of LM guide.
  • The first and second optical systems 326 a and 326 b are arranged in parallel at a side of the moving bar 334 and spaced apart from each other to correspond to the distance between the short sides of the substrate 302. Each of the first and second optical systems 326 a and 326 b irradiates light toward the short sides of the substrate 302 moved by the moving bar 334 and mounted on the stage 321. To this end, each of the first and second optical systems 326 a and 326 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • Meanwhile, the short side exposure unit may further include a distance controller 328 a that controls the distance between the first and second optical systems 326 a and 326 b in accordance with the size of the substrate 302.
  • The long side exposure unit includes a support bar 340 arranged in parallel with the long side exposure unit, and third and fourth optical systems 346 a and 346 b arranged at each side of the support bar 340 to correspond to the distance between the long sides of the substrate 302.
  • The support bar 340 is arranged in parallel with the second driving bar 332 of the short side exposure unit to vertically cross the rail 323.
  • The third and fourth optical systems 346 a and 346 b are arranged in parallel at each side of the support bar 340 and spaced apart from each other to correspond to the distance between the long sides of the substrate 302. Each of the third and fourth optical systems 346 a and 346 b irradiates light toward the long sides of the substrate 302 mounted on the stage 321 moved to the first direction (X axis) along the rail 323. To this end, each of the third and fourth optical systems 346 a and 346 b may be laser modules irradiating laser or projection optical modules irradiating ultraviolet rays.
  • Meanwhile, the long side exposure unit may further include a distance controller 328 b that controls the distance between the third and fourth optical systems 346 a and 346 b in accordance with the size of the substrate 302.
  • FIGS. 10A to 10G are sectional views illustrating exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the second embodiment of the present invention.
  • The exposure process steps of exposing the edge of the substrate using the edge exposure unit according to the second embodiment of the present invention will be described as follows.
  • First, as shown in FIG. 10A, the substrate 302 is loaded, as shown by arrow 390, onto the stage 321 of the edge exposure unit 320 through the port 315 by the robot arm of the loading unit 110.
  • As shown in FIG. 10B, the lift pins 325 arranged in the stage 321 are ascended to lift the substrate 302 mounted on the robot arm. When the substrate 302 is lifted by the lift pins 325, the robot arm returns to the loading unit 110.
  • Subsequently, when the robot arm is taken out from the stage 321, the lift pins 325 descend so that the substrate 302 is mounted on the stage 321 and then aligned.
  • Then, the moving bar 334 is slowly moved to the second direction (Y axis) by means of driving of the first and second driving bars 330 and 332 and the moving bar 334. When the moving bar 334 moves near the substrate 302, as shown in FIG. 10C, the first and second optical systems 326 a and 326 b irradiate light toward both edges 329 a of the short sides of the substrate 302 to expose the short sides of the substrate 302. At this time, the first and second optical systems 326 a and 326 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 302.
  • Subsequently, as shown in FIG. 10D, when the short sides of the substrate 302 are completely exposed, the stage 321 is slowly moved, as shown by arrow 391, to the first direction (X axis), i.e., toward the conveyer unit 125 along the rail 323.
  • Next, when the substrate 302 mounted on the stage 321 moves near the long side exposure unit, as shown in FIG. 10E, the third and fourth optical systems 346 a and 346 b irradiate light toward both edges 329 b of the long sides of the substrate 302 mounted on the stage 321, which is moving along the rail 323, as shown by arrow 391, so as to expose the long sides of the substrate 302. At this time, the third and fourth optical systems 346 a and 346 b may be driven by a sensing signal from a sensor (not shown) that senses the position of the substrate 302.
  • Subsequently, when the long sides of the substrate 302 are completely exposed, the stage 321 continues to move to the conveyer unit 125 along the rail 323. Thus, the stage 321 is moved to the drawing position of the substrate and then stopped.
  • Afterwards, as shown in FIG. 10F, the substrate 302 mounted on the stage 321 stopped at the drawing position of the substrate is drawn from the stage 321 in accordance with the operation of the conveyer unit 125 shown in FIGS. 7F to 7I and then moved, as shown by arrow 392, to the external development unit. The operation of the conveyer unit 125 will be replaced with the description of FIGS. 7F to 7I.
  • While the substrate 302 drawn from the stage 321 by the operation of the conveyer unit 125 is moving to the external development unit, as shown in FIG. 10G, the stage 321 is moved to the first direction (X axis), i.e., toward the port 325 along the rail 323 and returns to the home position.
  • In the aforementioned apparatus and method for exposing the edge of the substrate according to the second embodiment of the present invention, as shown in FIGS. 10A to 10G, the edge of the substrate 302 is exposed in the order of loading of the substrate 302, exposure of the short sides of the stopped substrate 302, movement of the stage 321 and exposure of the long sides of the substrate 302 concurrently, and movement of the stage 321, and unloading of the substrate 302.
  • Accordingly, in the aforementioned apparatus and method for exposing the edge of the substrate according to the second embodiment of the present invention, the substrate 302 is moved in an in-line type without any unnecessary standby time period of the substrate 302 such as rotation of the substrate 302 and reciprocating movement of the stage 321 to expose the edge of the substrate 302, thereby reducing the edge exposure time period. Therefore, it is possible to improve productivity. Also, since no rotation of the substrate 302 is required, it is possible to reduce the size of the apparatus.
  • As described above, the aforementioned apparatus and method for exposing the edge of the substrate according to the embodiments of the present invention have the following advantages.
  • Since the edge of the substrate is exposed using each of the long side exposure unit and the short side exposure unit, it is possible to reduce the edge exposure time period, thereby improving productivity.
  • In addition, since no rotation of the substrate is required, it is possible to reduce the size of the apparatus. Moreover, since the apparatus is provided in an in-line type, it is possible to easily draw the substrate using the conveyer.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (13)

1. An apparatus for exposing an edge of a substrate comprising:
a loading unit that loads a substrate;
an edge exposure unit that exposes an edge of the substrate loaded, the loading unit having a long side exposure unit and a short side exposure unit, and
a conveyer unit that draws the substrate, whose edge has been exposed by the edge exposure unit, from a stage and moving the substrate to outside,
wherein the conveyer unit includes:
at least one cylinder;
a driving shaft that ascends and descends in accordance with driving of each cylinder;
a frame arranged at an upper end of the driving shaft;
a plurality of guide wings arranged in the frame in parallel at constant intervals to draw the substrate from the stage; and
a plurality of rollers arranged in each of the guide wings at constant intervals to move the substrate.
2. The apparatus as set forth in claim 1, wherein the edge exposure unit includes:
a stage that supports the substrate loaded from the loading unit;
a driving shaft that moves the stage to a first direction;
a rail that guides the driving shaft to move the driving shaft to the first direction;
a long side exposure unit that exposes long sides of the substrate supported by the stage; and
a short side exposure unit that exposes short sides of the substrate moved along movement of the stage.
3. The apparatus as set forth in claim 2, wherein the long side exposure unit includes:
a first and a second driving bars arranged on the stage to face each other;
a moving bar arranged between the first and the second driving bars to move to a second direction; and
a first and a second optical systems arranged at each side of the moving bar to correspond to a distance between the long sides of the substrate, thereby exposing corners of the long sides of the substrate.
4. The apparatus as set forth in claim 3, wherein the long side exposure unit further includes a distance controller arranged in the moving bar to control the distance between the first and the second optical systems.
5. The apparatus as set forth in claim 3, wherein the moving bar is any one of linear motion rail and LM block of linear motion guide, and each of the first and the second driving bars is other one of linear motion rail and linear motion block of linear motion guide.
6. The apparatus as set forth in claim 2, wherein the short side exposure unit includes:
a support bar arranged in parallel with the long side exposure unit; and
a third and a fourth optical systems arranged at each side of the support bar to correspond to a distance between the short sides of the substrate, thereby exposing corners of the short sides of the substrate.
7. The apparatus as set forth in claim 6, wherein the short side exposure unit further includes a distance controller arranged in the support bar to control the distance between the third and the fourth optical systems.
8. The apparatus as set forth in claim 1, wherein the edge exposure unit includes:
a stage that supports the substrate loaded from the loading unit;
a driving shaft that moves the stage to a first direction;
a rail that guides the driving shaft to move the driving shaft to the first direction;
a short side exposure unit that exposes short sides of the substrate supported by the stage; and
a long side exposure unit that exposes long sides of the substrate moved along movement of the stage.
9. The apparatus as set forth in claim 8, wherein the short side exposure unit includes:
a first and a second driving bars arranged on the stage to face each other;
a moving bar arranged between the first and second driving bars to move to a second direction; and
a first and a second optical systems arranged at each side of the moving bar to correspond to a distance between the short sides of the substrate, thereby exposing corners of the short sides of the substrate.
10. The apparatus as set forth in claim 9, wherein the short side exposure unit further includes a distance controller arranged in the moving bar to control the distance between the first and the second optical systems.
11. The apparatus as set forth in claim 8, wherein the long side exposure unit includes:
a support bar arranged in parallel with the short side exposure unit; and
a third and a fourth optical systems arranged at each side of the support bar to correspond to a distance between the long sides of the substrate, thereby exposing corners of the long sides of the substrate.
12. The apparatus as set forth in claim 11, wherein the long side exposure unit further includes a distance controller arranged in the support bar to control the distance between the third and the fourth optical systems.
13. The apparatus as set forth in claim 8, wherein the moving bar is any one of linear motion rail and linear motion block of linear motion guide, and each of the first and the second driving bars is other one of linear motion rail and linear motion block of linear motion guide.
US12/954,362 2005-12-29 2010-11-24 Apparatus and method for exposing edge of substrate Abandoned US20110069294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/954,362 US20110069294A1 (en) 2005-12-29 2010-11-24 Apparatus and method for exposing edge of substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020050133112A KR100965570B1 (en) 2005-12-29 2005-12-29 Apparatus and method for exposing edge of substrate
KRP2005-0133112 2005-12-29
US11/455,433 US7859642B2 (en) 2005-12-29 2006-06-19 Apparatus and method for exposing edge of substrate
US12/954,362 US20110069294A1 (en) 2005-12-29 2010-11-24 Apparatus and method for exposing edge of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/455,433 Division US7859642B2 (en) 2005-12-29 2006-06-19 Apparatus and method for exposing edge of substrate

Publications (1)

Publication Number Publication Date
US20110069294A1 true US20110069294A1 (en) 2011-03-24

Family

ID=38223993

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/455,433 Active 2028-07-18 US7859642B2 (en) 2005-12-29 2006-06-19 Apparatus and method for exposing edge of substrate
US12/954,362 Abandoned US20110069294A1 (en) 2005-12-29 2010-11-24 Apparatus and method for exposing edge of substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/455,433 Active 2028-07-18 US7859642B2 (en) 2005-12-29 2006-06-19 Apparatus and method for exposing edge of substrate

Country Status (2)

Country Link
US (2) US7859642B2 (en)
KR (1) KR100965570B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137722A (en) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 Edge exposure device and edge exposure method
CN105416973A (en) * 2015-10-29 2016-03-23 深圳市华星光电技术有限公司 Substrate conveying device and substrate edge exposure method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122470A (en) * 2010-03-31 2013-06-20 Toray Eng Co Ltd Peripheral exposure device and peripheral exposure method
GB2480873B (en) * 2010-06-04 2014-06-11 Plastic Logic Ltd Reducing defects in electronic apparatus
CN108803245B (en) * 2017-04-28 2020-04-10 上海微电子装备(集团)股份有限公司 Silicon wafer processing device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892574A (en) * 1995-06-05 1999-04-06 Western Litho Plate & Supply Co. Plate exposing apparatus and method
US20050002005A1 (en) * 2003-07-03 2005-01-06 Fuji Photo Film Co., Ltd. Image forming apparatus
KR20050083438A (en) * 2004-02-23 2005-08-26 주식회사 디이엔티 Stepper for glass-substrate
US20060221740A1 (en) * 2005-04-01 2006-10-05 Hynix Semiconductor Inc. Sense Amplifier Overdriving Circuit and Semiconductor Device Using the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190448A (en) * 1992-01-16 1993-07-30 Nikon Corp Wafer edge exposer
JP3175059B2 (en) * 1992-03-23 2001-06-11 株式会社ニコン Peripheral exposure apparatus and method
JP3682395B2 (en) * 2000-01-21 2005-08-10 株式会社ニコン Scanning exposure apparatus and scanning exposure method
KR100543469B1 (en) * 2003-12-23 2006-01-20 삼성전자주식회사 Wafer holder and wafer conveyor equiped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892574A (en) * 1995-06-05 1999-04-06 Western Litho Plate & Supply Co. Plate exposing apparatus and method
US20050002005A1 (en) * 2003-07-03 2005-01-06 Fuji Photo Film Co., Ltd. Image forming apparatus
KR20050083438A (en) * 2004-02-23 2005-08-26 주식회사 디이엔티 Stepper for glass-substrate
US20060221740A1 (en) * 2005-04-01 2006-10-05 Hynix Semiconductor Inc. Sense Amplifier Overdriving Circuit and Semiconductor Device Using the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine translation of KR 2005-083438. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137722A (en) * 2015-09-24 2015-12-09 京东方科技集团股份有限公司 Edge exposure device and edge exposure method
CN105416973A (en) * 2015-10-29 2016-03-23 深圳市华星光电技术有限公司 Substrate conveying device and substrate edge exposure method

Also Published As

Publication number Publication date
KR20070070493A (en) 2007-07-04
US20070153246A1 (en) 2007-07-05
US7859642B2 (en) 2010-12-28
KR100965570B1 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
TWI550686B (en) Substrate treatment system, substrate delivery method, and computer memory medium
US20110069294A1 (en) Apparatus and method for exposing edge of substrate
US7403260B2 (en) Coating and developing system
KR101699983B1 (en) Mask case, transfer apparatus, exposure apparatus, mask transfer method and device manufacturing method
KR20060098339A (en) Coating and developing system
KR102193251B1 (en) Substrate-replacement device
JP2010072615A (en) Scan exposure apparatus and method for conveying substrate in scan exposure apparatus
JP3928902B2 (en) Substrate manufacturing line and substrate manufacturing method
JP4942401B2 (en) Exposure apparatus and exposure method
US8441618B2 (en) Substrate transfer method and apparatus
JP5575691B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
JPH11165864A (en) Substrate conveying device and substrate treating device
JP5099318B2 (en) Exposure apparatus and exposure method
JP4942617B2 (en) Scan exposure equipment
JP5077655B2 (en) Proximity scan exposure apparatus and air pad
JP5089257B2 (en) Proximity scan exposure system
JP5089255B2 (en) Exposure equipment
TW202213452A (en) Drawing apparatus
JP5089258B2 (en) Proximity scan exposure apparatus and exposure method therefor
JP5473793B2 (en) Proximity exposure apparatus and gap control method for proximity exposure apparatus
KR100855070B1 (en) Roll pattering device
JP5046157B2 (en) Proximity scan exposure system
JP3324008B2 (en) Unnecessary film removal device for coated substrate formed by spin coating
CN108231642B (en) Substrate replacing device
JP7308087B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION