US20100304519A1 - Method of fabricating solar cell chips - Google Patents

Method of fabricating solar cell chips Download PDF

Info

Publication number
US20100304519A1
US20100304519A1 US12/849,448 US84944810A US2010304519A1 US 20100304519 A1 US20100304519 A1 US 20100304519A1 US 84944810 A US84944810 A US 84944810A US 2010304519 A1 US2010304519 A1 US 2010304519A1
Authority
US
United States
Prior art keywords
solar cell
integrated circuit
wafers
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/849,448
Inventor
Hans-Juergen Eickelmann
Michael Haag
Harold J. Hovel
Rainer Klaus Krause
Markus Schmidt
Xiaoyan Shao
Steven Erik Steen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US12/849,448 priority Critical patent/US20100304519A1/en
Publication of US20100304519A1 publication Critical patent/US20100304519A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cells; more specifically, it relates to a method of fabricating a solar cell.
  • Solar cells or solar concentrators are semiconductor devices capable of generating electricity using the photovoltaic effect.
  • the relatively high cost of fabricating solar cells has seriously limited the widespread use of solar cells. Accordingly, there exists a need in the art to mitigate the deficiencies and limitations described hereinabove.
  • One aspect of the present invention is a method, comprising: creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility; creating a solar cell process route for fabricating solar cells using solar cell wafers in the integrated circuit fabrication facility; releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of the an integrated circuit fabrication facility; and processing the solar cell wafers on at least some tools of the integrated circuit fabrication facility used to process the integrated circuit wafers.
  • FIGS. 1A through 1J are cross-sectional drawings illustrating fabrication of a solar cell according to embodiments of the present invention
  • FIG. 2A is a top view of the solar cell of FIG. 1J ;
  • FIG. 2B is a bottom view of the solar cell of FIG. 1J illustrating a first bus bar geometry and FIG. 2C is an bottom view of the solar cell of FIG. 1J illustrating a second bus bar geometry;
  • FIG. 3 is a top view of a typical semiconductor substrate having an array of un-singulated solar cell chips fabricated according to the methods illustrated in FIGS. 1A through 1I ;
  • FIG. 4 is flowchart illustrating integration of solar cell chip fabrication into a semiconductor fabrication facility that also fabricates conventional integrated circuit chips.
  • FIGS. 1A through 1J are cross-sectional drawings illustrating fabrication of a solar cell according to embodiments of the present invention.
  • integrated circuit chips are fabricated using semiconductor substrates that are thin disc shaped substrates called wafers.
  • substrate and wafer may be used interchangeably herein.
  • An integrated circuit chip is defined as a solid-state device including transistors (e.g., field effect and/or bipolar transistors) forming logic and/or memory circuits.
  • the logic and/or memory circuits may be analog or digital.
  • a bulk single-crystal silicon substrate 100 has a thickness T 1 and a diameter D.
  • D is about 300 mm and T 1 is about 700 microns.
  • substrate 100 of FIG. 1A has optionally been thinned to a thickness T 2 .
  • T 2 is about 300 microns.
  • T 2 is less than 700 microns.
  • T 2 is less than about 700 microns and not less than about 300 microns.
  • substrate 100 A is a thinned virgin wafer (i.e., a wafer having had no integrated circuit chip processing) which may be thinned by abrasive grinding (a mechanical process), by chemical-mechanical-polishing (CMP) (which is both a chemical and a mechanical process) or combinations thereof.
  • substrate 1 B is formed from a scrap wafer on which conventional integrated circuit chips had been fully or partially fabricated but which either were misprocessed or failed a testing procedure. Thinning may be accomplished by etching (which is a chemical process), by abrasive grinding, by CMP or combinations thereof of either the top, the bottom or both the top and the bottom surfaces of the substrate.
  • substrate 100 are intrinsic or lightly doped P type (e.g., to a resistivity of about 0.5 ohm-cm to about 2.5 ohm-cm).
  • FIGS. 1C through 1J will be illustrated using substrate 100 of FIG. 1A , but it should be understood that the processes described in FIGS. 1C through 1J may be practices on thinned substrate 100 A.
  • a method of reclaiming scrap integrated circuit wafers is described in United States Patent Publication US 2008/0014661 by Haag et al. filed on Jul. 11, 2007, which is hereby incorporated by reference.
  • a P-doped glass layer 108 is applied to a top surface 110 of substrate 100 and a N-doped glass layer 112 applied to a bottom surface 120 of substrate 100 .
  • layers 108 and 112 are applied by spin application of a doped glass suspension followed by a bake to drive out the suspension liquid.
  • layers 108 and 110 are formed by sputter deposition of boro-silicate and phospho-silicate glasses respectively. After a thermal anneal (e.g., of about 500° C.
  • the dopants from layers 108 and 112 have diffused into substrate 100 to form a P-doped layer 105 in substrate 100 proximate to top surface 110 and an N-doped layer 115 in substrate 100 proximate to bottom surface 120 as illustrated in FIG. 1D and layers 108 and 112 removed (e.g., by wet etching) resulting in the structure illustrated in FIG. 1D .
  • direct gaseous diffusion may be used to form P-doped layer 105 and N-doped layer 115 by introducing a dopant gas into a furnace at temperatures of about 900° C. or greater.
  • the process described in FIG. 1C may be eliminated and replaced by a P-type ion implantation (e.g., boron) into top surface 105 and an N-type ion implantation (e.g., phosphorus or arsenic or both) into bottom surface 120 followed by an activation anneal (e.g., of about 800° C. or higher) to form P doped layer 105 and N-doped layer 115 respectively.
  • a P-type ion implantation e.g., boron
  • N-type ion implantation e.g., phosphorus or arsenic or both
  • an activation anneal e.g., of about 800° C. or higher
  • FIGS. 1E and 1F are optional.
  • a patterned masking layer 125 having openings 127 is formed on bottom surface 120 of substrate 100 .
  • N-doped emitters 130 are formed through N-doped layer 115 into substrate 100 where substrate 100 is not protected by masking layer 125 .
  • the N-type dopant concentration of emitters 130 is higher than the N-type dopant concentration of N-doped layer 115 .
  • masking layer 125 is a dielectric layer and openings 127 are formed photolithographically.
  • a photolithographic process is one in which a photoresist layer is applied to a surface, the photoresist layer exposed to actinic radiation through a patterned photomask and the exposed photoresist layer developed to form a patterned photoresist layer.
  • the photoresist layer is removed and an N-doped glass layer (e.g., phospho-silicate glass) applied (either spun on or sputtered on as described supra for layer 112 of FIG. 1C ).
  • a thermal anneal e.g., of about 500° C. or higher
  • the dopant of the glass layer diffuse into substrate 100 forming emitters 130 .
  • Masking layer 125 is then removed.
  • masking layer 125 is itself a patterned photoresist layer and an N-type ion implantation (e.g., phosphorus or arsenic or both) into bottom surface 120 followed by an activation anneal (e.g., of about 800° C. or higher) to form emitters 130 .
  • N-type ion implantation e.g., phosphorus or arsenic or both
  • an activation anneal e.g., of about 800° C. or higher
  • FIGS. 1G through 1J will be illustrated with optional emitters 130 .
  • an upper passivation layer 135 is formed on top surface 110 and a lower passivation layer 140 is formed on bottom surface 120 of substrate 100 .
  • upper and lower passivation layers comprise silicon dioxide.
  • An antireflective coating 145 is formed on a top surface 150 of upper passivation layer 135 .
  • top contact openings 155 are formed through upper passivation layer 135 and antireflective coating 145 and bottom contact openings 160 are formed through bottom passivation layer 140 .
  • Regions of P-doped layer 105 are exposed in openings 155 and emitters 130 (or regions of N-doped layer 115 if optional emitters 130 were not formed) are exposed in openings 160 .
  • Openings 155 and 160 may be photolithographically defined and etched prior to removing the patterned photoresist layer of the photolithographic process. Two separate photolithographic/etch processes may be used to form openings 155 and 160 separately. Suitable etch processes include sputter etching, reactive ion etching (RIE) and wet etching.
  • RIE reactive ion etching
  • top metal silicide contacts 165 A are formed in P-doped layer where the P-doped layer is not protected by top passivation layer 135 and bottom metal silicide contacts 165 B are formed in emitters 130 (or regions of N-doped layer 115 if optional emitters 130 were not formed) where the N-doped layer is not protected by bottom passivation layer 140 .
  • Metal silicide contacts 165 A and 165 B may be formed by blanket deposition of metal layers over top and bottom surfaces 105 and 110 of substrate 100 , heating the substrate to about 450° C. or higher to react the metal with silicon forming a metal silicide, and then etching to remove unreacted metal.
  • metal silicide contacts 165 A and 165 B comprise palladium silicide or nickel silicide.
  • an electrically conductive contact frame 170 is formed. Contract frame 170 contacts the entire exposed surface in FIG. 1I of metal silicide contacts 165 A. Also an electrically conductive bus bar 175 is formed. Bus bar 175 contacts bottom the entire exposed surface in FIG. 1I of metal silicide contacts 165 B.
  • frame 170 and bus-bar 175 are formed by electrolytic or electroless plating. In electrolytic plating, a thin metal seed layer is blanket deposited, a patterned photoresist layer formed on the seed layer and photoresist layer, metal plated onto the seed layer, the photoresist layer removed and any seed layer not protected by plated metal removed in a flash etch. In one example, the seed deposition process are performed in two separate depositions. The patterned photoresist layers are formed in separate photolithographic processes. In one example, a single plating step may also be used to form both contact frame 170 and bus bar 175 .
  • a damascene process is one in which wire trenches or via openings are formed in a dielectric layer, an electrical conductor of sufficient thickness to fill the trenches is deposited on a top surface of the dielectric, and a CMP process is performed to remove excess conductor and make the surface of the conductor co-planar with the surface of the dielectric layer to form damascene wires.
  • antireflective layer 145 and bottom passivation layer 140 act as polish stops.
  • FIG. 2A is a top view of the solar cell of FIG. 1J .
  • line 1 J- 1 J indicates the section FIGS. 1A through 1J are illustrations of.
  • contact frame 170 includes a perimeter region 180 proximate to a perimeter 185 of a solar cell chip 190 .
  • Contact frame 170 includes integral contact fingers to P-doped region 105 (see FIG. 1J ) in openings in top passivation layer 135 antireflective coating 145 .
  • Metal silicide contacts 165 A are covered by contact frame 170 which may overlap the perimeter of contacts 165 A.
  • FIG. 2B is a bottom view of the solar cell of FIG. 1J illustrating a first bus bar geometry and FIG. 2C is an bottom view of the solar cell of FIG. 1J illustrating a second bus bar geometry.
  • line 1 J- 1 J indicates the section FIGS. 1A through 1J are illustrations of.
  • bus bar 175 includes a bus region 200 proximate an edge 205 of a solar cell chip 190 .
  • Bus bar 175 includes integral fingers 210 to emitters 130 (see FIG. 1J ) in openings in bottom passivation layer 140 .
  • Metal silicide contacts 165 B are covered by bus bar 175 which may overlap the perimeter of contacts 165 A.
  • FIG. 1J Metal silicide contacts 165 B
  • a contact frame 170 A comprises a grid of intersecting orthogonal wires 210 A and 210 B intersecting an optional frame 200 A.
  • the structure of FIG. 2C is particularly useful if optional emitters 130 (see FIG. 1F ) are not used. Also, if optional emitters 130 (see FIG. 1F ) are not used, bus bar 175 may be in the form of an electrically conductive layer or plate that also serves as a backside mirror.
  • FIG. 3 is a top view of a typical semiconductor substrate having an array of un-singulated solar cells fabricated according to the methods illustrated in FIGS. 1A through 1J .
  • an array of solar cell chips 190 are separated by kerfs or streets 215 on substrate 100 . Kerfs 215 allow separation or singulation of individual solar cell chips 190 . Methods of singulation include mechanical dicing or sawing and laser dicing.
  • Each solar cell chip 190 can range in surface area from about 25 mm 2 to about 400 mm 2 .
  • all solar cell chips 190 in FIG. 3 are illustrated as having the same geometric shape (i.e., width and length), solar cell chips having different geometric shapes and thus different surface areas may be fabricated together on the same substrate.
  • FIG. 4 is flowchart illustrating integration of solar cell chip fabrication into a semiconductor fabricator that also fabricates conventional integrated circuit chips.
  • a process route is a list of processes or fabrication steps a lot of wafers must be processed through in order to fabricate a solar cell or integrated circuit chip.
  • the process route includes, specific tools (or tool types if there is more than one of kind tooling), tool parameter setting (e.g., time, temperature, gas flow. etc) and photolithographic masks.
  • a lot may be a single wafer or more than one wafer.
  • the process route includes the type of substrate to be used.
  • the process route may include a statement of priority in case more than one lot of wafers is waiting in the same queue.
  • the substrate may be a reclaimed scrap wafer as discussed supra.
  • a solar cell process route is created. This route may include tools used only for conventional integrated circuit (IC) fabrication or a combination of tools used for IC fabrication and tools used only for solar cell (SC) fabrication.
  • IC integrated circuit
  • SC solar cell
  • step 230 a lot of solar cell wafers for solar cell manufacture is released to the manufacturing facility.
  • step 235 the solar cell lot is placed in a tool queue. Generally there is a queue for each tool or group of tools that can perform the process indicated by the route.
  • step 240 an integrated circuit chip process route is created.
  • step 245 a lot of integrated circuit chip wafers for integrated circuit chip manufacture is released to the manufacturing facility.
  • step 250 the integrated circuit chip lot is placed in a tool queue.
  • the solar cell lot queue of step 235 and the integrated circuit chip queue of step 250 may be the same queue.
  • step 255 it is determined if the tool for the particular queue has become available. If the tool is not available the method loops back to steps 235 or 250 . If in step 255 a tool becomes available, then in step 260 it is determined if an integrated circuit chip lot is waiting for that tool. If there is an integrated circuit chip lot waiting to be processed through the tool, then in step 265 , the integrated circuit chip lot is processed through the tool and in step 270 is determined if integrated chip fabrication for that lot is complete. If not, the method loops to step 250 where the integrated circuit chip lot is placed in the queue for the next processing tool on its route.
  • step 275 it is determined if a solar cell lot is waiting to be processed through tool. If so, then in step 280 the solar cell lot is processed through the tool and in step 285 is determined if solar cell fabrication for that lot is complete. If not, the method loops to step 235 where the solar cell lot is placed in the queue for the next processing tool on its route.
  • step 275 if there is no solar cell lot waiting then the method loops through connector A to step 255 .
  • One feature of the flowchart of FIG. 4 is no solar cell lot is run on any tool if there is an integrated circuit chip lot waiting for that tool, so solar cell lots are only run using the excess capacity of the tool (or tool set when there are multiple tools of the same kind.)
  • An adjustment can be made to step 260 to check (if there is an integrated circuit chip lot waiting) if a solar cell lot has been waiting for longer than a target amount of time, in which case the method would go to step 275 instead of 265 even if there is an integrated circuit chip lot waiting for the tool.
  • the embodiments of the present invention have migrated the costs of fabricating solar cells by using combinations of conventional semiconductor processes, integrating solar cell fabrication into conventional integrated circuit chip fabrication facilities and utilizing scrap integrated circuit chip wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method of fabricating solar cell chips. The method includes creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility; creating a solar cell process route for fabricating solar cells using solar cell wafers in the integrated circuit fabrication facility; releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of the an integrated circuit fabrication facility; and processing the solar cell wafers on at least some tools of the integrated circuit fabrication facility used to process the integrated circuit wafers. Also the process used to fabricate the solar cell chips.

Description

    CROSS REFERENCE TO RELATED APPLICATION(S)
  • This application is a division of application Ser. No. 12/189,911, filed Aug. 12, 2008, now pending, which is hereby incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of solar cells; more specifically, it relates to a method of fabricating a solar cell.
  • BACKGROUND OF THE INVENTION
  • Solar cells or solar concentrators are semiconductor devices capable of generating electricity using the photovoltaic effect. The relatively high cost of fabricating solar cells has seriously limited the widespread use of solar cells. Accordingly, there exists a need in the art to mitigate the deficiencies and limitations described hereinabove.
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention is a method, comprising: creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility; creating a solar cell process route for fabricating solar cells using solar cell wafers in the integrated circuit fabrication facility; releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of the an integrated circuit fabrication facility; and processing the solar cell wafers on at least some tools of the integrated circuit fabrication facility used to process the integrated circuit wafers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features of the invention are set forth in the appended claims. The invention itself, however, will be best understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
  • FIGS. 1A through 1J are cross-sectional drawings illustrating fabrication of a solar cell according to embodiments of the present invention;
  • FIG. 2A is a top view of the solar cell of FIG. 1J;
  • FIG. 2B is a bottom view of the solar cell of FIG. 1J illustrating a first bus bar geometry and FIG. 2C is an bottom view of the solar cell of FIG. 1J illustrating a second bus bar geometry;
  • FIG. 3 is a top view of a typical semiconductor substrate having an array of un-singulated solar cell chips fabricated according to the methods illustrated in FIGS. 1A through 1I; and
  • FIG. 4 is flowchart illustrating integration of solar cell chip fabrication into a semiconductor fabrication facility that also fabricates conventional integrated circuit chips.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIGS. 1A through 1J are cross-sectional drawings illustrating fabrication of a solar cell according to embodiments of the present invention. Generally, integrated circuit chips are fabricated using semiconductor substrates that are thin disc shaped substrates called wafers. The terms substrate and wafer may be used interchangeably herein. An integrated circuit chip is defined as a solid-state device including transistors (e.g., field effect and/or bipolar transistors) forming logic and/or memory circuits. The logic and/or memory circuits may be analog or digital.
  • In FIG. 1A, a bulk single-crystal silicon substrate 100 has a thickness T1 and a diameter D. In one example, D is about 300 mm and T1 is about 700 microns. In FIG. 1B, substrate 100 of FIG. 1A has optionally been thinned to a thickness T2. In one example T2 is about 300 microns. In one example T2 is less than 700 microns. In one example, T2 is less than about 700 microns and not less than about 300 microns. In one example, substrate 100A is a thinned virgin wafer (i.e., a wafer having had no integrated circuit chip processing) which may be thinned by abrasive grinding (a mechanical process), by chemical-mechanical-polishing (CMP) (which is both a chemical and a mechanical process) or combinations thereof. In one example substrate 1B is formed from a scrap wafer on which conventional integrated circuit chips had been fully or partially fabricated but which either were misprocessed or failed a testing procedure. Thinning may be accomplished by etching (which is a chemical process), by abrasive grinding, by CMP or combinations thereof of either the top, the bottom or both the top and the bottom surfaces of the substrate. In one example substrate 100 (or 100A) are intrinsic or lightly doped P type (e.g., to a resistivity of about 0.5 ohm-cm to about 2.5 ohm-cm). For exemplary purposes, FIGS. 1C through 1J will be illustrated using substrate 100 of FIG. 1A, but it should be understood that the processes described in FIGS. 1C through 1J may be practices on thinned substrate 100A. A method of reclaiming scrap integrated circuit wafers is described in United States Patent Publication US 2008/0014661 by Haag et al. filed on Jul. 11, 2007, which is hereby incorporated by reference.
  • In FIG. 1C, a P-doped glass layer 108 is applied to a top surface 110 of substrate 100 and a N-doped glass layer 112 applied to a bottom surface 120 of substrate 100. In one example, layers 108 and 112 are applied by spin application of a doped glass suspension followed by a bake to drive out the suspension liquid. In one example, layers 108 and 110 are formed by sputter deposition of boro-silicate and phospho-silicate glasses respectively. After a thermal anneal (e.g., of about 500° C. or higher) the dopants from layers 108 and 112 have diffused into substrate 100 to form a P-doped layer 105 in substrate 100 proximate to top surface 110 and an N-doped layer 115 in substrate 100 proximate to bottom surface 120 as illustrated in FIG. 1D and layers 108 and 112 removed (e.g., by wet etching) resulting in the structure illustrated in FIG. 1D. Alternatively, direct gaseous diffusion may be used to form P-doped layer 105 and N-doped layer 115 by introducing a dopant gas into a furnace at temperatures of about 900° C. or greater.
  • Alternatively, the process described in FIG. 1C may be eliminated and replaced by a P-type ion implantation (e.g., boron) into top surface 105 and an N-type ion implantation (e.g., phosphorus or arsenic or both) into bottom surface 120 followed by an activation anneal (e.g., of about 800° C. or higher) to form P doped layer 105 and N-doped layer 115 respectively. The ion-implantation process is highly compatible with conventional integrated circuit chip fabrication.
  • The processes illustrate in FIGS. 1E and 1F are optional. In FIG. 1E, a patterned masking layer 125 having openings 127 is formed on bottom surface 120 of substrate 100. In FIG. 1E, N-doped emitters 130 are formed through N-doped layer 115 into substrate 100 where substrate 100 is not protected by masking layer 125. The N-type dopant concentration of emitters 130 is higher than the N-type dopant concentration of N-doped layer 115.
  • In a first method, masking layer 125 is a dielectric layer and openings 127 are formed photolithographically. A photolithographic process is one in which a photoresist layer is applied to a surface, the photoresist layer exposed to actinic radiation through a patterned photomask and the exposed photoresist layer developed to form a patterned photoresist layer. After etching openings 127, the photoresist layer is removed and an N-doped glass layer (e.g., phospho-silicate glass) applied (either spun on or sputtered on as described supra for layer 112 of FIG. 1C). After a thermal anneal (e.g., of about 500° C. or higher) the dopant of the glass layer diffuse into substrate 100 forming emitters 130. Masking layer 125 is then removed.
  • In a second method, masking layer 125 is itself a patterned photoresist layer and an N-type ion implantation (e.g., phosphorus or arsenic or both) into bottom surface 120 followed by an activation anneal (e.g., of about 800° C. or higher) to form emitters 130. The ion-implantation process is highly compatible with conventional integrated circuit chip fabrication. Masking layer 125 is then removed.
  • For exemplary purposes, FIGS. 1G through 1J will be illustrated with optional emitters 130. In FIG. 1G, an upper passivation layer 135 is formed on top surface 110 and a lower passivation layer 140 is formed on bottom surface 120 of substrate 100. In one example, upper and lower passivation layers comprise silicon dioxide. An antireflective coating 145 is formed on a top surface 150 of upper passivation layer 135.
  • In FIG. 1H, top contact openings 155 are formed through upper passivation layer 135 and antireflective coating 145 and bottom contact openings 160 are formed through bottom passivation layer 140. Regions of P-doped layer 105 are exposed in openings 155 and emitters 130 (or regions of N-doped layer 115 if optional emitters 130 were not formed) are exposed in openings 160. Openings 155 and 160 may be photolithographically defined and etched prior to removing the patterned photoresist layer of the photolithographic process. Two separate photolithographic/etch processes may be used to form openings 155 and 160 separately. Suitable etch processes include sputter etching, reactive ion etching (RIE) and wet etching.
  • In FIG. 1I, electrically conductive top metal silicide contacts 165A are formed in P-doped layer where the P-doped layer is not protected by top passivation layer 135 and bottom metal silicide contacts 165B are formed in emitters 130 (or regions of N-doped layer 115 if optional emitters 130 were not formed) where the N-doped layer is not protected by bottom passivation layer 140. Metal silicide contacts 165A and 165B may be formed by blanket deposition of metal layers over top and bottom surfaces 105 and 110 of substrate 100, heating the substrate to about 450° C. or higher to react the metal with silicon forming a metal silicide, and then etching to remove unreacted metal. In one example, metal silicide contacts 165A and 165B comprise palladium silicide or nickel silicide.
  • In FIG. 1J, an electrically conductive contact frame 170 is formed. Contract frame 170 contacts the entire exposed surface in FIG. 1I of metal silicide contacts 165A. Also an electrically conductive bus bar 175 is formed. Bus bar 175 contacts bottom the entire exposed surface in FIG. 1I of metal silicide contacts 165B. In one example, frame 170 and bus-bar 175 are formed by electrolytic or electroless plating. In electrolytic plating, a thin metal seed layer is blanket deposited, a patterned photoresist layer formed on the seed layer and photoresist layer, metal plated onto the seed layer, the photoresist layer removed and any seed layer not protected by plated metal removed in a flash etch. In one example, the seed deposition process are performed in two separate depositions. The patterned photoresist layers are formed in separate photolithographic processes. In one example, a single plating step may also be used to form both contact frame 170 and bus bar 175.
  • Alternatively, conventional subtractive etch or damascene wire processes may be used to form contact frame 170 and bus bar 175 in two separate operations. A damascene process is one in which wire trenches or via openings are formed in a dielectric layer, an electrical conductor of sufficient thickness to fill the trenches is deposited on a top surface of the dielectric, and a CMP process is performed to remove excess conductor and make the surface of the conductor co-planar with the surface of the dielectric layer to form damascene wires. In the case of damascene processes, antireflective layer 145 and bottom passivation layer 140 act as polish stops.
  • FIG. 2A is a top view of the solar cell of FIG. 1J. In FIG. 2A, line 1J-1J indicates the section FIGS. 1A through 1J are illustrations of. In FIG. 2A, contact frame 170 includes a perimeter region 180 proximate to a perimeter 185 of a solar cell chip 190. Contact frame 170 includes integral contact fingers to P-doped region 105 (see FIG. 1J) in openings in top passivation layer 135 antireflective coating 145. Metal silicide contacts 165A (see FIG. 1J) are covered by contact frame 170 which may overlap the perimeter of contacts 165A.
  • FIG. 2B is a bottom view of the solar cell of FIG. 1J illustrating a first bus bar geometry and FIG. 2C is an bottom view of the solar cell of FIG. 1J illustrating a second bus bar geometry. In FIGS. 2B and 2C, line 1J-1J indicates the section FIGS. 1A through 1J are illustrations of. In FIG. 2B, bus bar 175 includes a bus region 200 proximate an edge 205 of a solar cell chip 190. Bus bar 175 includes integral fingers 210 to emitters 130 (see FIG. 1J) in openings in bottom passivation layer 140. Metal silicide contacts 165B (see FIG. 1J) are covered by bus bar 175 which may overlap the perimeter of contacts 165A. In FIG. 2C, a contact frame 170A comprises a grid of intersecting orthogonal wires 210A and 210B intersecting an optional frame 200A. The structure of FIG. 2C is particularly useful if optional emitters 130 (see FIG. 1F) are not used. Also, if optional emitters 130 (see FIG. 1F) are not used, bus bar 175 may be in the form of an electrically conductive layer or plate that also serves as a backside mirror.
  • FIG. 3 is a top view of a typical semiconductor substrate having an array of un-singulated solar cells fabricated according to the methods illustrated in FIGS. 1A through 1J. In FIG. 3, an array of solar cell chips 190 are separated by kerfs or streets 215 on substrate 100. Kerfs 215 allow separation or singulation of individual solar cell chips 190. Methods of singulation include mechanical dicing or sawing and laser dicing. Each solar cell chip 190 can range in surface area from about 25 mm2 to about 400 mm2. Though all solar cell chips 190 in FIG. 3 are illustrated as having the same geometric shape (i.e., width and length), solar cell chips having different geometric shapes and thus different surface areas may be fabricated together on the same substrate.
  • FIG. 4 is flowchart illustrating integration of solar cell chip fabrication into a semiconductor fabricator that also fabricates conventional integrated circuit chips. A process route is a list of processes or fabrication steps a lot of wafers must be processed through in order to fabricate a solar cell or integrated circuit chip. The process route includes, specific tools (or tool types if there is more than one of kind tooling), tool parameter setting (e.g., time, temperature, gas flow. etc) and photolithographic masks. A lot may be a single wafer or more than one wafer. The process route includes the type of substrate to be used. The process route may include a statement of priority in case more than one lot of wafers is waiting in the same queue. For solar cell fabrication, the substrate may be a reclaimed scrap wafer as discussed supra.
  • In step 225 a solar cell process route is created. This route may include tools used only for conventional integrated circuit (IC) fabrication or a combination of tools used for IC fabrication and tools used only for solar cell (SC) fabrication. In step 230, a lot of solar cell wafers for solar cell manufacture is released to the manufacturing facility. In step 235 the solar cell lot is placed in a tool queue. Generally there is a queue for each tool or group of tools that can perform the process indicated by the route.
  • In step 240 an integrated circuit chip process route is created. In step 245, a lot of integrated circuit chip wafers for integrated circuit chip manufacture is released to the manufacturing facility. In step 250 the integrated circuit chip lot is placed in a tool queue. The solar cell lot queue of step 235 and the integrated circuit chip queue of step 250 may be the same queue.
  • From steps 235 and 250 the method proceeds to step 255 where it is determined if the tool for the particular queue has become available. If the tool is not available the method loops back to steps 235 or 250. If in step 255 a tool becomes available, then in step 260 it is determined if an integrated circuit chip lot is waiting for that tool. If there is an integrated circuit chip lot waiting to be processed through the tool, then in step 265, the integrated circuit chip lot is processed through the tool and in step 270 is determined if integrated chip fabrication for that lot is complete. If not, the method loops to step 250 where the integrated circuit chip lot is placed in the queue for the next processing tool on its route.
  • Returning to step 260, If there is no integrated circuit chip lot waiting, then in step 275, it is determined if a solar cell lot is waiting to be processed through tool. If so, then in step 280 the solar cell lot is processed through the tool and in step 285 is determined if solar cell fabrication for that lot is complete. If not, the method loops to step 235 where the solar cell lot is placed in the queue for the next processing tool on its route.
  • Returning to step 275, if there is no solar cell lot waiting then the method loops through connector A to step 255. One feature of the flowchart of FIG. 4, is no solar cell lot is run on any tool if there is an integrated circuit chip lot waiting for that tool, so solar cell lots are only run using the excess capacity of the tool (or tool set when there are multiple tools of the same kind.) An adjustment can be made to step 260 to check (if there is an integrated circuit chip lot waiting) if a solar cell lot has been waiting for longer than a target amount of time, in which case the method would go to step 275 instead of 265 even if there is an integrated circuit chip lot waiting for the tool.
  • Thus the embodiments of the present invention have migrated the costs of fabricating solar cells by using combinations of conventional semiconductor processes, integrating solar cell fabrication into conventional integrated circuit chip fabrication facilities and utilizing scrap integrated circuit chip wafers.
  • The description of the embodiments of the present invention is given above for the understanding of the present invention. It will be understood that the invention is not limited to the particular embodiments described herein, but is capable of various modifications, rearrangements and substitutions as will now become apparent to those skilled in the art without departing from the scope of the invention. Therefore, it is intended that the following claims cover all such modifications and changes as fall within the true spirit and scope of the invention.

Claims (14)

1. A method, comprising:
creating an integrated circuit chip process route for fabricating integrated circuit chips using integrated circuit wafers in an integrated circuit fabrication facility;
creating a solar cell process route for fabricating solar cells using solar cell wafers in said integrated circuit fabrication facility;
releasing integrated circuit chip wafers and solar cell wafers into tool queues of tools of said an integrated circuit fabrication facility; and
processing said solar cell wafers on at least some tools of said integrated circuit fabrication facility used to process said integrated circuit wafers.
2. The method of claim 1, further including:
when both solar cell wafers and integrated circuit wafers are present in a same tool queue of a particular tool of said integrated circuit fabricating facility, processing said integrated circuit wafers on said particular tool before processing said solar cell wafers on said particular tool.
3. The method of claim 1, further including:
when both solar cell wafers and integrated circuit wafers are present in a same tool queue of a particular tool of said integrated circuit fabricating facility, processing said integrated circuit wafers on said particular tool before processing said solar cell wafers on said particular tool except if a particular solar cell wafer has been in said particular tool queue for greater than a target time, then processing that particular solar cell wafer before any integrated circuit wafers in said tool queue of said particular tool.
4. The method of claim 1, further including;
selecting scrap integrated circuit wafers from said integrated circuit fabrication facility; and
recycling said scrap integrated circuit wafers to form said solar cell wafers.
5. The method of claim 4, wherein said recycling includes:
etching said scrap integrated circuit wafers;
after said etching, grinding said scrap integrated circuit wafers; and
after said grinding, chemical-mechanical-polishing said scrap integrated circuit wafers.
6. The method of claim 1, further including:
singulating said solar cell wafers into individual solar cell chips.
7. The method of claim 6, wherein said solar cell chips range in surface area from about 25 mm2 to about 400 mm2.
8. The method of claim 1, wherein said solar cell wafers are additionally processed on one or more tools used only for fabricating solar cell chips.
9. The method of claim 1, wherein after processing said solar cell wafers up to a singulating step, said solar cell wafers include solar cell chips having different surface areas.
10. The method of claim 1, further including performing the following process steps on said solar cell wafers:
forming a P-doped layer and an N-doped layer in a solar cell wafer, said P-doped layer adjacent to a top surface of said solar cell wafer and said N-doped layer adjacent to a bottom surface of said solar cell wafer;
forming a dielectric top passivation layer on said top surface of said solar cell wafer and a dielectric bottom passivation layer on said top surface of said solar cell wafer;
forming an antireflective coating on said top passivation layer;
photolithographically forming a first set of openings through said antireflective coating and through said top passivation layer to said P-doped layer and photolithographically forming a second set of openings through said bottom passivation layer to said N-doped layer;
forming first metal silicide contacts to said P-doped layer and second metal silicide contacts to said N-doped layer in said first and second openings respectively; and
forming metal contact frames on said first metal silicide contacts and metal bus bars on said second metal silicide contacts.
11. The method of claim 10:
wherein said photolithographically forming said first set of openings includes defining first openings in a first hardmask layer and after forming said first set of opening, removing said hardmask layer; and
wherein said photolithographically forming said second set of openings includes defining second openings in a second hardmask layer and after forming said second set of opening, removing said hardmask layer.
12. The method of claim 1, wherein said bus bar is a plate.
13. The method of claim 1, wherein said bus bar comprises a grid of intersecting orthogonal wires.
14. The method of claim 1, wherein said bus bar comprises a set of parallel wires.
US12/849,448 2008-08-12 2010-08-03 Method of fabricating solar cell chips Abandoned US20100304519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/849,448 US20100304519A1 (en) 2008-08-12 2010-08-03 Method of fabricating solar cell chips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/189,911 US7897434B2 (en) 2008-08-12 2008-08-12 Methods of fabricating solar cell chips
US12/849,448 US20100304519A1 (en) 2008-08-12 2010-08-03 Method of fabricating solar cell chips

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/189,911 Division US7897434B2 (en) 2008-08-12 2008-08-12 Methods of fabricating solar cell chips

Publications (1)

Publication Number Publication Date
US20100304519A1 true US20100304519A1 (en) 2010-12-02

Family

ID=41680416

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/189,911 Active 2029-03-20 US7897434B2 (en) 2008-08-12 2008-08-12 Methods of fabricating solar cell chips
US12/849,448 Abandoned US20100304519A1 (en) 2008-08-12 2010-08-03 Method of fabricating solar cell chips

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/189,911 Active 2029-03-20 US7897434B2 (en) 2008-08-12 2008-08-12 Methods of fabricating solar cell chips

Country Status (1)

Country Link
US (2) US7897434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216923B2 (en) * 2010-10-01 2012-07-10 Varian Semiconductor Equipment Associates, Inc. Integrated shadow mask/carrier for patterned ion implantation
US20120305066A1 (en) * 2011-06-06 2012-12-06 International Business Machines Corporation Use of metal phosphorus in metallization of photovoltaic devices and method of fabricating same
US20130095597A1 (en) * 2011-10-13 2013-04-18 Sang-jin Park Method of manufacturing photoelectric device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500332A (en) * 2008-08-13 2012-01-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-element metal powder for silicon solar cells
US8294024B2 (en) * 2008-08-13 2012-10-23 E I Du Pont De Nemours And Company Processes for forming photovoltaic devices
US20100037941A1 (en) * 2008-08-13 2010-02-18 E. I. Du Pont De Nemours And Company Compositions and processes for forming photovoltaic devices
US8710355B2 (en) * 2008-12-22 2014-04-29 E I Du Pont De Nemours And Company Compositions and processes for forming photovoltaic devices
GB2467361A (en) * 2009-01-30 2010-08-04 Renewable Energy Corp Asa Contact and interconnect for a solar cell
DE102010028189B4 (en) * 2010-04-26 2018-09-27 Solarworld Industries Gmbh solar cell
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US8110431B2 (en) * 2010-06-03 2012-02-07 Suniva, Inc. Ion implanted selective emitter solar cells with in situ surface passivation
DE102010024834A1 (en) * 2010-06-23 2011-12-29 International Solar Energy Research Center Konstanz Method for producing a passivated, boron-doped region, in particular during the production of a solar cell, and solar cell with a passivated, boron-doped region
CN102779898A (en) * 2012-06-27 2012-11-14 友达光电股份有限公司 Method for manufacturing solar cells
DE102013111634A1 (en) * 2013-10-22 2015-05-07 Solarworld Innovations Gmbh solar cell
DE102014200956A1 (en) * 2013-12-20 2015-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaic cell, photovoltaic module and its manufacture and use
US9947812B2 (en) * 2014-03-28 2018-04-17 Sunpower Corporation Metallization of solar cells
US11978820B2 (en) * 2022-09-20 2024-05-07 Semivation, LLC Thin single-crystal silicon solar cells mounted to a structural support member and method of fabricating

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415700A (en) * 1993-12-10 1995-05-16 State Of Oregon, Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Concrete solar cell
US5928438A (en) * 1995-10-05 1999-07-27 Ebara Solar, Inc. Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell
US6130465A (en) * 1997-10-29 2000-10-10 Light Point Systems Inc. Micro-solar assembly
US20020095366A1 (en) * 2001-01-16 2002-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Capacity auction method and system providing enhanced fabrication facility utilization
US6647307B1 (en) * 2002-11-07 2003-11-11 Taiwan Semiconductor Mfg. Co. Ltd. Method for controlling queue time constraints in a fabrication facility
US6684118B2 (en) * 2002-01-14 2004-01-27 Taiwan Semiconductor Manufacturing Co., Ltd Fabrication facility cycle time approximation method employing historic work in process (WIP) cycle time correlation
US20070227589A1 (en) * 2003-05-07 2007-10-04 Niels Posthuma Germanium solar cell and method for the production thereof
US20080014661A1 (en) * 2006-07-11 2008-01-17 Michael Haag Method for the manufacture of solar panels and special transport carrier
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
US20080290368A1 (en) * 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter
US7576369B2 (en) * 2005-10-25 2009-08-18 Udt Sensors, Inc. Deep diffused thin photodiodes
US7579666B2 (en) * 2003-05-05 2009-08-25 Udt Sensors, Inc. Front illuminated back side contact thin wafer detectors
US7655999B2 (en) * 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US20100037936A1 (en) * 2008-08-12 2010-02-18 Christian Becker Solar cell assemblies and method of manufacturing solar cell assemblies
US20100037933A1 (en) * 2008-08-12 2010-02-18 Harold John Hovel Solar cell panels and method of fabricating same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415700A (en) * 1993-12-10 1995-05-16 State Of Oregon, Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Concrete solar cell
US5928438A (en) * 1995-10-05 1999-07-27 Ebara Solar, Inc. Structure and fabrication process for self-aligned locally deep-diffused emitter (SALDE) solar cell
US6130465A (en) * 1997-10-29 2000-10-10 Light Point Systems Inc. Micro-solar assembly
US20020095366A1 (en) * 2001-01-16 2002-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Capacity auction method and system providing enhanced fabrication facility utilization
US6684118B2 (en) * 2002-01-14 2004-01-27 Taiwan Semiconductor Manufacturing Co., Ltd Fabrication facility cycle time approximation method employing historic work in process (WIP) cycle time correlation
US6647307B1 (en) * 2002-11-07 2003-11-11 Taiwan Semiconductor Mfg. Co. Ltd. Method for controlling queue time constraints in a fabrication facility
US7579666B2 (en) * 2003-05-05 2009-08-25 Udt Sensors, Inc. Front illuminated back side contact thin wafer detectors
US20070227589A1 (en) * 2003-05-07 2007-10-04 Niels Posthuma Germanium solar cell and method for the production thereof
US7576369B2 (en) * 2005-10-25 2009-08-18 Udt Sensors, Inc. Deep diffused thin photodiodes
US20080014661A1 (en) * 2006-07-11 2008-01-17 Michael Haag Method for the manufacture of solar panels and special transport carrier
US7655999B2 (en) * 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US20080092944A1 (en) * 2006-10-16 2008-04-24 Leonid Rubin Semiconductor structure and process for forming ohmic connections to a semiconductor structure
US20080290368A1 (en) * 2007-05-21 2008-11-27 Day4 Energy, Inc. Photovoltaic cell with shallow emitter
US20100037936A1 (en) * 2008-08-12 2010-02-18 Christian Becker Solar cell assemblies and method of manufacturing solar cell assemblies
US20100037933A1 (en) * 2008-08-12 2010-02-18 Harold John Hovel Solar cell panels and method of fabricating same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216923B2 (en) * 2010-10-01 2012-07-10 Varian Semiconductor Equipment Associates, Inc. Integrated shadow mask/carrier for patterned ion implantation
US20120305066A1 (en) * 2011-06-06 2012-12-06 International Business Machines Corporation Use of metal phosphorus in metallization of photovoltaic devices and method of fabricating same
US9284656B2 (en) * 2011-06-06 2016-03-15 International Business Machines Corporation Use of metal phosphorus in metallization of photovoltaic devices and method of fabricating same
US10269993B2 (en) 2011-06-06 2019-04-23 International Business Machines Corporation Use of metal phosphorus in metallization of photovoltaic devices and method of fabricating same
US20130095597A1 (en) * 2011-10-13 2013-04-18 Sang-jin Park Method of manufacturing photoelectric device
US8664015B2 (en) * 2011-10-13 2014-03-04 Samsung Sdi Co., Ltd. Method of manufacturing photoelectric device

Also Published As

Publication number Publication date
US20100037939A1 (en) 2010-02-18
US7897434B2 (en) 2011-03-01

Similar Documents

Publication Publication Date Title
US7897434B2 (en) Methods of fabricating solar cell chips
JP6552011B2 (en) Fabrication of the emitter region of solar cells using ion implantation.
US20110073175A1 (en) Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
US20100229928A1 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US8076215B2 (en) Method of forming an electronic device using a separation technique
US20070170536A1 (en) Liquid phase epitaxial GOI photodiode with buried high resistivity germanium layer
KR20160062004A (en) Electro-polishing and porosification
US4338481A (en) Very thin silicon wafer base solar cell
KR20160061338A (en) Enhanced porosification
KR20170132223A (en) Deposition approach for emitter layer of solar cell
CN102593240A (en) Solar cell and method for manufacturing the same
US11824135B2 (en) Method of manufacturing solar cell
KR20170132224A (en) Polycrystalline Silicon for Blisterless Solar Cells
KR101160116B1 (en) Method of manufacturing Back junction solar cell
US20120167969A1 (en) Zener Diode Within a Diode Structure Providing Shunt Protection
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US11664470B2 (en) Photodiode with integrated, self-aligned light focusing element
KR20110059366A (en) Single crystalline semiconductor substrate having isolation region, solar cell using the same and manufacturing method thereof
CN103426905B (en) Semiconductor structure, there is its semiconductor device and for the method manufacturing it
CN110870082B (en) Method for producing PERT solar cells
JP2015508233A (en) Method for fabricating a back-illuminated sensor
KR20200086511A (en) Manufacturng method of solar cell
US20240186441A1 (en) Lateral phototransistor
CN114300581B (en) Method for manufacturing photosensitive element and semiconductor device
KR20190046785A (en) Manufacturing method of photoelectric device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION