US20110052514A1 - Use of natural active substances in cosmetic or therapeutic compositions - Google Patents

Use of natural active substances in cosmetic or therapeutic compositions Download PDF

Info

Publication number
US20110052514A1
US20110052514A1 US12/867,193 US86719309A US2011052514A1 US 20110052514 A1 US20110052514 A1 US 20110052514A1 US 86719309 A US86719309 A US 86719309A US 2011052514 A1 US2011052514 A1 US 2011052514A1
Authority
US
United States
Prior art keywords
hydrolysed
composition
proteins
yeast proteins
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/867,193
Inventor
Peter Jüsten
Dominique Marie Noelle Borreill
William Marques
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lesaffre et Cie SA
Original Assignee
Lesaffre et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lesaffre et Cie SA filed Critical Lesaffre et Cie SA
Assigned to LESAFFRE ET COMPAGNIE reassignment LESAFFRE ET COMPAGNIE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUSTEN, PETER, BORREILL, DOMINIQUE MARIE NOELLE, MARQUES, WILLIAM
Publication of US20110052514A1 publication Critical patent/US20110052514A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9728Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0212Face masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/007Preparations for dry skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/008Preparations for oily skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/006Antidandruff preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q7/00Preparations for affecting hair growth

Definitions

  • the purpose of this invention is the use of natural active substances in cosmetic and in therapeutic compositions, these substances being hydrolysed yeast proteins obtained from the insoluble yeast fraction.
  • Protein hydrolysates can have different origins: animal, in particular fish, vegetable, or fungal, for example yeast.
  • the presence or absence of biological activity of a protein hydrolysate depends, in particular, on the nature of the start proteins.
  • hydrolysis of fish proteins allowed obtaining hydrolysed proteins with a particular spatial structure recognised by certain receptors. Activities of hormonal and opioid type have thus been emphasised (Legal and Stenberg, Biofutur, No. 179, 1998, pages 61 to 63).
  • yeast protein hydrolysates in cosmetic compositions. These yeast protein hydrolysates are obtained either through the hydrolysis of yeast whole cells or through the hydrolysis of the yeast soluble fraction (the cytoplasmic content).
  • the lytic enzymes of the cell wall used in this document are enzymes attacking glucans and destabilising the wall and membrane.
  • a composition has hydrolysed proteins obtained from the yeast soluble fraction.
  • Patent application EP 0 126 364 describes the cosmetic use of a product with no histamine, non-pyrogenic, sterile, active obtained through a process comprising the following stages:
  • yeast plasmolysis and homogenisation to a temperature lower than 0° C.
  • the final product has yeast-hydrolysed proteins obtained from the hydrolysis of whole yeast proteins.
  • the implementation of such a production process shows many drawbacks, in particular, the duration of the process, the multiplicity of stages and the need of working under sterile conditions.
  • EP 0 237 398 describes the cosmetic use of polypeptides biologically active obtained through the process comprising the following stages:
  • hydrolysis agent consisting of ⁇ -chymotrypsin and possibly trypsin, in order to obtain an hydrolysate
  • the polypeptide fraction derives from the protein hydrolysis obtained from whole yeasts.
  • the polypeptide fraction has a molecular weight lower than 10,000 Da and higher than 1,000 Da.
  • the purpose of this invention is the supply of natural active substances useful in the cosmetic or therapeutic field.
  • a purpose of the invention is also the supply of new cosmetic or therapeutic compositions.
  • Another purpose of the invention relates to a method for cosmetic treatment for skin and/or skin appendages and/or mucous membranes or these substances for their therapeutic use.
  • This invention is based, in particular, on the discovery of a new category of hydrolysed proteins with improved cosmetic and/or therapeutic activities, and/or an excellent stability in time, and/or the production of which is homogeneous and/or the production process is easily implemented on industrial scale.
  • the purpose of this invention is a cosmetic or therapeutic composition
  • a cosmetic or therapeutic composition comprising yeast hydrolysed proteins as active substance, characterised in that the said yeast hydrolysed proteins are obtained from yeast insoluble fraction.
  • the yeast-hydrolysed proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • the yeast hydrolysed proteins are obtained through enzymatic hydrolysis with at least one peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase and/or their blending.
  • at least one peptidase preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase
  • the yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • the yeast-hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • the yeast-hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • the AN/TN ratio of the hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • the composition has from 0.001% to 20% of hydrolysed yeast proteins, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even still more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • the composition comprises at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and/or at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • the purpose of this invention is also a preparation process of a cosmetic or therapeutic composition, consisting of the following stages:
  • the purpose of this invention is the use of hydrolysed yeast proteins obtained from the yeast insoluble fraction as active substance in cosmetic and/or therapeutic compositions.
  • Another purpose of this invention relates to a method for cosmetic treatment comprising a stage of contact with the skin and/or skin appendages and/or mucous membranes of a composition according to this invention or liable to be obtained through the process according to this invention.
  • Another purpose of this invention relates also to the hydrolysed yeast proteins obtained from the yeast insoluble fraction for their use as medicine, preferably for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne.
  • FIG. 1 represents, in percentage, the size distribution (in kDa) within the hydrolysed yeast proteins according to the invention (white histogram) and within hydrolysed yeast proteins obtained from the hydrolysis of yeast whole cells (striped histogram).
  • FIG. 2 represents the molecular weight profile of hydrolysed yeast proteins according to the invention (black curve) and that of hydrolysed yeast proteins obtained from the hydrolysis of yeast whole cells (grey curve).
  • the coordinate axis indicates the absorption read at 214 nm and the abscissa axis the retention time in minutes.
  • the purpose of this invention is a cosmetic or therapeutic composition comprising hydrolysed yeast proteins as active substance.
  • the purpose of this invention is a cosmetic or therapeutic composition
  • a cosmetic or therapeutic composition comprising hydrolysed yeast proteins as active substance characterised in that the said yeast hydrolysed proteins are obtained from yeast insoluble fraction.
  • the hydrolysed yeast proteins are also called yeast peptones or yeast peptides obtained through hydrolysis .
  • cosmetic composition it is here designated a composition intended to cause a cosmetic effect.
  • the cosmetic effect is obtained through a local application of the compositions according to this invention.
  • composition is active in the place where it is applied, on the skin, skin appendages, and/or mucous membranes.
  • the composition may simultaneously target the superficial layers of the epidermis and/or the dermis.
  • skin appendage it is designated generally everything that covers the skin, and in particular hair, nails, hairs, eyelashes.
  • the term skin includes the scalp.
  • skin includes the dermis and the epidermis, as well as the superficial layers of the epidermis.
  • mucous membranes or the term humid epithelial tissue it is designated the membranes that cover the open cavities towards the external medium, and in particular the oral, nasal and genital mucosae, as well as the vaginal mucosae.
  • the cosmetic effect is obtained through administration by mouth.
  • therapeutic composition it is designated a composition intended to cause a therapeutic effect.
  • a preferred therapeutic composition is a dermatological composition.
  • the therapeutic effect is obtained through a local application of therapeutic compositions according to this invention.
  • the purpose of this invention is also a cosmetic or therapeutic composition as defined above, intended for an application on the skin and/or skin appendages and/or mucous membranes.
  • compositions suitable for administration by mouth are a composition suitable for administration by mouth.
  • active substance or active principle or active matter it is designated here the substance responsible for the cosmetic effect within a cosmetic composition or responsible for the therapeutic effect within a therapeutic composition.
  • a cosmetic composition comprises at least a compound as active substance and an acceptable cosmetic vehicle.
  • a therapeutic composition comprises at least a compound as active substance and an acceptable therapeutic vehicle.
  • the hydrolysed yeast proteins are obtained from the yeast insoluble fraction.
  • insoluble fraction it is designated the yeast hulls, that is to say, the wall and plasmic membrane of the yeasts at a time.
  • the insoluble fraction represents about 20 to 30% by mass dry matters of the yeast cells.
  • soluble fraction it is designated the content of the yeast, other than the yeast hulls.
  • the insoluble fraction can be obtained through a thermal treatment of the yeast during 1 to 3 hours between 70° C. and 90° C., followed by a separation of the soluble and insoluble fraction, especially through centrifugation. Hence, the soluble fraction is eliminated and the insoluble fraction is recovered.
  • the hydrolysed yeast proteins are obtained through hydrolysis of the proteins obtained from the yeast insoluble fraction.
  • the hydrolysed yeast proteins can be submitted to specific complementary treatments (for example, separation of the proteins through centrifugation, concentration, filtration, or activated charcoal treatment).
  • the hydrolysed yeast proteins are obtained from a particular cellular fraction.
  • the proteins of the yeast insoluble fraction have in fact a different nature than those present in the yeast soluble fraction.
  • the proteins of the yeast insoluble fraction have, in particular, mannoproteins that have no cellular fraction.
  • the proteins of the insoluble fraction are essentially native proteins, not subjected to hydrolysis, whereas most of the proteins of the soluble fraction have already been subjected to partial or total hydrolysis.
  • the result of the hydrolysis carried out starting from the proteins obtained from whole yeast is less verifiable due to the heterogeneity of the status of the start proteins.
  • the process allows making the proteins of the insoluble fraction more accessible to hydrolysis, among other things through a strong concentration of the said proteins, with respect to a hydrolysis carried out on whole yeast.
  • the hydrolysed yeast proteins are characterised in that a particular peptide nature, a particular (and homogeneous) profile of peptide molecular distribution, and/or a specific AN/TN ratio (with very low free amino acids), namely, in particular, an AN/TN ratio of hydrolysed yeast proteins lower or equal to 35%, in particular, lower or equal to 30%, in particular, lower or equal to 25%, in particular, lower or equal to 20%.
  • ANrFN ratio it is designated the ratio of the amino acids nitrogen quantity (in percentage) on the by mass nitrogen quantity (in percentage).
  • the AN/TN ratio indicates the protein degradation rate, in particular the hydrolysis degree of the yeast proteins.
  • the hydrolysed yeast proteins present in a dry form, especially as powder, or under solution, for example under aqueous solution.
  • the purpose of this invention is a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • the acid hydrolysis is a hydrolysis obtained in an acidic medium, preferably in the heat, for example by using a strong acid such as hydrochloric acid, sulphuric acid, phosphoric acid, and/or nitric acid.
  • a strong acid such as hydrochloric acid, sulphuric acid, phosphoric acid, and/or nitric acid.
  • the acid hydrolysis destroys the tryptophan and turns the glutamine and aspargine amino acids into glutamate and aspartate, respectively.
  • the alkaline hydrolysis is a hydrolysis obtained in an alkaline medium, for example by using a strong base such as sodium hydroxide and potassium hydroxide.
  • the alkaline hydrolysis destroys serine, threonine, and cysteine amino acids.
  • the enzymatic hydrolysis of the yeast proteins is carried out through hydrolases.
  • the yeast-hydrolysed proteins are obtained through enzymatic hydrolysis.
  • the enzymatic hydrolysis is carried out by adding at least one exogenous enzyme.
  • the yeast exogenous enzymes have been deactivated beforehand, for example through a thermal treatment.
  • the hydrolases are hydrolases acting on peptide bonds.
  • Such hydrolases called peptidases or proteases or proteolytic enzymes have number EC 3.4 in the EC classification.
  • Peptidases catalyse the hydrolytic cleavage of the C—N bond.
  • the hydrolases are chosen among esopeptidases, especially aminopeptidase, dipeptidase, dipeptidyl-peptidase, tripeptidyl-peptidase, peptidyl-dipeptitase, carboxypeptidase of serine type, carboxypeptidase of cysteine type, metallocarboxypeptidase, omega-peptidase, and endopeptidases (or proteinase), in particular serine endopeptidase, cysteine endopeptidase, aspartic endopeptidase, and metalloendopeptidase.
  • esopeptidases especially aminopeptidase, dipeptidase, dipeptidyl-peptidase, tripeptidyl-peptidase, peptidyl-dipeptitase, carboxypeptidase of serine type, carboxypeptidase of cysteine type, metallocarboxypeptidase, omega-peptidase, and endopeptida
  • the enzymatic hydrolysis can be coupled to a disulfide bridge hydrolysis, carried out through reducing agents, for example the 2-mercaptoethanol or the dithiothreitol, the TCEP (Tris(2-carboxyethyl)phosphine).
  • reducing agents for example the 2-mercaptoethanol or the dithiothreitol, the TCEP (Tris(2-carboxyethyl)phosphine).
  • the purpose of this invention is a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained through enzymatic hydrolysis with at least one peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase, alcalase®, neutrase® and/or their blending.
  • peptidase preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K,
  • the conditions of use of the enzymes are easily determined by a skilled person in the art.
  • the hydrolysis can be carried out by adding proteases for at least 18 hours between 45° C. and 55° C.
  • the solubilised part having yeast hydrolysed proteins is then recovered through centrifugation, before being possibly concentrated, and then dried.
  • a preferred enzyme is chosen among papain, trypsin, pepsin, alcalase®, neutrase®.
  • the enzymatic hydrolysis is obtained with at least two different enzymes, in particular with at least three different enzymes, in particular with at least four different enzymes.
  • the hydrolysis can be carried out with a blending of papain and alcalase®.
  • this invention relates to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • the yeast hydrolysed proteins obtained from yeasts of Hansenula genus are preferably Hansenula anomala yeasts.
  • the yeast hydrolysed proteins obtained from yeasts of Pichia genus are preferably Pichia pastoris yeasts.
  • yeast hydrolysed proteins are preferably obtained from Saccharomyces, advantageously Saccharomyces cerevisiae.
  • a preferred cosmetic and therapeutic composition have, as active substance, hydrolysed yeast proteins obtained from yeasts of the same genus, and preferably of the same kind and same species of yeast.
  • the cosmetic and therapeutic composition have, according to this invention, as active substance, hydrolysed yeast proteins obtained from yeasts of the same genus, but with at least two different species, in particular at least three different species.
  • the cosmetic and therapeutic composition have, according to this invention, as active substance, hydrolysed yeast proteins obtained from yeasts of at least two different genera, in particular at least three different genera.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably still at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably still, at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the AN/TN ratio of the hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • AN/TN ratio it is designated the ratio of the amino acids nitrogen quantity (in percentage) on the by mass nitrogen quantity (in percentage).
  • the AN/TN ratio indicates the protein degradation rate, in particular the hydrolysis degree of the yeast proteins.
  • a preferred composition have yeast hydrolysed proteins of which at least 55% of said proteins have a molecular weight ranging between 1 and 5 kDa, and/or at most 42% of said proteins have a molecular weight lower than 1 kDa, and/or the AN/TN ratio is lower or equal to 35%.
  • another preferred composition has yeast hydrolysed proteins of which at least 60% of said proteins have a molecular weight ranging between 1 and 5 kDa, and/or at most 37% of said proteins have a molecular weight lower than 1 kDa, and/or the AN/TN ratio is lower or equal to 35%.
  • this invention relates to a cosmetic or therapeutic composition as defined above, in which the hydrolysed yeast proteins are obtained from the product Springer® Hydrolyzed Yeast Peptone-A.
  • the product Springer® Hydrolyzed Yeast Peptone-A have hydrolysed yeast proteins obtained from the insoluble fraction of Saccharomyces cerevisiae.
  • the hydrolysed yeast proteins of the product Springer® Hydrolyzed Yeast Peptone-A have most of the hydrolysed proteins with a molecular weight higher or equal to 1 kDa and lower than 5 kDa (about 60%); the other hydrolysed proteins have essentially a molecular weight lower than 1 kDa (about 32%) (see example 1).
  • hydrolysed yeast proteins of the product Springer® Hydrolyzed Yeast Peptone-A are characterised in that an AN/TN ratio ranging between 15 and 28%.
  • the composition can have the product Springer® Hydrolyzed Yeast Peptone-A, or hydrolysed yeast proteins obtained through supplementary extraction and/or purification stages starting from the said product.
  • the composition can have hydrolysed yeast proteins corresponding to a specific hydrolysed protein fraction isolated from the Springer® Hydrolyzed Yeast Peptone-A product.
  • a preferred cosmetic or therapeutic composition has the product Springer® Hydrolyzed Yeast Peptone-A.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, having from 0.001% to 20% of hydrolysed yeast proteins, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • This invention relates in particular to a cosmetic or therapeutic composition as defined above, having from 0.01% to 20% of hydrolysed yeast proteins, in particular from 0.01% to 15% of hydrolysed yeast proteins, in particular from 0.01% to 10% of hydrolysed yeast proteins.
  • Object of this invention is more particularly a cosmetic or therapeutic composition as defined above, having from 0.01% to 3% of hydrolysed yeast proteins, in particular from 0.01% to 2% of hydrolysed yeast proteins, in particular from 0.01% to 1% of hydrolysed yeast proteins.
  • an acceptable cosmetic or therapeutic vehicle have preferably at least a compound as additive and at least a compound as excipient, since such a compound can be used in many ways.
  • This invention relates to a cosmetic or therapeutic composition as defined above, characterised in that the fact that it have at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • additive it is designated an agent that plays in the cosmetic or therapeutic composition a role of preservative, chelating agent, colouring agent, UV filter (allowing to protect raw materials), pH regulator (acid or base), texturising agent, perfume and/or antioxidant.
  • raw materials to be protected it is designated every compound of the cosmetic or therapeutic composition liable to be degraded by light.
  • hydrophilic compounds that constitute an aqueous phase
  • hydrophobic or lipophile compounds that constitute a fatty phase or surface active agents.
  • Surface active agents are amphiphilic molecules able to keep together two mediums, normally non mixable, by lowering their interfacial tensions.
  • Surface active agents are ionic (anionic, cationic or amphoteric) or non-ionic.
  • the preservatives used in the compositions are especially chosen among butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, octyl, dodecyl, ⁇ -tocopherol, ⁇ -tocopherol acetate, ascorbic acid, ascorbyl palmitate, rosemary extracts, gingko biloba extracts, and orizanol.
  • BHT butylated hydroxytoluene
  • BHA butylated hydroxyanisole
  • propyl gallate octyl
  • dodecyl dodecyl
  • ⁇ -tocopherol ⁇ -tocopherol acetate
  • ascorbic acid ascorbyl palmitate
  • rosemary extracts gingko biloba extracts
  • orizanol orizanol
  • the chelating agents used in the compositions are especially chosen among citric acid, cyclodextrin, EDTA disodium, pentasodium pentetate, phytic acid, sodium citrate, sodium phytate, and EDTA or tetrasodium pyrophosphate.
  • the colouring agents used in the compositions are especially chosen among colouring agents with CI denomination (Color Index).
  • the UV filters used in the compositions are especially chosen among benzophenone-3 (oxybenzone), benzophenone-4 (sulisobenzone), drometrizole, trisiloxane, benzyl salicytate, avobenzone, octyl methoxycinnamate (octinoxate), ethylhexyl salicytate (octisalate) or titanium dioxide.
  • the pH regulators (acid or base) used in the compositions are especially chosen among aminomethyl propanol, citric acid, fumaric acid, orthophosphoric acid, sebacic acid (decanedioic acid), sodium acetate, sodium bicarbonate, sodium citrate, sodium hydroxide, tartaric acid, tetrasodium pyrophosphate or triethylamine (TEA).
  • texturising agent it is designated an agent able to increase the viscosity of aqueous phases in which it is dispersed, the increase being advantageously high.
  • a texturising agent can be a thickening agent and/or a gelling agent.
  • thickening agent it is designated a substance that allows to obtain a viscous solution without forming a 3D network, in particular, as opposed to gelling agents.
  • Texturising agents are especially chosen among agar-agar or gelose, alginates, carraghenates, guar gum, tara gum, carob gum, gum adragant, karaya gum, xanthan gum, aloe gel, starch glycerol, chitosan, silica, silicates,—in particular bentonite, hectorite, montmorillonite, aluminium silicate, magnesium silicate—, cellulose derivatives, in particular hydroxyethyl cellulose, hydroxypropyl cellulose, methylhydroxypropylcellulose or hypromellose, acrylic and vinyl polymers,—in particular carbomers, cyanoacrylate polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohols—, polyethylene glycols, and polyquaterniums.
  • PVP polyvinylpyrrolidone
  • the perfumes used in the compositions are especially chosen among essential oils, compositions with synthetic origin, solubilised perfumes.
  • the antioxidants used in the compositions are especially chosen among ascorbyl palmitate, BHT, Tocopherol (E Vitamin), and tocopheryl acetate.
  • Hydrophilic compounds of the aqueous phase are especially chosen among water, alcohols, and polyols.
  • the alcohols that can be used in the compositions are especially ethanol, propanol, isopropanol, benzyl alcohol, and hexyl alcohol.
  • the polyols that can be used in the compositions are especially glycerol, propylene glycol, butylene glycol, hexylene glycol, and sorbitol.
  • Hydrophobic compounds of the fatty phase are especially chosen among hydrocarbons, fatty acids, fatty alcohols, esters, glycerides, cerides, and phosphatides.
  • Hydrocarbons are especially chosen among carbon and hydrogen chains, saturated and unsaturated, linear, ramified or cyclical, in particular carbon chains from 22 to 35 carbon and in particular among the following hydrocarbons: paraffins, paraffin oils, vaseline, squalane, silicones, and perhydrosqualenes.
  • the silicones that can be used in the compositions are especially volatile silicone oils, non-volatile silicone oils, modified silicone oils, silicone waxes, silicone gums, silicone emulsions, silicone microemulsions.
  • Silicones are especially chosen among polyloxane silicones, polydimethylsiloxanes or dimethicones, phenyl trimethyl siloxanes or phenyl methicones, cyclical polydimethylsiloxanes or cyclomethicones, dimethicone copolyols, amodimethicones, and dimethicone propyl PG-Betaine.
  • the fatty acids used in the compositions are especially saturated fatty acids or unsaturated fatty acids, in particular monounsaturated, diunsaturated, triunsaturated fatty acids.
  • Fatty acids are especially chosen among stearic acid, palmitic acid, lauric acid, myristic acid, oleic acid, linoleic acid, and linolenic acid.
  • Fatty alcohols are especially chosen among long chain saturated fatty alcohols,—cetylic alcohol or hexadecanol, stearyl alcohol, cetostearyl alcohol—short chain unsaturated fatty alcohols,—oleic alcohol, octyldodecanol, and tetrahydrofurfuryl alcohol.
  • Esters are especially chosen among liquid linear fatty esters—in particular isopropyl palmitate, myristyl stearate, octyl palmitate, isostearyl isostearate, butyl arachidonate, isopropyl lanolate, isopropyl myristate, glyceryl monostearate—, polyol esters—in particular, glycerol, ethylene, glycol, propylene glycol, diethylene glycol—, and oxyethylene esters.
  • liquid linear fatty esters in particular isopropyl palmitate, myristyl stearate, octyl palmitate, isostearyl isostearate, butyl arachidonate, isopropyl lanolate, isopropyl myristate, glyceryl monostearate—, polyol esters—in particular, glycerol, ethylene, glycol, propylene glycol, diethylene glycol—, and oxyethylene
  • Glycerides are especially monoglycerides, diglycerides, and triglycerides. Glycerides are especially chosen among vegetable oils,—in particular, olive oil, arachis oil, almond oil, hazelnut oil, sunflower oil, sesame oil, soya oil, maize oil, nut oil, grape seed oil, borage oil, evening primrose oil, rose tree muscatel oil, kiwi oil, avocado oil, cereal germ oil, macadamia oil, castor oil, poppy oil, cottonseed oil, apricot stone oil, coconut oil, copra oil, monoi oil, palm-kernel oil, carthame oil, crabwood oil, gourd seed oil, shark oil, mink oil—, butters,—in particular cocoa butter, shea butter, copra butter, babassu oil, palm oil, tamanu oil—, modified vegetable oils, synthetic oils, fats, and tallow.
  • vegetable oils —in particular, olive oil, arachis oil, almond oil, hazelnut oil, sunflower
  • the cerides used in the compositions are chosen especially among sterides, carotene-cerides, lipochrome, waxes, in particular sperm whale or spermaceti, lanolin, lanolin derivatives,—lanolin wax, liquid lanolin, hydrogenated lanolin, ethoxylated lanolin, lanolin alcohols, acetylated lanolin alcohols, ethoxylated lanolin alcohols, lanolin acids, isopropyl lanolate—, jojoba oil, ozokerite, ceresin, carnauba wax, and bee wax.
  • surface active agents are especially emulsifying agents, wetting agents, detergents and/or foaming agents.
  • Cationic surface active agents are especially chosen among quaternary ammonium salts, fatty primary amine salts, quaternary ammonium starches, alkylpyridinium chlorides, alkyl ammonium saccharinates, diethylenetriamine starches or cationic resins.
  • Non-ionic surface active agents are especially chosen among glycerol esters, glycol esters, sorbitan esters, fatty alcohol ethers, lipophilic sucroesters, polyglycerol esters, propylene oxide ethylene oxide copolymers, saponins, ethoxylated fatty alcohols, glucose ethers, glycol ester or polyethylene glycol, glycol ester or polyglycerol, oxyethylenated sorbitan ester, oxyethylenated alkylphenols, aminoxides, self-emulsifiable bases (PEG esters), methyl glucoside derivatives, monoethanolamides, monoethanolamides derivatives, diethanolamides or diethanolamide derivatives.
  • PEG esters self-emulsifiable bases
  • Anionic surface active agents are especially chosen among alkaline soaps, amine soaps, alkylsarcosinates, alkylsulphoacetates, alkyltaurates, sodium or potassium alkyl sulphate, sodium or potassium ether alkyl sulphate, paraffins, olefin sulfonates, isethionates, sodium alkyl phosphates, sodium alkyl ether phosphates.
  • Amphoteric or zwitterionic surface active agents are especially chosen among alkylbetaines, alkylamidobetaines, alkylamino mono- or di-propionates, imidazole derivatives such as cocoamphodiacetate, and sodium lauroamphodiacetate.
  • the cosmetic and therapeutic composition can have, in addition to hydrolysed yeast proteins as defined above, other yeast components.
  • the cosmetic or therapeutic composition does not have any other yeast components, except for hydrolysed yeast proteins according to this invention.
  • This invention relates particularly to a cosmetic or therapeutic composition, as defined above, in which the said active substance has a moisturising effect, and/or a repairing effect, and/or a firmness effect, and/or an anti-aging effect, and/or an anti-seborrhoea effect, and/or an anti-acne effect, and/or an anti-dandruff effect, and/or a hair reconstruction effect, and/or an effect on hair brightness and/or smoothness and/or growth.
  • moisturising effect it is designated a decrease in the skin evaporation due to an occlusive phenomenon or to a water fixation by an active substance, a humectant or hygroscopic effect of the active substance and/or a property of fixation for glycerides in the intercellular cement.
  • the moisturising effect of the composition appears in particular, at the epidermis level, with an activation of the lipid synthesis, in particular phospholipids, neutral lipids, and the synthesis of hyaluronic acid.
  • the moisturising effect of the composition can be emphasised in vitro by the study of the lipid synthesis and hyaluronic acid by the keratinocytes, as described in Example 3.
  • the moisturising effect of the composition results also in an anti-dandruff effect at the time of an application of the said composition on the scalp.
  • the anti-dandruff effect can be emphasised by a decrease in the quantity of dandruff in a subject treated with the composition according to this invention, for example as described in Example 5.
  • repairing effect or cicatrising effect it is designated an effect on the epidermis and/or dermis repair and/or reconstruction.
  • the repairing effect is useful for repairing injuries and/or burns.
  • the repairing effect of the hydrolysed yeast proteins is linked to the activation of the synthesis of hyaluronic acid.
  • the repairing effect can be emphasised by a dosage of the liberation of hyaluronic acid and an analysis of its expression in reconstructed human epidermises, as described in Example 3.
  • firmness effect it is designated a smooth and tonic effect of the skin results from its mechanical support, in particular collagen fibres and elastin.
  • the composition allows in particular to improve the contraction of collagen lattice, activate the elastin synthesis and the maturation of collagen.
  • Collagen lattice corresponds to a bundle of collagen fibres and fibrils.
  • the firmness effect of the composition can be emphasised in vitro, as described in example 3.
  • the composition has in particular an anti-aging effect linked to age and can also have an effect against photo-induced aging.
  • the visible signs of skin aging linked to age are, in particular, skin dryness, the appearance of little wrinkles, wrinkles, a decrease in skin thickness as well as a loss of skin suppleness.
  • the anti-aging effect of the composition results, in particular, in an increase in the proliferation of dermis fibroblasts and their activity in terms of synthesis of collagen and glycosaminoglycans.
  • the anti-aging effect linked to age can be emphasised in vitro by the increase in the synthesis of collagen and glycosaminoglycans by the dermis fibroblasts, as described in example 3.
  • the signs of photo-induced skin aging are the appearance of deep wrinkles, a thick and rough skin.
  • the photo-induced skin aging results in a decrease in the quantity and solubility of collagen, an increase in the quantity of elastin and microfibrils, an increase in glycosaminoglycans, an increase in inflammatory cells.
  • This invention relates also to a cosmetic or therapeutic composition, as defined above, characterised in that the active substance has a repairing effect.
  • anti-seborrhoea effect it is designated an effect of regulation of sebaceous secretion, regulation of sebum adsorption and/or an astringent action allowing to close the skin pores.
  • the composition allows to reduce the sebum secretion.
  • the composition allows to regulate sebum adsorption through lipid adsorption.
  • the composition is particularly useful within the framework of a face hyperseborrhoea and/or a scalp hyperseborrhoea resulting in the so-called greasy hair.
  • the cosmetic composition has an anti-seborrhoea effect useful for greasy skins and/or acneic tendency.
  • anti-acne effect it is designated a beneficial effect on acne.
  • the beneficial effect of the therapeutic composition on acne is linked to a regulation of sebaceous secretion.
  • the anti-seborrhoea and anti-acne effects can be emphasised, as described in example 4.
  • the composition is applied on the skin or scalp of subjects showing a hyperseborrhoea at the skin and scalp level, respectively.
  • the sebum secretion is then assessed by applying a sebum absorbing patch on the part of the body treated.
  • the patch is afterwards analysed to quantify the sebaceous secretion.
  • the secretion after treatment is compared to the secretion in the same subject before treatment.
  • reconstructing effect it is designated the obtaining of a smooth effect of the hair.
  • the outermost layer of a hair, called cuticle is made up of scales overlapping each other.
  • a reconstructing effect results in smooth relief of the cuticle, whereas damaged hair have a rough relief.
  • the composition has a toning effect on the hair.
  • the reconstructing effect of the hair can be emphasised by the measure of the hair topography, as described in example 5.
  • brightness effect it is designated the capacity of the hair to reflect the light and give the hair a shining effect.
  • softness effect it is designated the softness sensation of the hair upon touch.
  • the effect on hair growth can be emphasised by a measure test of the growth kinetics of the hair, as described in example 5.
  • This invention relates particularly to a cosmetic or therapeutic composition, as defined above, in the form of solution (one phase), dispersion (in particular an emulsion, suspension, foam or aerosol), gel, oil, stick, powder, wipe, mask or patch.
  • dispersion in particular an emulsion, suspension, foam or aerosol
  • gel oil, stick, powder, wipe, mask or patch.
  • emulsion it is designated all types of emulsions and in particular, macroemulsions, microemulsions, nanoemulsions, simple emulsions, and multiple emulsions.
  • Emulsions are dispersions of a liquid into another liquid, the two liquids being non-mixable. Emulsions have a lipophilic, hydrophilic phase and an emulsifying agent.
  • emulsions include milks, lotions, creams, etc.
  • Nanoemulsions are dispersions in which the size of the particles dispersed has a diameter lower than 1,000 ⁇ m, in particular from 10 ⁇ m to 100 ⁇ m.
  • Nanoemulsions are dispersions in which the size of the particles dispersed has a diameter lower than 1,000 ⁇ m, in particular from 10 ⁇ m to 100 ⁇ m.
  • Nanoemulsions and microemulsions constitute transparent mediums.
  • the cosmetic or therapeutic composition is suited for skin or hair applications.
  • the composition for hair application is in the form of shampoos, lotions, masks, and sprays.
  • This invention relates to a cosmetic or therapeutic composition as defined above, in the form of tablet, wafer, dragée, capsule, granule, pill, powder, syrup, drinkable suspensions, and drinkable emulsion.
  • the cosmetic or therapeutic composition can have, as active substance, hydrolysed yeast proteins and at least one additional active substance.
  • the additional active substance(s) can have a moisturising effect, and/or a firmness effect, and/or an anti-aging effect, and/or an anti-seborrhoea effect, and/or a hair reconstructing effect, and/or an effect on brightness, and/or softness, and/or hair growth, and/or repairing, and/or slimming, and/or cleaning, and/or anti-oxidant, and/or depigmenting, and/or vascular protector, and/or anti-inflammatory, and/or antibacterial, and/or antifungal.
  • At least one additional active substance has the same cosmetic effect as the hydrolysed yeast proteins.
  • At least one additional active substance has the same therapeutic effect as the hydrolysed yeast proteins.
  • the effect obtained is preferably a synergic effect.
  • the hydrolysed yeast proteins constitute a new natural agent, particularly useful for preparing cosmetic or therapeutic compositions.
  • This invention relates also to a preparation process of a cosmetic or therapeutic composition, consisting of the following stages:
  • the acceptable cosmetic or therapeutic vehicle is chosen among the above mentioned additives and/or excipients.
  • This invention relates also to a preparation process, as defined above, of a cosmetic or therapeutic composition, consisting of the following stages:
  • This invention relates also to the use of hydrolysed yeast proteins obtained from the yeast insoluble fraction as active substance in cosmetic and/or therapeutic compositions.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained from the yeast insoluble fraction.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • This invention relates to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained through enzymatic hydrolysis with at least a peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase, alcalase®, neutrase® and/or their blending.
  • a peptidase preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, gene
  • this invention relates to the use as defined above, characterised in that the said yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • This invention relates also to the use as defined above, characterised in that the said yeast hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • This invention relates also to the use as defined above, characterised in that the said yeast hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • This invention relates also to the use as defined above, characterised in that the AN/TN ratio of the said hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are present in the cosmetic or therapeutic composition at the rate of 0.001% to 20%, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • This invention relates to the use as defined above, characterised in that the said cosmetic or therapeutic composition have at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • This invention relates to a method for cosmetic treatment comprising a stage of contact with the skin and/or skin appendages and/or mucous membranes of a cosmetic composition as defined above or liable to be obtained through the preparation process as defined above.
  • contact layer
  • application The term contact , layer
  • the treatment method can include one or more applications a day, preferably from one to three applications a day.
  • the frequency of applications of the cosmetic composition can be reduced during treatment.
  • the method for cosmetic treatment can consist in a short treatment, from one to more weeks, or a long-term treatment on many years.
  • the method for treatment can also consist in a treatment in the form of renewed cures every year or several times in a year.
  • This invention relates particularly to a method for cosmetic treatment as defined above, designated to moisturise skin and/or mucous membranes and/or skin appendages, and/or improve the repair of skin and/or mucous membranes and/or skin appendages, and/or improve dermis firmness, and/or fight against skin aging, and/or regulate sebum secretion, and/or reduce dandruff, and/or repair hair, and/or improve hair growth.
  • the epidermis moisturising aims, at a time, at restoring the quality of the skin barrier, namely an impermeability limiting water evaporation, and favouring the presence of molecules trapping water, namely glycosaminoglycans, in particular hyaluronic acid.
  • the method for cosmetic treatment is particularly useful in the treatment and/or prevention of skin dryness and dandruff.
  • the repair of the skin and/or mucous membranes and/or skin appendages aims at helping the physiological healing, in particular by activating the synthesis of hyaluronic acid.
  • Skin tightening aims at maintaining or reinforcing skin firmness, in particular by activating the synthesis of elastin, the synthesis and maturation of collagen and the contraction of collagen lattice.
  • the fight against skin aging relates to the delay and/or reduction of aging signs.
  • the treatment designated to fight against skin aging is associated to an epidermis moisturising.
  • the method for cosmetic treatment is particularly advocated for subjects from 20 years, in particular from 30 years, in particular from 40 years, in particular from 50 years.
  • the regulation of sebum secretion relates to the reduction of sebum secretion.
  • the method for cosmetic treatment is particularly useful for regulating the seborrhoea of greasy skins, in particular for greasy skins said with problems or with acneic tendency and/or for hair so-called greasy .
  • the hair repair consists in the reconstruction of the hair, in particular by smoothing hair cuticle and/or restoring brightness and/or softness to hair.
  • the method for cosmetic treatment is particularly appropriate for subject with damaged hair, in particular following to a sun exposure, sea, too frequent washings, colourings, brushings, perms, etc.
  • the improvement of the hair growth aims at increasing hair growth kinetics, also called hair growth.
  • the method for cosmetic treatment is particularly appropriate for subject with slow hair growth kinetics and/or in case of normal hair loss.
  • a hair loss said normal corresponds to androgenogenetic alopecia, endocrine alopecia, or alopecia linked to age.
  • the method for cosmetic treatment is appropriate for a face application, in particular on the eye contour, nose, forehead, chin, body, in particular on the hands, feet, back, hair and/or scalp.
  • This invention relates also to hydrolyse yeast proteins obtained from the yeast insoluble fraction for their use as medicine, preferably for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne.
  • this invention relates to hydrolysed yeast proteins as defined above or liable to be obtained through the preparation process as defined above, for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne, and/or pathological hair loss.
  • This invention aims at using them for preparing a therapeutic composition as defined above.
  • the therapeutic composition is particularly useful for the treatment of pathological skin dryness, also called xerosis, in particular in case of ichthyosis, skin dryness associated to eczema or psoriasis or pathological scalp dryness, in particular associated to dandruff.
  • pathological skin dryness also called xerosis
  • xerosis in particular in case of ichthyosis, skin dryness associated to eczema or psoriasis or pathological scalp dryness, in particular associated to dandruff.
  • the therapeutic composition is particularly useful for the treatment of pathological healing, such as hypertrophic healing, keloid healing, and retractile cicatrisation and/or healing delays, in particular delays linked to a poor asepsis, a vascular and/or neurological origin.
  • pathological healing such as hypertrophic healing, keloid healing, and retractile cicatrisation and/or healing delays, in particular delays linked to a poor asepsis, a vascular and/or neurological origin.
  • the therapeutic composition is also useful for the treatment of pathological hyperseborrhoea, in particular associated to a hormonal deregulation, in particular in teenager, pregnant woman, or menopause woman.
  • the therapeutic composition is also useful for the treatment of pathological acne, in particular juvenile acne associated to hyperseborrhoea.
  • the therapeutic composition is also useful for the treatment of pathological hair loss, also called pelade, resulting from an emotional shock, thyroid disorder, and/or treatments having alopecia as side effect (for example anti-cancer treatments)
  • the use as defined above is intended to a local application of the said therapeutic composition on the skin and/or skin appendages and/or mucous membranes.
  • the use as defined above can consist in one or more applications a day, preferably from one to three applications a day.
  • the frequency of applications of the therapeutic composition can be reduced during treatment.
  • the therapeutic treatment can consist in an acute treatment, from a few days to several weeks, or a chronic treatment on several years.
  • the treatment can also consist in a treatment in the form of renewed cures every year or several times in a year.
  • This invention relates also to the use of a cosmetic composition or a therapeutic composition as defined above, intended to the treatment of the side effects or unpleasant manifestations of other treatments.
  • said side effects or unpleasant manifestations result in skin dryness, for example associated to eczema.
  • An aqueous suspension of yeast cells of Saccharomyces cerevisiae having a content of dry matter within 12 and 30% by mass, is subjected to a thermal treatment from 1 to 3 hours within 70° C. and 90° C. (in order to deactivate the endogenous cell enzymes).
  • This thermal treatment induces a yeast plasmolysis that allows separating thereafter the insoluble fraction from the soluble fraction, being the soluble fraction limited.
  • the separation of the solubilised fraction from the insoluble fraction is carried out through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3).
  • the insoluble fraction recovered having a content of dry matter within 12 and 25% by mass, is then hydrolysed by adding at least one exogenous protease during at least 18 hours at a temperature of 45° C. to 65° C.
  • the protease is the papain used at a concentration of 0.01% to 0.5% (weight/weight).
  • the solubilised hydrolysed fraction is separated from the hydrolysed insoluble fraction through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3).
  • the solubilised hydrolysed fraction is concentrated through at least one vacuum continuous or batch evaporation stage, in order to obtain a concentrated fraction.
  • the concentrated fraction is possibly purified through filtration or clarification before being dried through atomisation.
  • the solubilised hydrolysed and possibly concentrated and/or purified and/or dried fraction so obtained corresponds to the hydrolysed yeast proteins according to this invention.
  • the molecular weight and the molecular weight profile of the hydrolysed yeast proteins are determined through liquid gel permeation chromatography with UV detection at 215 nm on a SEPHADEX Pharmacia HR 10/30 gel filtration column.
  • the calibration is carried out through protein standards with known size that allows calibrating the system and assessing the molecular weight of a blending.
  • the AN/TN ratio is calculated by measuring total nitrogen and amino nitrogen.
  • Total nitrogen (TN) is determined through the Kjeldahl method, a method established starting from the official methods of analysis for dietetic products (JO of 3 Nov. 1979).
  • the amino nitrogen (AN) is determined through NQS derivatisation (1-2 naphtoquinone 4-sulfonate (H. NEHRING, A. HOCK, improved method for determination aminonitrogen, Pharmazie, 1971, 26, 616-619).
  • the hydrolysed yeast proteins obtained from the concentrated solubilised hydrolysed fraction, purified and dried are afterwards marked by letter A . They have a light beige colour.
  • Table 1 and FIG. 1 indicate the distribution of the molecular weights within hydrolysed yeast proteins according to this invention (A), compared to that of hydrolysed yeast proteins (B) obtained from hydrolysis of the yeast whole cell.
  • B hydrolysed yeast proteins are obtained through thermal treatment of a suspension of Saccharomyces cerevisiae yeast cells from 1 to 3 h within 70° C. and 90° C., then with the addition of at least one exogenous protease during at least 18 hours at a temperature of 45° C. to 65° C.
  • the protease is the papain used at a concentration of 0.01% to 0.5% (weight/weight).
  • the solubilised hydrolysed fraction is separated from the hydrolysed insoluble fraction through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3).
  • the solubilised hydrolysed fraction is concentrated through at least one vacuum continuous or batch evaporation stage, in order to obtain a concentrated fraction.
  • the concentrated fraction is possibly purified through filtration or clarification before being dried through atomisation in order to obtain hydrolysed yeast proteins of whole yeasts (B).
  • hydrolysed proteins have in the hydrolysed yeast proteins (A), a molecular weight higher or equal to 1 kDa and lower than 5 kDa (64.2%); the other hydrolysed proteins have essentially a molecular weight lower than 1 kDa (31.6%).
  • the difference between the molecular weight profile of hydrolysed yeast proteins and that of yeast proteins obtained from the hydrolysis of whole cells is also clearly visible in FIG. 2 .
  • the products that are represented first have the higher molecular weight.
  • the hydrolysed yeast proteins appear more concentrated on a range of high molecular weights with a more important intensity.
  • the hydrolysed proteins of B composition show a peak concentration towards weaker molecular weights, which is representative of a greater degradation.
  • table 2 indicates that hydrolysed yeast proteins according to this invention (A), have an AN/TN ratio ranging between 15 and 28%, whereas that of the hydrolysed yeast proteins obtained from whole cells (B), ranges between 32 and 40%.
  • the AN/TN ratio gives an estimation of protein degradation: the weaker it is, the more the proteins are in the native form and inversely, the higher it is, the more the proteins are in the degraded form.
  • Table 3 shows that hydrolysed yeast proteins according to the invention (A), in effect, have very few free amino acids, compared to hydrolysed yeast proteins obtained from whole cells (B).
  • hydrolysed yeast proteins according to this invention (A) show a lower degradation rate than the hydrolysed yeast proteins of B composition.
  • table 3 also shows that the composition in amino acids of hydrolysed yeast proteins according to this invention (A), is different from that of hydrolysed yeast proteins obtained from whole cells (B).
  • the effect of the hydrolysed yeast proteins according to the invention on the expression profile of normal human epidermal keratinocytes and normal human dermal fibroblasts is valued on DNA microarrays.
  • the first microarray has 164 genes of human keratinocytes, especially involved in cell growth, differentiation, adhesion, communication, and death.
  • the second microarray has 143 genes of human fibroblasts, especially involved in cell growth, adhesion, communication, synthesis and extracellular matrix degradation and stress.
  • Normal human epidermal keratinocytes and normal human dermal fibroblasts are cultured for 24 h or 96 h in the presence or absence of hydrolysed yeast proteins of example 1. Cells are then washed and their RNA is extracted and purified. cDNA is obtained from this RNA through reverse transcription. The cDNAs obtained are then marked before being hybridised on the microarray corresponding to the same cell type.
  • the expression level of each gene in the absence of hydrolysed yeast proteins is compared to the expression level obtained in the presence of the said hydrolysed yeast proteins.
  • results obtained on the microarray of epidermal keratinocytes show that the hydrolysed yeast proteins, according to this invention, stimulate the differentiation of epidermal keratinocytes and inhibit the expression of genes coding for proteins of cellular matrix, which implies a moisturising effect.
  • the phenomenon of keratinocyte differentiation is indeed implied in the reinforcement of the skin barrier and allows to limit water losses.
  • the inhibition of gene expression coding for proteins of cellular matrix goes in the same direction.
  • the hydrolysed yeast proteins used are those described in example 1.
  • Tests are carried out on normal human epidermal keratinocytes NHEK seeded in the wells of a 96-well plate in a KSFM medium (without serum).
  • the lipid synthesis, the FLG (filaggrin), CK10 (cytokeratin) and TGK (transglutaminase K) synthesis and the hyaluronic acid synthesis are assessed in the presence of different concentrations of hydrolysed yeast proteins (from 0.04 mg/ml to 1 mg/ml).
  • Three culture wells are made under condition.
  • Calcium is used as positive control for lipid synthesis and FLG, CK10, TGK synthesis and retinoic acid as positive control for hyaluronic acid synthesis.
  • Negative control is constituted by the sole culture medium.
  • Lipid synthesis is analysed through Phosphoimaging and the hyaluronic acid synthesis is assessed through a measurement of the hyaluronic acid concentration freed in the medium.
  • Normal human dermal fibroblasts (NHDF) and normal human dermal aged fibroblasts (AgNHDF) are seeded in the wells of a 96-well plate in a DMEM medium+10% SVF. Tests are carried out in DMEM medium+1% SVF.
  • the test for fibroblast proliferation and the test for glycosaminoglycan and collagen synthesis are carried out in the presence of different concentrations of hydrolysed yeast proteins. Three culture wells are made under condition.
  • Negative control is constituted by the sole culture medium.
  • the proliferation test is carried out 24 h after cell-seeding. [ 3 H]-thymidine is added in the culture milieu. The EGF is used as positive control.
  • Glycosaminoglycan and collagen synthesis is assessed on 80% confluence cells, to which [ 3 H]-glucosamine or [ 3 H]-proline is added, respectively. The retinoic acid is then used as positive control.
  • the macromolecules are extracted and the incorporation of radioactive precursors is measured.
  • Tests are carried out on normal human dermal aged fibroblasts (AgNHDF).
  • the synthesis and maturation of collagen are assessed after pre-culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins.
  • the negative control is constituted by the sole culture medium and the positive control by TGF ⁇ and C vitamin.
  • the cells are then seeded in culture chamber. Just before confluence, cells are fixed in methanol and the presence of collagen is detected through immunohistochemistry by using a specific antibody directed against collagen I and a secondary fluorescent antibody.
  • the expression level of the intracellular and extracellular collagen and their localisation around the matrix are analysed through the microscope.
  • the contraction of collagen lattice is assessed after culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins.
  • the negative control is constituted by the sole culture medium and the positive control by TGF ⁇ .
  • the cellular suspension obtained is then introduced in a collagen I solution under controlled pH. After a few hours, the solution jellifies in such a manner as to obtain an equivalent dermis, the contour of which, is clearly defined.
  • the diameter and number of the cells of each equivalent dermis are measured by following a defined kinetics.
  • the elastin synthesis is assessed after culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins.
  • the negative control is constituted by the sole culture medium and the positive control by C vitamin.
  • the cells are then seeded in culture chamber. Just before confluence, cells are fixed in methanol and the presence of elastin is detected through immunohistochemistry by using a specific antibody directed against elastin and a secondary fluorescent antibody. The expression level of elastin is analysed through the microscope.
  • Tests are carried out on reconstructed human epidermises.
  • the reconstructed epidermises are cultured. On the 5 th day, cultures are treated with hydrolysed yeast proteins tested at 3 concentrations in local application.
  • Negative control is constituted by a non-treated culture, the positive control by retinoic acid in local application. The treatments are renewed on the 7 th day and cultures are stopped on the 10 th day.
  • Freeing of hyaluronic acid in the medium is dosed on the culture supernatants by means of a specific modified Elisa test. The results are expressed in ⁇ g/ml of liberated hyaluronic acid and in stimulation percentage with respect to untreated control.
  • the lipid and hyaluronic acid synthesis by keratinocytes is activated with respect to negative control.
  • hydrolysed yeast proteins improve the biomechanical qualities of dermis (in particular, in terms of elasticity and compressibility).
  • the hydrolysed yeast protein solution is applied on the skin or scalp of subjects showing a hyperseborrhoea at the skin or scalp level, respectively.
  • the sebum secretion is then assessed by applying a sebum absorbing patch on the part of the body treated.
  • the patch is afterwards analysed to quantify the sebaceous secretion.
  • the secretion after treatment is compared to the secretion in the same subject before treatment.
  • the hydrolysed yeast protein solution allows reducing the quantity, of sebum secreted.
  • the hydrolysed yeast protein solution is that described in the example 1.
  • the hydrolysed yeast protein solution is applied on the scalp of subjects suffering from dandruff. After treatment with the hydrolysed yeast protein solution, a patch is applied on the treated zone to recover the scalp dandruff.
  • the quantity of dandruff recovered on the patch is compared before and after treatment.
  • the hair growth kinetics is assessed in the following way: before treatment, a lock of hair of a subject is coloured from the root for 2 to 3 cm; the hydrolysed yeast protein solution is then applied on the scalp; the distance between the root and the beginning of colouring is measured.
  • the growth kinetics after treatment of a group of treated subjects is compared to that obtained with a group of untreated subjects.
  • Hair brightness is determined by measuring the quantity and intensity of light reflected on the hair surface. To this purpose, photos of hair are taken with crossed polarisation and non-polarisation. The two photos are then converted into levels of grey and hair brightness is obtained through subtraction of the light between the two photos.
  • Hair brightness after applying the hydrolysed yeast protein solution is compared to that obtained before treatment.
  • Hair softness is assessed through a sensory analysis by a board of examiners made up of three qualified persons to assess hair softness upon touch.
  • Hair softness is noted on a 0 to 10 scale, where note 0 corresponds to an absence of softness and note 10 to a great softness.
  • Hair softness after applying the hydrolysed yeast protein solution is compared to that obtained before treatment.
  • Hair reconstruction is assessed by measuring the hair surface topography with an interferometric microscope.
  • the parameters allowing determining the condition of the cuticle scales along the hair are the following:
  • the analysed surface measures 120 ⁇ 30 ⁇ m.
  • Hair reconstruction after applying the hydrolysed yeast protein solution is compared to the hair status before treatment.
  • Hair application of the hydrolysed yeast protein solution allows the obtaining of an anti-dandruff effect and an increase of the hair growth.
  • Hydrolysed yeast protein solution has also a hair repairing effect, by allowing the improvement of brightness, softness, and hair reconstruction.
  • compositions constitute non-exhaustive examples of this invention.
  • Composition 1 Moisturising Cream (Oil in Water)
  • Hydrolysed yeast proteins 1.5 (A composition) Caprylic and capryc triglyceride 4 Mineral oil 2 Stearyl alcohol 3 Isopropyl palmitate 2 Glycerol stearate 6 PEG-100 Dimethicone 4 Glycerine 8 Preservative 0.3 Water 69.2
  • Composition 2 Lotion (Oil in Water)
  • Hydrolysed yeast proteins 2.50 (A composition) paraffin oil 2.60 Propylene glycol 1.40 triglyceride 1.0 PEG-75 1.0 Coco-caprylate caprate 1.0 Glycerol stearate 0.6 Dimethicone 0.5 Polyacrylic acid 0.3 Sodium hydroxide 0.11 perfume 0.10 EDTA 0.03 glycerine 5.00 colour 0.32 preservative 1.50 purified water 82.04
  • Composition 3 Anti-Dandruff Shampoo
  • Hydrolysed yeast proteins 1.5 (A composition) Sodium lauryl sulfate 30 Disodium Laureth sulfate Cocoamphodiacetate Hexylene glycol Cocamidopropylamine oxide 1 Extract of Indian watercress 1 Preservative 0.2 Citric acid pH 6 water spp 100
  • Composition 4 Moisturising Mask
  • Hydrolysed yeast proteins (A composition) 4.00 Timiron flash 4.00 Propylene glycol 3.00 glycerine 3.00 urea 3.00 Mucic acid 0.30 perfume 0.30 Arabic gum 0.50 Xanthan gum 0.10 EDTA 0.10 allantoin 0.10 Sodium hydroxide 0.06 Polyvinyl alcohol 10.00 talc 10.00 95% Alcohol 15.00 Purified water 46.54

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to cosmetic or therapeutic compositions that contain hydrolysed yeast proteins as an active ingredient, to the use of said cosmetic or therapeutic compositions, and to a method for cosmetic treatment.

Description

    FIELD OF THE INVENTION
  • The purpose of this invention is the use of natural active substances in cosmetic and in therapeutic compositions, these substances being hydrolysed yeast proteins obtained from the insoluble yeast fraction.
  • TECHNICAL BACKGROUND
  • For several years, protein hydrolysates have given rise to an interest in cosmetic and therapeutic applications.
  • Protein hydrolysates can have different origins: animal, in particular fish, vegetable, or fungal, for example yeast.
  • The presence or absence of biological activity of a protein hydrolysate depends, in particular, on the nature of the start proteins.
  • Thus, the hydrolysis of fish proteins allowed obtaining hydrolysed proteins with a particular spatial structure recognised by certain receptors. Activities of hormonal and opioid type have thus been emphasised (Legal and Stenberg, Biofutur, No. 179, 1998, pages 61 to 63).
  • Certain documents of the prior art mention the use of yeast protein hydrolysates in cosmetic compositions. These yeast protein hydrolysates are obtained either through the hydrolysis of yeast whole cells or through the hydrolysis of the yeast soluble fraction (the cytoplasmic content).
  • Thus, application patent EP 0 695 801, describes the cosmetic use of a peptide composition obtained through:
  • a stage of yeast thermal treatment followed by a treatment with lytic enzymes of the yeast cell wall, in order to obtain a blending,
  • a protein purification and separation stage of the aforesaid blending, in order to obtain yeast proteins, and
  • an hydrolyse stage of the aforesaid proteins.
  • The lytic enzymes of the cell wall used in this document are enzymes attacking glucans and destabilising the wall and membrane. Thus, such a composition has hydrolysed proteins obtained from the yeast soluble fraction.
  • Patent application EP 0 126 364, describes the cosmetic use of a product with no histamine, non-pyrogenic, sterile, active obtained through a process comprising the following stages:
  • yeast plasmolysis and homogenisation to a temperature lower than 0° C.,
  • treatment with a proteolytic enzyme for at least 70 hours,
  • treatment with a diamine oxidase in order to eliminate substances having histamine,
  • fractional precipitation with a blending of alcohols in order to eliminate residual proteins.
  • Thus, the final product has yeast-hydrolysed proteins obtained from the hydrolysis of whole yeast proteins. The implementation of such a production process shows many drawbacks, in particular, the duration of the process, the multiplicity of stages and the need of working under sterile conditions.
  • Application patent of EP 0 237 398, describes the cosmetic use of polypeptides biologically active obtained through the process comprising the following stages:
  • mechanical crushing of natural substances, for example yeasts, in order to obtain an aqueous homogenate,
  • enzymatic hydrolysis with a hydrolysis agent consisting of α-chymotrypsin and possibly trypsin, in order to obtain an hydrolysate,
  • separation of a polypeptide fraction with a specific molecular weight.
  • Thus, the polypeptide fraction derives from the protein hydrolysis obtained from whole yeasts. In particular, the polypeptide fraction has a molecular weight lower than 10,000 Da and higher than 1,000 Da.
  • Consumers increasingly require
    Figure US20110052514A1-20110303-P00001
    natural
    Figure US20110052514A1-20110303-P00002
    products, whether in the food, cosmetic or pharmaceutical field.
  • In the cosmetic and pharmaceutical field, there is a real need to give new active natural substances that:
  • have improved cosmetic or therapeutic qualities, such as moisturising, anti-aging effects and/or firmness; and/or
  • an excellent stability in time; and/or
  • the production of which is homogeneous and/or the production process is easily implemented on industrial scale.
  • SUMMARY OF THE INVENTION
  • The purpose of this invention is the supply of natural active substances useful in the cosmetic or therapeutic field.
  • A purpose of the invention is also the supply of new cosmetic or therapeutic compositions.
  • Another purpose of the invention relates to a method for cosmetic treatment for skin and/or skin appendages and/or mucous membranes or these substances for their therapeutic use.
  • This invention is based, in particular, on the discovery of a new category of hydrolysed proteins with improved cosmetic and/or therapeutic activities, and/or an excellent stability in time, and/or the production of which is homogeneous and/or the production process is easily implemented on industrial scale.
  • The purpose of this invention is a cosmetic or therapeutic composition comprising yeast hydrolysed proteins as active substance, characterised in that the said yeast hydrolysed proteins are obtained from yeast insoluble fraction.
  • According to an embodiment, the yeast-hydrolysed proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • According to an embodiment, the yeast hydrolysed proteins are obtained through enzymatic hydrolysis with at least one peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase and/or their blending.
  • According to an embodiment, the yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • According to an embodiment, the yeast-hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • According to an embodiment, the yeast-hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • According to an embodiment, the AN/TN ratio of the hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • According to an embodiment, the composition has from 0.001% to 20% of hydrolysed yeast proteins, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even still more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • According to an embodiment, the composition comprises at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and/or at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • The purpose of this invention is also a preparation process of a cosmetic or therapeutic composition, consisting of the following stages:
  • protein hydrolysis of the yeast insoluble fraction in order to obtain hydrolysed yeast proteins, and
  • blending of the said hydrolysed yeast proteins with an acceptable cosmetic or therapeutic vehicle.
  • The purpose of this invention is the use of hydrolysed yeast proteins obtained from the yeast insoluble fraction as active substance in cosmetic and/or therapeutic compositions.
  • Another purpose of this invention relates to a method for cosmetic treatment comprising a stage of contact with the skin and/or skin appendages and/or mucous membranes of a composition according to this invention or liable to be obtained through the process according to this invention.
  • Another purpose of this invention relates also to the hydrolysed yeast proteins obtained from the yeast insoluble fraction for their use as medicine, preferably for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 represents, in percentage, the size distribution (in kDa) within the hydrolysed yeast proteins according to the invention (white histogram) and within hydrolysed yeast proteins obtained from the hydrolysis of yeast whole cells (striped histogram).
  • FIG. 2 represents the molecular weight profile of hydrolysed yeast proteins according to the invention (black curve) and that of hydrolysed yeast proteins obtained from the hydrolysis of yeast whole cells (grey curve). The coordinate axis indicates the absorption read at 214 nm and the abscissa axis the retention time in minutes.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The purpose of this invention is a cosmetic or therapeutic composition comprising hydrolysed yeast proteins as active substance.
  • In particular, the purpose of this invention is a cosmetic or therapeutic composition comprising hydrolysed yeast proteins as active substance characterised in that the said yeast hydrolysed proteins are obtained from yeast insoluble fraction.
  • The hydrolysed yeast proteins are also called
    Figure US20110052514A1-20110303-P00001
    yeast peptones
    Figure US20110052514A1-20110303-P00002
    or
    Figure US20110052514A1-20110303-P00001
    yeast peptides obtained through hydrolysis
    Figure US20110052514A1-20110303-P00002
    .
  • By
    Figure US20110052514A1-20110303-P00001
    cosmetic composition
    Figure US20110052514A1-20110303-P00002
    , it is here designated a composition intended to cause a cosmetic effect.
  • According to a preferred embodiment of this invention, the cosmetic effect is obtained through a local application of the compositions according to this invention.
  • The term
    Figure US20110052514A1-20110303-P00001
    local
    Figure US20110052514A1-20110303-P00002
    indicates that the composition is active in the place where it is applied, on the skin, skin appendages, and/or mucous membranes. According to the invention, the composition may simultaneously target the superficial layers of the epidermis and/or the dermis.
  • By the term
    Figure US20110052514A1-20110303-P00001
    skin appendage
    Figure US20110052514A1-20110303-P00002
    , it is designated generally everything that covers the skin, and in particular hair, nails, hairs, eyelashes.
  • The term
    Figure US20110052514A1-20110303-P00001
    skin
    Figure US20110052514A1-20110303-P00002
    includes the scalp.
  • The term
    Figure US20110052514A1-20110303-P00001
    skin
    Figure US20110052514A1-20110303-P00002
    includes the dermis and the epidermis, as well as the superficial layers of the epidermis.
  • By the term
    Figure US20110052514A1-20110303-P00001
    mucous membranes
    Figure US20110052514A1-20110303-P00002
    or the term
    Figure US20110052514A1-20110303-P00001
    humid epithelial tissue
    Figure US20110052514A1-20110303-P00002
    it is designated the membranes that cover the open cavities towards the external medium, and in particular the oral, nasal and genital mucosae, as well as the vaginal mucosae.
  • In another preferred embodiment, the cosmetic effect is obtained through administration by mouth.
  • By
    Figure US20110052514A1-20110303-P00001
    therapeutic composition
    Figure US20110052514A1-20110303-P00002
    it is designated a composition intended to cause a therapeutic effect.
  • A preferred therapeutic composition, according to the invention, is a dermatological composition.
  • In particular, the therapeutic effect is obtained through a local application of therapeutic compositions according to this invention.
  • Hence, the purpose of this invention is also a cosmetic or therapeutic composition as defined above, intended for an application on the skin and/or skin appendages and/or mucous membranes.
  • Another preferred composition according to the invention, is a composition suitable for administration by mouth.
  • By
    Figure US20110052514A1-20110303-P00001
    active substance
    Figure US20110052514A1-20110303-P00002
    or
    Figure US20110052514A1-20110303-P00001
    active principle
    Figure US20110052514A1-20110303-P00002
    or
    Figure US20110052514A1-20110303-P00001
    active matter
    Figure US20110052514A1-20110303-P00002
    , it is designated here the substance responsible for the cosmetic effect within a cosmetic composition or responsible for the therapeutic effect within a therapeutic composition.
  • A cosmetic composition, according to the invention, comprises at least a compound as active substance and an acceptable cosmetic vehicle.
  • A therapeutic composition, according to the invention, comprises at least a compound as active substance and an acceptable therapeutic vehicle.
  • The hydrolysed yeast proteins, according to the invention, are obtained from the yeast insoluble fraction.
  • By
    Figure US20110052514A1-20110303-P00001
    insoluble fraction
    Figure US20110052514A1-20110303-P00002
    it is designated the yeast hulls, that is to say, the wall and plasmic membrane of the yeasts at a time.
  • The insoluble fraction represents about 20 to 30% by mass dry matters of the yeast cells.
  • By
    Figure US20110052514A1-20110303-P00001
    soluble fraction
    Figure US20110052514A1-20110303-P00002
    it is designated the content of the yeast, other than the yeast hulls.
  • Yeast hulls have essentially carbohydrates (about 50%). Proteinic matters represent about 10 to 20% of yeast hulls, in particular, about 13 to 18% of yeast hulls (by mass of fry matters).
  • The insoluble fraction can be obtained through a thermal treatment of the yeast during 1 to 3 hours between 70° C. and 90° C., followed by a separation of the soluble and insoluble fraction, especially through centrifugation. Hence, the soluble fraction is eliminated and the insoluble fraction is recovered.
  • The hydrolysed yeast proteins, according to this invention, are obtained through hydrolysis of the proteins obtained from the yeast insoluble fraction.
  • The hydrolysed yeast proteins can be submitted to specific complementary treatments (for example, separation of the proteins through centrifugation, concentration, filtration, or activated charcoal treatment).
  • Thus, unlike the traditional protein hydrolysates, obtained after an autolysis or an enzymatic hydrolysis of the whole cell content or of the soluble part only, the hydrolysed yeast proteins, according to this invention, are obtained from a particular cellular fraction. The proteins of the yeast insoluble fraction have in fact a different nature than those present in the yeast soluble fraction. The proteins of the yeast insoluble fraction have, in particular, mannoproteins that have no cellular fraction.
  • In addition, the proteins of the insoluble fraction are essentially native proteins, not subjected to hydrolysis, whereas most of the proteins of the soluble fraction have already been subjected to partial or total hydrolysis. Thus, the result of the hydrolysis carried out starting from the proteins obtained from whole yeast is less verifiable due to the heterogeneity of the status of the start proteins.
  • In addition, the process, according to this invention, allows making the proteins of the insoluble fraction more accessible to hydrolysis, among other things through a strong concentration of the said proteins, with respect to a hydrolysis carried out on whole yeast.
  • Thus, the hydrolysed yeast proteins, according to this invention, are characterised in that a particular peptide nature, a particular (and homogeneous) profile of peptide molecular distribution, and/or a specific AN/TN ratio (with very low free amino acids), namely, in particular, an AN/TN ratio of hydrolysed yeast proteins lower or equal to 35%, in particular, lower or equal to 30%, in particular, lower or equal to 25%, in particular, lower or equal to 20%.
  • By
    Figure US20110052514A1-20110303-P00001
    ANrFN ratio
    Figure US20110052514A1-20110303-P00002
    it is designated the ratio of the amino acids nitrogen quantity (in percentage) on the by mass nitrogen quantity (in percentage). The AN/TN ratio indicates the protein degradation rate, in particular the hydrolysis degree of the yeast proteins.
  • Surprisingly, this new source of yeast proteins, once hydrolysed, has cosmetic and therapeutic activities.
  • The hydrolysed yeast proteins present in a dry form, especially as powder, or under solution, for example under aqueous solution.
  • The purpose of this invention is a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • The acid hydrolysis is a hydrolysis obtained in an acidic medium, preferably in the heat, for example by using a strong acid such as hydrochloric acid, sulphuric acid, phosphoric acid, and/or nitric acid.
  • In particular, the acid hydrolysis destroys the tryptophan and turns the glutamine and aspargine amino acids into glutamate and aspartate, respectively.
  • The alkaline hydrolysis is a hydrolysis obtained in an alkaline medium, for example by using a strong base such as sodium hydroxide and potassium hydroxide.
  • In particular, the alkaline hydrolysis destroys serine, threonine, and cysteine amino acids.
  • The enzymatic hydrolysis of the yeast proteins is carried out through hydrolases.
  • According to a preferred embodiment, the yeast-hydrolysed proteins, according to this invention, are obtained through enzymatic hydrolysis.
  • The enzymatic hydrolysis is carried out by adding at least one exogenous enzyme. Preferably, the yeast exogenous enzymes have been deactivated beforehand, for example through a thermal treatment.
  • In particular, according to this invention, the hydrolases are hydrolases acting on peptide bonds. Such hydrolases called peptidases or proteases or proteolytic enzymes have number EC 3.4 in the EC classification. Peptidases catalyse the hydrolytic cleavage of the C—N bond.
  • In particular, according to this invention, the hydrolases are chosen among esopeptidases, especially aminopeptidase, dipeptidase, dipeptidyl-peptidase, tripeptidyl-peptidase, peptidyl-dipeptitase, carboxypeptidase of serine type, carboxypeptidase of cysteine type, metallocarboxypeptidase, omega-peptidase, and endopeptidases (or proteinase), in particular serine endopeptidase, cysteine endopeptidase, aspartic endopeptidase, and metalloendopeptidase.
  • The enzymatic hydrolysis can be coupled to a disulfide bridge hydrolysis, carried out through reducing agents, for example the 2-mercaptoethanol or the dithiothreitol, the TCEP (Tris(2-carboxyethyl)phosphine).
  • Particularly, the purpose of this invention is a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained through enzymatic hydrolysis with at least one peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase, alcalase®, neutrase® and/or their blending.
  • The conditions of use of the enzymes (in particular, their concentration, duration of hydrolysis, temperature) are easily determined by a skilled person in the art.
  • As an example, the hydrolysis can be carried out by adding proteases for at least 18 hours between 45° C. and 55° C.
  • Preferably, the solubilised part having yeast hydrolysed proteins is then recovered through centrifugation, before being possibly concentrated, and then dried.
  • A preferred enzyme, according to this invention, is chosen among papain, trypsin, pepsin, alcalase®, neutrase®.
  • According to a particular embodiment, the enzymatic hydrolysis is obtained with at least two different enzymes, in particular with at least three different enzymes, in particular with at least four different enzymes.
  • As an example, the hydrolysis can be carried out with a blending of papain and alcalase®.
  • In particular, this invention relates to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • The yeast hydrolysed proteins obtained from yeasts of Hansenula genus, are preferably Hansenula anomala yeasts.
  • The yeast hydrolysed proteins obtained from yeasts of Pichia genus, are preferably Pichia pastoris yeasts.
  • The yeast hydrolysed proteins, according to this invention, are preferably obtained from Saccharomyces, advantageously Saccharomyces cerevisiae.
  • According to this invention, a preferred cosmetic and therapeutic composition have, as active substance, hydrolysed yeast proteins obtained from yeasts of the same genus, and preferably of the same kind and same species of yeast.
  • According to another embodiment, the cosmetic and therapeutic composition have, according to this invention, as active substance, hydrolysed yeast proteins obtained from yeasts of the same genus, but with at least two different species, in particular at least three different species.
  • According to another embodiment, the cosmetic and therapeutic composition have, according to this invention, as active substance, hydrolysed yeast proteins obtained from yeasts of at least two different genera, in particular at least three different genera.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably still at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the yeast hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably still, at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, characterised in that the AN/TN ratio of the hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • By
    Figure US20110052514A1-20110303-P00001
    AN/TN ratio
    Figure US20110052514A1-20110303-P00002
    it is designated the ratio of the amino acids nitrogen quantity (in percentage) on the by mass nitrogen quantity (in percentage). The AN/TN ratio indicates the protein degradation rate, in particular the hydrolysis degree of the yeast proteins.
  • According to this invention, a preferred composition have yeast hydrolysed proteins of which at least 55% of said proteins have a molecular weight ranging between 1 and 5 kDa, and/or at most 42% of said proteins have a molecular weight lower than 1 kDa, and/or the AN/TN ratio is lower or equal to 35%.
  • According to this invention, another preferred composition has yeast hydrolysed proteins of which at least 60% of said proteins have a molecular weight ranging between 1 and 5 kDa, and/or at most 37% of said proteins have a molecular weight lower than 1 kDa, and/or the AN/TN ratio is lower or equal to 35%.
  • According to a preferred embodiment, this invention relates to a cosmetic or therapeutic composition as defined above, in which the hydrolysed yeast proteins are obtained from the product Springer® Hydrolyzed Yeast Peptone-A.
  • The product Springer® Hydrolyzed Yeast Peptone-A have hydrolysed yeast proteins obtained from the insoluble fraction of Saccharomyces cerevisiae. The hydrolysed yeast proteins of the product Springer® Hydrolyzed Yeast Peptone-A have most of the hydrolysed proteins with a molecular weight higher or equal to 1 kDa and lower than 5 kDa (about 60%); the other hydrolysed proteins have essentially a molecular weight lower than 1 kDa (about 32%) (see example 1).
  • The hydrolysed yeast proteins of the product Springer® Hydrolyzed Yeast Peptone-A are characterised in that an AN/TN ratio ranging between 15 and 28%.
  • According to this invention, the composition can have the product Springer® Hydrolyzed Yeast Peptone-A, or hydrolysed yeast proteins obtained through supplementary extraction and/or purification stages starting from the said product.
  • According to the invention, the composition can have hydrolysed yeast proteins corresponding to a specific hydrolysed protein fraction isolated from the Springer® Hydrolyzed Yeast Peptone-A product.
  • According to the invention, a preferred cosmetic or therapeutic composition has the product Springer® Hydrolyzed Yeast Peptone-A.
  • This invention relates particularly to a cosmetic or therapeutic composition as defined above, having from 0.001% to 20% of hydrolysed yeast proteins, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • The percentages are given in weight/weight.
  • This invention relates in particular to a cosmetic or therapeutic composition as defined above, having from 0.01% to 20% of hydrolysed yeast proteins, in particular from 0.01% to 15% of hydrolysed yeast proteins, in particular from 0.01% to 10% of hydrolysed yeast proteins.
  • Object of this invention is more particularly a cosmetic or therapeutic composition as defined above, having from 0.01% to 3% of hydrolysed yeast proteins, in particular from 0.01% to 2% of hydrolysed yeast proteins, in particular from 0.01% to 1% of hydrolysed yeast proteins.
  • According to the invention, an acceptable cosmetic or therapeutic vehicle have preferably at least a compound as additive and at least a compound as excipient, since such a compound can be used in many ways.
  • This invention relates to a cosmetic or therapeutic composition as defined above, characterised in that the fact that it have at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • By
    Figure US20110052514A1-20110303-P00001
    additive
    Figure US20110052514A1-20110303-P00002
    , it is designated an agent that plays in the cosmetic or therapeutic composition a role of preservative, chelating agent, colouring agent, UV filter (allowing to protect raw materials), pH regulator (acid or base), texturising agent, perfume and/or antioxidant.
  • By
    Figure US20110052514A1-20110303-P00001
    raw materials to be protected
    Figure US20110052514A1-20110303-P00002
    , it is designated every compound of the cosmetic or therapeutic composition liable to be degraded by light.
  • By
    Figure US20110052514A1-20110303-P00001
    excipient
    Figure US20110052514A1-20110303-P00002
    , it is designated the hydrophilic compounds that constitute an aqueous phase, the hydrophobic or lipophile compounds that constitute a fatty phase or surface active agents.
  • Surface active agents are amphiphilic molecules able to keep together two mediums, normally non mixable, by lowering their interfacial tensions.
  • Surface active agents are ionic (anionic, cationic or amphoteric) or non-ionic.
  • According to this invention, the following list of compounds that can be used in the cosmetic or therapeutic vehicle, is given by way of example and must not be considered exhaustive.
  • According to this invention, the preservatives used in the compositions are especially chosen among butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate, octyl, dodecyl, α-tocopherol, α-tocopherol acetate, ascorbic acid, ascorbyl palmitate, rosemary extracts, gingko biloba extracts, and orizanol.
  • According to this invention, the chelating agents used in the compositions are especially chosen among citric acid, cyclodextrin, EDTA disodium, pentasodium pentetate, phytic acid, sodium citrate, sodium phytate, and EDTA or tetrasodium pyrophosphate.
  • According to this invention, the colouring agents used in the compositions are especially chosen among colouring agents with CI denomination (Color Index).
  • According to this invention, the UV filters used in the compositions are especially chosen among benzophenone-3 (oxybenzone), benzophenone-4 (sulisobenzone), drometrizole, trisiloxane, benzyl salicytate, avobenzone, octyl methoxycinnamate (octinoxate), ethylhexyl salicytate (octisalate) or titanium dioxide.
  • According to this invention, the pH regulators (acid or base) used in the compositions are especially chosen among aminomethyl propanol, citric acid, fumaric acid, orthophosphoric acid, sebacic acid (decanedioic acid), sodium acetate, sodium bicarbonate, sodium citrate, sodium hydroxide, tartaric acid, tetrasodium pyrophosphate or triethylamine (TEA).
  • By
    Figure US20110052514A1-20110303-P00001
    texturising agent
    Figure US20110052514A1-20110303-P00002
    , it is designated an agent able to increase the viscosity of aqueous phases in which it is dispersed, the increase being advantageously high.
  • According to the circumstances, a texturising agent can be a thickening agent and/or a gelling agent.
  • By
    Figure US20110052514A1-20110303-P00001
    thickening agent
    Figure US20110052514A1-20110303-P00002
    , it is designated a substance that allows to obtain a viscous solution without forming a 3D network, in particular, as opposed to gelling agents.
  • Texturising agents are especially chosen among agar-agar or gelose, alginates, carraghenates, guar gum, tara gum, carob gum, gum adragant, karaya gum, xanthan gum, aloe gel, starch glycerol, chitosan, silica, silicates,—in particular bentonite, hectorite, montmorillonite, aluminium silicate, magnesium silicate—, cellulose derivatives, in particular hydroxyethyl cellulose, hydroxypropyl cellulose, methylhydroxypropylcellulose or hypromellose, acrylic and vinyl polymers,—in particular carbomers, cyanoacrylate polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohols—, polyethylene glycols, and polyquaterniums.
  • According to the invention, the perfumes used in the compositions are especially chosen among essential oils, compositions with synthetic origin, solubilised perfumes.
  • According to the invention, the antioxidants used in the compositions are especially chosen among ascorbyl palmitate, BHT, Tocopherol (E Vitamin), and tocopheryl acetate.
  • Hydrophilic compounds of the aqueous phase are especially chosen among water, alcohols, and polyols.
  • According to the invention, the alcohols that can be used in the compositions are especially ethanol, propanol, isopropanol, benzyl alcohol, and hexyl alcohol.
  • According to the invention, the polyols that can be used in the compositions are especially glycerol, propylene glycol, butylene glycol, hexylene glycol, and sorbitol.
  • Hydrophobic compounds of the fatty phase are especially chosen among hydrocarbons, fatty acids, fatty alcohols, esters, glycerides, cerides, and phosphatides.
  • Hydrocarbons are especially chosen among carbon and hydrogen chains, saturated and unsaturated, linear, ramified or cyclical, in particular carbon chains from 22 to 35 carbon and in particular among the following hydrocarbons: paraffins, paraffin oils, vaseline, squalane, silicones, and perhydrosqualenes.
  • According to the invention, the silicones that can be used in the compositions are especially volatile silicone oils, non-volatile silicone oils, modified silicone oils, silicone waxes, silicone gums, silicone emulsions, silicone microemulsions. Silicones are especially chosen among polyloxane silicones, polydimethylsiloxanes or dimethicones, phenyl trimethyl siloxanes or phenyl methicones, cyclical polydimethylsiloxanes or cyclomethicones, dimethicone copolyols, amodimethicones, and dimethicone propyl PG-Betaine.
  • According to the invention, the fatty acids used in the compositions are especially saturated fatty acids or unsaturated fatty acids, in particular monounsaturated, diunsaturated, triunsaturated fatty acids. Fatty acids are especially chosen among stearic acid, palmitic acid, lauric acid, myristic acid, oleic acid, linoleic acid, and linolenic acid.
  • Fatty alcohols are especially chosen among long chain saturated fatty alcohols,—cetylic alcohol or hexadecanol, stearyl alcohol, cetostearyl alcohol—short chain unsaturated fatty alcohols,—oleic alcohol, octyldodecanol, and tetrahydrofurfuryl alcohol.
  • Esters are especially chosen among liquid linear fatty esters—in particular isopropyl palmitate, myristyl stearate, octyl palmitate, isostearyl isostearate, butyl arachidonate, isopropyl lanolate, isopropyl myristate, glyceryl monostearate—, polyol esters—in particular, glycerol, ethylene, glycol, propylene glycol, diethylene glycol—, and oxyethylene esters.
  • Glycerides are especially monoglycerides, diglycerides, and triglycerides. Glycerides are especially chosen among vegetable oils,—in particular, olive oil, arachis oil, almond oil, hazelnut oil, sunflower oil, sesame oil, soya oil, maize oil, nut oil, grape seed oil, borage oil, evening primrose oil, rose tree muscatel oil, kiwi oil, avocado oil, cereal germ oil, macadamia oil, castor oil, poppy oil, cottonseed oil, apricot stone oil, coconut oil, copra oil, monoi oil, palm-kernel oil, carthame oil, crabwood oil, gourd seed oil, shark oil, mink oil—, butters,—in particular cocoa butter, shea butter, copra butter, babassu oil, palm oil, tamanu oil—, modified vegetable oils, synthetic oils, fats, and tallow.
  • According to the invention, the cerides used in the compositions are chosen especially among sterides, carotene-cerides, lipochrome, waxes, in particular sperm whale or spermaceti, lanolin, lanolin derivatives,—lanolin wax, liquid lanolin, hydrogenated lanolin, ethoxylated lanolin, lanolin alcohols, acetylated lanolin alcohols, ethoxylated lanolin alcohols, lanolin acids, isopropyl lanolate—, jojoba oil, ozokerite, ceresin, carnauba wax, and bee wax.
  • According to the invention, surface active agents are especially emulsifying agents, wetting agents, detergents and/or foaming agents.
  • Cationic surface active agents are especially chosen among quaternary ammonium salts, fatty primary amine salts, quaternary ammonium starches, alkylpyridinium chlorides, alkyl ammonium saccharinates, diethylenetriamine starches or cationic resins.
  • Non-ionic surface active agents are especially chosen among glycerol esters, glycol esters, sorbitan esters, fatty alcohol ethers, lipophilic sucroesters, polyglycerol esters, propylene oxide ethylene oxide copolymers, saponins, ethoxylated fatty alcohols, glucose ethers, glycol ester or polyethylene glycol, glycol ester or polyglycerol, oxyethylenated sorbitan ester, oxyethylenated alkylphenols, aminoxides, self-emulsifiable bases (PEG esters), methyl glucoside derivatives, monoethanolamides, monoethanolamides derivatives, diethanolamides or diethanolamide derivatives.
  • Anionic surface active agents are especially chosen among alkaline soaps, amine soaps, alkylsarcosinates, alkylsulphoacetates, alkyltaurates, sodium or potassium alkyl sulphate, sodium or potassium ether alkyl sulphate, paraffins, olefin sulfonates, isethionates, sodium alkyl phosphates, sodium alkyl ether phosphates.
  • Amphoteric or zwitterionic surface active agents are especially chosen among alkylbetaines, alkylamidobetaines, alkylamino mono- or di-propionates, imidazole derivatives such as cocoamphodiacetate, and sodium lauroamphodiacetate.
  • According to the invention, the cosmetic and therapeutic composition can have, in addition to hydrolysed yeast proteins as defined above, other yeast components.
  • According to a preferred embodiment, the cosmetic or therapeutic composition, according to this invention, does not have any other yeast components, except for hydrolysed yeast proteins according to this invention.
  • This invention relates particularly to a cosmetic or therapeutic composition, as defined above, in which the said active substance has a moisturising effect, and/or a repairing effect, and/or a firmness effect, and/or an anti-aging effect, and/or an anti-seborrhoea effect, and/or an anti-acne effect, and/or an anti-dandruff effect, and/or a hair reconstruction effect, and/or an effect on hair brightness and/or smoothness and/or growth.
  • By the expression
    Figure US20110052514A1-20110303-P00001
    moisturising effect
    Figure US20110052514A1-20110303-P00002
    , it is designated a decrease in the skin evaporation due to an occlusive phenomenon or to a water fixation by an active substance, a humectant or hygroscopic effect of the active substance and/or a property of fixation for glycerides in the intercellular cement.
  • The moisturising effect of the composition, according to this invention, appears in particular, at the epidermis level, with an activation of the lipid synthesis, in particular phospholipids, neutral lipids, and the synthesis of hyaluronic acid.
  • The moisturising effect of the composition, according to this invention, can be emphasised in vitro by the study of the lipid synthesis and hyaluronic acid by the keratinocytes, as described in Example 3.
  • The moisturising effect of the composition, according to this invention, results also in an anti-dandruff effect at the time of an application of the said composition on the scalp.
  • The anti-dandruff effect can be emphasised by a decrease in the quantity of dandruff in a subject treated with the composition according to this invention, for example as described in Example 5.
  • By
    Figure US20110052514A1-20110303-P00001
    repairing effect
    Figure US20110052514A1-20110303-P00002
    or
    Figure US20110052514A1-20110303-P00001
    cicatrising effect
    Figure US20110052514A1-20110303-P00002
    , it is designated an effect on the epidermis and/or dermis repair and/or reconstruction. In particular, the repairing effect is useful for repairing injuries and/or burns.
  • In particular, the repairing effect of the hydrolysed yeast proteins is linked to the activation of the synthesis of hyaluronic acid. The repairing effect can be emphasised by a dosage of the liberation of hyaluronic acid and an analysis of its expression in reconstructed human epidermises, as described in Example 3.
  • By the expression
    Figure US20110052514A1-20110303-P00001
    firmness effect
    Figure US20110052514A1-20110303-P00002
    , it is designated a smooth and tonic effect of the skin results from its mechanical support, in particular collagen fibres and elastin.
  • According to the invention, the composition allows in particular to improve the contraction of collagen lattice, activate the elastin synthesis and the maturation of collagen.
  • Collagen lattice corresponds to a bundle of collagen fibres and fibrils.
  • According to the invention, the firmness effect of the composition can be emphasised in vitro, as described in example 3.
  • By the expression
    Figure US20110052514A1-20110303-P00001
    anti-aging effect
    Figure US20110052514A1-20110303-P00002
    , it is designated, at a time, a preventive effect to delay the appearance of the skin aging signs and an immediate effect to decrease aging signs. According to this invention, the composition has in particular an anti-aging effect linked to age and can also have an effect against photo-induced aging.
  • The visible signs of skin aging linked to age are, in particular, skin dryness, the appearance of little wrinkles, wrinkles, a decrease in skin thickness as well as a loss of skin suppleness.
  • Skin aging linked to age, results also in a decrease in the quantity of collagen, their solubility and synthesis, a decrease in the quantity of elastin and microfibrils, a decrease in the quantity of glycosaminoglycans and an inactivation of fibroblasts.
  • According to the invention, the anti-aging effect of the composition results, in particular, in an increase in the proliferation of dermis fibroblasts and their activity in terms of synthesis of collagen and glycosaminoglycans.
  • The anti-aging effect linked to age, can be emphasised in vitro by the increase in the synthesis of collagen and glycosaminoglycans by the dermis fibroblasts, as described in example 3.
  • In particular, the signs of photo-induced skin aging are the appearance of deep wrinkles, a thick and rough skin.
  • In particular, the photo-induced skin aging results in a decrease in the quantity and solubility of collagen, an increase in the quantity of elastin and microfibrils, an increase in glycosaminoglycans, an increase in inflammatory cells.
  • This invention relates also to a cosmetic or therapeutic composition, as defined above, characterised in that the active substance has a repairing effect.
  • By the expression
    Figure US20110052514A1-20110303-P00001
    anti-seborrhoea effect
    Figure US20110052514A1-20110303-P00002
    , it is designated an effect of regulation of sebaceous secretion, regulation of sebum adsorption and/or an astringent action allowing to close the skin pores.
  • According to the invention, the composition allows to reduce the sebum secretion.
  • In particular, according to the invention, the composition allows to regulate sebum adsorption through lipid adsorption.
  • Thus, according to the invention, the composition is particularly useful within the framework of a face hyperseborrhoea and/or a scalp hyperseborrhoea resulting in the so-called
    Figure US20110052514A1-20110303-P00001
    greasy
    Figure US20110052514A1-20110303-P00002
    hair.
  • According to the invention, the cosmetic composition has an anti-seborrhoea effect useful for greasy skins and/or acneic tendency.
  • By the expression
    Figure US20110052514A1-20110303-P00001
    anti-acne effect
    Figure US20110052514A1-20110303-P00002
    , it is designated a beneficial effect on acne.
  • In particular, according to the invention, the beneficial effect of the therapeutic composition on acne is linked to a regulation of sebaceous secretion.
  • The anti-seborrhoea and anti-acne effects can be emphasised, as described in example 4. For example, according to the invention, the composition is applied on the skin or scalp of subjects showing a hyperseborrhoea at the skin and scalp level, respectively. The sebum secretion is then assessed by applying a sebum absorbing patch on the part of the body treated. The patch is afterwards analysed to quantify the sebaceous secretion. The secretion after treatment is compared to the secretion in the same subject before treatment.
  • By
    Figure US20110052514A1-20110303-P00001
    reconstructing effect
    Figure US20110052514A1-20110303-P00002
    , it is designated the obtaining of a smooth effect of the hair. The outermost layer of a hair, called cuticle, is made up of scales overlapping each other. A reconstructing effect results in smooth relief of the cuticle, whereas damaged hair have a rough relief.
  • In particular, according to the invention, the composition has a toning effect on the hair.
  • The reconstructing effect of the hair can be emphasised by the measure of the hair topography, as described in example 5.
  • By
    Figure US20110052514A1-20110303-P00001
    brightness effect
    Figure US20110052514A1-20110303-P00002
    , it is designated the capacity of the hair to reflect the light and give the hair a shining effect.
  • By
    Figure US20110052514A1-20110303-P00001
    softness effect
    Figure US20110052514A1-20110303-P00002
    , it is designated the softness sensation of the hair upon touch.
  • By
    Figure US20110052514A1-20110303-P00001
    effect on hair growth
    Figure US20110052514A1-20110303-P00002
    , it is designated an increase in the growth kinetics of the hair.
  • The effect on hair growth can be emphasised by a measure test of the growth kinetics of the hair, as described in example 5.
  • This invention relates particularly to a cosmetic or therapeutic composition, as defined above, in the form of solution (one phase), dispersion (in particular an emulsion, suspension, foam or aerosol), gel, oil, stick, powder, wipe, mask or patch.
  • By
    Figure US20110052514A1-20110303-P00001
    emulsion
    Figure US20110052514A1-20110303-P00002
    , it is designated all types of emulsions and in particular, macroemulsions, microemulsions, nanoemulsions, simple emulsions, and multiple emulsions.
  • Emulsions are dispersions of a liquid into another liquid, the two liquids being non-mixable. Emulsions have a lipophilic, hydrophilic phase and an emulsifying agent.
  • In particular, emulsions include milks, lotions, creams, etc.
  • Nanoemulsions are dispersions in which the size of the particles dispersed has a diameter lower than 1,000 μm, in particular from 10 μm to 100 μm.
  • Nanoemulsions are dispersions in which the size of the particles dispersed has a diameter lower than 1,000 μm, in particular from 10 μm to 100 μm.
  • Nanoemulsions and microemulsions constitute transparent mediums.
  • In particular, according to the invention, the cosmetic or therapeutic composition is suited for skin or hair applications.
  • In particular, according to the invention, the composition for hair application is in the form of shampoos, lotions, masks, and sprays.
  • This invention relates to a cosmetic or therapeutic composition as defined above, in the form of tablet, wafer, dragée, capsule, granule, pill, powder, syrup, drinkable suspensions, and drinkable emulsion.
  • According to the invention, the cosmetic or therapeutic composition can have, as active substance, hydrolysed yeast proteins and at least one additional active substance.
  • By way of example, the additional active substance(s) can have a moisturising effect, and/or a firmness effect, and/or an anti-aging effect, and/or an anti-seborrhoea effect, and/or a hair reconstructing effect, and/or an effect on brightness, and/or softness, and/or hair growth, and/or repairing, and/or slimming, and/or cleaning, and/or anti-oxidant, and/or depigmenting, and/or vascular protector, and/or anti-inflammatory, and/or antibacterial, and/or antifungal.
  • According to the invention, in a preferred cosmetic composition, at least one additional active substance has the same cosmetic effect as the hydrolysed yeast proteins.
  • According to the invention, in a preferred therapeutic composition, at least one additional active substance has the same therapeutic effect as the hydrolysed yeast proteins.
  • Since hydrolysed yeast proteins and at least one additional active substance have the same cosmetic or therapeutic effect, the effect obtained is preferably a synergic effect.
  • Thus, according to the invention, the hydrolysed yeast proteins constitute a new natural agent, particularly useful for preparing cosmetic or therapeutic compositions.
  • This invention relates also to a preparation process of a cosmetic or therapeutic composition, consisting of the following stages:
  • protein hydrolysis of the yeast insoluble fraction in order to obtain hydrolysed yeast proteins, and
  • blending of the said hydrolysed yeast proteins with an acceptable cosmetic or therapeutic vehicle.
  • In particular, the acceptable cosmetic or therapeutic vehicle is chosen among the above mentioned additives and/or excipients.
  • This invention relates also to a preparation process, as defined above, of a cosmetic or therapeutic composition, consisting of the following stages:
  • protein hydrolysis of the yeast insoluble fraction in order to obtain hydrolysed yeast proteins, and
  • blending of the said hydrolysed yeast proteins with at least an additional active substance and an acceptable cosmetic or therapeutic vehicle.
  • This invention relates also to the use of hydrolysed yeast proteins obtained from the yeast insoluble fraction as active substance in cosmetic and/or therapeutic compositions.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained from the yeast insoluble fraction.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
  • This invention relates to the use as defined above, characterised in that the said hydrolysed yeast proteins are obtained through enzymatic hydrolysis with at least a peptidase, preferably chosen among papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase, alcalase®, neutrase® and/or their blending.
  • In particular, this invention relates to the use as defined above, characterised in that the said yeast hydrolysed proteins are obtained from yeasts of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia genus, and/or their blending, preferably Saccharomyces, advantageously Saccharomyces cerevisiae.
  • This invention relates also to the use as defined above, characterised in that the said yeast hydrolysed proteins have at least 40%, preferably at least 45%, more preferably at least 50%, even more preferably at least 55%, even more preferably at least 60% of yeast proteins with a molecular weight ranging between 1 and 5 kDa.
  • This invention relates also to the use as defined above, characterised in that the said yeast hydrolysed proteins have at most 55%, preferably at most 50%, more preferably at most 45%, even more preferably at most 40%, even more preferably at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
  • This invention relates also to the use as defined above, characterised in that the AN/TN ratio of the said hydrolysed yeast proteins is lower or equal to 35%, in particular lower or equal to 30%, in particular lower or equal to 25%, in particular lower or equal to 20%.
  • This invention relates particularly to the use as defined above, characterised in that the said hydrolysed yeast proteins are present in the cosmetic or therapeutic composition at the rate of 0.001% to 20%, more preferably from 0.001% to 15% of hydrolysed yeast proteins, even more preferably from 0.001% to 10% of hydrolysed yeast proteins, even more preferably from 0.01% to 3% of hydrolysed yeast proteins, even more preferably from 0.01% to 2% of hydrolysed yeast proteins.
  • This invention relates to the use as defined above, characterised in that the said cosmetic or therapeutic composition have at least one additive chosen among preservatives, chelating agents, colouring agents, UV filter, pH regulator, texturising agents, perfume or antioxidant, and at least one excipient chosen among hydrophilic compounds, hydrophobic compounds or surface active agents.
  • This invention relates to a method for cosmetic treatment comprising a stage of contact with the skin and/or skin appendages and/or mucous membranes of a cosmetic composition as defined above or liable to be obtained through the preparation process as defined above.
  • The term
    Figure US20110052514A1-20110303-P00001
    contact
    Figure US20110052514A1-20110303-P00002
    , layer will also be called
    Figure US20110052514A1-20110303-P00001
    application
    Figure US20110052514A1-20110303-P00002
    .
  • The treatment method can include one or more applications a day, preferably from one to three applications a day.
  • The frequency of applications of the cosmetic composition can be reduced during treatment.
  • The method for cosmetic treatment can consist in a short treatment, from one to more weeks, or a long-term treatment on many years. The method for treatment can also consist in a treatment in the form of renewed cures every year or several times in a year.
  • This invention relates particularly to a method for cosmetic treatment as defined above, designated to moisturise skin and/or mucous membranes and/or skin appendages, and/or improve the repair of skin and/or mucous membranes and/or skin appendages, and/or improve dermis firmness, and/or fight against skin aging, and/or regulate sebum secretion, and/or reduce dandruff, and/or repair hair, and/or improve hair growth.
  • The epidermis moisturising aims, at a time, at restoring the quality of the skin barrier, namely an impermeability limiting water evaporation, and favouring the presence of molecules trapping water, namely glycosaminoglycans, in particular hyaluronic acid.
  • According to the invention, the method for cosmetic treatment is particularly useful in the treatment and/or prevention of skin dryness and dandruff.
  • The repair of the skin and/or mucous membranes and/or skin appendages aims at helping the physiological healing, in particular by activating the synthesis of hyaluronic acid.
  • Skin tightening aims at maintaining or reinforcing skin firmness, in particular by activating the synthesis of elastin, the synthesis and maturation of collagen and the contraction of collagen lattice.
  • The fight against skin aging relates to the delay and/or reduction of aging signs.
  • According to an advantageous embodiment of the invention, the treatment designated to fight against skin aging is associated to an epidermis moisturising.
  • According to the invention, the method for cosmetic treatment is particularly advocated for subjects from 20 years, in particular from 30 years, in particular from 40 years, in particular from 50 years.
  • In particular, the regulation of sebum secretion relates to the reduction of sebum secretion.
  • According to the invention, the method for cosmetic treatment is particularly useful for regulating the seborrhoea of greasy skins, in particular for greasy skins said
    Figure US20110052514A1-20110303-P00001
    with problems
    Figure US20110052514A1-20110303-P00002
    or
    Figure US20110052514A1-20110303-P00001
    with acneic tendency
    Figure US20110052514A1-20110303-P00002
    and/or for hair so-called
    Figure US20110052514A1-20110303-P00001
    greasy
    Figure US20110052514A1-20110303-P00002
    .
  • The hair repair consists in the reconstruction of the hair, in particular by smoothing hair cuticle and/or restoring brightness and/or softness to hair.
  • According to the invention, the method for cosmetic treatment is particularly appropriate for subject with damaged hair, in particular following to a sun exposure, sea, too frequent washings, colourings, brushings, perms, etc.
  • The improvement of the hair growth aims at increasing hair growth kinetics, also called hair growth.
  • According to the invention, the method for cosmetic treatment is particularly appropriate for subject with slow hair growth kinetics and/or in case of normal hair loss.
  • In particular, a hair loss said normal, corresponds to androgenogenetic alopecia, endocrine alopecia, or alopecia linked to age.
  • According to an advantageous embodiment, the method for cosmetic treatment, according to the invention, is appropriate for a face application, in particular on the eye contour, nose, forehead, chin, body, in particular on the hands, feet, back, hair and/or scalp.
  • This invention relates also to hydrolyse yeast proteins obtained from the yeast insoluble fraction for their use as medicine, preferably for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne.
  • In particular, this invention relates to hydrolysed yeast proteins as defined above or liable to be obtained through the preparation process as defined above, for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea, and/or acne, and/or pathological hair loss. This invention aims at using them for preparing a therapeutic composition as defined above.
  • According to the invention, the therapeutic composition is particularly useful for the treatment of pathological skin dryness, also called xerosis, in particular in case of ichthyosis, skin dryness associated to eczema or psoriasis or pathological scalp dryness, in particular associated to dandruff.
  • According to the invention, the therapeutic composition is particularly useful for the treatment of pathological healing, such as hypertrophic healing, keloid healing, and retractile cicatrisation and/or healing delays, in particular delays linked to a poor asepsis, a vascular and/or neurological origin.
  • According to the invention, the therapeutic composition is also useful for the treatment of pathological hyperseborrhoea, in particular associated to a hormonal deregulation, in particular in teenager, pregnant woman, or menopause woman.
  • According to this invention, the therapeutic composition is also useful for the treatment of pathological acne, in particular juvenile acne associated to hyperseborrhoea.
  • According to the invention, the therapeutic composition is also useful for the treatment of pathological hair loss, also called pelade, resulting from an emotional shock, thyroid disorder, and/or treatments having alopecia as side effect (for example anti-cancer treatments)
  • In particular, the use as defined above is intended to a local application of the said therapeutic composition on the skin and/or skin appendages and/or mucous membranes.
  • The use as defined above can consist in one or more applications a day, preferably from one to three applications a day.
  • The frequency of applications of the therapeutic composition can be reduced during treatment.
  • The therapeutic treatment can consist in an acute treatment, from a few days to several weeks, or a chronic treatment on several years. The treatment can also consist in a treatment in the form of renewed cures every year or several times in a year.
  • This invention relates also to the use of a cosmetic composition or a therapeutic composition as defined above, intended to the treatment of the side effects or unpleasant manifestations of other treatments.
  • In particular, said side effects or unpleasant manifestations result in skin dryness, for example associated to eczema.
  • Examples
  • The invention is illustrated below with the following non limiting examples:
  • Example 1 Obtaining of Hydrolysed Yeast Proteins According to this Invention Equipment and Methods
  • An aqueous suspension of yeast cells of Saccharomyces cerevisiae, having a content of dry matter within 12 and 30% by mass, is subjected to a thermal treatment from 1 to 3 hours within 70° C. and 90° C. (in order to deactivate the endogenous cell enzymes). This thermal treatment induces a yeast plasmolysis that allows separating thereafter the insoluble fraction from the soluble fraction, being the soluble fraction limited. The separation of the solubilised fraction from the insoluble fraction is carried out through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3).
  • The insoluble fraction recovered, having a content of dry matter within 12 and 25% by mass, is then hydrolysed by adding at least one exogenous protease during at least 18 hours at a temperature of 45° C. to 65° C. For example, the protease is the papain used at a concentration of 0.01% to 0.5% (weight/weight).
  • The solubilised hydrolysed fraction is separated from the hydrolysed insoluble fraction through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3).
  • The solubilised hydrolysed fraction is concentrated through at least one vacuum continuous or batch evaporation stage, in order to obtain a concentrated fraction. The concentrated fraction is possibly purified through filtration or clarification before being dried through atomisation.
  • The solubilised hydrolysed and possibly concentrated and/or purified and/or dried fraction so obtained, corresponds to the hydrolysed yeast proteins according to this invention.
  • The molecular weight and the molecular weight profile of the hydrolysed yeast proteins are determined through liquid gel permeation chromatography with UV detection at 215 nm on a SEPHADEX Pharmacia HR 10/30 gel filtration column. The calibration is carried out through protein standards with known size that allows calibrating the system and assessing the molecular weight of a blending.
  • The AN/TN ratio is calculated by measuring total nitrogen and amino nitrogen.
  • Total nitrogen (TN) is determined through the Kjeldahl method, a method established starting from the
    Figure US20110052514A1-20110303-P00001
    official methods of analysis for dietetic products
    Figure US20110052514A1-20110303-P00002
    (JO of 3 Nov. 1979).
  • The amino nitrogen (AN) is determined through NQS derivatisation (1-2 naphtoquinone 4-sulfonate (H. NEHRING, A. HOCK, improved method for determination aminonitrogen, Pharmazie, 1971, 26, 616-619).
  • Results
  • According to this invention, the hydrolysed yeast proteins obtained from the concentrated solubilised hydrolysed fraction, purified and dried, are afterwards marked by letter
    Figure US20110052514A1-20110303-P00001
    A
    Figure US20110052514A1-20110303-P00002
    . They have a light beige colour.
  • Table 1 and FIG. 1 indicate the distribution of the molecular weights within hydrolysed yeast proteins according to this invention (A), compared to that of hydrolysed yeast proteins (B) obtained from hydrolysis of the yeast whole cell.
  • B hydrolysed yeast proteins are obtained through thermal treatment of a suspension of Saccharomyces cerevisiae yeast cells from 1 to 3 h within 70° C. and 90° C., then with the addition of at least one exogenous protease during at least 18 hours at a temperature of 45° C. to 65° C. For example, the protease is the papain used at a concentration of 0.01% to 0.5% (weight/weight). The solubilised hydrolysed fraction is separated from the hydrolysed insoluble fraction through several successive stages of centrifugation and washing with water (at least 2 successive stages, preferably at least 3). The solubilised hydrolysed fraction is concentrated through at least one vacuum continuous or batch evaporation stage, in order to obtain a concentrated fraction. The concentrated fraction is possibly purified through filtration or clarification before being dried through atomisation in order to obtain hydrolysed yeast proteins of whole yeasts (B).
  • According to the invention, most of the hydrolysed proteins have in the hydrolysed yeast proteins (A), a molecular weight higher or equal to 1 kDa and lower than 5 kDa (64.2%); the other hydrolysed proteins have essentially a molecular weight lower than 1 kDa (31.6%).
  • Being a matter of yeast proteins obtained from whole cells (B), the distribution of molecular weights is completely different: most of the hydrolysed proteins have a molecular weight lower than 1 kDa (67.3%), the other hydrolysed proteins having essentially a molecular weight higher or equal to 1 kDa.
  • TABLE 1
    Distribution
    (in
    Molecular percentage)
    weight (in kDa) A B
    ≧10 0.3 1.1
    ≧5 and <10 3.9 2.0
    ≧1 to <5 64.2 29.6
    <1 31.6 67.3
  • According to the invention, the difference between the molecular weight profile of hydrolysed yeast proteins and that of yeast proteins obtained from the hydrolysis of whole cells is also clearly visible in FIG. 2.
  • In FIG. 2, the products that are represented first, have the higher molecular weight. The hydrolysed yeast proteins appear more concentrated on a range of high molecular weights with a more important intensity. The hydrolysed proteins of B composition show a peak concentration towards weaker molecular weights, which is representative of a greater degradation.
  • With reference to AN/TN ratio, table 2 indicates that hydrolysed yeast proteins according to this invention (A), have an AN/TN ratio ranging between 15 and 28%, whereas that of the hydrolysed yeast proteins obtained from whole cells (B), ranges between 32 and 40%.
  • TABLE 2
    A B
    AN/TN 15-28 32-40
    (in percentage)
  • The AN/TN ratio gives an estimation of protein degradation: the weaker it is, the more the proteins are in the native form and inversely, the higher it is, the more the proteins are in the degraded form.
  • Table 3 shows that hydrolysed yeast proteins according to the invention (A), in effect, have very few free amino acids, compared to hydrolysed yeast proteins obtained from whole cells (B).
  • Hence, the hydrolysed yeast proteins according to this invention (A), show a lower degradation rate than the hydrolysed yeast proteins of B composition.
  • Furthermore, table 3 also shows that the composition in amino acids of hydrolysed yeast proteins according to this invention (A), is different from that of hydrolysed yeast proteins obtained from whole cells (B).
  • TABLE 3
    A (% g/g) B (% g/g)
    free amino free amino
    acids total amino acids acids total amino acids
    ASP Nd 7.59 0.7 6
    SER Nd 3.62 1.4 2.8
    GLU 0.47 10.51 5.5 13.2
    GLY Nd 3 0.6 3
    HIS Nd 1.61 0.5 1.3
    ARG Nd 2.38 1.2 3.4
    THR Nd 4.26 1.1 3.2
    ALA Nd 4.75 2.9 5.1
    PRO Nd 2.93 0.5 3.8
    CYS Nd 0.2 0.1 0.3
    TYR Nd 1.89 0.3 1.5
    VAL Nd 4 1.3 3.6
    MET Nd 0.56 0.4 0.8
    LYS Nd 6.23 1.5 5
    ILE Nd 3.42 1 3
    LEU Nd 5.52 2.1 4.6
    PHE Nd 2.94 1.1 2.5
    Total 0.47 65.41 22 63.1
    (Nd: Not determined (values are too weak)
  • Example 2 Effect of the Hydrolysed Yeast Proteins According to the Invention on the Expression Profile of Keratinocytes and Fibroblasts Equipment and Methods
  • The effect of the hydrolysed yeast proteins according to the invention on the expression profile of normal human epidermal keratinocytes and normal human dermal fibroblasts is valued on DNA microarrays.
  • The first microarray has 164 genes of human keratinocytes, especially involved in cell growth, differentiation, adhesion, communication, and death.
  • The second microarray has 143 genes of human fibroblasts, especially involved in cell growth, adhesion, communication, synthesis and extracellular matrix degradation and stress.
  • Normal human epidermal keratinocytes and normal human dermal fibroblasts are cultured for 24 h or 96 h in the presence or absence of hydrolysed yeast proteins of example 1. Cells are then washed and their RNA is extracted and purified. cDNA is obtained from this RNA through reverse transcription. The cDNAs obtained are then marked before being hybridised on the microarray corresponding to the same cell type.
  • The expression level of each gene in the absence of hydrolysed yeast proteins is compared to the expression level obtained in the presence of the said hydrolysed yeast proteins.
  • Results
  • Among the genes activated on the microarray of dermal fibroblasts, there are genes involved in the cell proliferation and synthesis of the extracellular matrix.
  • The results obtained on the microarray of epidermal keratinocytes show that the hydrolysed yeast proteins, according to this invention, stimulate the differentiation of epidermal keratinocytes and inhibit the expression of genes coding for proteins of cellular matrix, which implies a moisturising effect. The phenomenon of keratinocyte differentiation is indeed implied in the reinforcement of the skin barrier and allows to limit water losses. The inhibition of gene expression coding for proteins of cellular matrix goes in the same direction.
  • Example 3 Moisturising, Anti-Aging and Firmness Properties of Hydrolysed Yeast Proteins According to the Invention Equipment and Methods
  • The hydrolysed yeast proteins used, are those described in example 1.
  • (i) Moisturising Effect
  • Tests are carried out on normal human epidermal keratinocytes NHEK seeded in the wells of a 96-well plate in a KSFM medium (without serum). The lipid synthesis, the FLG (filaggrin), CK10 (cytokeratin) and TGK (transglutaminase K) synthesis and the hyaluronic acid synthesis, are assessed in the presence of different concentrations of hydrolysed yeast proteins (from 0.04 mg/ml to 1 mg/ml). Three culture wells are made under condition.
  • Calcium is used as positive control for lipid synthesis and FLG, CK10, TGK synthesis and retinoic acid as positive control for hyaluronic acid synthesis.
  • Negative control is constituted by the sole culture medium.
  • Lipid synthesis is analysed through Phosphoimaging and the hyaluronic acid synthesis is assessed through a measurement of the hyaluronic acid concentration freed in the medium.
  • FLG, CK10 synthesis is assessed through cell immunomarking after 72 hours of culture, and the TGK synthesis through cell immunomarking after 48 hours.
  • (ii) Anti-Aging Effect
  • Normal human dermal fibroblasts (NHDF) and normal human dermal aged fibroblasts (AgNHDF) are seeded in the wells of a 96-well plate in a DMEM medium+10% SVF. Tests are carried out in DMEM medium+1% SVF.
  • The test for fibroblast proliferation and the test for glycosaminoglycan and collagen synthesis are carried out in the presence of different concentrations of hydrolysed yeast proteins. Three culture wells are made under condition.
  • Negative control is constituted by the sole culture medium.
  • The proliferation test is carried out 24 h after cell-seeding. [3H]-thymidine is added in the culture milieu. The EGF is used as positive control.
  • Glycosaminoglycan and collagen synthesis is assessed on 80% confluence cells, to which [3H]-glucosamine or [3H]-proline is added, respectively. The retinoic acid is then used as positive control.
  • After 24 hours of incubation, the macromolecules are extracted and the incorporation of radioactive precursors is measured.
  • (iii) Firmness Effect
  • Tests are carried out on normal human dermal aged fibroblasts (AgNHDF).
  • The synthesis and maturation of collagen are assessed after pre-culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins. The negative control is constituted by the sole culture medium and the positive control by TGFβ and C vitamin. The cells are then seeded in culture chamber. Just before confluence, cells are fixed in methanol and the presence of collagen is detected through immunohistochemistry by using a specific antibody directed against collagen I and a secondary fluorescent antibody. The expression level of the intracellular and extracellular collagen and their localisation around the matrix are analysed through the microscope.
  • The contraction of collagen lattice is assessed after culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins. The negative control is constituted by the sole culture medium and the positive control by TGFβ. The cellular suspension obtained is then introduced in a collagen I solution under controlled pH. After a few hours, the solution jellifies in such a manner as to obtain an equivalent dermis, the contour of which, is clearly defined. The diameter and number of the cells of each equivalent dermis are measured by following a defined kinetics.
  • The elastin synthesis is assessed after culture of flask cells for 8 days in the presence of different concentrations of hydrolysed yeast proteins. The negative control is constituted by the sole culture medium and the positive control by C vitamin. The cells are then seeded in culture chamber. Just before confluence, cells are fixed in methanol and the presence of elastin is detected through immunohistochemistry by using a specific antibody directed against elastin and a secondary fluorescent antibody. The expression level of elastin is analysed through the microscope.
  • (iv) Repairing Effect
  • Tests are carried out on reconstructed human epidermises. The reconstructed epidermises are cultured. On the 5th day, cultures are treated with hydrolysed yeast proteins tested at 3 concentrations in local application.
  • Negative control is constituted by a non-treated culture, the positive control by retinoic acid in local application. The treatments are renewed on the 7th day and cultures are stopped on the 10th day.
  • Freeing of hyaluronic acid in the medium is dosed on the culture supernatants by means of a specific modified Elisa test. The results are expressed in μg/ml of liberated hyaluronic acid and in stimulation percentage with respect to untreated control.
  • The expression of hyaluronic acid in the epidermises is assessed through immunohistology.
  • (v) Statistics
  • Intergroup comparisons are carried out through the analysis of variance (ANOVA) with the aid of a Dunnett multiple comparison test.
  • Results (i) Assessment of the Moisturising Effect on Epidermis
  • In the presence of the hydrolysed yeast protein solution, the lipid and hyaluronic acid synthesis by keratinocytes is activated with respect to negative control.
  • In addition, in the presence of the hydrolysed yeast protein solution, a stimulation of FLG, CK10 and TGK secretion is observed, with a dose-effect.
  • (ii) Assessment of the Anti-Aging Effect on Dermis
  • In the presence of the hydrolysed yeast protein solution, an activation of the cell proliferation and an increase in the synthesis of the major components of the extracellular matrix is observed (with respect to negative control).
  • (iii) Assessment of the Firmness Effect
  • In the presence of the hydrolysed yeast protein solution, an increase in the collagen expression level is observed, as well as a maturation of the collagen revealed by its deposition around the matrix, with respect to negative control. The density increase in the dermis equivalent (by diameter ratio on number of weaker cells than that of the negative control) conveys a better contraction of the collagen lattice. In addition, the elastin synthesis by fibroblasts is activated with respect to negative control. All these elements indicate that hydrolysed yeast proteins improve the biomechanical qualities of dermis (in particular, in terms of elasticity and compressibility).
  • (iv) Assessment of the Repairing Effect
  • In the presence of the hydrolysed yeast protein solution, an increase in the hyaluronic acid expression is observed (with respect to negative control).
  • Example 4 Anti-Seborrhoea and Anti-Acne Properties Equipment and Methods
  • The hydrolysed yeast protein solution is applied on the skin or scalp of subjects showing a hyperseborrhoea at the skin or scalp level, respectively.
  • The sebum secretion is then assessed by applying a sebum absorbing patch on the part of the body treated. The patch is afterwards analysed to quantify the sebaceous secretion.
  • The secretion after treatment is compared to the secretion in the same subject before treatment.
  • Results
  • The hydrolysed yeast protein solution allows reducing the quantity, of sebum secreted.
  • Example 5 Hair Applications Equipment and Methods (i) Hydrolysed Yeast Proteins
  • The hydrolysed yeast protein solution is that described in the example 1.
  • (ii) Anti-Dandruff Effect
  • The hydrolysed yeast protein solution is applied on the scalp of subjects suffering from dandruff. After treatment with the hydrolysed yeast protein solution, a patch is applied on the treated zone to recover the scalp dandruff.
  • The quantity of dandruff recovered on the patch is compared before and after treatment.
  • (iii) Hair Growth
  • The hair growth kinetics is assessed in the following way: before treatment, a lock of hair of a subject is coloured from the root for 2 to 3 cm; the hydrolysed yeast protein solution is then applied on the scalp; the distance between the root and the beginning of colouring is measured.
  • The growth kinetics after treatment of a group of treated subjects is compared to that obtained with a group of untreated subjects.
  • (iv) Hair Brightness
  • Hair brightness is determined by measuring the quantity and intensity of light reflected on the hair surface. To this purpose, photos of hair are taken with crossed polarisation and non-polarisation. The two photos are then converted into levels of grey and hair brightness is obtained through subtraction of the light between the two photos.
  • Hair brightness after applying the hydrolysed yeast protein solution is compared to that obtained before treatment.
  • (v) Hair Softness
  • Hair softness is assessed through a sensory analysis by a board of examiners made up of three qualified persons to assess hair softness upon touch.
  • Hair softness is noted on a 0 to 10 scale, where note 0 corresponds to an absence of softness and note 10 to a great softness.
  • Hair softness after applying the hydrolysed yeast protein solution is compared to that obtained before treatment.
  • (vi) Hair Reconstruction
  • Hair reconstruction is assessed by measuring the hair surface topography with an interferometric microscope.
  • The parameters allowing determining the condition of the cuticle scales along the hair are the following:
  • opening of scales
  • length of scales
  • surface topology, namely roughness
  • The analysed surface measures 120×30 μm.
  • Hair reconstruction after applying the hydrolysed yeast protein solution is compared to the hair status before treatment.
  • Results
  • Hair application of the hydrolysed yeast protein solution allows the obtaining of an anti-dandruff effect and an increase of the hair growth.
  • Hydrolysed yeast protein solution has also a hair repairing effect, by allowing the improvement of brightness, softness, and hair reconstruction. In particular, a reduction in the number of cuticle scale openings, an increase in the length of scales and a decrease in roughness, is observed.
  • Example 6 Examples of Cosmetic Compositions and Therapeutic Compositions According to this Invention
  • The following compositions constitute non-exhaustive examples of this invention.
  • Composition 1: Moisturising Cream (Oil in Water)
  • Percentage
    Ingredients (weight/weight)
    Hydrolysed yeast proteins 1.5
    (A composition)
    Caprylic and capryc triglyceride 4
    Mineral oil 2
    Stearyl alcohol 3
    Isopropyl palmitate 2
    Glycerol stearate 6
    PEG-100
    Dimethicone 4
    Glycerine 8
    Preservative 0.3
    Water 69.2
  • Composition 2: Lotion (Oil in Water)
  • Percentage
    Ingredients (weight/weight)
    Hydrolysed yeast proteins 2.50
    (A composition)
    paraffin oil 2.60
    Propylene glycol 1.40
    triglyceride 1.0
    PEG-75 1.0
    Coco-caprylate caprate 1.0
    Glycerol stearate 0.6
    Dimethicone 0.5
    Polyacrylic acid 0.3
    Sodium hydroxide 0.11
    perfume 0.10
    EDTA 0.03
    glycerine 5.00
    colour 0.32
    preservative 1.50
    purified water 82.04
  • Composition 3: Anti-Dandruff Shampoo
  • Percentage
    Ingredients (weight/weight)
    Hydrolysed yeast proteins 1.5
    (A composition)
    Sodium lauryl sulfate 30
    Disodium Laureth sulfate
    Cocoamphodiacetate
    Hexylene glycol
    Cocamidopropylamine oxide 1
    Extract of Indian watercress 1
    Preservative 0.2
    Citric acid pH 6
    water spp 100
  • Composition 4: Moisturising Mask
  • Ingredients Percentage (weight/weight)
    Hydrolysed yeast proteins (A composition) 4.00
    Timiron flash 4.00
    Propylene glycol 3.00
    glycerine 3.00
    urea 3.00
    Mucic acid 0.30
    perfume 0.30
    Arabic gum 0.50
    Xanthan gum 0.10
    EDTA 0.10
    allantoin 0.10
    Sodium hydroxide 0.06
    Polyvinyl alcohol 10.00
    talc 10.00
    95% Alcohol 15.00
    Purified water 46.54

Claims (24)

1. A cosmetic or therapeutic composition comprising hydrolysed yeast proteins as active substance, wherein said hydrolysed yeast proteins are obtained from the insoluble fraction of yeast.
2. The composition of claim 1, wherein the hydrolysed yeast proteins are obtained through enzymatic hydrolysis and/or acid hydrolysis and/or alkaline hydrolysis.
3. The composition of claim 1, wherein the hydrolysed yeast proteins are obtained through enzymatic hydrolysis with at least a peptidase.
4. The composition of claim 1, wherein the hydrolysed yeast proteins are obtained from yeast of a genus selected from the group consisting of Saccharomyces, Kluyveromyces, Torula, Candida, Hansenula, Pichia, and mixtures thereof.
5. The composition of claim 1, wherein the hydrolysed yeast proteins comprise at least 40% of yeast proteins with a molecular weight ranging from 1 to 5 kDa.
6. The composition of claim 1, wherein the hydrolysed yeast proteins comprise at most 55% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
7. The composition of claim 1, wherein the AN/TN ratio of the hydrolysed yeast proteins is lower than or equal to 35%.
8. The composition of claim 1, comprising from 0.001% to 20% of hydrolysed yeast proteins.
9. The composition of claim 1, comprising at least one additive selected from the group consisting of preservatives, chelating agents, colouring agents, UV filters, pH regulators, texturising agents, perfumes and antioxidants.
10. A method of preparation of a cosmetic or therapeutic composition, comprising the following steps:
hydrolysing proteins of the insoluble fraction of yeast in order to obtain hydrolysed yeast proteins, and
mixing said hydrolysed yeast proteins with an acceptable cosmetic or therapeutic vehicle.
11. (canceled)
12. A method of cosmetic treatment comprising a step of contacting the composition of claim 1 with the skin and/or skin appendages and/or mucous membranes.
13. The method of cosmetic treatment of claim 12 intended to moisturise the skin and/or mucous membranes and/or skin appendages, and/or improve the repair of the skin and/or mucous membranes and/or skin appendages, and/or improve dermis firmness, and/or fight against skin aging, and/or regulate sebum secretion, and/or reduce dandruff.
14. Hydrolysed yeast proteins obtained from the insoluble fraction of yeast for use as a medicament.
15. The composition of claim 1, wherein the hydrolysed yeast proteins are obtained from yeast of Saccharomyces.
16. The composition of claim 1, wherein the hydrolysed yeast proteins are obtained from yeast of Saccharomyces cerevisiae.
17. The composition of claim 1, comprising at least one excipient selected from the group consisting of hydrophilic compounds, hydrophobic compounds and surfactants.
18. A method of cosmetic: treatment comprising a step of contacting a composition obtainable through the process according to claim 10 with the skin and/or skin appendages and/or mucous membranes.
19. Hydrolysed yeast proteins according to claim 14, wherein the medicament is for the treatment and/or prevention of pathological dry skin, pathological healing problems and/or pathological hyperseborrhoea and/or acne.
20. The composition of claim 1, wherein the hydrolysed yeast proteins comprise at least 60% of yeast proteins with a molecular weight ranging from 1 to 5 kDa.
21. The composition of claim 1, wherein the hydrolysed yeast proteins comprise at most 35% of hydrolysed yeast proteins with a molecular weight lower than 1 kDa.
22. The composition of claim 1, wherein the AN/TN ratio of the hydrolysed yeast proteins is lower than or equal to 20%.
23. The composition of claim 1, comprising from 0.01% to 2% of hydrolysed yeast proteins.
24. The composition of claim 3, wherein the peptidase is selected from the group consisting of papain, trypsin, chymotrypsin, subtilisin, pepsin, thermolysin, pronase, flavastacine, enterokinase, factor Xa protease, furin, bromelain, proteinase K, genenase I, thermitase, carboxypeptidase A, carboxypeptidase B, collagenase, and mixtures thereof.
US12/867,193 2008-02-12 2009-02-11 Use of natural active substances in cosmetic or therapeutic compositions Abandoned US20110052514A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0800754 2008-02-12
FR0800754A FR2927254B1 (en) 2008-02-12 2008-02-12 USE OF NATURAL ACTIVE SUBSTANCES IN COSMETIC OR THERAPEUTIC COMPOSITIONS
PCT/IB2009/000237 WO2009101503A2 (en) 2008-02-12 2009-02-11 Use of natural active substances in cosmetic or therapeutic compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/000237 A-371-Of-International WO2009101503A2 (en) 2008-02-12 2009-02-11 Use of natural active substances in cosmetic or therapeutic compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/926,707 Division US9289460B2 (en) 2008-02-12 2013-06-25 Use of natural active substances in cosmetic or therapeutic compositions

Publications (1)

Publication Number Publication Date
US20110052514A1 true US20110052514A1 (en) 2011-03-03

Family

ID=39944559

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/867,193 Abandoned US20110052514A1 (en) 2008-02-12 2009-02-11 Use of natural active substances in cosmetic or therapeutic compositions
US13/926,707 Active 2029-03-15 US9289460B2 (en) 2008-02-12 2013-06-25 Use of natural active substances in cosmetic or therapeutic compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/926,707 Active 2029-03-15 US9289460B2 (en) 2008-02-12 2013-06-25 Use of natural active substances in cosmetic or therapeutic compositions

Country Status (10)

Country Link
US (2) US20110052514A1 (en)
EP (1) EP2252258B1 (en)
JP (3) JP2011514320A (en)
KR (1) KR20100121477A (en)
AU (1) AU2009213799B2 (en)
DK (1) DK2252258T3 (en)
ES (1) ES2701598T3 (en)
FR (1) FR2927254B1 (en)
RU (1) RU2491910C9 (en)
WO (1) WO2009101503A2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005288A1 (en) * 2011-03-09 2012-09-13 Technische Universität Dresden Producing protein hydrolyzate, useful as angiotensin converting enzyme inhibitor, comprises enzymatically hydrolyzing protein containing substrate in two treatment steps with different proteolytic enzymes
US8268305B1 (en) 2011-09-23 2012-09-18 Bio-Cat, Inc. Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase
US20120282198A1 (en) * 2009-12-24 2012-11-08 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising an extract of carob as active agent for activating aquaporin expression
US20130287708A1 (en) * 2010-12-09 2013-10-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Natural formulations
US20140220069A1 (en) * 2011-09-05 2014-08-07 Societe Industrielle Limousine D'application Biologique Active ingredient derived from torulaspora delbrueckii and cosmetic use for improving and/or repairing the barrier function of the skin
US20150191748A1 (en) * 2012-05-29 2015-07-09 Neozyme International, Inc. Process for Treating Organic Materials
US9474283B2 (en) 2010-12-09 2016-10-25 Y&B Mother's Choice Ltd. Formulations comprising saponins and uses thereof
CN106619314A (en) * 2017-01-19 2017-05-10 广州市雅臻化妆品有限公司 Freckle-removing and oil-controlling mask as well as preparation and use methods thereof
US9974728B2 (en) 2012-03-19 2018-05-22 Isp Investments Llc Cosmetic composition comprising a synergistic TRF2 protein activation system consisting of a combination of a peptidic soybean and yeast extract and the uses thereof
US20180256489A1 (en) * 2010-12-09 2018-09-13 Y&B Mother's Choice Ltd. Natural formulations
US10117827B2 (en) 2013-12-08 2018-11-06 Y&B Mother's Choice Ltd. Preparations for suppressing or attenuating ocular irritancy
US10334856B2 (en) 2012-05-29 2019-07-02 Neozyme International, Inc. Non-toxic pest control compositions and methods and uses thereof
US20190209486A1 (en) * 2017-03-28 2019-07-11 Global Biomedical Technologies, Llc High-Efficiency Transdermal Patches
US10557234B2 (en) 2012-05-29 2020-02-11 Neozyme International, Inc. Papermaking additive compositions and methods and uses thereof
CN111278326A (en) * 2017-07-28 2020-06-12 轨迹Ip有限责任公司 Yeast-based mask for improving skin, hair and scalp health
US10681914B2 (en) 2012-05-29 2020-06-16 Neozyme International, Inc. Non-toxic plant agent compositions and methods and uses thereof
US10806769B2 (en) 2016-03-31 2020-10-20 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US10874700B2 (en) 2016-03-31 2020-12-29 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
CN112370401A (en) * 2020-09-18 2021-02-19 珠海远大美业生物科技有限公司 Whitening and skin-brightening composition, preparation method and application thereof
US20210267230A1 (en) * 2018-04-27 2021-09-02 Lesaffre Et Compagnie Yeast Proteins
CN115252485A (en) * 2022-08-08 2022-11-01 澳宝化妆品(惠州)有限公司 Preparation method of pichia pastoris extract and scalp care composition containing pichia pastoris extract
WO2022245051A1 (en) * 2021-05-21 2022-11-24 (주)메디톡스 Composition comprising yeast-derived extracellular vesicles as active ingredient and method
US11564879B2 (en) 2016-11-23 2023-01-31 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
CN117683102A (en) * 2024-02-02 2024-03-12 广州华淼生物科技研究院有限公司 Yeast protein and extraction method and application thereof
US11998575B2 (en) 2020-11-20 2024-06-04 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933036B2 (en) * 2009-04-15 2015-01-13 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a yeast peptide hydrolysate and use of the yeast peptide hydrolysate as an active agent for strengthening hair
FR2944445B1 (en) 2009-04-15 2013-08-16 Isp Investments Inc COSMETIC AND / OR PHARMACEUTICAL COMPOSITION COMPRISING A SOOTHING PEPTIDE HYDROLYZATE
FR2951946B1 (en) * 2009-11-03 2012-05-11 Isp Investments Inc USE OF PEPTIDE HYDROLYSAT OF YEAST AS AN ACTIVE AGENT FOR STRENGTHENING THE HAIR
FR2944526B1 (en) 2009-04-15 2013-05-10 Isp Investments Inc COSMETIC AND / OR PHARMACEUTICAL COMPOSITION COMPRISING A PEPTIDE HYDROLYZATE CAPABLE OF STRENGTHENING BARRIER FUNCTION
DE102011089270A1 (en) * 2011-12-20 2013-06-20 Henkel Ag & Co. Kgaa Use of a combination of taurine and hydrolysed protein from yeast to increase epidermal lipid synthesis
FR3016521B1 (en) * 2014-01-23 2016-02-26 Limousine D Applic Biolog Soc Ind ACTIVE PRINCIPLE OBTAINED FROM PICHIA ANOMALA AND USE TO COMBAT THE CHRONIC SKIN INFLAMMATION PHENOMENON
US20170296457A1 (en) * 2016-04-14 2017-10-19 The Procter & Gamble Company Products and methods for treating periorbital dyschromia
DE102016225674A1 (en) * 2016-12-20 2017-07-27 Henkel Ag & Co. Kgaa Method and device for determining a degree of damage to hair
FR3061656B1 (en) * 2017-01-09 2019-05-24 Societe Industrielle Limousine D'application Biologique HYDROLYSAT OF PICHIA MINUTA AND COSMETIC USE TO FIGHT THE FALL OF HAIR AND PROMOTE THEIR PUSH
WO2018175334A1 (en) 2017-03-20 2018-09-27 Es Biosolutions, Inc. Compositions and methods for skin treatments
EP3615644B1 (en) 2017-04-24 2023-08-23 Cargill, Incorporated Wax compositions and dissipation factor
KR102070328B1 (en) 2017-04-25 2020-01-28 (주)피알지에스앤텍 Pharmaceutical composition for preventing or treating aging-related diseases comprising decursin derivatives
EP3615645A4 (en) * 2017-04-26 2021-01-27 Cargill, Incorporated Wax compositions and surface tension
CN107603894B (en) * 2017-09-12 2021-05-18 山东圣琪生物有限公司 Yeast small peptide powder and preparation method thereof
CN108893515B (en) * 2018-07-20 2020-07-07 江南大学 High F value oligopeptide and preparation method thereof
CN113230163B (en) * 2020-08-19 2022-08-30 宁波见睿新材料有限公司 Application of hydrolyzed yeast protein and chicory root extract in preparation of hair growth and hair nourishing products
EP4043005B1 (en) 2021-02-12 2023-12-20 Chanel Parfums Beauté Cosmetic composition comprising a yeast hydrolysate
FR3125718A1 (en) 2021-08-02 2023-02-03 Societe Industrielle Limousine D'application Biologique Active ingredient comprising oligo-glucans from the cytosolic fraction of Saccharomyces cerevisiae and its cosmetic uses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852502A (en) * 1973-04-09 1974-12-03 Us Army The method of stabilizing foods with an antioxidant
US4122196A (en) * 1974-11-18 1978-10-24 Anheuser-Busch, Incorporated Process for the manufacture of yeast glycan
US5397770A (en) * 1990-06-04 1995-03-14 Levin; Robert H. Yeast-derived epidermal growth factor/urogastrone-like products
JPH0848698A (en) * 1994-08-05 1996-02-20 Seiwa Kasei:Kk Peptide composition derivatized from yeast protein, its production and its use
US6228968B1 (en) * 1998-02-06 2001-05-08 Seiwa Kasei Company, Ltd. Silane copolymer and a method for producing the same
KR20030071893A (en) * 2002-02-22 2003-09-13 엔프라니 주식회사 Water soluble whitening composition and cosmetic composition for whitening skin comprising the same
US20080085287A1 (en) * 2004-08-17 2008-04-10 Lesaffre Et Compagnie Food Additve

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH415510A (en) * 1964-02-18 1966-06-30 Maggi Ag Process for manufacturing a yeast hydrolyzate
FR2324293A1 (en) * 1975-04-29 1977-04-15 Orlane Cosmetic product comprising vehicle or support contg. nucleotides - prepd. by hydrolysis of protein material, pref. yeast
FR2594847B1 (en) * 1986-02-25 1989-06-02 Moet Hennessy Rech PROCESS FOR THE PREPARATION OF BIOLOGICALLY ACTIVE POLYPEPTIDES, POLYPEPTIDES OBTAINED AND COMPOSITIONS CONTAINING THEM
US4929555A (en) * 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
US5753214A (en) * 1994-08-24 1998-05-19 Seiwa Kasei Co., Ltd. Base material for cosmetics and uses of the same
AU697323B2 (en) * 1995-03-23 1998-10-01 Lancaster Group Gmbh Cosmetic with condensates of plant and animal decomposition products
FR2781669B1 (en) * 1998-07-31 2000-09-15 Lanatech COSMETIC COMPOSITION INCLUDING AT LEAST ONE POLYSACCHARIDE FROM HYDROTHERMAL BACTERIA
JP2004502712A (en) * 2000-07-08 2004-01-29 コグニス・フランス・ソシエテ・アノニム How to protect your skin from aging
RU2181594C2 (en) * 2000-07-27 2002-04-27 Иркутский государственный медицинский университет Method to treat lip infections and fractures of labial red edge in children and youngsters
WO2002067959A1 (en) * 2001-02-27 2002-09-06 Neurotide Co., Ltd. Peptide derived from yeast having activities as anti-tsress, anti-fatigue and brain neurotrophic factor and relaxing premenstrual syndrome and menstrual pain, and prepairing process thereof
FI114895B (en) * 2001-05-14 2005-01-31 Suomen Rehu Oy Additive for food
NL1018568C2 (en) * 2001-07-17 2003-01-21 Tno Extraction of polysaccharides from vegetable and microbial material.
BE1014638A6 (en) * 2002-02-12 2004-02-03 Univ Liege Method of preparation of derivatives of cell wall from biomass.
JP2003238384A (en) * 2002-02-14 2003-08-27 Fancl Corp Skin care preparation
JPWO2004016236A1 (en) * 2002-08-14 2005-12-02 株式会社ファンケル Cosmetics
JPWO2004075621A1 (en) * 2004-03-11 2007-08-23 株式会社資生堂 Anti-aging agent and collagen production promoter
WO2008015343A2 (en) * 2006-08-03 2008-02-07 Societe D'extraction Des Principes Actifs Sa (Vincience) Use of a yeast extract as active agent for increasing melanin synthesis in melanocytes
JP2011504456A (en) * 2007-02-02 2011-02-10 ディーブイビー グローバル, エルエルシー Golden ratio harmonized water and aqueous solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852502A (en) * 1973-04-09 1974-12-03 Us Army The method of stabilizing foods with an antioxidant
US4122196A (en) * 1974-11-18 1978-10-24 Anheuser-Busch, Incorporated Process for the manufacture of yeast glycan
US5397770A (en) * 1990-06-04 1995-03-14 Levin; Robert H. Yeast-derived epidermal growth factor/urogastrone-like products
JPH0848698A (en) * 1994-08-05 1996-02-20 Seiwa Kasei:Kk Peptide composition derivatized from yeast protein, its production and its use
US6228968B1 (en) * 1998-02-06 2001-05-08 Seiwa Kasei Company, Ltd. Silane copolymer and a method for producing the same
KR20030071893A (en) * 2002-02-22 2003-09-13 엔프라니 주식회사 Water soluble whitening composition and cosmetic composition for whitening skin comprising the same
US20080085287A1 (en) * 2004-08-17 2008-04-10 Lesaffre Et Compagnie Food Additve

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Project EU 22704 COMPETENCE Center of Food and Fermentation Technologies; Activity Report, Tallinn, 2007, 53 pages. *
Springer 'Yeast Peptone HYP-A' Online, URL<http://www.biospringer.com/cc_index.php?tag=Yeast+peptone+for+fermentation+and+culture+media&cc-parametresurl=Y2MtcnVicmlxdWVwYWdlcz1CSU9URUMmY2MtcGFnZT1QQUdFX0dBTU1FX0JTJmNjLWdhbW1lX2JzPUJJT1RFQ19TUFJJTkdFUkhZUCZjYy1sYW5ndWU9RU4=&PHPSESSID=db4133ac6356ba255d82b9d520fe6581 > accessed 6 August 2012, 2 pages *
Wikipedia: Papain; Online, URLhttp://en.wikipedia.org/wiki/Papain, 5 pages, accessed 7 August 2012. *
Wikipedia; Phosphonate, Online, URLhttp://en.wikipedia.org/wiki/Phosphonate accessed 8/7/2012, 4 pages *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282198A1 (en) * 2009-12-24 2012-11-08 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising an extract of carob as active agent for activating aquaporin expression
US8722108B2 (en) * 2009-12-24 2014-05-13 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising an extract of carob as active agent for activating aquaporin expression
US9474283B2 (en) 2010-12-09 2016-10-25 Y&B Mother's Choice Ltd. Formulations comprising saponins and uses thereof
US10434058B2 (en) * 2010-12-09 2019-10-08 Y&B Mother's Choice Ltd. Natural formulations
US20130287708A1 (en) * 2010-12-09 2013-10-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Natural formulations
US20180256489A1 (en) * 2010-12-09 2018-09-13 Y&B Mother's Choice Ltd. Natural formulations
US10064881B2 (en) * 2010-12-09 2018-09-04 Y&B Mother's Choice Ltd. Natural formulations
DE102011005288B4 (en) 2011-03-09 2018-10-11 Technische Universität Dresden Process for the preparation of a protein hydrolyzate with ACE-inhibiting tryptophan-containing dipeptides
DE102011005288A1 (en) * 2011-03-09 2012-09-13 Technische Universität Dresden Producing protein hydrolyzate, useful as angiotensin converting enzyme inhibitor, comprises enzymatically hydrolyzing protein containing substrate in two treatment steps with different proteolytic enzymes
US20140220069A1 (en) * 2011-09-05 2014-08-07 Societe Industrielle Limousine D'application Biologique Active ingredient derived from torulaspora delbrueckii and cosmetic use for improving and/or repairing the barrier function of the skin
US8268305B1 (en) 2011-09-23 2012-09-18 Bio-Cat, Inc. Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase
US9555083B2 (en) 2011-09-23 2017-01-31 Bio-Cat, Inc. Methods and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase
US9974728B2 (en) 2012-03-19 2018-05-22 Isp Investments Llc Cosmetic composition comprising a synergistic TRF2 protein activation system consisting of a combination of a peptidic soybean and yeast extract and the uses thereof
US11930823B2 (en) 2012-05-29 2024-03-19 Neozyme International, Inc. Non-toxic pest control compositions and methods and uses thereof
US11116224B2 (en) 2012-05-29 2021-09-14 Neozyme International, Inc. Non-toxic pest control compositions and methods and uses thereof
US9617178B2 (en) * 2012-05-29 2017-04-11 Neozyme International, Inc. Process for treating organic materials
US10334856B2 (en) 2012-05-29 2019-07-02 Neozyme International, Inc. Non-toxic pest control compositions and methods and uses thereof
US11772996B2 (en) 2012-05-29 2023-10-03 Neozyme International, Inc. Process for treating contaminated water
US20150191748A1 (en) * 2012-05-29 2015-07-09 Neozyme International, Inc. Process for Treating Organic Materials
US10557234B2 (en) 2012-05-29 2020-02-11 Neozyme International, Inc. Papermaking additive compositions and methods and uses thereof
US11771091B2 (en) 2012-05-29 2023-10-03 Neozyme International, Inc. Non-toxic plant agent compositions and methods and uses thereof
US10683222B2 (en) 2012-05-29 2020-06-16 Neozyme International, Inc. Process for treating organic material
US10681914B2 (en) 2012-05-29 2020-06-16 Neozyme International, Inc. Non-toxic plant agent compositions and methods and uses thereof
US11773535B2 (en) 2012-05-29 2023-10-03 Neozyme International, Inc. Papermaking additive compositions and methods and uses thereof
US10117827B2 (en) 2013-12-08 2018-11-06 Y&B Mother's Choice Ltd. Preparations for suppressing or attenuating ocular irritancy
US10874700B2 (en) 2016-03-31 2020-12-29 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
US10806769B2 (en) 2016-03-31 2020-10-20 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US11633451B2 (en) 2016-03-31 2023-04-25 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US11564879B2 (en) 2016-11-23 2023-01-31 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
CN106619314A (en) * 2017-01-19 2017-05-10 广州市雅臻化妆品有限公司 Freckle-removing and oil-controlling mask as well as preparation and use methods thereof
US20190209486A1 (en) * 2017-03-28 2019-07-11 Global Biomedical Technologies, Llc High-Efficiency Transdermal Patches
CN111278326A (en) * 2017-07-28 2020-06-12 轨迹Ip有限责任公司 Yeast-based mask for improving skin, hair and scalp health
US11602156B2 (en) * 2018-04-27 2023-03-14 Lesaffre Et Compagnie Yeast proteins
US20210267230A1 (en) * 2018-04-27 2021-09-02 Lesaffre Et Compagnie Yeast Proteins
US11937620B2 (en) * 2018-04-27 2024-03-26 Lesaffre Et Compagnie Yeast proteins
CN112370401A (en) * 2020-09-18 2021-02-19 珠海远大美业生物科技有限公司 Whitening and skin-brightening composition, preparation method and application thereof
US11998575B2 (en) 2020-11-20 2024-06-04 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
WO2022245051A1 (en) * 2021-05-21 2022-11-24 (주)메디톡스 Composition comprising yeast-derived extracellular vesicles as active ingredient and method
CN115252485A (en) * 2022-08-08 2022-11-01 澳宝化妆品(惠州)有限公司 Preparation method of pichia pastoris extract and scalp care composition containing pichia pastoris extract
CN117683102A (en) * 2024-02-02 2024-03-12 广州华淼生物科技研究院有限公司 Yeast protein and extraction method and application thereof

Also Published As

Publication number Publication date
JP6157448B2 (en) 2017-07-05
WO2009101503A2 (en) 2009-08-20
KR20100121477A (en) 2010-11-17
US20130287715A1 (en) 2013-10-31
ES2701598T3 (en) 2019-02-25
WO2009101503A3 (en) 2009-10-15
JP2015120701A (en) 2015-07-02
FR2927254A1 (en) 2009-08-14
EP2252258A2 (en) 2010-11-24
JP2017071632A (en) 2017-04-13
US9289460B2 (en) 2016-03-22
JP2011514320A (en) 2011-05-06
RU2010133507A (en) 2012-03-20
AU2009213799A1 (en) 2009-08-20
AU2009213799B2 (en) 2014-03-06
DK2252258T3 (en) 2019-01-02
FR2927254B1 (en) 2010-03-26
RU2491910C2 (en) 2013-09-10
EP2252258B1 (en) 2018-09-19
RU2491910C9 (en) 2013-12-20

Similar Documents

Publication Publication Date Title
US9289460B2 (en) Use of natural active substances in cosmetic or therapeutic compositions
US10292926B2 (en) Use of a novel natural agent in cosmetic compositions
CA2749750C (en) Skin care compositions and methods of use thereof
KR102022368B1 (en) Cosmetic compositions for improving wrinkles and skin-lifting and their manufacturing method
JP2023052050A (en) Use of nephelium lappaceum extract for increasing the firmness of the skin and/or of the mucous membranes
CA3174981A1 (en) Collagen compositions and methods of use thereof
US10406086B2 (en) Moisturizer and cosmetic including the same
FR3004347A1 (en) COSMETIC COMPOSITION COMPRISING ESSENTIAL OIL OF SAGE AND USE THEREOF
US20240130948A1 (en) Compositions and methods for improving the appearance of the skin
KR101107312B1 (en) A cosmetic composition for improving and caring skin comprising a peptide
CN117897058A (en) Collagen compositions and methods of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: LESAFFRE ET COMPAGNIE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUSTEN, PETER;BORREILL, DOMINIQUE MARIE NOELLE;MARQUES, WILLIAM;SIGNING DATES FROM 20100907 TO 20101208;REEL/FRAME:025476/0224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION